TRIVIALITY OF SCALAR LINEAR TYPE ISOTROPY SUBGROUP BY PASSING TO AN ALTERNATIVE CANONICAL FORM OF A HYPERSURFACE

Vladimir V. EŽOV

Max-Planck-Institut für Mathematik	Department of Pure Mathematics Gottfried-Claren-Str. 26
D-53225 Bonn	University of Adelaide
GERMANY	AUSTRALIA

TRIVIALITY OF SCALAR LINEAR TYPE ISOTROPY SUBGROUP BY PASSING TO AN ALTERNATIVE CANONICAL FORM OF A HYPERSURFACE

VLADIMIR V. EZ̆OV

Abstract

The Chern-Moser ($C M$) normal form of a real hypersurfaces in \mathbb{C}^{N} can be obtained by considering automorplisms whose derivative act as the identity on the complex tangent space. However, the $C M$ normal form is also invariant under a larger group (pseudo-unitary linear transformations) and it is the property that makes the $C M$ normal form special. Withoul this additional restriction, various types of normal forms occur. One of them helps to give a simple proof of a (previously complicated) theorem about triviality of scalar linear type isotropy subgroup of a nonquadratic hypersurface. An example of an analogous nontrivial subgroup for a 2 -codimensional $C R$ surface in \mathbb{C}^{4} is constructed.

1. Alternative canonical form

Let $M \in \mathbb{C}^{n+1}$ be a real-analytic hypersurface. For the coordinates in \mathbb{C}^{n+1} we set $z=\left(z^{1}, \ldots, z^{n}\right), \quad w=u+i v$. We assume that M has nondegenerate Levi form $\langle z, z\rangle$ at the origin.
Consider the space \mathcal{F} of power series in (z, \bar{z}, u) such that the series itself, its differential and the Hessian $\frac{\partial^{2}}{\partial z \partial \bar{z}}$ vanish at the origin. A hypersurface M can always be written in the form:

$$
\begin{equation*}
v=\langle z, z\rangle+H, \tag{1}
\end{equation*}
$$

where $H(z, \bar{z}, u) \in \mathcal{F}$.
Any $H \in \mathcal{F}$ can be written as a sum $H=\sum_{k, l} H_{k, l}$ of homogeneous polynomials of degree k in z and l in \bar{z} with analytic in u coefficients. By $\Pi_{\left(k_{1}, l_{1}\right), \ldots,\left(k_{s}, l_{0}\right)}(H)$ we denote the sum $H_{k_{1}, l_{1}}+\ldots+H_{k_{,}, l_{s}}$. In \mathcal{F} we consider the subspace

$$
\begin{equation*}
\mathcal{R}=\left\{\left.2 \operatorname{Re} \chi(\langle z, z\rangle-v)\right|_{v=\langle z, z\rangle}\right\}, \tag{2}
\end{equation*}
$$

[^0]where χ runs over holomorphic vector fields of the form
$$
\chi=g(z, w) \frac{\partial}{\partial w}+\sum_{j=1}^{n} f^{j}{\frac{\partial}{}{ }^{j}}_{\partial z^{j}},
$$
here
$$
f^{j}(0)=\left.\frac{\partial f^{j}}{\partial z}\right|_{0}=g(0)=\left.\frac{\partial g}{\partial z}\right|_{0}=\left.\frac{\partial g}{\partial w}\right|_{0}=0 .
$$

Let $\kappa=\{(k, 0),(k, 1),(2,2),(3,2),(3,3)\}$ and Π_{κ} be a projection on the corresponding jet space. Π_{κ} is an isomorphism on \mathcal{R} (see [CM]), so below we identify \mathcal{R} and $\Pi_{\kappa} \mathcal{R}$.
Let \mathcal{N} be any direct complement of \mathcal{R} in \mathcal{F}. The \mathcal{R}-component always can be eliminated from the equation (1) of M. The freedom in the choice of \mathcal{N} space leads to various canonical forms of the equation. One of such canonical forms, constructed by Chern and Moser ([CM]), has some natural advantages compared to others. Here we introduce an alternative canonical form of a hypersurface to provide a simple proof of Beloshapka and Loboda ($[\mathrm{Be}],\left[\mathrm{Lol}_{j}\right)$ theorem about the triviality of scalar linear type isotropy subgroup of a nonquadratic hypersurface M. The original proof of this theorem, based on Chern-Moser normal form is technically very hard.
It is convenient to consider two cases of the Levi form:
i.) $\langle z, z\rangle=2 \operatorname{Re} z^{1} \bar{z}^{n}+\sum_{\alpha=2}^{n-1} \varepsilon_{\alpha}\left|z^{\alpha}\right|^{2}$,
ii.) $\langle z, z\rangle=\left|z^{1}\right|^{2}+\sum_{\alpha=2}^{n} \varepsilon_{\alpha}\left|z^{\alpha}\right|^{2}$,
here $\varepsilon_{\alpha}= \pm 1$.
Let $H_{k, l}$ be an arbitrary polynomial of the type (k, l). Each time in $H_{k, l}$ the product $z^{1} \overline{z^{n}}$ occurs in case (i), or, $z^{1} \bar{z}^{1}$ in case (ii), we replace this product by $\langle z, z\rangle-\langle z, z\rangle^{\prime}$, where

$$
\begin{align*}
\langle z, z\rangle^{\prime} & =z^{n} z^{1}+\sum_{\alpha=2}^{n-1} \varepsilon_{\alpha}\left|z^{\alpha}\right|^{2} \tag{4}\\
\text { or, } & \\
\langle z, z\rangle^{\prime} & =\sum_{\alpha=2}^{n} \varepsilon_{\alpha}\left|z^{\alpha}\right|^{2}
\end{align*}
$$

in cases (i) and (ii) respectively. Thus, we obtain a decomposition of $H_{k, l}$ in the form

$$
\begin{equation*}
H_{k, l}=\sum_{m} \sum_{\alpha} u^{m-\alpha}\langle z, z\rangle^{\alpha} Q_{k-\alpha, l-\alpha}(z, \bar{z}) \tag{5}
\end{equation*}
$$

where each monomial in $Q_{k-\alpha, l-\alpha}$ does not contain $z^{1} \overline{z^{n}}$, or $z^{1} \bar{z}^{1}$ respectively. Set $\nu=\langle z, z\rangle$ and write the equation of M in the form

$$
v=\nu+\sum_{k, l} H_{k, l}(\nu, z, \bar{z}, u)
$$

where polynomials $H_{k, l}$ are written in the form (5) and ν is considered as an independent variable.

By canonical form we call an equation of the type

$$
\begin{equation*}
v=\nu+\sum_{k, l \geq 2} N_{k, l}(\nu, z, \bar{z}, u), \tag{6}
\end{equation*}
$$

where

$$
\frac{\partial}{\partial \nu} N_{22}=\frac{\partial^{2}}{\partial \nu^{2}} N_{32}=\frac{\partial^{3}}{\partial \nu^{3}} N_{33}=0
$$

The following is analogous to Chern-Moser theorem ([CM]):
Theorem 1. i.) Any hypersurface can be locally biholomorphically transformed to a canonical form,
ii.) Let $\Phi=(F(z, w), G(z, w))$ be a transformation to canonical form. Let J_{Φ} be the Jacobian of Φ :

$$
J_{\Phi}=\left(\begin{array}{cc}
\lambda U & \lambda U a \\
0 & \varepsilon \lambda^{2}
\end{array}\right),
$$

where $\varepsilon={ }_{-}^{+} 1, U$ is a pseudounitary matrix such that $\langle U z, U z\rangle=\varepsilon\langle z, z\rangle$, $a \in \mathbb{C}^{n}, \lambda \geq 0, r=\left.\operatorname{Re} \frac{\varepsilon}{\lambda^{2}} \frac{\partial^{2} G}{\partial w^{2}}\right|_{0}$.
Then the set of initial data $I_{\Phi}=\{U, a, \lambda, r\}$ determine Φ uniquely, and, conversely, any set of parameters $\{U, a, \lambda, r\}$ with the above properties corresponds to the transformation of M to some canonical form.
iii.) Any formal transformation that transforms M to a canonical form is automatically holomorphic.
Remark. For $n=2$ and for quadrics $v=\langle z, z\rangle$ the described canonical form coincides with the Chern-Moser normal form.
By G_{0} we denote the group of locally defined isotropic holomorphic automorphisms of M at 0 . If M is written in canonical form then any $\Phi \in G_{0}$ can be considered as a transformation between canonical forms, so the set of initial data $\{U, a, \lambda, r\}$ uniquely determines Φ. If M is a quadric then all parameters of initial data are free, if M is nonquadratic, i.e. not locally equivalent to a quadric, Beloshapka and Loboda ($[\mathrm{Be}],[\mathrm{Lol}])$ proved that matrix U uniquely determines other parameters $\{a, \lambda, r\}$. This result can be reformulated if we denote by $G_{0, \lambda i d}$ the subgroup of G_{0} consisting
of the automorphisms with $U=$ id ($G_{0, \lambda i d}$ is called em scalar linear type isotropy subgroup) as follows:

Theorem 2. If M is a nonquadratic hypersurface then $G_{0, \lambda \mathrm{id}}=\{\mathrm{id}\}$.
Remark. Analogous theorem does not hold for higher codimensional $C R$ surfaces as the example in the last section of the paper shows.

2. Triviality of conformal isotropies

We start with the proof of Theorem 1, which basically follows the proof of ChernMoser theorem ([CM]).

Proof. We check that the described \mathcal{N} space is complementary to \mathcal{R}. Expanding the right hand side of the expression for \mathcal{R} we observe, that

$$
\begin{array}{r}
\mathcal{R}=\left\{\sum_{0}^{\infty}\left(H_{k, 0}+H_{0, k}\right)+\sum_{2}^{\infty}\left(H_{k, 1}+H_{1, k}\right)+\left({ }^{\tau} z B_{1}(u) \bar{z}\right)+\right. \\
\left.\langle z, z\rangle\left(^{\tau} z B_{2}(u) \bar{z}\right)+\langle z, z\rangle^{2}\left(\left\langle z, B_{3}(u)\right\rangle+\left\langle B_{3}(u), z\right\rangle\right)+b_{4}(u)\langle z, z\rangle^{3}\right\},
\end{array}
$$

where $B_{1}(u)$ and $B_{2}(u)$ are hermitian matrices, $B_{1}(0)=0, B_{3}(u)$ is an arbitrary vector in $\mathbb{C}^{n}, b_{4}(u)$ is a real-valued function.
It is clear that the subspace

$$
\mathcal{N}=\left\{H \in \mathcal{F} \left\lvert\, H_{k, 0}=H_{k, 1}=\frac{\partial}{\partial \nu} H_{22}=\frac{\partial^{2}}{\partial \nu^{2}} H_{32}=\frac{\partial^{3}}{\partial \nu^{3}} H_{33}=0\right.\right\}
$$

is a direct compliment to \mathcal{R} in \mathcal{F}. So we can follow Chern-Moser scheme to eliminate \mathcal{R}-component in the equation of M. By the "Convergence" part of ([CM]) the holomorphic transformations that do this job are parametrized by $\{U, a, \lambda, r\}$. By the "Formal theory" of ($[\mathrm{CM}]$), any formal transformation with fixed initial data $\{U, a, \lambda, r\}$ that eliminates \mathcal{R}-compnent is unique, so, it has to be holomorphic. This completes the proof of Theorem '1.

We continue with the proof of Theorem 2.
Proof. Consider $\Phi \in G_{0, \lambda i d}$. Since I_{Φ} determines Φ uniquely, it suffices to show that $I_{\Phi}=$ (id, $0,1,0$), which corresponds to the iclentity. Let $a \in I_{\Phi}$. We consider two cases:
i.) a is an isotropic vector for $\langle z, z\rangle$, i.e. $\langle a, a\rangle=0$.
ii.) $\langle a, a\rangle=1$ (without loss of generality this represents the situation $\langle a, a\rangle \neq 0$).

Consider a new basis $\left\{a, e_{2}, \ldots, e_{n}\right\}$ in \mathbb{C}^{n} such that in the case (i) of (7)

$$
\left\langle e_{j}, a\right\rangle=0, \quad\left\langle e_{j}, e_{k}\right\rangle= \pm \delta_{j, k} ;
$$

in the the case (ii):

$$
\left\langle e_{n}, a\right\rangle=1, \quad\left\langle e_{j}, a\right\rangle=0, \quad\left\langle e_{j}, e_{n}\right\rangle=0, \quad\left\langle e_{j}, e_{k}\right\rangle= \pm \delta_{j, k}, \quad j, k=2, \ldots, n,
$$

$\delta_{j, k}$ here is a Kronecker delta.
Let z^{*} be coordinates in \mathbb{C}^{n} in the new basis and C be the corresponding n-matrix that determines the coordinate change in \mathbb{C}^{n+1} via $z=C z^{*}, w=w^{*}$
In $\left(z^{*}, w^{*}\right)$ coordinates the Jacobian of Φ equals to

$$
J_{\Phi}=\left(\begin{array}{cc}
C^{-1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\lambda \mathrm{id} & \lambda a \\
0 & \lambda^{2}
\end{array}\right)\left(\begin{array}{cc}
C & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
\lambda \mathrm{id} & \lambda C^{-1} a \\
0 & \lambda^{2}
\end{array}\right)=\left(\begin{array}{cc}
\lambda & \lambda \\
\lambda \mathrm{id} & 0 \\
& \vdots \\
0 & \lambda^{2}
\end{array}\right) .
$$

The equation of M takes the form

$$
v=\langle z, z\rangle+N(z, \bar{z}, u),
$$

where $\langle z, z\rangle$ has the form (i) and (ii) of (3) in the cases (i) and (ii) of (7) respectively. We introduce weight \varkappa to the variables and to the coordinate differential operators in standard way:

$$
\begin{gathered}
\varkappa(w)=\varkappa(\bar{w})=-\varkappa\left(\frac{\partial}{\partial w}\right)=-\varkappa\left(\frac{\partial}{\partial \bar{w}}\right)=2 \\
\varkappa\left(z^{\alpha}\right)=\varkappa\left(\overline{z^{\alpha}}\right)=-\varkappa\left(\frac{\partial}{\partial z^{\alpha}}\right)=-\varkappa\left(\frac{\partial}{\partial \bar{z}^{\alpha}}\right)=1 .
\end{gathered}
$$

end extend this weight to polynomials in (z, \bar{z}, w, \bar{w}) by linearity and homogenuity. We expand an equation of M in a canonical form (6) as the sum of weighted homogeneous polynomials in (z, \bar{z}, u) :

$$
\begin{equation*}
v=\nu+\sum_{\gamma \geq 4} H_{\gamma}(\nu, z, \bar{z}, u) \tag{8}
\end{equation*}
$$

Let γ_{0} be the first value of γ such that $H_{\gamma_{0}} \neq 0$. As $\Phi \in G_{0, \lambda i d}$, there exists vector field

$$
\begin{array}{r}
\chi=\left(\ln \lambda z \frac{\partial}{\partial z}+2 \ln \lambda w \frac{\partial}{\partial w}\right)+\left(w \frac{\partial}{\partial z^{1}}+2 i z^{e} \frac{\partial}{\partial z}+2 i z^{\epsilon} w \frac{\partial}{\partial w}\right)+ \tag{9}\\
\left(r w z \frac{\partial}{\partial z}+r w^{2} \frac{\partial}{\partial w}\right)+\left(f_{\gamma_{0}} \frac{\partial}{\partial z}+2 i g_{\gamma_{0}+1} \frac{\partial}{\partial w}\right)+\ldots,
\end{array}
$$

such that $\Phi=\exp (\chi)$.
In the definition of χ we assume that

$$
\begin{aligned}
\frac{\partial}{\partial z} & =\sum_{\alpha} \frac{\partial}{\partial z^{\alpha}} \\
z \frac{\partial}{\partial z} & =\sum_{\alpha} z^{\alpha} \frac{\partial}{\partial z^{\alpha}}
\end{aligned}
$$

here $\varepsilon=n$ or $\varepsilon=1$ in the cases (i) or (ii) of (7) respectively. The collected terms in (9) represent the components $\chi_{0}, \quad \chi_{1}, \quad \chi_{2}$ and $\chi_{\gamma_{0}-1}$ of χ of weights $0,1,2$ and $\gamma_{0}-1$ respectively.
Since the iterations of Φ preserve the equation (8), it follows that χ satisfies the equation

$$
\begin{equation*}
\mathcal{H}=2 \operatorname{Re} \chi\left(\langle z, z\rangle-v+\left.\sum_{\gamma \geq r_{0}} H_{\gamma}(\nu, z, \bar{z}, u)\right|_{v=\langle z, z\rangle+\sum_{\gamma \geq \gamma_{0}} H_{\gamma}(\nu, z, \bar{z}, u)}\right) \equiv 0 \tag{10}
\end{equation*}
$$

Considering component $\mathcal{H}_{\gamma_{0}}$ of weight γ_{0} in (10) we obtain that

$$
\left(\gamma_{0}-2\right) \ln \lambda H_{\gamma_{0}}=0
$$

and since $\gamma_{0} \geq 4$, it implies that $\lambda=1$.
To obtain that $a=0$ we consider the next, $\mathcal{H}_{\gamma_{0}+1}$, component. By defect of a polynomial in (z, \bar{z}) we mean the difference in its degrees in holomorphic and antiholomorphic variables. Let $H_{\gamma_{0}, d, m}$ be the component of $H_{\gamma_{0}}$ of maximal defect and minimal degree in (ν, u) (see (5)).
By $\rho \longrightarrow_{\alpha, \beta, \delta, \ldots}$ we mean the contribution of an expression ρ into the component of the type ($\alpha, \beta, \delta, \ldots$), having weight α, defect β, degree δ in ($\nu, u)$, and other specifications denoted by the dots.
For simplicity in further computations we introduce the variables

$$
\omega=u+i \nu, \quad \bar{\omega}=u-i \nu
$$

Thus, the degree of a polynomial in (u, ν) equals to the degree in $(\omega, \bar{\omega})$. So, the expression (5) for $H_{\gamma_{0}, d, m}$ takes the form

$$
\begin{equation*}
H_{\gamma_{0}, d, m}=\sum_{m} \sum_{\alpha=0}^{m} \omega^{m-\alpha} \bar{\omega}^{\alpha} Q_{m-\alpha}(z, \bar{z}) \tag{11}
\end{equation*}
$$

Consider at first the case (i) in (7). Collecting in \mathcal{H} the terms of type $\left(\gamma_{0}+1, d+1, m\right)$ we obtain:

$$
\begin{align*}
\mathcal{H}_{\gamma_{0}+1, d+1, m}= & \left\{\left(i z^{n}\left(2 z \frac{\partial}{\partial z}+\omega \frac{\partial}{\partial w}\right)+\bar{\omega} \frac{\partial}{\partial \bar{z}^{-1}}\right) H_{\gamma_{0}, d, m}-2 i z^{n} H_{\gamma_{0}, d, m}+\right. \\
& \left.2 \operatorname{Re}\left(\left\langle f_{\gamma_{0}}, z\right\rangle-\left.g_{\gamma_{0}+1}\right|_{v=\nu}\right)\right\} \longrightarrow \gamma_{0}+1, d+1, m \tag{12}
\end{align*}
$$

Remark. The differential operator in the latter formula is applied to the $H_{\gamma_{0}, d, m}$ only, the term of minimal degree in $(\omega, \bar{\omega})$, because neither of

$$
\begin{equation*}
2 i z^{n} \frac{\partial}{\partial z}, \quad i z^{n} \omega \frac{\partial}{\partial w}, \quad \bar{\omega} \frac{\partial}{\partial z^{1}} \tag{13}
\end{equation*}
$$

decreases the degree in $(\omega, \bar{\omega})$. Moreover, operators $i z^{n} \omega \frac{\partial}{\partial w}, \quad \bar{\omega} \frac{\partial}{\partial z^{1}}$ increase the degree in ($\omega, \bar{\omega}$) unless applied to $\omega^{m-\alpha} \bar{\omega}^{\alpha}$ in (1.1).

Exact computation shows that in terms of the contribution to $\left(\gamma_{0}+1, d+1, m\right)$ type component, the operators (13) can be substituted respectively by

$$
\begin{array}{ll}
i z^{n}\left(2 h \mathrm{id}+(\omega-\bar{\omega})\left(\frac{\partial}{\partial \omega}-\frac{\partial}{\partial \bar{\omega}}\right)\right), & i z^{n} \omega\left(\frac{\partial}{\partial \omega}+\frac{\partial}{\partial \bar{\omega}}\right) \tag{14}\\
& i z^{n} \bar{\omega}\left(\frac{\partial}{\partial \omega}-\frac{\partial}{\partial \bar{\omega}}\right)
\end{array}
$$

Making the sum of the operators in (14) we obtain a diagonal operator D :

$$
\begin{equation*}
2 i z^{n} D=2 i z^{n}\left(h \mathrm{id}+\omega \frac{\partial}{\partial \omega}\right) \tag{15}
\end{equation*}
$$

So far, in (12) we obtain:

$$
\begin{align*}
\mathcal{H}_{\gamma_{0}+1, d+1, m}=2 i z^{n} \sum_{\alpha=0}^{m} & (m-\alpha+h-1) \omega^{m-\alpha} \bar{\omega}^{\alpha} Q_{m-\alpha}(z, \bar{z})+ \tag{16}\\
& \left(\left.2 \operatorname{Re} \chi_{\gamma_{0}-1}(v-\nu)\right|_{\nu=\nu} \longrightarrow \gamma_{\gamma_{0}+1, d+1, m}\right)
\end{align*}
$$

Suppose that $\chi_{\gamma_{0}-1} \neq 0$. Then the last term in (16), i.c. $\left.2 \operatorname{Re} \chi_{\gamma_{0}-1}(v-\nu)\right|_{v=\nu} \longrightarrow_{\gamma_{0}+1, d+1, m}$ contains a nontrivial \mathcal{R} component. So, $D H_{\gamma_{0}, d, m}$ must contain \mathcal{R} terms as well. It
is easy to check that two operators that compose $2 i z^{n} D$, namely, $2 i z^{n} \frac{\partial}{\partial z} /$ quad and $i z^{n} \omega \frac{\partial}{\partial w} /$ quad preserve \mathcal{N} space. So, the \mathcal{R} component in $D H_{\gamma, d, m}$ may arise only from

$$
\begin{equation*}
\bar{\omega} \frac{\partial}{\partial \bar{z}^{1}} H_{\gamma_{0}, d, m} \longrightarrow \gamma_{0}+1, d+1, m \tag{17}
\end{equation*}
$$

Degree m in $(\omega, \bar{\omega})$ does not increase if $\bar{\omega} \frac{\partial}{\partial z^{1}}$ is applied only to ν (and not to $\left.Q_{m-\alpha}(z, \bar{z})\right)$.
What sort of \mathcal{R} component may arise?
Term $\mathcal{R}_{2,1}$ can not appear in (17) from $\bar{\omega} \frac{\partial}{\partial z^{1}} H_{2,2}$ because, by (6), $\frac{\partial}{\partial \nu} H_{2,2}=0$.
Analogously, $\mathcal{R}_{3,2}=\langle z, b\rangle \nu^{2}$ can not arise from (16) because $\frac{\partial^{3}}{\partial \nu^{3}} H_{3,3}=0$.
Term $\mathcal{R}_{3,1}$ may arise from $u^{m-1} \nu Q_{2,1}(z, \bar{z})$ in $H_{3,2}$ as

$$
\bar{\omega} \frac{\partial}{\partial z^{1}}\left(u^{m-1} \nu Q_{2,1}\right) \longrightarrow_{\mathcal{R}} u^{m} z^{n} Q_{2,1}=u^{m} z^{n}\left\langle Q_{2,0}, z\right\rangle
$$

This implies for $\chi_{\gamma_{0}-1}$ that for compensation,

$$
\chi_{\gamma_{0}-1}=-\omega^{m} z^{n} Q_{2,0} \frac{\partial}{\partial z} .
$$

Therefore, by (16) and (10)

$$
\mathcal{H}_{\gamma_{0}+1,2, m}=-2 i \omega^{m}\left\langle z^{n} Q_{2,0}, z\right\rangle z^{n} \sum_{\alpha=0}^{m}(m-\alpha+2-1) \omega^{m-\alpha} \bar{\omega}^{\alpha} Q_{m-\alpha}(z, \bar{z})=0
$$

Thus,

$$
\mathcal{H}_{\gamma_{0}, 2, m}=\frac{1}{2 i(m+1)} \omega^{m}\left\langle Q_{2,0}, z\right\rangle
$$

But in usual coordinates the latter expression contains a $(3,1)$ term

$$
\frac{1}{2 i(m+1)} u^{m}\left\langle Q_{2,0}, z\right\rangle
$$

which does not lie in the \mathcal{N} space. Contradiction. So, $\mathcal{R}_{3,1}$ can not arise as well. Term $\mathcal{R}_{k, 1}, \quad k \geq 4$ can arise from $u^{m-2} \nu^{2} Q_{k-2,0}$ or from $u^{m-1} \nu Q_{k-1,1}(z, \bar{z})$. The second option is considered as above.
Consider the first option:

$$
\bar{\omega} \frac{\partial}{\partial \bar{z}^{1}}\left(u^{m-2} \nu Q_{k-2,0}\right) \longrightarrow \mathcal{R} u^{m} z^{n} Q_{2,1}=2 u^{m-1} \nu z^{n} Q_{k-2,0}
$$

It follows that for compensation

$$
\chi_{\gamma_{0}-1}=-2 \omega^{m-1} \nu z^{n} Q_{k-2,0} z \frac{\partial}{\partial z}
$$

and so,

$$
\left.2 \operatorname{Re} \chi_{\gamma_{0}-1}(v-\nu)\right|_{\nu=\nu}=i \omega^{m-1}(\omega-\bar{\omega}) z^{n} Q_{k-2,0}=i \omega^{m} z^{n} Q_{k-2,0}-i \omega^{m-1} \bar{\omega} z^{n} Q_{k-2,0}
$$

Equations (10) and (16) imply that

$$
\begin{gathered}
\mathcal{H}_{\gamma_{0}+1, k-1, m}= \\
i \omega^{m} z^{n} Q_{k-2,0}-i \omega^{m-1} \bar{\omega} z^{n} Q_{k-2,0}+2 i z^{n} \sum_{\alpha=0}^{m}(m-\alpha+k-3) \omega^{m-\alpha} \bar{\omega}^{\alpha} Q_{m-\alpha}(z, \bar{z}) \equiv 0
\end{gathered}
$$

Thus,

$$
\begin{array}{r}
\mathcal{H}_{r o, k-2, m}=-\frac{i}{m+k-3} \omega^{m} Q_{k-2,0}+\frac{i}{m+k-4} \omega^{m-1} \bar{\omega} Q_{k-2,0}= \\
Q_{k-2,0}\left(-\frac{i}{m+k-3} \omega^{m}+\frac{i}{m+k-4} \omega^{m-1} \bar{\omega}\right) .
\end{array}
$$

The latter does not lie in the \mathcal{N} space since it contains a ($k-1,0$) term. Contradiction. Suppose now that $\chi_{\gamma_{0}-1}=0$. Then (10) implies that:

$$
D H_{\gamma, d, m}=2 i z^{n} \sum_{\alpha=0}^{m}(m-\alpha+h-1) \omega^{m-\alpha} \bar{\omega}^{\alpha} Q_{m-\alpha}=0
$$

This can happen only in two cases
i.) $h=1, \alpha=m$,
ii.) $h=0, \alpha=m-1$.

In (i) case

$$
H_{\gamma_{0}, d, m}=\omega^{m} Q_{1,0},
$$

which contains $u^{m} Q_{1,0} \in \mathcal{R}$; in (ii) case

$$
H_{\gamma_{0}, d, m}=\omega^{m-1} \bar{\omega} Q_{1,0},
$$

which contains $u^{m} Q_{1,0} \in \mathcal{R}$ as well. Contradiction. Hence, $a=0$ in the set of initial data of Φ in case (i) (7).
The case (ii) in (7) is similar: instead of of $H_{\gamma_{0}, d, m}$ we take

$$
H_{\gamma_{0}, d, m, d_{1}}=\sum_{m} \sum_{\alpha=0}^{m} \omega^{m-\alpha} \bar{\omega}^{\alpha} \bar{z}^{d_{1}} Q_{m-\alpha-d_{1}}(z, \bar{z}),
$$

the component of $H_{\gamma_{0}, d, m}$ of minimal degree $d_{\overline{1}}$ in $\overline{z^{1}}$. If $d_{\overline{1}}=0$ then the proof goes literally as above. Let $d_{\overline{1}} \neq 0$ then operators

$$
2 i z^{1} \frac{\partial}{\partial z}, \quad i z^{1} \omega \frac{\partial}{\partial w}, \quad \bar{\omega} \frac{\partial}{\partial z^{1}}
$$

being applied to $\omega^{m-\alpha} \bar{\omega}^{\alpha}$, contribute to the components of degrees m and $m+1$ in $(\omega, \bar{\omega})$. We are interested in the contribution to the minimal dgree m :

$$
\begin{gathered}
\mathcal{H}_{\gamma_{0}+1, d+1, m, d_{1}-1}=2 i \frac{\langle z, z\rangle^{\prime}}{\bar{z}^{1}}(D-\mathrm{id}) H_{\gamma_{0}, d, m, d_{\mathrm{I}}}+ \\
\left(\left.2 \operatorname{Re} \chi_{\gamma_{0}-1}(v-\nu)\right|_{v=\nu} \longrightarrow_{\gamma_{0}+1, d+1, m, d_{1}-1}\right)= \\
2 i\langle z, z\rangle^{\prime} \sum_{\alpha=0}^{m}(m-\alpha+h-1) \omega^{m-\alpha} \bar{\omega}^{\alpha} \bar{z}^{d^{d_{1}-1}} Q_{m-\alpha-d_{1}}(z, \bar{z})+ \\
\left(\left.2 \operatorname{Re} \chi_{\gamma_{0}-1}(v-\nu)\right|_{v=\nu} \longrightarrow_{\gamma_{0}+1, d+1, m, d_{1}-1}\right)
\end{gathered}
$$

(see (4) and (15) for $\langle z, z\rangle^{\prime}$ and D). The latter expression does not vanish for the same reasons as above. This proves that $a=0$ in both cases (i) and (ii) of (7), and so $\chi_{1}=0$.
The remaining part is to show that $r=0$. Consider

$$
\chi_{2}=r w z \frac{\partial}{\partial z}+r w^{2} \frac{\partial}{\partial w} .
$$

It surely preserves the \mathcal{N} space, so it implies that $\chi=\chi_{2}$. But it is clear that 2 Re χ_{2} doesn't annulate the equation of M (it suffices to consider the component of $H_{\gamma_{0}, d, m, d_{u}}$ of maximal degree d_{u} in u and to observe that χ_{2} on this component is just a multiplication times u).

3. Counterexample for 2-Codimensional $C R$ Surfaces

Let $M \in \mathbb{C}^{4}$ be a real-analytic Levi-nondegenerate $C R$ surface of codimension 2 . Set $z=\left(z^{1}, z^{2}\right), \quad w=\left(w^{1}=u^{1}+i v^{1}, \quad w^{2}=u^{2}+i v^{2}\right)$ for coordinates in \mathbb{C}^{4}. Up to nondegenerate linear transformation in (z, w) the Levi form of M may have one of three types, namely, elliptic, hyperbolic and parabolic (see [Lo2]).
Isotropy group $G_{0} M$ is defined like for hypersurfaces. Set

$$
G_{0, \mathrm{id}} M=\left\{\Phi \in G_{0} M:\left.d \Phi(0)\right|_{T_{0}} ^{\mathbf{c}_{M}}=\{\mathrm{id}\}\right\}
$$

If M is a quadratic surface, i.e. it is locally equivalent $C R$ quadric, its automorphism group, and, in particular, $G_{0, \mathrm{id}} M$ are described in ([ES]). If M is nonquadratic the description of $G_{0} M$ remains an open question. On the contrary to the Theorem 2 even for nonquadratic M the subgroup $G_{0, i d} M$ may be nontrivial as the example below shows:
Let M be a surface with the parabolic type of the Levi form, defined by the equation

$$
\begin{align*}
v^{1} & =\left|z^{1}\right|^{2} \tag{18}\\
v^{2} & =2 \operatorname{Re} z^{1} \overline{z^{2}}+\left|z^{1}\right|^{8}
\end{align*}
$$

To check that M is nonquadratic one may estimate the dimension of the automorphism group.
Let χ be the vector field

$$
\begin{equation*}
\chi=i\left(2\left(z^{1}\right)^{2} \frac{\partial}{\partial z^{2}}+2 z^{1} w^{1} \frac{\partial}{\partial w^{2}}-i w^{1} \frac{\partial}{\partial z^{2}}\right) \tag{19}
\end{equation*}
$$

It is easy to check that χ and M satisfy the identity:

$$
\left.2 \operatorname{Re} \chi\binom{\left|z^{1}\right|^{2}-\frac{1}{2 i}\left(w w^{1}-\overline{w^{1}}\right)}{2 \operatorname{Re} z^{1} \bar{z}^{2}-\frac{1}{2 i}\left(w^{2}-\bar{w}^{2}\right)+\left|z^{1}\right|^{8}}\right|_{M} \equiv 0 .
$$

Therefore, Φ generates a 1-parameter subgroup in $G_{0, \mathrm{id}} M$, namely, $\Phi^{t}=\exp (t \chi)$, since

$$
d \Phi^{t}(0)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & t & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

The 1-parameter subgroup Φ^{t} consists of polynomial transformations

$$
\begin{aligned}
z^{1} & \mapsto z^{1} \\
z^{2} & \mapsto z^{2}+t w^{1}+2 i t\left(z^{1}\right)^{2} \\
w^{1} & \mapsto w^{1} \\
w^{2} & \mapsto w^{2}+2 i t w^{1} z^{1}
\end{aligned}
$$

References

[Be] V.K. Beloshapka. On the dimension of the automorphism group of analytic hypersurface (Russian) Izv. Acad. Nauk SSSR, Ser. Math., 93(2):243-266, 1979.
[CM] S.S. Chern and J.K. Moser. Real hypersurfaces in complex manifolds. Acta Math., 133(3-4):219-271, 1974.
[ES] V.V. Ezzov and G. Schmalz. Holomorphic automorphisms of quadrics. Math. Z., 216:453-470, 1994.
[Lol] A.V. Loboda. On local automorphisms of real-analytic hypersurfaces. (Russian). Izv. Acad. Nauk SSSR, Ser. Math., 45(3):620-645, 1981.
[Lo2] A.V. Loboda. Generic real analytic manifolds of codimension 2 in \mathbb{C}^{4} and their biholomorphic mappings (Russian). Izv. Acad. Nauk SSSR, Ser. Math., 52:970-990, 1988.
(V.V. Ežov) University of Adelaide, Depart'ment of Pure Mathematics, Adelaide, Australia 5006
E-mail address: vezhov@spam.maths.adelaide.edu.au

[^0]: Supported by Australian Research Council.

