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Stratified local moduli of Calabi-Yau 3-folds·

Yoshinori Namika\va

Introduction

By a Calabi-Yau 3-fold X we mean, in this paper, a projective 3-fold with only terminal

singularities such that [{x '" O. A Calabi-Yau 3-fold appears as a minimal model (cf.

[Mo, Ka]) of a smooth projective 3-fold with Kodaira dimension O. Let Def(X) be the

Kuranishi space of X (cf. [Do, Cr]). Then by (Na 1, Theorem A] it is a smooth analytic

space of dirn = ExtI(Ok,·Ox). Moreover, we have proved in [Na 2, Theorem(5.2)] that

if X i8 a Q-factorial Calabi-Yau 3-fold, then a general point of Def(X) parametrizes a

smooth Calabi-Yau 3-fold, in other words, X is smoothable by a Rat deformation. In

this paper we shall give a necessary and sufficient condition for a (not necessarily Q­

factorial)Calabi-Yau 3-fold X to be smoothed and prove a structure theorem of Def(X).

Let V be the germ of a Gorenstein terminal singularity of dirn 3. Then V is an

isolated cDV point (i.e. its general hyperplane section is a rational double point) by

Reid [Re]. Let Def(V) be the Kuranishi space of V and let V be a semi-universal family

over Def(V). Let ~ denote its fiber over tEDej(V). We here rernark that V; is not a

germ of the singularity for t#O; it has non-zero 3-rd Betti number in general. Define

a(\!t) to be the rank of W eil(\!t)jPic( \!t). Set Yi = {t E Def(V); a(\!t) = i}. A small

partial resolution rr : V~ V is, by definition, a proper birational (bimeromorphic)

morphism from anormal variety V to V such that rr is an isomorphism over smooth

points of V and that rr- I (0) is a connected curve. Since V is a rational singularity, the

exceptional curve forms a, tree of pI 'so Note that V has only finitely many small partial

resolutions V and each V has only isolated cDV points. Then Def(V) has the following

description:

Proposition(1.6)

(1) Let V be a small partial resolution of V and Dej(V) the Kuranishi space of V.
Then there is a natural closed immersion of Dej(V) inta Def{V) (Wahl).

(2)Def(V) = UYi, Yi = fi - Yi+l and Yi = UDej(V), where V runs through all

small partial resolution such that p(V) 2:: i.
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This proposition has a natural globalization to a Calabi-Yau 3-fold X with only

terminal singularities. By definition, a small partial resolution 1T' : X --+ )( is a proper

bi rational morphism from anormal variety X to X such that 1i' is an isomorphism aver

smooth points of X and that it is a small partial resolution of every singular point of

)(. \Nhen 1T' is a projective morphism~X is also a Calabi-Yau 3-fold. Let Def(X) be the

Kuranishi space of X and let X be a semi-universal family over Def(X). \Ve shall define

a(X t ) and Yi in the same way as above. Then one has:

Proposition(2.3)

(1) Let X be a small projective partial resolution of X and Dej(X) the Kuranishi

space of X. Then there is a natural closed immersion of Dej(X) into Dej(X).

(2) Dej(X) = UYi, Yi = Yi - Yi+l and Yi = UDej(X), where X runs through all

small projective partial resolution such that p(X) - p(X) 2:: i.

(3) Each stratum Yi is a (Zariski) locally closed smooth subset of Def(X).

Let X be a small projective partial resolution of X. Then X is called maximal iE for

any small projective partial resolution X of X,Dej(X) is a proper closed subvariety of

Def(X) via the natural inclusion (i.e. Dej(X) --+ Dej(X) is not a surjection). We

have the following criterion of the maximality:

Proposition (cf.Theorem(2.5)) Let {PI, ... ,Pn} C Sing(X) be the ordinary double

points on X and let f : Z --+ X be a small (not necessarily projective) partial resolu.tion

·of X such that Ci := j-I(Pi) ~ pI and that fis an isomorphism over X - {PI, ... ,Pn}'
Then the following conditions are equivalent:

(1) There is a relation in H2(Z, C): LadCi] = 0 with ai -1= 0 for all i.

(2) X is maximal.

Dur main theorem now can be stated as follows.

Theorem (cf.Theorems(2.5) and (2.7)) Let X be a small projective partial reso-

lution (possibily X itself) of X. Then we have:

(1) X is smoothable by a flat deformation if and only if X is maximal.

(2) If X is not maximal, then there is a (not necessarily unique) small projective

partial resolution X of X such that X is maximal and Dej(X) == Dej(X).

(3) In the situation of (2), let X (resp. X) denote the universal family over Dej(X)
(resp. Dej(X)). Then Xt has only ordinary double points for a general point t E

Dej(:k) and Xt is a small resolution of it.

Let X be a Q-factorial Calabi-Yau 3-fold. Put X = X. Then it is easily checked that
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X is maximal by the criterion above. Now we can apply the Theorem to the situation

and obtain:

Corollary(Na 2, Theorem(5.2)) Any Q-factorial Calabi-Yau 3-fold is smoothable

by a Hat deformation.

Acknowledgement: This work has been done during the author's staying at Max­

Planck-Institut fur Mathematik. The author expresses his thanks to Professor Hirze­

bruch for inviting hirn to the institute.

§1. Isolated cDV singularity

Let V be the germ of an isolated cDV singularity. By definition, there is a holomorphic

rnap / of V to al-dimensional disc ~ with a sufficiently srnall radius such that /-1 (0) =
S is a rational double point and other fibers are smooth. Let 7r : S --+ S be the

minimal resolution of S. We shall denote by Y --+ Def(V) (resp. Z --+ Def(S)) the

semi-universal family for the deformations of V (resp. S). One can regard Y as a Hat

family of rational double points over De/(V) x~. Then, by the versality of Def(S),

there is a holomorphic map <p : Def( V) x ~ --+ De/(S) and the Y is obtained as. the

pull-back of Z by <po

Let V be a flat deformation of V over al-dimensional disc ~/. Then there is a

holomorphic map 4> : ~' --+ De/(V) and V is the pull-back of Y by 4>. Since Y is a

Hat family of rational double points over Def(V) x ~, V constitutes a Hat family of

rational double points over ~' x~. Let B be the discriminant divisor on Def(S) and D

its inverse image in ~' x ~. Let PI :~' x ~ --+ ~' be the first projection. Since V is

an isolated singularity, {Dd is a family of Cartier divisors with t E ~'.

Definition{l.l) A pair (V, 4» is called admissible if #(D t ) is constant for t E

f:::..'-O.

We have the following lemma.

Lemma{1.2) For t E De/(V), there is a Hat deformation 9 : V --+ 6,' of V

over al-dimensional disc and a holomorphic map 4> of the disc to Def(V) such that (I)

g-I(O) = V, g-I(S) = ~ for same, point sEI::::.' and (2) (V, 4» is admissible.

Proof. Set E = rp-I (B). Take a suitable system of local coordintes (SI, ... ,sn) of

Def(V) (Def(V) is smooth because V is an isolated cDV point.). Let u be the coordinate

of 1::::.. By the \tVeierstrass Preparation Theorem, we mayassurne that E is defined as the

zero locus of the function h(u,s) = un + h1(s)U n
-

1 + ... + hn(s), where hi(O) = 0 fOF all

i. It can be checked that the set Wp := {u E De/(V); h(u,s) has p different roots as a

polynomial of s} forms a locally (Zariski) closed subset of Def(V) for every p and that
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vVp :1 0. If we take the Def(V) sufficiently smallI we can assurne that Wp is connected.

This implies that one can connect any point t E Wp with the origin 0 by an analytic

curve p : 6.' --+ Def(V) in such a way that p(6.') - 0 C Wp • Q.E.D.

Let (V, cP) be an admissible pair. Then there is a holomorphic map h : V --+ 6,,' x 6.,

and V can be regarded as a family of rational double points (resp. a family of isolated

cDVpoints) by h (resp. 9 := PI 0 h).
\Nrite vt = g-l(t) for a point t E 6.'. Then one has a holomorphic map ht : vt --+ 6..

The map ht has exactly #(D t ) singular fibers vt,u; (i = 1, ... , #(D t )). The number #(D t )

remains constant when t varies in 6.' - 0, and #( Do) = 1. We then have the following

lemma.

Lemma{1.3) In the commutative diagram:

H2 (Y; - Sing(\!t); Z) ~ H2(ltt - Ultt,u;; Z)

all homomorphisms are isomorphisms.

Proof. Take a suitable Galois cover 6,,' --+ 6. in such a way that it is ramified

over pis and that the base change V;' of Y; by the cover admits a simultaneous resolution

7r : vV --+ Y;'. Let E be the exceptional curve of 7r. Since H3 (E; Z) = 0, H3E(W; Z) = 0

by duality. Hence the restriction map: H 2(W; Z) --+ H 2 (W - E; Z) is a surjection. On

the other hand, the composition H2 (vV; Z) ~ H1(W; 0*) ~ H1(Y;' - Sing(Y;'); 0*) --+

H2(~' - Sing(~'); Z) ~ H2(vV - E; Z) is an injection since H2Sing(Vt')(~';0) = 0 by

the depth argument. These implies that H2(W; Z) ~ H2(W - Ei Z). As H2(W; Z) ~

H2(~' - U~~Ui; Z), and H2(W - E; Z) ~ H2(~' - Sing(\I;')j Z), we have an isomorphism

H2(Y;' - U\I;:u;; Z) ~ H2(V/ - Sing(Y;'); Z). Take its invariant part by the Galois

graup. One then sees that j is an isomarphism. One also sees that the map H 1(\I;' ­

Sing(Y;'); 0*) --+ H 2 (V;' - Sing(Y;'); Z) is an isomorphism by the above observation.

Hence we have that 01 is an isamorphism by taking the invariant part by the Galois

group. The map 02 is an isomorphism because V; - UY;.Ui is aStein space and hence

Hi(y; - UY;,u;; 0) = 0 for i > O. Q.E.D.

Lemma{1.4) Suppose that d(~)~~~eil(Y;)j Pic(vt))> 0 for some t E 6.' - O.

Then there is a projective small partial resolution lJ : V --+ V such that

(1) lJ~ is a projective small partial resolution for every s E 6,,'j

4



(2) a(Vt) = O.

Proof. Since the number r := #( Ds ) is constant for s E 6' - 0, we have 7Tl (6' x

6 - D) = EBI~i~rZ, and we can take the loops ri in {t} x 6 (1 ::; i ::; r) which go

around Ui in the positive direction as its basis. Henc~ one sees that the restriction map

HO(~' x ~ - D; R2h.Z) --+ HO({t} X ~ - {Ul""'U r } ; R2ht .Z) is an isomorphism.

Since a( V;) > 0, there is a Q-factorialization Vt : l% --+ V;. Take a vt-ample' Ene

bundle L on \it. Since H 1
("\;;; 0·) ~ H1(\t; - Sing(\!t); 0·), we have a non-zero element

T E HO( {t} x 6 - {Ul' ••• , Ur} ; R2ht.Z) corresponding to L by Lemma( 1.3). The T gives

an element of HO(~' x ~ - D ; R2h.Z).

'tVe now take a finite Galois cover a : T --+ ~' x ~ with the Galois group G in such

a way that the base change V' of V by a admits a simultaneous resolution J-L : W --+ V'.

Since we have HO(T - a- 1(D) ; R2h~Z) ~ HO(T; R2(tJ 0 h').Z) ~ H 1(W; 0·), we "also

have an isomorphism HO(T-a-I(D); R2h~Z)G ~ H1(W;O·)G.

As there is a homomorphism from HO(6' x ~ - D; R2 h.Z) --+ HO(T - 0:- 1(D) ;
R2h: Z)G , one has a line bundle .c E H 1 (W; O·)G corresponding to T. We here recall that

there are many choices of the simultaneous resolution v : W --+ V'. Two simultaneous

resolutions are connected by a sequence of flops. Now we can specify one of them in

such a way that .c is v-nef by [Re, §§7, 8]. Then it is easily checked that the graded Ov'­

algebra EBn;::ov•.c0n is a finitely generated OV1-algebra. The line bundle .c is G-invariant

in the following sense:

The G has a meromorphic action on W. Each element 9 E Ginduces a bimeromorphic

automorphism 1/;g of W. Note that 1/;g is an isomorphism in codimension 1 and hence

there is an isomorphism ?jJ*9 : Pic(W) --+ Pic(W). Then .c is invariant under ?jJ.9 for

every 9 E G.

Hence v•.c0n is a G-sheaf for every n. 'tVe here set V = ProjovEBn;::ov. G.cem .
Q.E.D.

Remark(l.5) (1) In the proof of (1.4), one has abirational morphism c.p : W --+
Wover V' by using a v-free line bundle .c0m (m >> 0). Then the V is obtained as

the quotient of W by G. Let p = a- I ((0,0)) E T. Then the fiber Wp of the morphism

W --+ T is a partial resolution S' of the rational double point S (i.e. the minimal

resolution S of S factors through S'. By the assumption, the exceptional locus of the

partial resolution has exactly r irreducible components. Since G acts on Wp trivially,

we see that the exceptionallocus of Vo : Vo --+ \!Q has r irreducible components.

(2) Since R1vu .c0n = 0 for all s E 6.', one has the base change property: vG • ..c0n @ov

Qvs 9:" V 3 G • .cs On. In particular, we have V, = Proj EBn;:::ovs G• .cs On for all s E ~'. "

(3) One can state the result of (1.4) in more generality as follows. With the same
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assumption of (lA), suppose that a projective small partial resolution Vt : "Yt ---+ vt is

given. Then we can extends the Vt to a projective small partial resolution v : V --+ V

with the property (1) in (1.4). In fact, we only have to replace the Q-factorialization

with this Vt in the proof of (1.4).

Let V be the germ of an isolated cDV point and Def(V) the Kuranishi space of V.

Denote by Y the semi-universal family over Def(V). Define !1(rt)";Ituzitk~eif(rt)/ Pic(rt))
and set Yi = {t E Dej(V); a(~) = i}. Then we have the following description of

Dej(V).

Proposition(1.6)

(1) Let V be a small partial resolution of V and Dej(V) the Kuranishi space of V.
Then there is a natural closed immersion of Dej(V) into Dej(V).

(2) Def(V) has a stratification into the disjoint sums of (Zariski) lacally closed

subsets: Def(V) = IlYi, Yi = fi - Yi+l and Yi = UDej(V), where V runs through all

small partial resolutions such that p(V) ~ i.

Proof (1): Since V has only rational singularity, there is a natural map Dej(V) --+

Dej(V) by Wahl[Wa]. So we only have to check that the homomorphism Extl(fl\" CJv )
--+ Extl(n l v, CJv ) is an injection. Set (; := V - Sing(V) and U := V - Sing(V).

By Schlessinger[Sch], we have Extl(n\T'CJV ) ~ Hl({;;8iJ) and Ext1(n l v ,CJv ) ~

Hl(U; 8u). Denote by C the exeeptional curve of the small partial resolution. Then we

have an exact sequenee of loeal eohomology:

H 1 ·((;·8·) --+ H l ((;·8·) --+ H 1(U'8u)GnU , U , U 1

By the depth argument, we have H 1Gnü( (;; 8 ü ) = O. Henee we have done.

(2): Let t E Yi, Then by Lemma( 1.2) there is an admissible pair (V, 4» such that

g-l(O) = V and g-I(8) = yt. 'rVe have a projective partial resolution v : V --+ V

by Lemma(1.4) and Remark(1.5) such that p(Vo) = i. This implies that t E Dej(Vo).

Moreover, we have t E Dej(Vo) -Up(V)?:i+l Dej(V). In fact, suppose that t E Def(V)for
some V with p(V) > i. We can find an analytic curve r C Dej(V) passing thr~ugh

t and the origin 0 in such a way that there is a Hat deformation V --+ r of V and

abirational morphism v from V to YXDej(V)r. Sinee pe\!) > i, the exeeptionallocus

of Vo has more than i irredueible components Cl, ... , Cn (n = p(V)). Each curve Cj

moves sideways in the family V-;. r to a curve Cj(t) in l%. Sinee C/8 are numerically

independent in 'Co, Cj(t)'s are also numerically independent in ~. This, in particular,

implies that a(yt) > i, whieh is a contradiction. Hence we have proved that fi c
Up(v)~iDef(\!) - Up(V)~i+l De/(V). We can also prove the converse implication by the

same argument. Q.E.D.

6



Example(1.7) Let V be a good representative of the germ of {(x, y, z, w) E

C\ x 2 + y2 + z2 + w 3 = o} at the origin. Consider the I-parameter deformation V ~f V

given by the equation x 2 + y2 + Z2 + w3 + w2t = 0. For t #- 0, \!t has a singularity at

p= (O,O,O,O,t) and (\!t,p) is not Q-factorial. However, V; itse1fis Q-factorial.

Let (V, e;b) be an admissible pair such that vt has on1.1' ordinary double points for

t #- 0. Assume that there is a small partial resolution v : V--+ V which satisfies

(1) Vo is a small partial resolution of V with n irreducible CUf\'es as the exceptional

locus (or equivalently p(Vo) = n);

(2) Vt is a small resolution of ordinary double points of V; for t =I 0.

Note that the exceptionallocus ofthe map Vt is a disjoint union of (-1, -I)-curves for

t #- 0. As (V, e;b) is an admissible pai r, the number of such (-1, -1 )-curves is independent

of t #- 0. We denote this number b.1' m. In this situation, we have the following lemma.

Lemma(I.8) One has the inequalit.1' m 2:: n, and the equalit.1' holds if and onl.1' if

V is the germ of an ordinary double point and V is a trivial deformation of V.

Proof. As we have seen above, there is a holomorphic map h : V --+ 6,.' X 6,.

and V can be regarded as a family of rational double points. Set S = h-I((O, 0)) and

S' = (h 0 v)-I((O, 0)). Then the minimal resolution 1i" : S --+ S factors through S' (cf.

{Re]). By the versality of Def(S), one has a holomorphic map of 6,' x 6, to Def(S). In

our case, this map factors through Def(S'). By the assumption, the partial resolution

5' ---t S has n irreducible curves as the. exceptional divisor. Since Ext 2(n1/ O~) = 0,

Def(S') is smooth.

Here we recall a result of Brieskorn (cf.[Br, Pi]). Let Ej (1 ~ j ::; l) be the irreducible

components of the exceptionallocus of Ei ---t S. Put 2; = {D = EajEjj D2 = -2,aj E

Z}. The 2; forms a root system. Then Def(S) ---t Def(S) is a finite Galois cover

with Galois group G = W(E), the We.1'l group of L. Moreover, there is a one to one

correspondence between the effective roots of r.. and the ramification divisors of Dej(S).
Since W(r..) acts transitivelyon r.., one sees that G acts on the set of ramification divisors

·of Def(S) transitively. Thus, the discriminant locus B of Def(S) is an irreducible

divisor.

We shall prove that there are at least n irreducible component in the ramification

locus R c Def(S') of the finite cover Def(S') ---t Def(S). First we factorize the

partial resolution into n number of birational morphisms: S' ---t Sn-l --+, ... , SI ---t S

in such a way that p(S;.jSi-d = 1 for all i. Then we have a sequence of finite covers

: Def(S') ---t Def(Sn-d, ... , Def(Sd -+ Def(S). Renumbering the ipdices of Ej's,

we mayassurne that Ei corresponds to the exceptional divisor of Si ---t Si-I. As we
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have remarked above, there is a ramification divisor Di C Def(S) corresponding to Ei.

Denote by Bi C Def(Sd its image by the map Def(S) --t Def(Sd, and denote by

~ c Def(S') its image by the map Dej(S) --t Def(S'). Then it can be checked

that Bi is an irreducible component of the ramification locus of Def(Sd --t Def(Si-d.

Since the ramification indices of ramification divisors of Def(S) all equall, this implies

that Fli (1 ::; i :::; n) are mutually different irreducible components of R.

Next assurne that S is not of type Al. Consider the map f1 : Def(Sd --t Def(S).
Decompose 11 -I (B) into the two parts: the ramification locus G of 11 and the non­

ramification locus H. Both of them are Cartier divisors on Def(St}. Suppose that

H is elnpty. Then all D/s are mapped onto some irreducible components of G by the

map Del(S) --t Def(Sd. But this is absurd because if so, then the ramification

indices of Di(i ;::: 2) are grater than one. Hence H should be non-empty and R/s
(i ;::: 2) are mapped onto some irreducible components of H by the map Def(S') --t

Def(Sd. Here if G has more than one irreducible component, then there are at least

n + 1 irredueible components in the ramification locus R c Def(S') of the finite cover

Del(S') ---t Def(S). Even if G is irreducible, we ean show that there are at least

n + 1 irreducible components in R in the following way. Let D* C Def(S) be· the

ramifieation divisor corresponding to the fundamental eyc1e of the minimal resolution S
of S. It can be ehecked that D* is mapped outo G by the map Def(S) --t Def(Sd.
Let R* C Def(S') be the image of D* by the map Del(S) ---t Def(S'). We shall

prove that R1 and R* are different divisors on Dej(S'). Let S' ---t S" be the birational

morphism eontracting the curve EI to a point. R1 is clearly a ramification divisor of the

map Def(S') --t Def(S"), but R* is not a ramifieation divisor by definition. Thus, R I

and R* are different divosor on Def(S'). Now the n + 1 divisors Fli(l ~ i ~ n) and R*
are mutually different irreducible eomponents of R.

Assume finally that S is of type AI' Then V is isomorphie to the germ of {(x, y, z, w) E

C'\ x 2 + y2 + Z2 + w k = O} at the origin for some k > 1. In this ease, we can direetly

check that m = n if and only if k = 2 (cf. [Fr]). Q.E.D.

§2. Calabi-Yau 3-folds

Let X be a Calabi-Yau 3-fold with terminal singularities. As Kx "" 0, X has only

Gorenstein terminal singularities. Thus, X has only isolated cDV singularities by [Re].

For eaeh singular point Pi EX, we take a sufficiently small open neighborhood Vi of

Pi. There is a holomorphic map fi of Vi to aI-dimensional disc 6 with a small ra'dius

such that li- 1 (0) = Si is a rational double point and other fibers are smooth. Let

Yi ---t Del(~) be the semi-universal family for the deformations of Vi, One ean regard
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Yi as a Rat family of rational double points over Def(Vi) x 6.. By the versality of

Def(Sd there is a holomorphic map 'Pi : Def(V) x 6. ---+ Def(Sd.
Let Xb.' be a fIat deformation of X over al-dimensional disc /::::". Then there is

a holomorphic map rj; of 6' to the Kuranishi space Def(X) corresponding to this fIat

deformation. By composing this map with the natural map Def(X) --+ Def(~), we

obtain a holomorphic map ePi : 6.' ---+ Def(~) for each singularity Pi EX. \Ve also

have a holomorphic map from 6' x 6. to Def(Si) by composing cj;i x id with 'Pi . By

pulling back the semi-universal family Zi over Def(Si) by the map, obtained is a, flat

family Vi of rational double points over 6' x 6. The Vi can be also viwed as a Hat

deformation of Vi over 6.'. Note that Vi is an open neighborhood of Pi E Xb."

Definition(2.1) A pair (Xb. I , ci» is called admissible if (Vi, <Pi) are all admissible

in the sense of (1.1).

Let X be the universal family over the Kuranishi space Def(X) of X. By the s.ame

argument as (1.2) we have

Lemma(2.2) For t E Def(X) there is a flat deformation 9 : Xb.' --+ 6' of X

over al-dimensional disc and a holomorphic map cj; of the disc to Def(X) such that(I)

g-I(O) = X, g-1(8) = X t for some point 8 E 6' and (2) (Xb.I, cj;) is admissible.

Define a(Xd to be the rank of Weil(Xd/ Pic(Xd and set Yi = {t E Def(X); a(Xd =

i}. Then one has the following globalization of (1.6).

Proposition(2.3) (1) Let X be a small projective partial resolution of X and

Def(X) the Kuranishi space of X. Then there is a natural closed immersion of Def(X)
into Def(X).

(2) Def(X) = UYi, Yi = 'fi - Yi-t and Yi = UDef(X), where X runs through all

small projective resolutions such that p(X) - p(X) ;::: i.

(3) Each stratum Yi is a (Zariski) locally closed smooth subset of Def(X).

Proof (1): The proof is quite similar to that of (1.6)(1).

(2): Let t E Yi, We take a Hat deformation 9 : Xb.' -t 6' and a holomorhic

map 4> : 6' -t Def(X) with the properties (1) and (2) of Lemma(2.2). Let Vt :

Xt ---t X t be a Q-factorialization. The Vt induces a projective small partial resolution

Vit : ~,t ---+ ~,t. By Lemma(1.4) and Remark(1.5),(3) each vi extends to a projective

small partial resolution Vi : Vi ---+ Vi. As a consequence, one has a small partial

resolution v : Xb. 1 ---+ Xb.' . Note that Xb.I,t = Xe. Since Xt is projective, there is

an ample line bundle L on Xt. The 2-nd Betti number (with respect to the usual

cohomology) is preserved under a fIat deformation of Calabi-Yau 3-folds with isolated
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hypersurface singularities by the vanishing eyde argument. This implies that the Pic.ard

number is also preserved because h 1 = h2 = 0 in this case. Thus, the line bundle L

extends to a line bundle .c on Xbol. Let Cl, ... , Cm be the irreducible components 'of the

exceptionallocus of Va. Cjs move sideways in ;rbo, to the curves Ci(t)'s on Xt. Since (L.
Ci (t)) > 0, (.c, Ci) > 0, which means that Xbol.a i8 projective aver X. Now the relative

Picard number p(XtiXd = i by our assumption. Hence we have p(Xbo"a/X) = i.

It follows from the observation above that t E Up(X /X)2;iDej(X). Moreover, we have

t E Up(X/X)2;iDe!Ck) - Up(X/X)2:i+lDe!(X). In fact, if t E De!(X) for a projective
small partial resolution X with p(Xrx:) > i, then we can choose an analytic curve

r c Dej(X) passing throgh t and 0 in such a way that there is a flat deformation

X ---+ r of X and abirational morphism v from X to XXDej(X)r. Since p(X/X) > i,

we have p(Xt/ Xt) > i, which is a contradiction.

Finally we show that if t E Up(X/X)2:iDe!(X) - Up(X/X)2;i+lDej(X), then t E }i.

By the assumption, t E Dej(X) with a projective small resolution X ---+ X for

which p(X / X) = i. Thus, a(Xt ) 2:: i. On the other hand, a(Xd < i because

t rt. Up(X X)2: i +l Dej(X). Hence we have done. :

(3): Assurne that Yi has a singular point t. Since Def(X) is a smooth subvariety

of Dej(X) for every projective small partial resolution X of X, there are at least two

different irreducible components of Yi which contain t, say, Def(Xd and Def(X2 Y, for

which p(XI / X) = p(X2 / X) = i. This means that there are two different prajective small

partial resolutions Xt' and X/' of Xt, for which Def(X;} #- Dej(X:') as a subvariety of

Def(Xd. Let W' (resp. W") be a Q-factorization of Xt' (resp. X/'). Then W' and W"

are both Q-factorizations of Xt, and hence they are connected by a flop. It is proved by

KolläI and Mori [K-M,(11.10)} that Def(~V') ~ Def(W"). This, in particular, implies

that p(W'/Xd > p(X;/Xt ) = i. However, it i8 absurd because a(Xd = i. Q.E.D.

Definition(2.4} Let X be a projective small partial resolution of X. Then X is

called maximal iffor any projective small partial resolution X of X, Dej(X) i8 a proper

closed 8ubvariety of Def(X) via the natural indusion.

In view of Proposition(2.3), the stratification of Def(X) is determined only by max­

imal projective small partial resolutions. We have the following criterion of the maxi­

mality.

Theorem(2.5) Let {PI, ... , Pi} C Sing(X) be the ordinary double points on X
and let f : Z --+ X be a small (not neces8arily projective) partial resolution of Xsuch

that Ci := /-1 (pd ~ pI and that f i8 an isomorphism over X - {PI, ... ,pd. Then the

following three conditians are equivalent:
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(1) X is maximal;

(2) X is smoothable by a Hat deformation;

(3) There is a relation in H2(Z, C) : Eo:dCi ] = 0 with O:i =I 0 for all i.

Proof (1) => (2): X has a Hat deformation to a Calabi-Yau 3-fold Y with ~nly

ordinary double points by [Na 2, Theorem(5.2)]. Let }j be the germ of a sinular point

qj E Y. We mayassume that l:a(Yj) = a(Y) by [Na 2, Corollary(6.12)]. Ir Y has a

singularity, then a(Y) > 0, which implies that a general point of Def(X) corresponds to

a non-Q-factorial Calabi-Yau 3-fold. Hence there is a projective small partial resolution

X of X such that Dej(X) ~ Dej(X) by applying Proposition(2.3) to Dej(X). This

contradicts the maximality of X. SO Y must be a smooth Calabi-Yau 3-fold.

(2) => (1): It is obvious because smooth Calab-Yau 3-fold Y has no small partial

resolutions except for Y itself.

(3) => (2): First we shall show that all singularities of X which are not ordinary

double points are smoothed under a suitable Bat deformation of X. Let 9 : X~ 6. be

a Hat deformation of X over al-dimensional dlsc such that g-1 (0) = X and a general

fiber g-l(t) := Y(t =I 0) is the same as above. Suppose that when X is deformea to

Y, a non-ordinary double point p E X splits into a finite number of ordinary double

points qt, ... , qm on Y. By Proposition(2.3), there is a projective birational morphism

v : X~ X whieh satisfies (a) 110 : .•:\' ~ 4:\' is a small partial resolut ion of X and (b)

IIt is a small resolution of the ordinary double points on Y for t =I 0. Define n to be the

number of the irreducible components of vo -1 (p). Then we have m > n by Lemma(1.8).

Hence the curves Di := 1I;I(qd(l ~ i ~ m) are not numerically independent on" Xt ,

which contradicts the assumption Ea(Yj) = a(Y).
vVe shall next prove that all ordinary double points are smoothed under a suitable

Bat deformation of X. Let Xi be the germ of a ordinary double point Pi EX. Let

iT : W -t Z be a resolution of singularities such that iT-
1(Z - Sing( Z)) ~ Z - Sing( Z).

Let E be the exeptional divisor of iT. Then the exceptional locus of j 0 iT is a disjoint

union of Ci 's and E. We have the following exact commutative diagram:

(2.6)

H1(X -Sing(X);8x ) ~EBiJ!2c;(Wjn2w)EBH2E(Wjf22w) -,~ H 2 (W,f22
W )

11 ßt
H1(X - Sing(X); Bk) - 0: ~ Ef:)H~ing(X)(X;8-,~)

By the assumption of (3), there is an element E E !(er(,) whose i-th component Ei are

all non-zero for 1 ~ i ~ l. Then there is an element Tl E H 1 (X - Sing(X); 8 x) such that

a(TJ)i E H;i(X; 8 x)~ Extl(n~;; Gi) are all non-zero by (2.6). Since any infinitesimal
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deformation of X is unobstructed, I-st order deformation of X corresponding to the 1]

can be realized. Hence we have done.

rt follows from two observations above that X is smoothable by a Hat deformation

because Dej(X) is smooth (in particular, irreducible).

(2) ==> (3): Assurne that there is a positive integer k ~ land all relations in H 2(Zj C)

are of the form L:i2:k+ladCi] = 0 for some a/s. Let f' : Z' --+ X be a small partial

resolution of X obtained by contraeting the eurves Ci (i ~ k + 1) on Z to points., We

shall show that Def(Z') ~ Dej(X). If this is proved, then we see that the ordinary

double points Pi E X (i ~ k) are not smoothed by any Hat deformation of X beeause

( -1, -1 )-curves Ci (i ~ k + 1) are stable under any Hat deformation of Z'.
In the diagram(2.6) ehoose an element f E !(er(I ). "vVe denote by fi E H 2 Ci (W, n2w )

its i-th component and denote by fE E H2 E(W, f22 W ) its other component. The as­

sumption implies that fi are all zero for 1 ~ i ~ k. Hence, for an arbitrary elerp.ent

1] E H1(X - Sing(X); 8 x ), we see that the i-th component O:(7])i of 0:(1]) are all zero for

1 ~ i ~ k. Next we set X' = X - (Sing(X) - {PI, ... ,Pk}) and consider the following

exact commutative diagram

o-+ H1(X'; 8 x) --+ H1(Z' - Sing(Z')j 8 z ) --+ HO(X; R1j.8 z )

11 t t
o-+ H1(X'; 8 x) --+ H1(X - Sing(X); 8 x) - 0:' --+ EBl:5i~kH2Pi (X; 8 x)

Since a' = 0, one has an isomorphism H1(Z -Sing(Z); Bz) ,...., H1(X -Sing(X)j Bi").
By Schlessinger [Seh ] these are isomorphie to the tangent spaees to Dej( Z) and Dej(X)
at the origin respeetively. As Dej(Z) and Def(X) are both smooth, we conclude that

Dej(Z) ~ Dej(X). Q.E.D.

When a projeetive small partial resolution X of X is not maximal, oue has· the

following.

Theorem(2.7) Let X be not maximal. Then there is a (not neeessarily unique)

small projeetive partial resolution X of X such that X is maximal and Dej(X) ~

Dej(X). In this situation, let X (resp. .-1') be the universal family over Dej(X) (resp.

Dej(X)). Then there is a projective birational morphism v from X to X. For general

t E Def(X), Xt has only ordinary double points and Vt : Xt -+ Xt is a small resolution

of Xt.

Proof. This is already shown in the proof of Theorem(2.5) (especially in the

(1) ==> (2) part). Q.E.D.
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