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Stratified local moduli of Calabi-Yau 3-folds·

Yoshinori Namika\va

Introduction

By a Calabi-Yau 3-fold X we mean, in this paper, a projective 3-fold with only terminal

singularities such that [{x '" O. A Calabi-Yau 3-fold appears as a minimal model (cf.

[Mo, Ka]) of a smooth projective 3-fold with Kodaira dimension O. Let Def(X) be the

Kuranishi space of X (cf. [Do, Cr]). Then by (Na 1, Theorem A] it is a smooth analytic

space of dirn = ExtI(Ok,·Ox). Moreover, we have proved in [Na 2, Theorem(5.2)] that

if X i8 a Q-factorial Calabi-Yau 3-fold, then a general point of Def(X) parametrizes a

smooth Calabi-Yau 3-fold, in other words, X is smoothable by a Rat deformation. In

this paper we shall give a necessary and sufficient condition for a (not necessarily Q

factorial)Calabi-Yau 3-fold X to be smoothed and prove a structure theorem of Def(X).

Let V be the germ of a Gorenstein terminal singularity of dirn 3. Then V is an

isolated cDV point (i.e. its general hyperplane section is a rational double point) by

Reid [Re]. Let Def(V) be the Kuranishi space of V and let V be a semi-universal family

over Def(V). Let ~ denote its fiber over tEDej(V). We here rernark that V; is not a

germ of the singularity for t#O; it has non-zero 3-rd Betti number in general. Define

a(\!t) to be the rank of W eil(\!t)jPic( \!t). Set Yi = {t E Def(V); a(\!t) = i}. A small

partial resolution rr : V~ V is, by definition, a proper birational (bimeromorphic)

morphism from anormal variety V to V such that rr is an isomorphism over smooth

points of V and that rr- I (0) is a connected curve. Since V is a rational singularity, the

exceptional curve forms a, tree of pI 'so Note that V has only finitely many small partial

resolutions V and each V has only isolated cDV points. Then Def(V) has the following

description:

Proposition(1.6)

(1) Let V be a small partial resolution of V and Dej(V) the Kuranishi space of V.
Then there is a natural closed immersion of Dej(V) inta Def{V) (Wahl).

(2)Def(V) = UYi, Yi = fi - Yi+l and Yi = UDej(V), where V runs through all

small partial resolution such that p(V) 2:: i.

1



This proposition has a natural globalization to a Calabi-Yau 3-fold X with only

terminal singularities. By definition, a small partial resolution 1T' : X --+ )( is a proper

bi rational morphism from anormal variety X to X such that 1i' is an isomorphism aver

smooth points of X and that it is a small partial resolution of every singular point of

)(. \Nhen 1T' is a projective morphism~X is also a Calabi-Yau 3-fold. Let Def(X) be the

Kuranishi space of X and let X be a semi-universal family over Def(X). \Ve shall define

a(X t ) and Yi in the same way as above. Then one has:

Proposition(2.3)

(1) Let X be a small projective partial resolution of X and Dej(X) the Kuranishi

space of X. Then there is a natural closed immersion of Dej(X) into Dej(X).

(2) Dej(X) = UYi, Yi = Yi - Yi+l and Yi = UDej(X), where X runs through all

small projective partial resolution such that p(X) - p(X) 2:: i.

(3) Each stratum Yi is a (Zariski) locally closed smooth subset of Def(X).

Let X be a small projective partial resolution of X. Then X is called maximal iE for

any small projective partial resolution X of X,Dej(X) is a proper closed subvariety of

Def(X) via the natural inclusion (i.e. Dej(X) --+ Dej(X) is not a surjection). We

have the following criterion of the maximality:

Proposition (cf.Theorem(2.5)) Let {PI, ... ,Pn} C Sing(X) be the ordinary double

points on X and let f : Z --+ X be a small (not necessarily projective) partial resolu.tion

·of X such that Ci := j-I(Pi) ~ pI and that fis an isomorphism over X - {PI, ... ,Pn}'
Then the following conditions are equivalent:

(1) There is a relation in H2(Z, C): LadCi] = 0 with ai -1= 0 for all i.

(2) X is maximal.

Dur main theorem now can be stated as follows.

Theorem (cf.Theorems(2.5) and (2.7)) Let X be a small projective partial reso-

lution (possibily X itself) of X. Then we have:

(1) X is smoothable by a flat deformation if and only if X is maximal.

(2) If X is not maximal, then there is a (not necessarily unique) small projective

partial resolution X of X such that X is maximal and Dej(X) == Dej(X).

(3) In the situation of (2), let X (resp. X) denote the universal family over Dej(X)
(resp. Dej(X)). Then Xt has only ordinary double points for a general point t E

Dej(:k) and Xt is a small resolution of it.

Let X be a Q-factorial Calabi-Yau 3-fold. Put X = X. Then it is easily checked that
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X is maximal by the criterion above. Now we can apply the Theorem to the situation

and obtain:

Corollary(Na 2, Theorem(5.2)) Any Q-factorial Calabi-Yau 3-fold is smoothable

by a Hat deformation.

Acknowledgement: This work has been done during the author's staying at Max

Planck-Institut fur Mathematik. The author expresses his thanks to Professor Hirze

bruch for inviting hirn to the institute.

§1. Isolated cDV singularity

Let V be the germ of an isolated cDV singularity. By definition, there is a holomorphic

rnap / of V to al-dimensional disc ~ with a sufficiently srnall radius such that /-1 (0) =
S is a rational double point and other fibers are smooth. Let 7r : S --+ S be the

minimal resolution of S. We shall denote by Y --+ Def(V) (resp. Z --+ Def(S)) the

semi-universal family for the deformations of V (resp. S). One can regard Y as a Hat

family of rational double points over De/(V) x~. Then, by the versality of Def(S),

there is a holomorphic map <p : Def( V) x ~ --+ De/(S) and the Y is obtained as. the

pull-back of Z by <po

Let V be a flat deformation of V over al-dimensional disc ~/. Then there is a

holomorphic map 4> : ~' --+ De/(V) and V is the pull-back of Y by 4>. Since Y is a

Hat family of rational double points over Def(V) x ~, V constitutes a Hat family of

rational double points over ~' x~. Let B be the discriminant divisor on Def(S) and D

its inverse image in ~' x ~. Let PI :~' x ~ --+ ~' be the first projection. Since V is

an isolated singularity, {Dd is a family of Cartier divisors with t E ~'.

Definition{l.l) A pair (V, 4» is called admissible if #(D t ) is constant for t E

f:::..'-O.

We have the following lemma.

Lemma{1.2) For t E De/(V), there is a Hat deformation 9 : V --+ 6,' of V

over al-dimensional disc and a holomorphic map 4> of the disc to Def(V) such that (I)

g-I(O) = V, g-I(S) = ~ for same, point sEI::::.' and (2) (V, 4» is admissible.

Proof. Set E = rp-I (B). Take a suitable system of local coordintes (SI, ... ,sn) of

Def(V) (Def(V) is smooth because V is an isolated cDV point.). Let u be the coordinate

of 1::::.. By the \tVeierstrass Preparation Theorem, we mayassurne that E is defined as the

zero locus of the function h(u,s) = un + h1(s)U n
-

1 + ... + hn(s), where hi(O) = 0 fOF all

i. It can be checked that the set Wp := {u E De/(V); h(u,s) has p different roots as a

polynomial of s} forms a locally (Zariski) closed subset of Def(V) for every p and that
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vVp :1 0. If we take the Def(V) sufficiently smallI we can assurne that Wp is connected.

This implies that one can connect any point t E Wp with the origin 0 by an analytic

curve p : 6.' --+ Def(V) in such a way that p(6.') - 0 C Wp • Q.E.D.

Let (V, cP) be an admissible pair. Then there is a holomorphic map h : V --+ 6,,' x 6.,

and V can be regarded as a family of rational double points (resp. a family of isolated

cDVpoints) by h (resp. 9 := PI 0 h).
\Nrite vt = g-l(t) for a point t E 6.'. Then one has a holomorphic map ht : vt --+ 6..

The map ht has exactly #(D t ) singular fibers vt,u; (i = 1, ... , #(D t )). The number #(D t )

remains constant when t varies in 6.' - 0, and #( Do) = 1. We then have the following

lemma.

Lemma{1.3) In the commutative diagram:

H2 (Y; - Sing(\!t); Z) ~ H2(ltt - Ultt,u;; Z)

all homomorphisms are isomorphisms.

Proof. Take a suitable Galois cover 6,,' --+ 6. in such a way that it is ramified

over pis and that the base change V;' of Y; by the cover admits a simultaneous resolution

7r : vV --+ Y;'. Let E be the exceptional curve of 7r. Since H3 (E; Z) = 0, H3E(W; Z) = 0

by duality. Hence the restriction map: H 2(W; Z) --+ H 2 (W - E; Z) is a surjection. On

the other hand, the composition H2 (vV; Z) ~ H1(W; 0*) ~ H1(Y;' - Sing(Y;'); 0*) --+

H2(~' - Sing(~'); Z) ~ H2(vV - E; Z) is an injection since H2Sing(Vt')(~';0) = 0 by

the depth argument. These implies that H2(W; Z) ~ H2(W - Ei Z). As H2(W; Z) ~

H2(~' - U~~Ui; Z), and H2(W - E; Z) ~ H2(~' - Sing(\I;')j Z), we have an isomorphism

H2(Y;' - U\I;:u;; Z) ~ H2(V/ - Sing(Y;'); Z). Take its invariant part by the Galois

graup. One then sees that j is an isomarphism. One also sees that the map H 1(\I;' 

Sing(Y;'); 0*) --+ H 2 (V;' - Sing(Y;'); Z) is an isomorphism by the above observation.

Hence we have that 01 is an isamorphism by taking the invariant part by the Galois

group. The map 02 is an isomorphism because V; - UY;.Ui is aStein space and hence

Hi(y; - UY;,u;; 0) = 0 for i > O. Q.E.D.

Lemma{1.4) Suppose that d(~)~~~eil(Y;)j Pic(vt))> 0 for some t E 6.' - O.

Then there is a projective small partial resolution lJ : V --+ V such that

(1) lJ~ is a projective small partial resolution for every s E 6,,'j
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(2) a(Vt) = O.

Proof. Since the number r := #( Ds ) is constant for s E 6' - 0, we have 7Tl (6' x

6 - D) = EBI~i~rZ, and we can take the loops ri in {t} x 6 (1 ::; i ::; r) which go

around Ui in the positive direction as its basis. Henc~ one sees that the restriction map

HO(~' x ~ - D; R2h.Z) --+ HO({t} X ~ - {Ul""'U r } ; R2ht .Z) is an isomorphism.

Since a( V;) > 0, there is a Q-factorialization Vt : l% --+ V;. Take a vt-ample' Ene

bundle L on \it. Since H 1
("\;;; 0·) ~ H1(\t; - Sing(\!t); 0·), we have a non-zero element

T E HO( {t} x 6 - {Ul' ••• , Ur} ; R2ht.Z) corresponding to L by Lemma( 1.3). The T gives

an element of HO(~' x ~ - D ; R2h.Z).

'tVe now take a finite Galois cover a : T --+ ~' x ~ with the Galois group G in such

a way that the base change V' of V by a admits a simultaneous resolution J-L : W --+ V'.

Since we have HO(T - a- 1(D) ; R2h~Z) ~ HO(T; R2(tJ 0 h').Z) ~ H 1(W; 0·), we "also

have an isomorphism HO(T-a-I(D); R2h~Z)G ~ H1(W;O·)G.

As there is a homomorphism from HO(6' x ~ - D; R2 h.Z) --+ HO(T - 0:- 1(D) ;
R2h: Z)G , one has a line bundle .c E H 1 (W; O·)G corresponding to T. We here recall that

there are many choices of the simultaneous resolution v : W --+ V'. Two simultaneous

resolutions are connected by a sequence of flops. Now we can specify one of them in

such a way that .c is v-nef by [Re, §§7, 8]. Then it is easily checked that the graded Ov'

algebra EBn;::ov•.c0n is a finitely generated OV1-algebra. The line bundle .c is G-invariant

in the following sense:

The G has a meromorphic action on W. Each element 9 E Ginduces a bimeromorphic

automorphism 1/;g of W. Note that 1/;g is an isomorphism in codimension 1 and hence

there is an isomorphism ?jJ*9 : Pic(W) --+ Pic(W). Then .c is invariant under ?jJ.9 for

every 9 E G.

Hence v•.c0n is a G-sheaf for every n. 'tVe here set V = ProjovEBn;::ov. G.cem .
Q.E.D.

Remark(l.5) (1) In the proof of (1.4), one has abirational morphism c.p : W --+
Wover V' by using a v-free line bundle .c0m (m >> 0). Then the V is obtained as

the quotient of W by G. Let p = a- I ((0,0)) E T. Then the fiber Wp of the morphism

W --+ T is a partial resolution S' of the rational double point S (i.e. the minimal

resolution S of S factors through S'. By the assumption, the exceptional locus of the

partial resolution has exactly r irreducible components. Since G acts on Wp trivially,

we see that the exceptionallocus of Vo : Vo --+ \!Q has r irreducible components.

(2) Since R1vu .c0n = 0 for all s E 6.', one has the base change property: vG • ..c0n @ov

Qvs 9:" V 3 G • .cs On. In particular, we have V, = Proj EBn;:::ovs G• .cs On for all s E ~'. "

(3) One can state the result of (1.4) in more generality as follows. With the same
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assumption of (lA), suppose that a projective small partial resolution Vt : "Yt ---+ vt is

given. Then we can extends the Vt to a projective small partial resolution v : V --+ V

with the property (1) in (1.4). In fact, we only have to replace the Q-factorialization

with this Vt in the proof of (1.4).

Let V be the germ of an isolated cDV point and Def(V) the Kuranishi space of V.

Denote by Y the semi-universal family over Def(V). Define !1(rt)";Ituzitk~eif(rt)/ Pic(rt))
and set Yi = {t E Dej(V); a(~) = i}. Then we have the following description of

Dej(V).

Proposition(1.6)

(1) Let V be a small partial resolution of V and Dej(V) the Kuranishi space of V.
Then there is a natural closed immersion of Dej(V) into Dej(V).

(2) Def(V) has a stratification into the disjoint sums of (Zariski) lacally closed

subsets: Def(V) = IlYi, Yi = fi - Yi+l and Yi = UDej(V), where V runs through all

small partial resolutions such that p(V) ~ i.

Proof (1): Since V has only rational singularity, there is a natural map Dej(V) --+

Dej(V) by Wahl[Wa]. So we only have to check that the homomorphism Extl(fl\" CJv )
--+ Extl(n l v, CJv ) is an injection. Set (; := V - Sing(V) and U := V - Sing(V).

By Schlessinger[Sch], we have Extl(n\T'CJV ) ~ Hl({;;8iJ) and Ext1(n l v ,CJv ) ~

Hl(U; 8u). Denote by C the exeeptional curve of the small partial resolution. Then we

have an exact sequenee of loeal eohomology:

H 1 ·((;·8·) --+ H l ((;·8·) --+ H 1(U'8u)GnU , U , U 1

By the depth argument, we have H 1Gnü( (;; 8 ü ) = O. Henee we have done.

(2): Let t E Yi, Then by Lemma( 1.2) there is an admissible pair (V, 4» such that

g-l(O) = V and g-I(8) = yt. 'rVe have a projective partial resolution v : V --+ V

by Lemma(1.4) and Remark(1.5) such that p(Vo) = i. This implies that t E Dej(Vo).

Moreover, we have t E Dej(Vo) -Up(V)?:i+l Dej(V). In fact, suppose that t E Def(V)for
some V with p(V) > i. We can find an analytic curve r C Dej(V) passing thr~ugh

t and the origin 0 in such a way that there is a Hat deformation V --+ r of V and

abirational morphism v from V to YXDej(V)r. Sinee pe\!) > i, the exeeptionallocus

of Vo has more than i irredueible components Cl, ... , Cn (n = p(V)). Each curve Cj

moves sideways in the family V-;. r to a curve Cj(t) in l%. Sinee C/8 are numerically

independent in 'Co, Cj(t)'s are also numerically independent in ~. This, in particular,

implies that a(yt) > i, whieh is a contradiction. Hence we have proved that fi c
Up(v)~iDef(\!) - Up(V)~i+l De/(V). We can also prove the converse implication by the

same argument. Q.E.D.
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Example(1.7) Let V be a good representative of the germ of {(x, y, z, w) E

C\ x 2 + y2 + z2 + w 3 = o} at the origin. Consider the I-parameter deformation V ~f V

given by the equation x 2 + y2 + Z2 + w3 + w2t = 0. For t #- 0, \!t has a singularity at

p= (O,O,O,O,t) and (\!t,p) is not Q-factorial. However, V; itse1fis Q-factorial.

Let (V, e;b) be an admissible pair such that vt has on1.1' ordinary double points for

t #- 0. Assume that there is a small partial resolution v : V--+ V which satisfies

(1) Vo is a small partial resolution of V with n irreducible CUf\'es as the exceptional

locus (or equivalently p(Vo) = n);

(2) Vt is a small resolution of ordinary double points of V; for t =I 0.

Note that the exceptionallocus ofthe map Vt is a disjoint union of (-1, -I)-curves for

t #- 0. As (V, e;b) is an admissible pai r, the number of such (-1, -1 )-curves is independent

of t #- 0. We denote this number b.1' m. In this situation, we have the following lemma.

Lemma(I.8) One has the inequalit.1' m 2:: n, and the equalit.1' holds if and onl.1' if

V is the germ of an ordinary double point and V is a trivial deformation of V.

Proof. As we have seen above, there is a holomorphic map h : V --+ 6,.' X 6,.

and V can be regarded as a family of rational double points. Set S = h-I((O, 0)) and

S' = (h 0 v)-I((O, 0)). Then the minimal resolution 1i" : S --+ S factors through S' (cf.

{Re]). By the versality of Def(S), one has a holomorphic map of 6,' x 6, to Def(S). In

our case, this map factors through Def(S'). By the assumption, the partial resolution

5' ---t S has n irreducible curves as the. exceptional divisor. Since Ext 2(n1/ O~) = 0,

Def(S') is smooth.

Here we recall a result of Brieskorn (cf.[Br, Pi]). Let Ej (1 ~ j ::; l) be the irreducible

components of the exceptionallocus of Ei ---t S. Put 2; = {D = EajEjj D2 = -2,aj E

Z}. The 2; forms a root system. Then Def(S) ---t Def(S) is a finite Galois cover

with Galois group G = W(E), the We.1'l group of L. Moreover, there is a one to one

correspondence between the effective roots of r.. and the ramification divisors of Dej(S).
Since W(r..) acts transitivelyon r.., one sees that G acts on the set of ramification divisors

·of Def(S) transitively. Thus, the discriminant locus B of Def(S) is an irreducible

divisor.

We shall prove that there are at least n irreducible component in the ramification

locus R c Def(S') of the finite cover Def(S') ---t Def(S). First we factorize the

partial resolution into n number of birational morphisms: S' ---t Sn-l --+, ... , SI ---t S

in such a way that p(S;.jSi-d = 1 for all i. Then we have a sequence of finite covers

: Def(S') ---t Def(Sn-d, ... , Def(Sd -+ Def(S). Renumbering the ipdices of Ej's,

we mayassurne that Ei corresponds to the exceptional divisor of Si ---t Si-I. As we
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have remarked above, there is a ramification divisor Di C Def(S) corresponding to Ei.

Denote by Bi C Def(Sd its image by the map Def(S) --t Def(Sd, and denote by

~ c Def(S') its image by the map Dej(S) --t Def(S'). Then it can be checked

that Bi is an irreducible component of the ramification locus of Def(Sd --t Def(Si-d.

Since the ramification indices of ramification divisors of Def(S) all equall, this implies

that Fli (1 ::; i :::; n) are mutually different irreducible components of R.

Next assurne that S is not of type Al. Consider the map f1 : Def(Sd --t Def(S).
Decompose 11 -I (B) into the two parts: the ramification locus G of 11 and the non

ramification locus H. Both of them are Cartier divisors on Def(St}. Suppose that

H is elnpty. Then all D/s are mapped onto some irreducible components of G by the

map Del(S) --t Def(Sd. But this is absurd because if so, then the ramification

indices of Di(i ;::: 2) are grater than one. Hence H should be non-empty and R/s
(i ;::: 2) are mapped onto some irreducible components of H by the map Def(S') --t

Def(Sd. Here if G has more than one irreducible component, then there are at least

n + 1 irredueible components in the ramification locus R c Def(S') of the finite cover

Del(S') ---t Def(S). Even if G is irreducible, we ean show that there are at least

n + 1 irreducible components in R in the following way. Let D* C Def(S) be· the

ramifieation divisor corresponding to the fundamental eyc1e of the minimal resolution S
of S. It can be ehecked that D* is mapped outo G by the map Def(S) --t Def(Sd.
Let R* C Def(S') be the image of D* by the map Del(S) ---t Def(S'). We shall

prove that R1 and R* are different divisors on Dej(S'). Let S' ---t S" be the birational

morphism eontracting the curve EI to a point. R1 is clearly a ramification divisor of the

map Def(S') --t Def(S"), but R* is not a ramifieation divisor by definition. Thus, R I

and R* are different divosor on Def(S'). Now the n + 1 divisors Fli(l ~ i ~ n) and R*
are mutually different irreducible eomponents of R.

Assume finally that S is of type AI' Then V is isomorphie to the germ of {(x, y, z, w) E

C'\ x 2 + y2 + Z2 + w k = O} at the origin for some k > 1. In this ease, we can direetly

check that m = n if and only if k = 2 (cf. [Fr]). Q.E.D.

§2. Calabi-Yau 3-folds

Let X be a Calabi-Yau 3-fold with terminal singularities. As Kx "" 0, X has only

Gorenstein terminal singularities. Thus, X has only isolated cDV singularities by [Re].

For eaeh singular point Pi EX, we take a sufficiently small open neighborhood Vi of

Pi. There is a holomorphic map fi of Vi to aI-dimensional disc 6 with a small ra'dius

such that li- 1 (0) = Si is a rational double point and other fibers are smooth. Let

Yi ---t Del(~) be the semi-universal family for the deformations of Vi, One ean regard
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Yi as a Rat family of rational double points over Def(Vi) x 6.. By the versality of

Def(Sd there is a holomorphic map 'Pi : Def(V) x 6. ---+ Def(Sd.
Let Xb.' be a fIat deformation of X over al-dimensional disc /::::". Then there is

a holomorphic map rj; of 6' to the Kuranishi space Def(X) corresponding to this fIat

deformation. By composing this map with the natural map Def(X) --+ Def(~), we

obtain a holomorphic map ePi : 6.' ---+ Def(~) for each singularity Pi EX. \Ve also

have a holomorphic map from 6' x 6. to Def(Si) by composing cj;i x id with 'Pi . By

pulling back the semi-universal family Zi over Def(Si) by the map, obtained is a, flat

family Vi of rational double points over 6' x 6. The Vi can be also viwed as a Hat

deformation of Vi over 6.'. Note that Vi is an open neighborhood of Pi E Xb."

Definition(2.1) A pair (Xb. I , ci» is called admissible if (Vi, <Pi) are all admissible

in the sense of (1.1).

Let X be the universal family over the Kuranishi space Def(X) of X. By the s.ame

argument as (1.2) we have

Lemma(2.2) For t E Def(X) there is a flat deformation 9 : Xb.' --+ 6' of X

over al-dimensional disc and a holomorphic map cj; of the disc to Def(X) such that(I)

g-I(O) = X, g-1(8) = X t for some point 8 E 6' and (2) (Xb.I, cj;) is admissible.

Define a(Xd to be the rank of Weil(Xd/ Pic(Xd and set Yi = {t E Def(X); a(Xd =

i}. Then one has the following globalization of (1.6).

Proposition(2.3) (1) Let X be a small projective partial resolution of X and

Def(X) the Kuranishi space of X. Then there is a natural closed immersion of Def(X)
into Def(X).

(2) Def(X) = UYi, Yi = 'fi - Yi-t and Yi = UDef(X), where X runs through all

small projective resolutions such that p(X) - p(X) ;::: i.

(3) Each stratum Yi is a (Zariski) locally closed smooth subset of Def(X).

Proof (1): The proof is quite similar to that of (1.6)(1).

(2): Let t E Yi, We take a Hat deformation 9 : Xb.' -t 6' and a holomorhic

map 4> : 6' -t Def(X) with the properties (1) and (2) of Lemma(2.2). Let Vt :

Xt ---t X t be a Q-factorialization. The Vt induces a projective small partial resolution

Vit : ~,t ---+ ~,t. By Lemma(1.4) and Remark(1.5),(3) each vi extends to a projective

small partial resolution Vi : Vi ---+ Vi. As a consequence, one has a small partial

resolution v : Xb. 1 ---+ Xb.' . Note that Xb.I,t = Xe. Since Xt is projective, there is

an ample line bundle L on Xt. The 2-nd Betti number (with respect to the usual

cohomology) is preserved under a fIat deformation of Calabi-Yau 3-folds with isolated
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hypersurface singularities by the vanishing eyde argument. This implies that the Pic.ard

number is also preserved because h 1 = h2 = 0 in this case. Thus, the line bundle L

extends to a line bundle .c on Xbol. Let Cl, ... , Cm be the irreducible components 'of the

exceptionallocus of Va. Cjs move sideways in ;rbo, to the curves Ci(t)'s on Xt. Since (L.
Ci (t)) > 0, (.c, Ci) > 0, which means that Xbol.a i8 projective aver X. Now the relative

Picard number p(XtiXd = i by our assumption. Hence we have p(Xbo"a/X) = i.

It follows from the observation above that t E Up(X /X)2;iDej(X). Moreover, we have

t E Up(X/X)2;iDe!Ck) - Up(X/X)2:i+lDe!(X). In fact, if t E De!(X) for a projective
small partial resolution X with p(Xrx:) > i, then we can choose an analytic curve

r c Dej(X) passing throgh t and 0 in such a way that there is a flat deformation

X ---+ r of X and abirational morphism v from X to XXDej(X)r. Since p(X/X) > i,

we have p(Xt/ Xt) > i, which is a contradiction.

Finally we show that if t E Up(X/X)2:iDe!(X) - Up(X/X)2;i+lDej(X), then t E }i.

By the assumption, t E Dej(X) with a projective small resolution X ---+ X for

which p(X / X) = i. Thus, a(Xt ) 2:: i. On the other hand, a(Xd < i because

t rt. Up(X X)2: i +l Dej(X). Hence we have done. :

(3): Assurne that Yi has a singular point t. Since Def(X) is a smooth subvariety

of Dej(X) for every projective small partial resolution X of X, there are at least two

different irreducible components of Yi which contain t, say, Def(Xd and Def(X2 Y, for

which p(XI / X) = p(X2 / X) = i. This means that there are two different prajective small

partial resolutions Xt' and X/' of Xt, for which Def(X;} #- Dej(X:') as a subvariety of

Def(Xd. Let W' (resp. W") be a Q-factorization of Xt' (resp. X/'). Then W' and W"

are both Q-factorizations of Xt, and hence they are connected by a flop. It is proved by

KolläI and Mori [K-M,(11.10)} that Def(~V') ~ Def(W"). This, in particular, implies

that p(W'/Xd > p(X;/Xt ) = i. However, it i8 absurd because a(Xd = i. Q.E.D.

Definition(2.4} Let X be a projective small partial resolution of X. Then X is

called maximal iffor any projective small partial resolution X of X, Dej(X) i8 a proper

closed 8ubvariety of Def(X) via the natural indusion.

In view of Proposition(2.3), the stratification of Def(X) is determined only by max

imal projective small partial resolutions. We have the following criterion of the maxi

mality.

Theorem(2.5) Let {PI, ... , Pi} C Sing(X) be the ordinary double points on X
and let f : Z --+ X be a small (not neces8arily projective) partial resolution of Xsuch

that Ci := /-1 (pd ~ pI and that f i8 an isomorphism over X - {PI, ... ,pd. Then the

following three conditians are equivalent:
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(1) X is maximal;

(2) X is smoothable by a Hat deformation;

(3) There is a relation in H2(Z, C) : Eo:dCi ] = 0 with O:i =I 0 for all i.

Proof (1) => (2): X has a Hat deformation to a Calabi-Yau 3-fold Y with ~nly

ordinary double points by [Na 2, Theorem(5.2)]. Let }j be the germ of a sinular point

qj E Y. We mayassume that l:a(Yj) = a(Y) by [Na 2, Corollary(6.12)]. Ir Y has a

singularity, then a(Y) > 0, which implies that a general point of Def(X) corresponds to

a non-Q-factorial Calabi-Yau 3-fold. Hence there is a projective small partial resolution

X of X such that Dej(X) ~ Dej(X) by applying Proposition(2.3) to Dej(X). This

contradicts the maximality of X. SO Y must be a smooth Calabi-Yau 3-fold.

(2) => (1): It is obvious because smooth Calab-Yau 3-fold Y has no small partial

resolutions except for Y itself.

(3) => (2): First we shall show that all singularities of X which are not ordinary

double points are smoothed under a suitable Bat deformation of X. Let 9 : X~ 6. be

a Hat deformation of X over al-dimensional dlsc such that g-1 (0) = X and a general

fiber g-l(t) := Y(t =I 0) is the same as above. Suppose that when X is deformea to

Y, a non-ordinary double point p E X splits into a finite number of ordinary double

points qt, ... , qm on Y. By Proposition(2.3), there is a projective birational morphism

v : X~ X whieh satisfies (a) 110 : .•:\' ~ 4:\' is a small partial resolut ion of X and (b)

IIt is a small resolution of the ordinary double points on Y for t =I 0. Define n to be the

number of the irreducible components of vo -1 (p). Then we have m > n by Lemma(1.8).

Hence the curves Di := 1I;I(qd(l ~ i ~ m) are not numerically independent on" Xt ,

which contradicts the assumption Ea(Yj) = a(Y).
vVe shall next prove that all ordinary double points are smoothed under a suitable

Bat deformation of X. Let Xi be the germ of a ordinary double point Pi EX. Let

iT : W -t Z be a resolution of singularities such that iT-
1(Z - Sing( Z)) ~ Z - Sing( Z).

Let E be the exeptional divisor of iT. Then the exceptional locus of j 0 iT is a disjoint

union of Ci 's and E. We have the following exact commutative diagram:

(2.6)

H1(X -Sing(X);8x ) ~EBiJ!2c;(Wjn2w)EBH2E(Wjf22w) -,~ H 2 (W,f22
W )

11 ßt
H1(X - Sing(X); Bk) - 0: ~ Ef:)H~ing(X)(X;8-,~)

By the assumption of (3), there is an element E E !(er(,) whose i-th component Ei are

all non-zero for 1 ~ i ~ l. Then there is an element Tl E H 1 (X - Sing(X); 8 x) such that

a(TJ)i E H;i(X; 8 x)~ Extl(n~;; Gi) are all non-zero by (2.6). Since any infinitesimal
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deformation of X is unobstructed, I-st order deformation of X corresponding to the 1]

can be realized. Hence we have done.

rt follows from two observations above that X is smoothable by a Hat deformation

because Dej(X) is smooth (in particular, irreducible).

(2) ==> (3): Assurne that there is a positive integer k ~ land all relations in H 2(Zj C)

are of the form L:i2:k+ladCi] = 0 for some a/s. Let f' : Z' --+ X be a small partial

resolution of X obtained by contraeting the eurves Ci (i ~ k + 1) on Z to points., We

shall show that Def(Z') ~ Dej(X). If this is proved, then we see that the ordinary

double points Pi E X (i ~ k) are not smoothed by any Hat deformation of X beeause

( -1, -1 )-curves Ci (i ~ k + 1) are stable under any Hat deformation of Z'.
In the diagram(2.6) ehoose an element f E !(er(I ). "vVe denote by fi E H 2 Ci (W, n2w )

its i-th component and denote by fE E H2 E(W, f22 W ) its other component. The as

sumption implies that fi are all zero for 1 ~ i ~ k. Hence, for an arbitrary elerp.ent

1] E H1(X - Sing(X); 8 x ), we see that the i-th component O:(7])i of 0:(1]) are all zero for

1 ~ i ~ k. Next we set X' = X - (Sing(X) - {PI, ... ,Pk}) and consider the following

exact commutative diagram

o-+ H1(X'; 8 x) --+ H1(Z' - Sing(Z')j 8 z ) --+ HO(X; R1j.8 z )

11 t t
o-+ H1(X'; 8 x) --+ H1(X - Sing(X); 8 x) - 0:' --+ EBl:5i~kH2Pi (X; 8 x)

Since a' = 0, one has an isomorphism H1(Z -Sing(Z); Bz) ,...., H1(X -Sing(X)j Bi").
By Schlessinger [Seh ] these are isomorphie to the tangent spaees to Dej( Z) and Dej(X)
at the origin respeetively. As Dej(Z) and Def(X) are both smooth, we conclude that

Dej(Z) ~ Dej(X). Q.E.D.

When a projeetive small partial resolution X of X is not maximal, oue has· the

following.

Theorem(2.7) Let X be not maximal. Then there is a (not neeessarily unique)

small projeetive partial resolution X of X such that X is maximal and Dej(X) ~

Dej(X). In this situation, let X (resp. .-1') be the universal family over Dej(X) (resp.

Dej(X)). Then there is a projective birational morphism v from X to X. For general

t E Def(X), Xt has only ordinary double points and Vt : Xt -+ Xt is a small resolution

of Xt.

Proof. This is already shown in the proof of Theorem(2.5) (especially in the

(1) ==> (2) part). Q.E.D.
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