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THE HYPEROSCULATING SPACES OF HYPERSURFACES
Xu Mingwei

Institute of Mathematics, Academia Sinica

Max—Planck—Institut fiir Mathematik

§ 1. Introduction

At present, it seems that we still do not have an effective definition of Weierstrass points
for varieties with higher dimensions. There are attempts including [9], [3] by
Mount—Villamayor and litaka.

Now we try to analyse the problem in a very simple case i.e. hypersurfaces. We wish to
know what will happen to the "special points" on a hypersurface for the sheaf of
hyperplane sections. It may shed a light on the problem.

On the other hand, studying these special points is connected much with polar lodi,
singularities of mappings ([4] — [8], [10], [11]). But generally there they have a
strong tool namely some kind of "theorem of genericness" (e.g. [6], [10]) to facilitate

studying.

Intuitively, let X CP"™ be a smooth hypersurface. We consider all of its tangent
hyperplanes in P . Then there exists an integer b2 > 2 such that almost all of them
have exactly contact of order b, with X and the others have that of higher order. We
called such a b2 coordinate gap number and the contact point with higher order a
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h2—inﬂg;ign . The set of inflections whith certain natural structure is called
hyperosculating space.

In [14] — [16] we discussed the hyperosculating space of surfaces in p3 , NOW we
intend to generalize that to arbitrary hypersurfaces.

Our main results are the following.

(a) by =2 or p™ for some m > 1, where p # 2 is the characteristic of ground field,

and b2 = p™ if and only if the defining polynomial for X can be written as

EXF(X )Pm,

where pm is the largest exponential for such an expression.

(b) If p=0 or p}f(degX—1),then X has b,=2 and a finite number of

inflections. Furthermore, as a 0—cycle it is

n—2 i

L ) i, Yk, (2l e, (L) (@) + @-ne ) n [x]
i=0 k=0

where L is the sheaf of hyperplane sections of X in P .

(¢) For X with by(X)= p™, wehave deg X =1+ kp™, k> 1. Then for generic

such a X it hag only a finite number of p"—inflections , and as a O—cycle it is




-3-

n—1 k [n—l—k+i

»

] pkme (@ ), (n)i(c,(@,) + 3¢, (L)% n [x] .
k=0i=0

+

For one who wishes to generalize the concept of Weierstrass point from curves to
varieties of higher dimensions and if one wishes that one’s definition would also include
the simplest case as shown in this paper, then either one would permit the appearance of
"continuous parts" of Weierstrass points or one would give more restriction until the
"Weierstrass points" were finite. Of course, at the same time that "Weierstrass points"

were asked to be expressed effectively.

§ 2. Notations and generalities

First set up our notations.

Xcet, a smooth hypersurface in P" .
K, algebraically closed field of arbitrary characteristic p but p$2.
G, the polynomial for defining X and we always assume that the coordinates

hyperplanes Xi =0, i=0,..,nform a transversal sequence to X .
Point means closed point.

L= dx(l) , the sheaf of hyperplane sections of X in P" .
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PI;I(L) , the sheaf of m—principal partof L on X,i.e,,
.
P?:(L) = p*(aAm ®q L), where p, q are the first and the second
projections from X x X to X ; where, if letting q A be the ideal of
" . _ m+1
definition for the magogd A of X *x X, 0Am = X/qA .

v=0YXL).
Vy =V& 4.
an cVy - PI}?(L) , the canonical morphism of taking m-—truncated Taylor series

[9], which is defined from the short exact sequence
0— g™ leq ®q ®q
q qQ L— &, x qL——}aAm qL—0

by taking the long exact sequence of their direct image ([7], [8]); additionally, we

have some diagrams about a s with exact rows and colomns:



0
2y (L)
4 {
0 — R — Vy - Py(L) — 0
(A1) | |
49
0 & ) VX y L —s 0
Q4 (L) 0
0
0
!
Sy (L)
4m pM
(Am) VX —_— PX(L)
A ®m—1 }11
Vy ——— PX (L)
!
0
where S™ denotes the mth symmetric operator.
b2, the coordinate gap number, is the least number m such that a, is

injective.
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I, the hyperosculation space, defined as a scheme with ideal of definition
v, —(n+1) '
by by k
F (im ab?.) , where ub2 is the rank of Py“(L) and F (M) is

the kth Fitting ideal of a sheaf M ([10]).

Proposition 2.1. The necessary and sufficient condition for by(X) > 2 are G; = 0 for

all 0<i,j<n , where G(XO, ,Xn) is the polynomial for defining X and
_ a2

Gij—a G/axiaxj.

Corollary. If b2(X) > 2, then p divides deg X —1.
Proof. Theorem 3.1 and its Corollary in [14].

Theorem 2.2. by(X) =2 or p™" ;and by =p™ if and only if
n
m m
G= X.F.(X,, ..., X_ )P , where p™ is the largest number in such a form of G .
i1V 0 m 8
i=0

The proof of the theorem is much like that in the case of n =3 ([16]), but some
expression appearing in the proof are needed in the sequel, so we shall give a sketch of

proof.

(a) Suppose by(X) > 2, then by Corollary p divides deg X —1 and we can write G

into the form as in Theorem.

Without loss of generality, we may assume any two of the divisors [Fg], ... ,[F ] on



.
X have no common component and FIl #'0 .
We take a point Q in U, ={F #0} 0 {X;#0} andlet B be the completion of

the local ring at Q . In B we develope those coordinate functions into truncated Taylor

series, then, if letting Xy = XI/XO’ . xn—1/X0 , 2= Xn/XO , we obtain

i i
= . 1 n—-1
3g,Q(2) =2+ Rydx; +..+ Ry ydxy ;4 ) ' R;y onip qdey” o dxy 7y
11+ et +1n_122
for arbitrary integer S > 2, where all R, and Ri i are elements of B .
1 "n—1

(b) Substituting the expression of ag(z) into G =0 at Q, and then comparing the

coefficients of various independent differentials, we have

: p" p"
(1) Ri =1 i (x11 3z)/fn (x1: :z) )
X1 Xn
where fk(xl, e yZ) = Fy I,Xa, ,Xa ;80 R. e aQ,X :
(ii) B‘.i1 wedp g=0forigij+..+i ;< P
(iii) Ril wip g =0 for ip+...4i _, =p" but atleast twoof i, ..,i, ,
are not zero,
(iv) R RN arein ¢ and satisfy the following relations:
p™0..0" 0. op™ QX
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m

D
R;

fP +fo +. +x_fp +zf§n
n—In

m
w0 k1P ax  fP P |4
0i 1114 n—-1 " n—1i ni

m
+fﬂ R =0

for i=1,..,n—1; where, in the subscript of R , P is at the i—th

position and fij = &filﬁxj, £, =d/0.

(¢) From (i) —(iv) in (b) we see that by(X) 2 p™ . We conclude that b, = P .

Otherwise, from R m = 0 we have
0..0p 0..0
2m | I m om | I m
P P —FP P -
G 12 2 XFE | -Fp 2 XFE. =0
= =

fori=0,..n

And furthermore from (***), we deduce that
n
Fokokok XFP. =0
(k) ) X

are valid for i= 0, ..., since [Fi] have no common components on X and

2m
deg Fll) > deg 2 X Fp (for details see [16]).



Finally, differentiating (*%*#*) with respect to Xy respectively we obtain Fji =0 for

all i, j, which contradicts to the property of Fi : which cannot be written as

m m
H(Xg - ,Xg ), m > 1 anymore.

§3. Case b2=me m>1.
From diagrams (A1) — (Ap™) and (iv) in the proof of Theorem 2.2, we have

a (x)=dx +..,i=1,..n-1,

n—1 m
a (&= )R (@x)P ,
i=1 0,...,p ,..,0

and that a_ is injective. Then by composing from (A1) to (Ap™) we have an injective

homomorphism

: m
0— R8P Q. (L).

[ P +n -2 ]
-1
Therefore, I is defined by Fitting ideal F n -2 (coker i) .

For expressing the Fitting ideal explicitly we try to factor i through a locally free

m m
(n — 1)-subsheaf of SP 0y (L) , and which is also a direct factor of sP 0y (L) .
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m
Lemmag 3.1. Thereis a (n— 1)-subsheaf F of sP Qx , which is locally generated by

()P s e P}

Proof. We only need to check that in a fixed coordinate neighborhood, every coordinate
neighborhoods and their corresponding modules form a sheaf. But it is obvious, since, if

letting (gij) be the matrix of coordinate transformation, then we have

EAICAEEA?

n—1

c(%) =Y pcy(0y),
£=0

where C(.¥) is the total Chern class of & , C,(Qy) is the £~th Chern class of

Proof. We define a homomorphism
K ; — Q;(

m
by ,ui-———»Ali) locally, where {w} , {A} are local basis of 3, Q;( which are

puil m
dual to (dxl)p ) e ,(dxn_l)p and dx;, .., dx . respectively. It is welldefined
¢, induces a graded homomorphism



—11 -

v @ sty — e stay.
230 230

Because that any homogeneous prime ideal in @ Seﬂ;( (of course, we are arguing

locally) containing im (p; must contain LQ SQQ;( , 1,01 , determines a morphism
21

Locally, $, is essentially a Frobenius morphism and hence flat.
We have the tautological exact sequences on P, S1 respectively:

(1) 01— 4 (- 1)__.{9)(_-.%1_-;0

(2) 0— dsl(— 1)——»713'—-; Qsl——a{].

*
From the flatness of &; and noting that &4 (-1 = % (—p™) , we have a
1 1 1 1

commutative diagram on P1 :
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*x
Now replacing X, @y, &, ¢, with P, , & Qc, Qp , ¢, respectively and doing
1
what we did just above, we obtain on P, = IP(Q;) ) adiagram
1

*
0— 0p2(— l)—-—nrlQpl -——»Qp2 —0

| | | %2

* *
0— d. (-p7)—71,Qqe — &,Q. —0.
Py 2 S1 2 89

The composition T O My P2 — X is flat and hence gives an injective

homomorphism
* X *
(mpom) : A (X)— A (P,),
*
where A is the symbol of Chow ring.

Continuing this process until we obtain the splitting space for both Q_ and & ([1]).

This means, there exists a scheme P and a morphism 7 : P —— X such that

(i) w is flat,
(i) 7 induces an injective homomorphism
* X*
AX— AP
(iii) There are two filtrations associated to Qy , F respectively,
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0=T0CT1C...CT =

n—1 X

0=FCHC..CF =5

such that T, +1/Ti and +1/ &, are invertible sheaves on P and
epm
Fipt (T /T
According to splitting principle, if we assume

n—1

Cly) =TT (1 +x)

i=1
formally, then

n—1

() =T T(+p").

i=1

Developing c(¥) we get what we expect.

Theorem 3.3. Let X be hypersurface in P" with b,(X) =p™ and a finite number of

pT—inflection then the hyperosculating space I as a O—cycle is
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1] =C,_(F(L)-R)N [X] =

n—1 k

~1-k+i . .
k—i)m : i
DI R FE LCNCR IO
k=0 i=0
(Cy(Ry) +3C,L)* ¥ n [x] .
pm +n-2|_ 1
n -2
Proof. We saw that I is defined by the ideal F _ (coker i) , where

m
i:R—SP Qy(L) . From Lemma 3.1 we have a diagram

R— i g Qy (L)

\/

m
where F(L) is a locally free (n— 1)—subsheaf and a local direct factor of SP Q. (L).

x(
Therefore, we have

F (coker i) = F*(coker j)

and hence by Porteaus’ formula,
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(1] =C,_,(F(1) ~R)

=12

o—1 k [n—l—k+i
k=0 i=0

i ] p(k_i)mck—i(ﬂx) ) 01(L)i(01(9x) +3C,(L)) N [X] .

We can also express deg[I] by deg X:

n—1 k k—i 1. ‘ _
deg[I] = 2 2 Z (—l)j[ -t—l}[n 1.k+ ]p(k—l)m
k=0 i=0 j=0 . '

(2 —n + deg X)n_l_k(deg X)lﬁ_i_j"'1 .

Finally we give a proposition about when a hypersurface as above has a finite number of

p—inflections. The proof of the following proposition is like that of Theorem 3.3 in

[16], so we only give a sketch here.

Proposition 3.4. Let X be a hypersurface with b2 =p™ and degX =1+ kp™ . Then

every X with k=1 has only a finite number of p™"—inflections . Furthermore, the

conclusion is true for generic X too.

Proof.

(a) From (iv) in the proof of Theorem 2.2, if C is an irreducible curve on X with

C C1I, we shall have the following assertion, i.e.

(***)i ,1i=0,..,n—-1
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arevalidon C.

Therefore by an argument similar to [16], on C we have

n
m
P _ s
(****) .20 Xij i = 0,1=0,..,n.
J=

n
(b) If degX=1+p™, then F, = 2 a, ij and det(aij) is invertible, and hence
=0
the solution of (***%) contains no curves. By (a) we get the conclusion.

(c) The space of all hypersurfaces X with b, = p™ and degX=1+kp™, k>1,
has dimension (n + 1)[ k -1+1- n ] —1, and we can show, by counting dimensions,
that for a generic one, (***%) will have a solution of dimension zero only. Then

the conclusion follows from (a).

§4. Case b2 =2
The case is a bit subtler than § 3.

In the section we always assume that p=0 or p does not divide deg X —1 . From
Corollary to Proposition 2.1 we see that the assumption implies b2 =2 and hence

includes the most cases about b2 =2,

Let 0— R-520, be the morphism determined by (A1), (A2). We saw many

times that I is determined by Fn_l(coker i) .
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Locally, e.g., on Uy, = {X, #0} N {G_# 0}

n-1
i(z) = 2 Pijdxidxjx pij=pji’ 1<1,j<n-1,
i+ j=2
X
_ 70
n

G=Grn-2V"),
E=Grn-228"),
Y = Gr(n ~204(L)"),

where G(n—2,%) denotes the Grassmannian scheme of locally free (n — 2)-quotient

v
sheaves of F . Thus G (1 -2,V ) =G xg X.

From (A1) we have a commutative diagram

GxX + E f—zY

VL

G X

where f is a rational mapping defined by

§ — Qy(L) —0.
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In fact, we have

Lemma 4.1. The set of definition for { is an open set U such that its complement in
E is rationally equivalent to the special Schubert cycle o =4, N[E], A=(2,0..0)

and hence has codimension 2 in E .

Proof. We have an exact sequence

0 —— R

Then for any locally free (n—2)—quotient of #' it is a quotient of QX(L)V via the
composition shown in the diagram if and only if ker 7"t ker Vg = " . For the ranks
to agree we see that this is a direct summation. Geometrically this means in each fiber of
7, the (n —2)-space represented by % does not contain the 1—space represented by
R' . From [1] we obtain the lemma.

Now we turn to J, which is defined by the composition of & — Vx and the

natural projection.
Lemma 4.2. Codimy, (the set of singularities of §) 2 2.
Proof. Since every fiber of § is the intersection of a 2—plane in P" with X, they

have the same Hilbert polynomial. Then A is flat and hence that J is smooth at x e E
if and only if x is a regular point of § 1ﬁ(x) [2].
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Taking an arbitrary point x € X, the intersection of the tangent hyperplane H at x
with X is a subvariety with singularity x . Then every 2-plane passing x and being

contained in H meets X always in a singular curve.

Firstly we count the dimension of the set of that 2—planes as x varying on X . In fact,
every such a 2-plane at x may be a same kind of 2—planes at a different point y . In
spite of that, the dimension always less than (n —1) + 3(n —3) — (n — 3) and hence the

codimension of the set in E is greater than 2.

On the other hand, when a hyperplane H is transverse to X at x , then the
intersection variety X, is regular at x . But on H we have a (n — 2)—plane H,
which is tangent to XO at x . Hence every 2—plane contained in H and passing x
must cut out a singular curve. When H varies with passing x , such a 2-plane H2

may be the same kind of 2—plane of other H’ .

So, dim{H,|H varies with x init} <(n-1)+n+3(n—-4)—(n-2), hence its

codimension in E is also greater than or equal to 2.

We could continue our "stratification" and then exhaust all singularities of [ . But
evidently there are only a finite number of steps and each step always gives the
codimension of the set of singularities being greater than 2.

Now we come to the point.

Let

* *2 2 * 2 *
A:x R— 7 8°Qy(L) — 5°Qp(x L) — S QE/G(T L)
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be the composition of homomorphism as above.

*

It is known that 529E /G(” L) is locally free at any smooth point of S . Then at such
a point we have a neighborhood & Alxu’ cf l(U’ ) and a local coordinate
(t,wl, e W n—2)) . In fact, the curve g 1ﬁ(x) is cut out by a 2-plane in P", thus

on X its coordinates can be written as

where {’\i}’i=1’ ..,n—1 ig taken as a part of the Pliicker coordinates of

(n—1)-subspace in P" consisting of the tangent hyperplane at x and some other

elements in the fiberof 7 at x.
We have

thus

F(im A) = (S p, M)

and it determines a divisor J on W , which denotes the open set where £ is smooth.

By Lemma 4.2, codij(E —W)>2, thus J extends uniquely to E . Let us write out
the expression of the ideal of J .
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Since codimpJ =1, A:R— San /G |W has a correct dimension for its degeneracy

locus. Then we have
Gy (3) ~ 0 /G(I*L)m @r R |y .
On the other hand, we have an exact sequence:
O—Aﬂ*QG—-»QE——’QE/G—-—’O
and the tautological sequence on G :

0—Pg— o3t — Qg —0,

where Qg is the universal (n — 2)-bundle , furthermore,
*

Now, for any locally free sheaf M with rank r, we denote A™ by KM (but Ky
where X is a variety, still represent the canonical sheaf of X ) and we will adopt the

convention in the sequel.

Then

* 1
Kg/g =P Kg ®Kg,

but
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*
6 QG = QE y
where Qp is the universal (n —2)-bundle of E, thus
*K K
P RQe =g
Moreover, from
*
0—7x Qx—-»QE——»QE/x-—AO
and
O x = #em(Qp,Pg)
we have
*, 3 * 3(n—1 2
o) Ky @ x L3O )GKQE.
We shall pass to Y as we did in [16]. But at present, these {Ai} in the expression of
J are Plicker coordinates, so we have to identify Y with its image under Pliicker
morphism, namely

Y = Gr(n - 2,04 (L)" ) == P(A" 20, (L)") .

From now on, we always take Y as [P(An_zﬂx(L)' ).
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Recalling that U is the open set of definition for f,on UN W we have

* *:3 o Fr3(n-1) 2 y_F
faKy®al GKQY)—WKX Qg

On the other hand, by using the Pliicker coordinates Al, "\n-l , we see that the

scheme—theoretic image of J under f is determined by X piinA. , the same form

which J is defined by an E . It means the scheme—theoretic inverse image of f(J) is

J.
Furthermore, because codij(E —U) 2 2, we have
*
PicU~PicE~1T - A1,o...0” [E]®Z - v PicX,

where A By o ol is a typical symbol of some Chern class [1], here is just Cl(QE) .

y eee g

Moreover, on Y we have
E 3
PicY~ T - C,(4{1))N [Y] ®a PicX,
but

£'C,(ay(1)) = 0, ("*2ay)) = 0,(A"*Qp) = Cy(Kq ) = C,(Qp),

50
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0 :PicY — Pic U
is injective.
Now from { L(im J)=J and

% 3o ¥ 30 1) g2 LA *e3 e *r3(n-1) g2
0(3) = K3 @x LY )GKQE_f(aKXOaL( ® K )

we obtain

304151 @k

. *
o(imJ) =a Ky Qy”

Let im J = Z . We consider the sheaf QZ /X - On Z, there is an exact sequence

d
%(‘Z)—Y&"Y/xlz—*ﬂz/x—-’o-

Sn—2

We see from this that QZ /X locally is the quotient of Ix by the submodule

generated by dy /X(E Pj; Ai/Ay) for some Ay # 0, or homogeneously it is isomorphic to

n—1
2 f ax axi/ {Z P} . This means that locally F (QZ /x) is generated by

2 le L i=1,..,n-1.

It is worth noting that we only expressed p;; on Ugp = {Xy #0} N {G #0} at the

beginning of this section. But generally on arbitrary ka. = {Xy $0} 0 {G 0 #0} we
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have
Xk
() PiT 6l (Gg(GGyj— GiGpj— GiGpy) —GiG(Gqq)

for 0<i,j<n but i,jfkL.

Let T be the scheme defined by Fn—3(9Z /X) . We shall show that T is an
equidimensional scheme of dimension n —2 . For that we need some simple relations

among p;; -

We always work with Uon - Firstly we define formally py; and p . for i=0,...n

by using the same formula (*).
We have
(a) py; =0 forall i

and

n—1

(b) 2 xipij = _x0p0j y J=0,...,n .
i=1

Lemma 4.3. Assume p=20 or p [|deg X —1, then on every Uk!; ,
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Proof. We shall prove inductively with n> 2.

For n=2, det(pij) = p;; and from by(X) =2, wehave p;; #0.

Now we assume Lemma is true for n —1 and false for n .

Then we could assert that the rank of (pi j) equals to n —2 . The reason is that, if we

use X . =0 tocut X (recalling that we always assume that each coordinate

n—1
hyperplane is transverse to X) , then on xn—l =0 we obtain a smooth hypersurface
with p=0 or pJ(degX—1). So by the inductive hypothesis that det(p; j) $0,
which is just the restriction of the principal (n — 2)-minors corresponding to Pp1n-]
of (pij) to X _, =0, hence our assertion.

Now take a point gqe U, ~such that rk(pij(q)) =n—2 and assume that q has

coordinates (*,0, ... ,0,%).

Let Q5= Gn(GnGij - Gian - Gjan) + GiGjGnn for i,j=0,..,n.

We consider the equations

n—1

(%) ) Ag;=0, j=1,..0-1
i=1

and find out about the solutions of them in U, x P" . So we extend (**) to X x P"

0
firstly and then we see from the assumption of det(qi.) =0 that (*%*) determines a
subscheme C X x P" with dimension at least n + 1. In a neighborhood u of q , since

rk(qij(q)) =n -2, every point has a fiber which i3 a 2-dimensional linear variety in
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the solution of (**) . Then by a theorem in [12] we see that over u , there is an
irreducible component T of the solution of (**) in X x P® with dimension n +1.T
meets the diagonal A of X in X xP" at q=(%,0,..,0%) ,ie, ANT#¢ and
hence intersect in a scheme with dimension at least 1. So we obtain a curve C passing

q and which is a solution of (**) and lies on A . This means

are validon C.
By (6), this implies qu =0on C for j=1,..,n—1 and hencefor j=0,n.

It is easy to check that under a non singular linear transformation

[ n—1

Xi = ' z aijTj i = 0, ey ,11 - 1
(E) ~ =

X =T ’

n n

“~

we have

(QIJ) = A*(qij)A )

where q;j denotes the Q5 defined by (*) but under the new coordinates T, ...,T
*
A= (aij) and A is the transposition of A .

Then we have
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(1) rk(qh):rk(qij) , 0<i,j<n—-1 ; then by (6) we know

1<ij<n—1.

(2) thecurve C is still a solution of

n—l1
(¥x)’ 2 Tiq‘i'j =0, j=1,..,n—1.Our reason is as follows.
i=1
0, ... ,0
* .
Since qp| =0, A (gcA= | B*(q- 1B where B = (2,); icn — 1 -
0 e,

So,

*_1 *
(T0, .. )Tn_l) . (qgj) | C = (XO, e ]X-n_l)A A (qij)Alc

0,..,0
—— (XO, anm ,x.n—l) E q.. AIC
o U
0,..,0
= (O’Xl’ X _1) :
1 . (qij)'B IC
=0 .

Now we can use transformation (E) such that on C none of Gy, ...

*n—1

has a zero

in common with G (noting that C must meet with each G; =0, since G, #0 isan
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affine open set in X) . This can be done because GO, . ,G n have no common zero, 50

we may take them as the coordinates in P™.

So we may assume now (1) qg = G (G Gy; — GoGp; — G,G ) + G4G;G, vanishes

on a curve C , which pass through UOn ; (2) none of GO’ ,Gn_1 has a zero in

common with G11 on C.

= 2

Orm=0 on C , then Gn=0 implies

Gann =0, but on C divisors [Gn] and [GO] have no common component, 80
[G,] £ [G,,] - On the other hand, deg[G ] > deg[G ] ,thus G  |-=0.Now

we obtainon C
G, Ggp —2GyG =0,
and by the same argument we have G =0, G, =0.
Taking arbitrary %5 on C we have
G, (G Go;— Gy~ G Coo) + GOGJ.G;lll =0,

then G G GOan =0.

0j

By the same argument again we obtain

an=0 for j=0,...,n.
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n

Finally, (d-1)G, = ) X,Gyi=0, but since pfd—1, G (C)=0 . This is
j=0

impossible since C passes through U011 by our construction.

As a digression we have
Corollary. For smooth hypersurfaces in P® we have the following classification:
(i) If p=0 or p Jdeg X -1, then biduality is valid for X.

(ii) If p divides deg X —1 but G can be written as

m
P
5 XF(Xg - X)P , m21,
then the biduality is false for X .
(iii) For X not belonging to (i) (ii), the biduality is undefinite.

Proof. [13] showed that biduality is valid for X if and only if the dual mapping
;: (GO’ 'Gn) X — XY s separably generated, that is equivalent to that

v .
Qk(X)/k(X') has rank tr degk(xv)k(x) , where k(X), k(X ) denote the rational
fields of X and X' respectively. But naturally

dim X — rk(pij) = 0, 80 the conclusion follows.
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(ii) Theorem 3.3 in [14].
(iii) We have the following examples.

(a) In p3 , the surface

x2xp1 X XP + X, XD + X, %P + X

D_
0X1 1X3 3+ X3Xg =0

370~

is reflexive, i.e., biduality is valid for it.
() In p3 , the surface

is non—reflexive.

These two examples both have b, = 2, but in (a) det(p; j) # 0 and in (b)
det(p; j) =0.

Lemma 4 4. {det(pij) =0} and the scheme defined by all (n— 2)—minors of (pij)

have no common component.
Proof. We shall show inductively with n > 3.

For n = 3, suppose there is a curve C such that every P vanishes on it. We knew

already that under a transformation of coordinates the new P; j’s still have C in their
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zero locus. So we may assume that any two of GO’ ,G3 have no common nullpoint on
C . By the argument we used in the proof of Lemma 4.3, we deduce that Gij =0 on C
for 0<1i,j <3 and hence G0 =..= G3 =0 on C.]Itis absurd.

Now we assume Lemma is true for n—1 but false for n . Therefore, there is a prime
divisor D on X such that every (n—2)—minor vanishes on it. We choose a point q
in D such that rk(pij(q)) = n —2 ; this is possible. The reason for this is as follows.
We take a section, e.g., {X_ _, =0}, the corresponding (pij) for it is just the

principal minor of p restricted to  {X _, =0} . Then by the inductive

n-1,n-1
hypothesis, its8 (n — 3)—minors have no common component with this principal minor.

This means we can find such a point q in D.

Now we shall proceed along the same line as in the proof of Lemma 4.3 to get a solution

of Q; = 0 with dimension at least 1 and then G n= 0 hence a contradiction.
Proposition 4.5. T is an equidimensional scheme of dimension n —2 .

Proof. Let V; be the subscheme of X which is defined by all (i + 1)—minors of
(pij) , 1€4,j€n—~1.ByLemma 43 dimV__, =n—2 and by Lemma 4.4

dim Vn—3 <n-3 . In fact, we conclude that dim Vi <i for i=0]1,..0—-2.
Otherwise we assume dim X, >i+ 1 for some i, then all the i-th minors of (pij)
would have a common component D with each (i+ 1)-th minors, where
dmD>i+1.

Now wecut X with X , =X ,=..=X =0 and make them have a non

n—i—2
empty intersection with D . Then we obtain a smooth hypersurface in P2 with

degree deg X , so by Lemma 4.4, its det(p; j) and the i—th minors have no common
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component. Noting that the new (p‘i' j) is nothing other than the restriction of some

principal (i + 1)—minor of (pij) , then we have a contradiction.
On the other hand, T is defined by the resolution

G(=2) — Qy/x |z — OQgz/x — 0.
8O codiszgn-2,i.e. dmT>n-2.
From the local expression for T :
(xx) EpijAjzo,i=1,...,n-1,

we see that over each (Vi _Vi—l) we have as solution for ’\i a linear space with

<n-—2 and hence

dimension n—2 —1i, thus dim T| _1
a “(Vi-Viy)
dim T| 1 = n — 2 . The proof is complete.
a (V)
Theorem 4.6.

n—2 i
me Y ¥ e —g)ikc A" 2ap)c, @) E
i=0 k=0

(C4(0y) + (= 1)C, )" n [x] .

Proof. Since T is (n — 2)—equidimensional, from the resolution as shown above we

have
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[T] ~ Cy_p(0y/x ~ O N [2] =
= {Cle A2y (L) (- 1)) + (14 C,(0(2)) + C2(0(2)) + ..)C,(O()},_, N [Y]

n—2 i n-1-k . ) |
=2 2 [ .- ]Ck(/\ﬂ—2a y)(Hn -2)C,(a L) = € (& (1)
i=0 k=0 1=

(3C,(a Ky) + 3(a —1)C,(a L) + 2, (0(1)* 17 n [v] =
=a Dy+Cy(G(1)Na D, + .. + C (&))" 2NaD__,,

where D, denotes a certain i—cycle on X.
Now it is enough to show that Dy =V, . (In fact, we can prove D, =V, forall i).

We know that locally T is expressed by the solution of (¥%) . Over UOn ,
YU x P* 2 and 01(6’(1))“"2 act on a cycle on Y is equivalent to use a generic
0—plane to meet T . At present case the intersection point is actually the solution of
(**) for generic (Al, ,An_l) , 60 it has to satisfy P = 0,8 D,CV,.Itis obvious
that D0 J V0 , therefore the assertion follows.

From the expression for [T] we see
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n—2 i
Vl=m= Y ¥ 3 e-n*c " 2ayc,m)
i=0 k=0

(Cy(0y) + (a = 1)C,L)N* 7 0 [x]

and furthermore, if we wish,

n—2 i

[n-1-k n+1 .
#[1] = 2 2 z 3n—1—1[ . ][ ](2—n)l_k
k

i=0 k=0 s+t+u= i-k 8

(deg X —n -l)t(2 deg X —n —1)%(n —deg X)S - (deg X — 2)n_i_1deg X.
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