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ANALYSIS OF GAUGE-EQUIVARIANT COMPLEXES AND A

TOPOLOGICAL INDEX THEOREM FOR GAUGE-INVARIANT

FAMILIES

VICTOR NISTOR AND EVGENIJ TROITSKY

Abstract. We continue our study of gauge equivariant K-theory. We thus
study the analysis of complexes endowed with the action of a family of com-

pact Lie groups and their index in gauge equivariant K-theory. We intro-

duce various index functions, including an axiomatic one, and show that all
index functions coincide. As an application, we prove a topological index

theorem for a family D = (Db)b∈B of gauge-invariant elliptic operators on

a G-bundle X → B, where G → B is a locally trivial bundle of compact
groups, with typical fiber G. More precisely, one of our main results states

that a-ind(D) = t-ind(D) ∈ K0
G(X), that is, the equality of the analytic index

and of the topological index of the family D in the gauge-equivariant K-theory
groups of X. The analytic index inda(D) is defined using analytic properties

of the family D and is essentially the difference of the kernel and cokernel KG-

classes of D. The topological index is defined purely in terms of the principal
symbol of D.
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1. Introduction

Analysis on singular spaces, as developed by Connes, Cordes, Melrose, Rosen-
berg, Skandalis, Schrohe, Schulze [12, 13, 14, 28, 41, 45, 46], and many others,
leads naturally to Lie algebroids and hence to Lie groupoids. This was formalized
in [1, 29, 36] and in other papers. One of the simplest Lie groupoids is given by a
family (or bundle) of Lie groups. In applications, one is interested mostly in the

V.N. was partially supported by ANR-14-CE25-0012-01. E.T. was partially supported by
RFFI Grant 13-01-00232 and by Grant of the Russian Government N 2010-220-01-077 contract
11.G34.31.0005. The present joint research was started under the hospitality of MPIM (Bonn).
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2 V. NISTOR AND EVGENIJ TROITSKY

case of families of solvable Lie groups [2, 3, 25, 30, 34, 51]. Nevertheless, families
of compact Lie groups are interesting because some of the techniques that are de-
veloped for dealing with compact groups can be used as a model in the case of
solvable Lie groups as well. Moreover, families of compact Lie groups form a basic
building block in the structure of proper groupoids, which is a very important class
of groupoids. Proper groupoids have received recently a great deal of attention and
several important results have been proved for this class of groupoids by Emerson
and Meyer [16, 17, 18, 19], among others.

In this paper, we continue our study of families of compact Lie groups [32, 33,
49, 50] by studying gauge-equivariant complexes and the various index functions
defined on them. The natural topological invariants of these complexes live in the
gauge-equivariant K-theory defined in [32]. Among these invariants, a prominent
role is played by the analytic and topological indices. Our approach is based on a
careful investigation of the formal properties of index maps, which leads us to the
result stating that the analytic and topological index for these complexes coincides.
This result is a generalization of the well known theorem of Atiyah and Singer [5],
and is proved in the spirit of their original paper.

Let us introduce some notation to describe our results in more detail. Let p :
G → B be a bundle of compact groups. Recall that this means that each fiber
Gb := p−1(b) is a compact group and that, locally, G is of the form U × G, where
U ⊂ B open and G a fixed compact group. Let X and B be locally compact spaces
and πX : X → B be a continuous map. In the present paper, as in [32], this
map will be supposed to be a locally trivial bundle. The case of non-locally trivial
bundles will be dealt with in a later publication.

Assume that G acts on X. This action will always be fiber-preserving. Then we
can associate to the action of G on X the G-equivariant K-theory groups Ki

G(X)
as in [32]. We shall review and slightly generalize this definition in Section 2.
For X compact, the group K0

G(X) is defined as the Grothendieck group of G-

equivariant vector bundles on X. If X is not compact, we define the groups K0
G(X)

using fiberwise one-point compactifications. We shall call these groups simply the
gauge-equivariant K-theory groups of X when we do not want to specify G. The
reason for introducing the gauge-equivariant K-theory groups is that they are the
natural range for the index of a gauge-invariant families of elliptic operators. In
turn, the motivation for studying gauge-invariant families and their index is due to
their connection to spectral theory and boundary value problems on non-compact
manifolds. Some possible connections with Ramond-Ramond fields in String Theory
were mentioned in [21, 32]. See also [7, 22, 26, 27, 31, 42]. A different approach to
equivariant index constructions can be found in [43].

In this paper, in particular, we also continue our study of gauge-equivariant
K-theory. Our initial motivation for this paper was to develop an equivariant
topological index theorem for gauge equivariant operators in the framework of our
two earlier papers on the subject [32, 33], see Theorem 5.6. In fact, the most
part of the present paper was written in 2009 (and the results were presented at
the conference [35]). Connections with proper groupoids [19] provide now further
motivation for our study. We begin by providing two alternative definitions of the
relative KG–groups, both based on complexes of vector bundles. (In this paper,
all vector bundles are complex vector bundles, with the exception of the tangent
bundles or where explicitly stated.) These alternative definitions, modeled on the



AN INDEX THEOREM FOR GAUGE-INVARIANT FAMILIES 3

classical case [4, 23], provide a convenient framework for the study of products,
especially in the relative or non-compact cases. The products are especially useful
for the proof of the Thom isomorphism in gauge-equivariant theory [33], which is
one of the main ingredients for the results of this paper. A Thom isomorphism was
proved later also in the framework of bivariant KK-theory [19]. Let E → X be
a G-equivariant complex vector bundle. Then the Thom isomorphism is a natural
isomorphism

(1) τE : Ki
G(X)→ Ki

G(E).

(There is also a variant of this result for spinc-vector bundles, but since we will
not need it for the index theorem 5.6, we will not discuss it in this paper.) The
Thom isomorphism allows us to define Gysin (or push-forward) maps in K-theory.
As it is well known from the classical work of Atiyah and Singer [5], the Thom
isomorphism and the Gysin maps are some of the main ingredients used for the
definition and study of the topological index. In fact, we shall proceed along the
lines of that paper to define the topological index for gauge-invariant families of
elliptic operators. Some other approaches to Thom isomorphism in general settings
of Noncommutative geometry were the subject of [11, 20, 24, 26, 39, 47] and many
other papers.

Gauge-equivariant K-theory behaves in many ways like the usual equivariant
K-theory, but exhibits also some new phenomena. For example, the groups K0

G(B)

may turn out to be reduced to K0(B) when G has “a lot of twisting” [32, Proposition
3.6]. This is never the case in equivariant K-theory when the action of the group is
trivial, but the group itself is not trivial. In [32], we addressed this problem in two
ways: first, we found conditions on the bundle of groups p : G → B that guarantee
that K0

G(X) is not too small (this condition is called finite holonomy and is recalled

below), and, second, we studied a substitute of K0
G(X) that is never too small (this

substitute is K∗(C
∗(G)), the K-theory of the C∗-algebra of the bundle of compact

groups G).
In this paper, we shall again need the finite holonomy condition, so let us review

it now. To define the finite holonomy condition, we introduced the representation

covering of G, denoted Ĝ → B. As a space, Ĝ is the union of all the representation

spaces Ĝb of the fibers Gb of the bundle of compact groups G. One measure of the

twisting of the bundle G is the holonomy associated to the covering Ĝ → B. We say

that G has representation theoretic finite holonomy if Ĝ is a union of compact-open
subsets. (An equivalent conditions can be obtained in terms of the fundamental
groups when B is path-connected, see Proposition 2.3 below.) Let C∗(G) be the
enveloping C∗-algebra of the bundle of compact groups G. We have proved in [32,
Theorem 5.2] that

(2) Kj
G(B) ∼= Kj(C

∗(G)),

provided that G has representation theoretic finite holonomy. This guarantees that
Kj
G(B) is not too small. It also points out to an alternative, algebraic definition of

the groups Ki
G(X).

Let us put our results into some perspective. Recently, an important paper of
Emerson and Meyer with implications for our project [19] has appeared. In that
paper, Emerson and Meyer had developed a G-equivariant version of the bivariant
K-groups, denoted KKG for a proper groupoid G. Then, to any K-oriented map
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f : X → Y , they had associated an element f !an ∈ KKGnY (C0(X), C0(Y )) and
had shown that this defined a functor. They then interpreted this result as an
equivariant topological index theorem. R. Meyer has kindly informed us that some
of the results the present paper can also be obtained from this theorem in [19].
It would be quite worthwhile to complete in full detail this alternative proof. We
are grateful to him and to H. Emerson for discussions on that subject at the above
mentioned conference ([35]) and later. In particular, in view of the comments in the
introduction to that paper, the exact relation between our gauge-invariant operators
and bivariant K-theory still needs to be understood. We thus feel that the concrete
constructions in this paper, done in the spirit of the original Atiyah-Singer paper,
have a merit of their own. They may turn out to be useful also in cyclic homology
calculations of the index and shed some new light and explain the difficult results
of Emerson and Meyer.

The structure of the paper is as follows. We start with the definition of gauge-
equivariant K-theory and with some basic results from [32], most of them related
to the “finite holonomy condition,” a condition on bundles of compact groups that
we recall in Section 2. In Subsection 2.2, we describe an equivalent definition of
gauge-equivariant K-theory in terms of complexes of vector bundles. This will
turn out to be especially useful when studying the topological index. In Section
3, we review the Thom isomorphism in gauge-equivariant K-theory, we define and
study the Gysin maps, and we define the topological index, building on the results
from [33]. In Section 4, we establish the main properties of topological index. As
a consequence, in Section 5 we prove that the topological and analytical index
coincide. We conclude with a discussion of the cyclic homology of the relevant
groupoid algebras and with some comments on future work.

We thank T. Schick, R. Meyer, and G. Skandalis for useful discussions. We
would like to thank also the Max Planck Institute for Mathematics, where part of
this work was completed.

2. Preliminaries

We begin by recalling the definition of gauge-equivariant K-theory and some
basic results from [32]. An important part of our discussion will be devoted to
the discussion of the finite holonomy condition for a bundle of compact groups
p : G → B, a condition introduced below.

All vector bundles considered in this paper are complex vector bundles, exclud-
ing the tangent bundles to the various manifolds appearing below and if otherwise
mentioned.

2.1. Bundles of compact groups and finite holonomy conditions. We begin
with a short discussion of bundles of locally compact groups. Then we study finite
holonomy conditions for bundles of compact groups. Let G be a locally compact
group. We shall denote by Ĝ the set of equivalence classes of irreducible representa-
tions of G with the Jacobson topology and by Aut(G) we shall denote the group of
continuous (group) automorphisms of G. We endow this group with the topology

of uniform convergence on compact subsets. Clearly, Aut(G) acts on Ĝ.

Definition 2.1. Let B be a locally compact space and let G be a locally compact
group. A bundle of locally compact groups G with typical fiber G over B is, by
definition, a fiber bundle G → B with typical fiber G and structural group Aut(G).
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We need now to introduce the representation theoretic holonomy of a bundle of
Lie group with compact fibers p : G → B. Let P → B be the principal Aut(G)-
bundle such that

G ∼= P ×Aut(G) G := (P ×G)/Aut(G).

We fix the above notation. In particular, if Gb is the fiber of G → B above b, then
Gb ' G as groups (non-uniquely).

We assume from now on that G is compact and denote by Ĝ the (disjoint)

union of the sets Ĝb of equivalence classes of irreducible representations of the

groups Gb. Using the natural action of Aut(G) on Ĝ, we can naturally identify

Ĝ with P ×Aut(G) Ĝ as fiber bundles over B. Let also Aut0(G) be the connected
component of the identity in Aut(G). The group Aut0(G) will act trivially on the

set Ĝ, because the later is discrete. Let

HG := Aut(G)/Aut0(G), P0 := P/Aut0(G), and Ĝ ' P0 ×HG
Ĝ.

Above, Ĝ is defined because P0 is an HG-principal bundle. The space Ĝ will be

called the representation space of G and the covering Ĝ → B will be called the
representation covering associated to G.

Assume now that B is a path-connected, locally simply-connected space and fix
a point b0 ∈ B. We shall denote, as usual, by π1(B, b0) the fundamental group of
B. Then the bundle P0 is classified by a morphism

(3) ρ : π1(B, b0) → HG := Aut(G)/Aut0(G),

which will be called the holonomy of the representation covering of G.
For our further reasoning, we shall sometimes need the following finite holonomy

condition.

Definition 2.2. We say that G has representation theoretic finite holonomy if

every σ ∈ Ĝ is contained in a compact-open subset of Ĝ.

In the cases we are interested in, the above condition can be reformulated as
follows [32].

Proposition 2.3. Assume that B is path-connected and locally simply-connected.

Then G has representation theoretic finite holonomy if, and only if π1(B, b0)σ ⊂ Ĝ
is a finite set for any irreducible representation σ of G.

The case when G does not have the representation theoretic finite holonomy
condition (“does not satisfy the finite holonomy condition” for short) leads to some
interesting, but pathological situations [19, 32]. In particular, they lead to the
appearance of bundles with non-trivial Dixmier-Douady invariants [32]. See [44, 40]
for more on Dixmier-Douady invariants.

Example 2.4. For instance, let A1, . . . , Ak be commuting n × n matrices with
integer coefficients and denote also by the same letters the corresponding auto-
morphism of Zn and G := (S1)n. Let B := (S1)k (so both G and B are tori,
possibly of different dimensions.) Then the matrices A1, . . . , Ak give rise to a mor-
phism π1(B) ' Zk → Aut(G). By choosing the matrices A1, . . . , Ak appropriately,
we may arrange that the resulting G family of Lie groups will not have the finite
holonomy condition. We may even have that π1(B) ' Zk → Aut(G) is injective.

From now on we shall assume that G has representation theoretic finite holonomy,
unless explicitly otherwise mentioned.
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2.2. Gauge-equivariant K-theory. Let us now define the gauge equivariant K-
theory groups of a “G-fiber bundle” πY : Y → B. All our definitions are well known
if B is reduced to a point (cf. [4, 23]). First we need to fix the notation.

If fi : Yi → B, i = 1, 2, are two maps, we shall denote by

(4) Y1 ×B Y2 := {(y1, y2) ∈ Y1 × Y2, f1(y1) = f2(y2) }

their fibered product. Let p : G → B be a bundle of locally compact groups and let
πY : Y → B be a continuous map. We shall say that G acts on Y if each group Gb
acts continuously on Yb := π−1(b) and the induced map µ defined by

G ×B Y := {(g, y) ∈ G × Y, p(g) = πY (y)} 3 (g, y) −→ µ(g, y) := gy ∈ Y

is continuous. If G acts on Y , we shall say that Y is a G-space. If, in addition
to that, Y → B is also locally trivial, we shall say that Y is a G-fiber bundle, or,
simply, a G-bundle. This definition is a particular case of the definition of the action
of a differentiable groupoid on a space.

Let πY : Y → B be a G-space, with G a bundle of compact groups over B.
Recall that a vector bundle π̃E : E → Y is a G-equivariant vector bundle (or simply
a G–equivariant vector bundle) if

πE := πY ◦ π̃E : E → B

is a G-space, the projection

π̃E : Eb := π−1
E (b)→ Yb := π−1

Y (b)

is Gb := p−1(b) equivariant, and the induced action Ey → Egy of g ∈ G, between
the corresponding fibers of E → Y , is linear for any y ∈ Yb, g ∈ Gb, and b ∈ B.

To define gauge-equivariantK–theory, we first recall some preliminary definitions
from [32]. Let π̃E : E → Y be a G-equivariant vector bundle and let π̃E′ : E′ → Y ′

be a G′-equivariant vector bundle, for two bundles of compact groups G → B and
G′ → B′. We shall say that (γ, ϕ, η, ψ) : (G′, E′, Y ′, B′) → (G, E, Y,B) is a γ–
equivariant morphism of vector bundles if the following five conditions are satisfied:

(i) γ : G′ → G, ϕ : E′ → E, η : Y ′ → Y, and ψ : B′ → B,
(ii) all the resulting diagrams are commutative,
(iii) ϕ(ge) = γ(g)ϕ(e) for all e ∈ E′b and all g ∈ G′b,,
(iv) γ is a group morphism in each fiber, and
(v) f is a vector bundle morphism.

We shall say that φ : E → E′ is a γ–equivariant morphism of vector bundles if,
by definition, it is part of a morphism (γ, ϕ, η, ψ) : (G′, E′, Y ′, B′) → (G, E, Y,B).
Note that η and ψ are determined by γ and φ.

Let p : G → B be a bundle of compact groups and πY : Y → B be a G–space.
The set of isomorphism classes of G–equivariant vector bundles π̃E : E → Y will
be denoted by EG(Y ). On this set we introduce a monoid operation, denoted “+,”
using the direct sum of vector bundles. This defines a monoid structure on the set
EG(Y ) as in the case when B consists of a point.

Definition 2.5. Let G → B be a bundle of compact groups acting on the G-space
Y → B. Assume Y to be compact. The G-equivariant K-theory group K0

G(Y ) is
defined as the group completion of the monoid EG(Y ).
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The groups K0
G(Y ) have a natural ring structure and the functoriality properties

of the usual equivariant K-theory groups extend to the gauge equivariant K-theory
groups.

A G-equivariant vector bundle E → Y on a G-space Y → B, Y compact, is called
trivial if, by definition, there exists a G-equivariant vector bundle E′ → B such that
E is isomorphic to the pull-back of E′ to Y . Thus E ' Y ×B E′. If G → B has
representation theoretic finite holonomy and Y is a compact G-bundle, then every
G–equivariant vector bundle over Y can be embedded into a trivial G–equivariant
vector bundle. This embedding will necessarily be as a direct sum.

If G → B does not have finite holonomy, it is possible to provide examples of
G–equivariant vector bundles that do not embed into trivial G–equivariant vector
bundles [32]. Also, a related example from [32] shows that the groups K0

G(Y ) can
be fairly small if the holonomy of G is “large.” This is seen by considering k = 2
in Example 2.4 and choosing an injective morphism Zk → Aut(G). In this case
K0
G(Y ) and K0(C∗(G)) are not isomorphic. A very similar construction was used

in [19]. A further observation is that it follows from the definitions that the tensor
product of vector bundles defines a natural ring structure on K0

G(Y ).
The definition of the gauge-equivariant groups extends to non-compact G-spaces

Y as in the case of equivariant K–theory with some small modifications. Let Y be
a G-bundle. We shall denote then by Y + := Y ∪ B the compact space obtained
from Y by the one-point compactification of each fiber Yb of πY : Y → B (recall
that B is compact). The need to consider the space Y + is the main reason for
considering also non longitudinally smooth fibers bundles on B. Then we define

K0
G(Y ) := ker

(
K0
G(Y +) → K0

G(B)
)
.

Also as in the classical case, we let

Kn
G (Y, Y ′) := K0

G((Y \ Y ′)× Rn)

for a G-subbundle Y ′ ⊂ Y . Then [32] we have the following periodicity result

Theorem 2.6. We have natural isomorphisms

Kn
G (Y, Y ′) ∼= Kn−2

G (Y, Y ′).

The extended gauge-equivariant K-theory is then functorial with respect to open
embeddings.

For the purpose of defining the Thom isomorphism, it is convenient to work
with an equivalent definition of gauge-equivariant K-theory in terms of complexes
of vector bundles. This will turn out to be especially useful when studying the
topological index. The details and proofs can be found in [33]. Analogous results
in G-bivariant theory were obtained by [19].

Let X → B be a locally compact, paracompact G–bundle. A finite complex of
G–equivariant vector bundles over X is a complex

(E∗, d) =
(
. . .

di−1−→ Ei
di−→ Ei+1 di+1−→ . . .

)
of G–equivariant vector bundles over X with only finitely many Ei’s different from
zero. Explicitly, the Ei are G–equivariant vector bundles, the di’s are G–equivariant
morphisms, di+1di = 0 for every i, and Ei = 0 for |i| large enough. We shall also use
the notation (E∗, d) =

(
E0, . . . , En, di : Ei|Y → Ei+1|Y

)
, if Ei = 0 for i < 0 and

for i > n. As usual, a morphism of complexes f : (E∗, d)→ (F ∗, δ) is a sequence of
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morphisms fi : Ei → F i such that fi+1di = δi+1fi, for all i. These constructions
yield the category of finite complexes of G–equivariant vector bundles. Isomorphism
in this category will be denoted by (E∗, d) ∼= (F ∗, δ).

Definition 2.7. Let X be a compact G–bundle and Y be a closed G–invariant
subbundle. Denote by CnG (X,Y ) the set of (isomorphism classes of) sequences

(E∗, d) =
(
E0, E1, . . . , En, dk : Ek|Y → Ek+1|Y

)
of G–equivariant vector bundles over X such that (Ek|Y , d) is exact if we let Ej = 0
for j < 0 or j > n.

We endow CnG (X,Y ) with the semigroup structure given by the direct sums of
complexes. An element in CnG (X,Y ) is called elementary if it is isomorphic to a
complex of the form

. . .→ 0→ E
Id−→ E → 0→ . . . .

Two complexes (E∗, d), (F ∗, δ) ∈ CnG (X,Y ) are called equivalent if, and only if,

there exist elementary complexes Q1, . . . , Qk, P 1, . . . , Pm ∈ CnG (X,Y ) such that

E ⊕Q1 ⊕ · · · ⊕Qk ∼= F ⊕ P1 ⊕ · · · ⊕ Pm ,
in which case we write E ' F . The semigroup of equivalence classes of sequences
in CnG (X,Y ) will be denoted by LnG(X,Y ).

We therefore obtain natural semigroup homomorphisms

CnG (X,Y )→ Cn+1
G (X,Y ) and CG(X,Y ) :=

⋃
n

CnG (X,Y ).

The equivalence relation ∼ commutes with embeddings, so the above morphisms
induce morphisms LnG(X,Y )→ Ln+1

G (X,Y ). Let L∞G (X,Y ) := lim
→
LnG(X,Y ).

Definition 2.8. Let X be a compact G–space and Y ⊂ X be a G–invariant subset.
An Euler characteristic χn is a natural transformation of functors χn : LnG(X,Y )→
K0
G(X,Y ), such that, for Y = ∅, it takes the form

χn(E) =

n∑
i=0

(−1)i[Ei] ,

for any sequence E = (E∗, d) ∈ LnG(X,Y ).

Now, let (E, d) be a complex of G–equivariant vector bundles over a G–space X.
A point x ∈ X will be called a point of acyclicity of (E, d) if the restriction of (E, d)
to x, i.e., the sequence of linear spaces

(E, d)x =
(
. . .

(di)x−→ Eix
(di+1)x−→ Ei+1

x

(di+2)x−→ . . .
)

is exact. The support of a finite complex (E, d) is defined as the complement in X
of the set of its points of acyclicity and is denoted supp(E, d). We shall say that
two complexes in LnG(X,Y ) are homotopic if they are isomorphic to the restrictions
to X × {0} and X × {1} of a complex defined over X × I and acyclic over Y × I.

Definition 2.9. Let X be a compact G–bundle and Y ⊂ X be a G–invariant sub-
bundle. We define EnG (X,Y ) to be the semigroup of homotopy classes of complexes
of G–equivariant vector bundles of length n over X such that their restrictions to
Y are acyclic (i.e., exact).
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The restriction of morphisms induces a morphism Φn : EnG (X,Y )→ LnG(X,Y ).
In the case of a locally compact, paracompact G–bundle X, we change the def-

initions of LnG and EnG as follows. Recall that Y ⊂ X is closed. Then, in the
definition of LnG , the morphisms di have to be defined and form an exact sequence
outside some compact G–invariant subset C of X r Y . In the definition of EnG , the
complexes have to be exact outside some compact G–invariant subset of X r Y . In
particular, LnG(X,Y ) = LnG(X+, Y +). The following result was proved in [33].

Theorem 2.10. One has natural isomorphisms

(5) K0
G(X,Y ) ∼= LnG(X,Y ) ∼= EnG (X,Y ), n ≥ 1,

induced by χn and Φn in the case of compact bundles.

3. The Thom isomorphism, Gysin maps, and topological index

We now recall the Thom isomorphism in gauge-equivariant K-theory [33]. We
begin with a discussion of the compact case.

3.1. The compact case. Let us recall products and the Thom morphism in gauge-
equivariant K-theory. Let πX : X → B be a G–space, π̃F : F → X be a complex
G–vector bundle over X, and s : X → F a G–invariant section. We shall denote by
ΛiF the i-th exterior power of F , which is again a complex G–equivariant vector
bundle over X. As in the proof of the Thom isomorphism for ordinary vector
bundles, we define the complex Λ(F, s) of G–equivariant vector bundles over X by

(6) Λ(F, s) := (0→ Λ0F
α0

−→ Λ1F
α1

−→ . . .
αn−1

−→ ΛnF → 0) ,

where αk(vx) = s(x) ∧ vx for vx ∈ ΛkF x and n = dimF . It is immediate to check
that αj+1(x)αj(x) = 0, and hence that (Λ(F, s), α) is indeed a complex.

The Künneth formula shows that the complex Λ(F, s) is acyclic for s(x) 6= 0, and
hence supp(Λ(F, s)) := {x ∈ X|s(x) = 0}. If this set is compact, we can associate
to the complex Λ(F, s) of Equation (6) an element

(7) [Λ(F, s)] ∈ K0
G(X).

Let X be a G–bundle and πF : F → X be a G–equivariant vector bundle over X.
The point of the above construction is that π∗F (F ), the lift of F back to itself, has
a canonical section sF (f) = (f, f) whose support is X. Hence, if X is a compact
space, we obtain an element

(8) λF := [Λ(π∗F (F ), sF )] ∈ K0
G(F ).

Recall that the tensor product of vector bundles defines a natural product ab =
a ⊗ b ∈ K0

G(X) for any a ∈ K0
G(B) and any b ∈ K0

G(X), where πX : X → B is a
compact G–space, as above.

Recall that all our vector bundles are assumed to be complex vector bundles,
except for the ones coming from geometry (tangent bundles, their exterior powers)
and where explicitly mentioned. Due to the importance that F be complex in the
following definition, we shall occasionally repeat this assumption.

Definition 3.1. Let πF : F → X be a (complex) G–equivariant vector bundle.
Assume the G–bundle X → B is compact and let λF ∈ K0

G(F ) be the class defined
in Equation (8), then the mapping

ϕF : K0
G(X)→ K0

G(F ), ϕF (a) = π∗F (a)⊗ λF .
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is called the Thom morphism.

As we shall see below, the definition of the Thom homomorphism extends to the
case when X is not compact, although the Thom element itself is not defined if X
is not compact.

The definition of the Thom homomorphism immediately gives the following
proposition. We shall use the notation of Proposition 3.1.

Proposition 3.2. The Thom morphism ϕF : K0
G(X)→ K0

G(F ) is an isomorphism

of K0
G(B)–modules. It extends to K1 by periodicity.

Let ι : X ↪→ F be the zero section embedding of X into F . Then ι induces a
homomorphism ι∗ : K0

G(F )→ K0
G(X). Then ι∗ϕF (a) = a ·

∑n
i=0(−1)iΛiF.

3.2. The non-compact case. We consider now the case when X is locally com-
pact, but not necessarily compact. The complex Λ(π∗F (F ), sF ) has a non-compact
support, and hence it does not define an element of K0

G(F ). However, if a =

[(E,α)] ∈ K0
G(X) is represented by the complex (E,α) of vector bundles with

compact support, then we can still consider the tensor product complex(
π∗F (E), π∗F (α)

)
⊗ Λ(π∗FF, sF ).

From the Künneth formula for the homology of a tensor product we obtain that
the support of a tensor product complex is the intersection of the supports of the
two complexes. In particular, we obtain

(9) supp{(π∗FE, π∗Fα)⊗ Λ(π∗FF, sF )} ⊂ supp(π∗FE, π
∗
Fα) ∩ supp Λ(π∗FF, sF ) ⊂

⊂ supp(π∗FE, π
∗
Fα) ∩X = supp(E,α).

Thus, the complex (π∗FE , π∗Eα)⊗Λ(π∗FF, sF ) has compact support and hence defines
an element in K0

G(F ). Of course, the reason for this is that the Thom element is
more naturally an element of a bivariant K-theory group.

Proposition 3.3. The homomorphism of K0
G(B)-modules

(10) ϕF : K0
G(X)→ K0

G(F ), ϕF (a) = [(π∗FE , π∗Fα)⊗ Λ(π∗FF, sF )],

defined in Equation (9) extends the Thom morphism to the case of not necessarily
compact X. The Thom morphism ϕF satisfies i∗ϕF (a) = a ·

∑n
i=0(−1)iΛiF .

We are now ready to formulate the Thom isomorphism in the setting of gauge-
equivariant vector bundles.

Theorem 3.4 ([33, Theorem 4.5]). Let X → B be a G-bundle and F → X a com-
plex G–equivariant vector bundle, then ϕF : Ki

G(X)→ Ki
G(F ) is an isomorphism.

We now discuss a few constructions related to the Thom isomorphism, which will
be necessary for the definition of the topological index. The most important one is
the Gysin map. For several of the constructions below, the setting of G-spaces and
even G-bundles is too general, and we shall have to consider longitudinally smooth
G–fiber bundles πX : X → B. The main reason why we need longitudinally smooth
bundles to define the Gysin map is the same as in the definition of the Gysin map
for embeddings of smooth manifolds. We shall denote by TvertX the vertical tangent
bundle to the fibers of X → B. All tangent bundles below will be vertical tangent
bundles.
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Let X and Y be longitudinally smooth G-fiber bundles, i : X → Y be an
equivariant fiberwise embedding, and pT : TvertX → X be the vertical tangent
bundle to X. Assume Y is equipped with a G-invariant Riemannian metric and let
pN : Nvert → X be the fiberwise normal bundle to the image of i

Let us choose a function ε : X → (0,∞) such that the map ρ : Nvert → Nvert,

defined by φ(ξ) = ξ
1+|ξ| is G-equivariant and defines a G-diffeomorphism Φ : Nvert →

W onto a bundle of open tubular neighborhoods W ⊃ X in Y.
Let (N ⊕N)vert := Nvert ⊕Nvert. The embedding i : X → Y can be written as

a composition of two fiberwise embeddings i1 : X → W and i2 : W → Y . Passing
to differentials we obtain

TvertX
di1−→ TvertW

di2−→ TvertY and dΦ : TvertN → TvertW,

where we use the simplified notation TvertN = TvertNvert.

Lemma 3.5. (cf. [23, page 112]) The manifold TvertN can be identified to p∗T (N ⊕
N)vert with the help of a G-equivariant diffeomorphism ψ that makes the following
diagram commutative

p∗T (N ⊕N)vert

��

TvertN
ψ

oo

��
TvertX

pT

&&

Nvert

pN

{{
X,

where pT : TvertX → X is the canonical projection.

With the help of the relation i · (n1, n2) = (−n2, n1), we can equip

p∗T (N ⊕N)vert = p∗T (Nvert)⊕ p∗T (Nvert)

with a structure of a complex manifold. Then we can consider the Thom homo-
morphism

ϕ : K0
G(TvertX)→ K0

G(p∗T (N ⊕N)vert).

Since TvertW is an open G-stable subset of TvertY and di2 : TvertW → TvertY is a
fiberwise embedding, by using the direct image morphism, we obtain a homomor-
phism (di2)∗ : K0

G(TvertW )→ K0
G(TvertY ).

Definition 3.6. Let i : X → Y be an equivariant embedding of G-bundles. The
Gysin homomorphism is the mapping

i! : K0
G(TvertX)→ K0

G(TvertY ), i! = (di2)∗ ◦ (dΦ−1)∗ ◦ ψ∗ ◦ ϕ.
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We thus see that the Gysin homomorphism is obtained by passage to K-groups
in the upper part of the diagram

p∗T (N ⊕N)vert

qT

��

TvertN
ψoo dΦ //

��

TvertW
di2 //

��

TvertY

��

TvertX
pT

&&

Nvert

pN

{{

Φ

%%
X

i1 // W
i2 // Y.

A different choice of a metric or neighborhood W induces a homotopic map and
(by (iii) of Theorem 3.7 below) the same Gysin homomorphism i!. Recall from the
following result from [33], where pT : TvertX → X is the canonical projection.

Theorem 3.7 (Properties of Gysin homomorphism). Let i : X → Y be a G-em-
bedding.

(i) i! is a homomorphism of K0
G(B)-modules.

(ii) Let i : X → Y and j : Y → Z be two fiberwise G-embeddings, then (j ◦ i)! =
j! ◦ i!.

(iii) Let fiberwise embeddings i1 : X → Y and i2 : X → Y be G-homotopic in the
class of embeddings. Then (i1)! = (i2)!.

(iv) Let i : X → Y be a fiberwise G-diffeomorphism and di : TvertX → TvertY be
the differential of i. Then i−1

! = (di)∗.
(v) A fiberwise embedding i : X → Y can be represented as a compositions of

embeddings X in Nvert (as the zero section s0 : X → N ) and Nvert → Y by
i2 ◦ Φ : Nvert → Y. Then i! = (i2 ◦ Φ)!(s0)!.

(vi) Consider the complex bundle p∗T (Nvert ⊗ C) over TvertX. Let us form the
complex Λ(p∗T (Nvert ⊗ C), 0) :

0→ Λ0(p∗T (Nvert ⊗ C))
0−→ . . .

0−→ Λk(p∗T (Nvert ⊗ C))→ 0

with noncompact support. If a ∈ K0
G(TvertX), then the complex

a⊗ Λ(p∗T (Nvert ⊗ C), 0)

has compact support and defines an element of K0
G(TvertX). Then

(di)∗i!(a) = a · Λ(p∗T (Nvert ⊗ C), 0),

where di is the differential of the embedding i.
(vii) i!(x(di)∗y) = i!(x) · y, where x ∈ K0

G(TvertX) and y ∈ K0
G(TvertY ).

We shall need also the following properties of the Gysin map. If X = B, the
trivial longitudinally smooth G-bundle, we shall identify TvertX = B and TvertV =
V ⊗ C for a real bundle V → B.

Theorem 3.8 ([33, Theorem 5.4]). Suppose that V → B is a G-equivariant real
vector bundle and that X = B. Then the mapping

i! : K0
G(B) = K0

G(TvertX)→ K0
G(TvertV) = K0

G(V ⊗ C)

coincides with the Thom homomorphism ϕV⊗C.

Now we recall our “fibered Mostow-Palais theorem” that will be useful in defining
the index. A generalization of this result to proper groupoids can be found in [19].
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Theorem 3.9 ([33, Theorem 6.1]). Let πX : X → B be a compact G-fiber bundle.
Then there exists a real G–equivariant vector bundle V → B and a fiberwise smooth
G-embedding X → V. After averaging one can assume that the action of G on V is
orthogonal.

Let us now turn to the definition of the topological index. Let X → B be
a compact, longitudinally smooth G-bundle. From Theorem 3.9 it follows that
there exists an G–equivariant real vector bundle V → B and a fiberwise smooth
G-equivariant embedding i : X → V. We can assume that V is endowed with an
orthogonal metric and that G preserves this metric. Thus, the Gysin homomorphism

i! : K0
G(TvertX)→ K0

G(TvertV) = K0
G(V ⊗ C)

is defined. Since TvertV = V ⊗C is a complex vector bundle, we have the following
Thom isomorphism

ϕ : K0
G(B)

∼−→ K0
G(TvertV).

Definition 3.10. The topological index is by definition the morphism:

t-indXG : K0
G(TvertX)→ K0

G(B), t-indXG := ϕ−1 ◦ i!.

The topological index satisfies the following properties.

Theorem 3.11 ([33, Theorem 6.3]). Let X → B be a longitudinally smooth bundle
and

t-indXG : K0
G(TvertX) → K0

G(B)

be its associated topological index. Then

(i) t-indXG does not depend on the choice of the G–equivariant vector bundle V
and on the G-equivariant embedding i : X → V.

(ii) t-indXG is a K0
G(B)-homomorphism.

(iii) If X = B, then the map

t-indXG : K0
G(B) = K0

G(TvertX)→ K0
G(B)

coincides with IdK0
G(B).

(iv) Suppose X and Y are compact longitudinally smooth G-bundles, i : X → Y
is a fiberwise G-embedding. Then the diagram

K0
G(TvertX)

i! //

t-indX
G &&

K0
G(TvertY )

t-indY
Gxx

K0
G(B).

commutes.

4. An axiomatic approach

Condition 4.1. From now on, we shall assume some additional smoothness prop-
erties of the spaces and actions involved. Namely, we assume B to be a smooth
(compact) manifold and X → B to be a smooth bundle. We also assume that all
vector bundles involved are smooth. Let us trivialize over an open subset U ⊂ B,
so that X|U = X0 × U and G|U = G × U ⊂ G × Rn (we consider U as an open
neighborhood of zero in Rn). We then assume that the induced action of G×U on
X0 is smooth.
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Below, by a morphism of bundles of groups we shall mean a morphism of longitu-
dinally smooth bundles that is a fiberwise homomorphism of groups. The morphism
ψ∗ is naturally induced by the group-bundle morphism ψ : H → G. We now in-
troduce the important concept of an “index function ”, extending the definition in
[5].

Definition 4.2. An index function is a family of K0
G(B)-homomorphisms {indXG }

indXG : K0
G(TvertX)→ K0

G(B),

where G runs over the set of bundles of compact Lie groups and X runs over compact
longitudinally smooth G-bundles. This family is required to satisfy the following
two conditions:

(1) If f : X → Y is a G-diffeomorphism, then the diagram

K0
G(TvertX)

(df−1)∗ //

indX
G &&

K0
G(TvertY )

indY
Gxx

K0
G(B)

is commutative.
(2) If ψ : H → G is a morphism of bundles of groups over B, then the diagram

K0
G(TvertX)

ψ∗ //

indX
G
��

KH(TvertX)

indX
H

��
K0
G(B)

ψ∗ // K0
H(B)

is commutative.

We have the following.

Proposition 4.3. The topological index t-indXG is an index function.

Proof. Indeed, we need to check the two conditions defining an index function. To
prove (1), let us suppose that we have a map i : Y ↪→ V and let j := i ◦ f : X ↪→ V.
By (ii) of Theorem 3.7 (on the properties of the Gysin map), the following diagram
is commutative

K0
G(TvertY )

i!

''
K0
G(TvertV)

ϕ−1

// K0
G(B).

K0
G(TvertX)

f!

OO

j!

77

By (iv) of the same theorem, we have that, in our case, f! = (df−1)∗ and then we
complete the proof of (1) by using this definition of t-ind.

Property (2) immediately follows from the definitions if on V we consider the
action of H induced by ψ. �
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Let us consider the following two axioms for an index function {indXG } family of

maps indXG : K0
G(TvertX)→ K0

G(B), defined for all compact, longitudinally smooth
G-bundles X → B, and satisfying the two conditions above.

Axiom A1. If X = B, then indXG : K0
G(TvertX) → K0

G(B) coincides with
IdK0

G(B).

Axiom A2. Suppose i : X → Y is a fiberwise G-embedding. Then the diagram

K0
G(TvertX)

i! //

indX
G &&

K0
G(TvertY )

indY
Gxx

K0
G(B)

is commutative.

We have the following corollary of Theorem 3.11.

Corollary 4.4. The topological index t-indXG satisfies Axioms A1 and A2.

We can now prove the following theorem.

Theorem 4.5. Let indXG be an index function satisfying axioms A1 and A2. Then

indXG = t-indXG .

Proof. Consider a G-embedding i : X → V of a longitudinally smooth G-bundle
X in a real vector G-bundle V → B. The fiberwise one-point compactification V+

(i. e., a sphere bundle) is a G-bundle with the canonical G-inclusion ε+ : V → V+.
Put i+ := ε+ ◦ i : X → V+. If P = B ⊂ V and j : P → V is the inclusion, then we
obtain the diagram

K0
G(TvertX)

i!

uu

indX
G

))
i+!
��

K0
G(TvertV)

(ε+)! // K0
G(TvertV+)

indV
+

G // K0
G(B)

K0
G(TvertP ) = K0

G(B),

j!

ii

j+!

OO

indP
G

55

where j+ = ε+ ◦ j : P → V+. By (ii) of Theorem 3.7 (respectively, by axiom A2),

the left (respectively, right) triangles commute. By Axiom A1, indPG is the identity
mapping. Since j! : K0

G(B) → K0
G(TV) = K0

G(V ⊗ C) coincides with the Thom
homomorphism, one has

indXG = indV
+

G ◦i+! = indV
+

G ◦(ε+)! ◦ i! = indV
+

G ◦(j+)! ◦ j−1
! ◦ i! =

= indPG ◦j−1
! ◦ i! = j−1

! ◦ i! = t-indXG .

The theorem is proved. �

We would like to replace axiom A2 by new axioms. We start from the following
formulation.

Axiom B1 (excision). Let U be a (non-compact) longitudinally smooth G-
bundle and

j1 : U → X ′, j2 : U → X ′′
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be fiberwise G-embeddings of U onto open subsets of the compact longitudinally
smooth G-bundles X ′ and X ′′. Then the diagram

K0
G(TvertX

′)

indX′
G

&&
K0
G(TvertU)

(dj1)∗
77

(dj2)∗ ''

K0
G(B)

K0
G(TvertX

′′)
indX′′
G

88

is commutative.

Suppose at least one of the embeddings j1 or j2 is defined. Then by Axiom B1,
the index map

indUG : K0
G(TvertU)→ K0

G(B)

is well defined.
Let Y be a smooth, compact manifold andH be a compact Lie group acting on Y .

Let D be an elliptic (pseudo)differential operator acting between suitable sections of
two vector bundles on Y . Then the kernel and cokernel of D are finite dimensional,
complex representations of H, and thus define elements in R(H), the representation

ring of H. We shall denote by C-indYH(D) := [ker(D)] − [coker(D)] ∈ R(H) the
classical H-equivariant index of D. We thus obtain a well defined morphism

C-indYH : K0
H(TY )→ R(H).

We have the following statement (see [5]). Suppose j : ∗ → Rn is the embedding of
the origin, hence j! : R(O(n))→ K0

O(n)(TR
n). Then

(11) C-indRn

O(n) j!(1) = 1.

Let π : P → X be a compact longitudinally smooth principal bundle for a
compact bundle of Lie groups H → B, i.e. we have a (right) free action of H on P
and X = P/H. Suppose we have a left action of the bundle G → B on P and these
two actions commute. Let F be a compact longitudinally smooth left (G × H)-
bundle, where we write G ×H instead of G ×B H for a more compact notation. We
can form the associated bundle π1 : Y = P ×H F → X with the natural action
of G. Consider the tangent bundle along the fibers of π1 (which is automatically
“vertical”). Let us denote it by TFY . Then TFY is a G-invariant real subbundle
of TYvert and TFY = P ×H TFvert. Using the metric it is possible to decompose
TYvert into a direct sum TvertY = TFY ⊕ π∗1(TvertX). Therefore the multiplication

K0
G(TvertX)⊗K0

G(TFY )
↓

K0
G(π∗1TvertX)⊗K0

G(TFY ) → K0
G(TvertY )

is defined. There exists the map

K0
G×H(TvertF )→ K0

G×H(P × TvertF ) ∼= K0
G(P ×H TvertF ) = K0

G(TFY ).

Hence we can define the map

γ : K0
G(TvertX)⊗K0

G×H(TvertF )→ K0
G(TvertY ).

Let us denote γ(a⊗ b) by a · b.
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If V → B is a complex vector (G × H)-bundle, then P ×H V is a complex
vector G-bundle over X. We obtain the following ring homomorphism being a
homomorphism of K0

G(B)-modules:

µP : K0
G×H(B)→ K0

G(X), [V] 7→ [P ×H V].

Since K0
G(TvertX) has a K0

G(X)-module structure, we can formulate the following
axiom.

Axiom B2. If a ∈ K0
G(TvertX), b ∈ K0

G×H(TvertF ), then

indYG (a · b) = indXG (a · µP (indFG×H(b))),

i. e., the diagram

K0
G(TvertX)⊗K0

G×H(TvertF ) −−−−

γ

��

1⊗ indF
G×H // K0

G(TvertX)⊗K0
G×H(B)

1⊗µP

��
K0
G(TvertY )

indY
G

��

K0
G(TvertX)⊗K0

G(X)

��
K0
G(B) K0

G(TvertX)
indX
Goo

is commutative
The following two statements were briefly mentioned in [33], we remind them for

the convenience of the reader.

Theorem 4.6. Let π : P → X be a principal right H-bundle with a left action of
G commuting with H. Suppose F is a longitudinally smooth (G × H)-bundle. Let
us denote by Y the space P ×H F . Let j : X ′ → X and k : F ′ → F be fiberwise G-
and (G × H)-embeddings, respectively. Let π′ : P ′ → X ′ be the principal H-bundle
induced by j on X ′. Assume that Y ′ := P ′ ×H F ′. The embeddings j and k induce
G-embedding j ∗ k : Y ′ → Y . Then the diagram

K0
G(TvertX)⊗K0

G(B) K
0
G×H(TvertF )

γ // K0
G(TvertY )

K0
G(TvertX

′)⊗K0
G(B) K

0
G×H(TvertF

′)
γ //

j!⊗k!

OO

K0
G(TvertY

′)

(j∗k)!

OO

is commutative.

Let us remark that in the statement of this theorem there is no compactness
assumption on X,X ′, F, and F ′, since there is no compactness assumption in the
definition of the Gysin homomorphism. This is unlike in the definition of the
topological index where we start with a compact G-bundle X → B.

Proof. Let us use the definition of γ:

K0
G(TvertX)⊗K0

G×H(TvertF ) //

1

K0
G(TvertX)⊗K0

G×H(P × TvertF )
∼= //

2

K0
G(TvertX

′)⊗K0
G×H(TvertF

′) //

j!⊗k!

OO

K0
G(TvertX

′)⊗K0
G×H(P ′ × TvertF

′)

ε

OO

∼= //
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∼= K0
G(TvertX)⊗K0

G(P ×H TvertF )→

3

K0
G(π∗1TvertX)⊗K0

G(P ×H TvertF )→

∼= K0
G(TX ′)⊗K0

G(P ′ ×H TvertF
′)→

β

OO

K0
G((π′1)∗TvertX

′)⊗K0
G(P ′ ×H TvertF

′)→

α

OO

(12)

→ K0
G((π∗1TvertX)× (P ×H TvertF ))→

4
→ K0

G((π′1)∗TvertX
′ × (P ′ ×H TvertF

′))→

→ K0
G(π∗1TvertX ⊕ (P ×H TvertF )) = K0

G(TvertY )

4 ↑ (j ∗ k)!

→ K0
G((π′1)∗TvertX

′ ⊕ (P ′ ×H TvertF
′)) = K0

G(TY ′vert),

where the projections π1 : Y = P ×H F → X and π′1 : Y ′ = P ×H F ′ → X ′ are
defined as above. Here we use the isomorphism K0

G×H(P ×W ) ∼= K0
G(P ×HW ) for

a free H-bundle P (see [33, Theorem 2.6]). Let us remind the following diagram
that was used for the definition of the Gysin homomorphism of an embedding
j : X ′ → X:

p∗T (NX′ ⊕NX′)vert

qX
′

T

��

TvertNX′
ψoo dΦX′ //

��

TvertWX′
dj2 //

��

TvertX

��

TvertX
′

pT

''

NX′,vert
pN

X′,vert

{{

ΦX′

&&
X ′

j1 // WX′
j2 // X.

From the similar diagrams for k! and (j ∗k)! and the explicit form of these maps, it

follows that the square 4 in (12) is commutative if, and only if, α has the following
form:

α(σ ⊗ ρ) = (π∗1)
{

(dj2)∗ (dΦ−1
X′ )
∗ ψ∗X′

}
◦ ϕS(σ)⊗

⊗(π∗j2 ×H dk2)∗

(
(π∗ΦX′ ×H dΦF ′)

−1
)∗

(1×H ψF ′)∗ ϕR(ρ),

where S and T are bundles of the form

π∗1

(
(pX

′

T )∗{NX′ ⊕NX′}
)

π∗NX′ ×H (pF
′

T )∗ (NF ′ ⊕NF ′)
S : ↓ (π′1)∗qX

′

T R : ↓ (π′)∗(pNX′ )×H q
F ′

T

(π′1)∗ (TvertX
′), π∗X ′ ×H TvertF

′ = P ′ ×H TvertF
′.

Hence the square 3 in (12) is commutative if, and only if, the homomorphism β
has the form

β(τ ⊗ ρ) = j!(τ)⊗
⊗(π∗j2 ×H dk2)∗

(
(π∗ΦX′ ×H dΦF ′)

−1
)∗

(1×H ψF ′)∗ ϕR(ρ),

τ ∈ K0
G(TX ′), ρ ∈ K0

G(P ′ ×H TF ′).
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In turn, the square 2 in (12) is commutative if, and only if, the homomorphism ε
has the form

ε(τ ⊗ δ) = j!(τ)⊗
⊗(π∗j2 ×H dk2)∗

(
(π∗ΦX′ ×H dΦF ′)

−1
)∗

(1×H ψF ′)∗ ϕR̃C (δ),

τ ∈ K0
G(TX ′), δ ∈ K0

G×H(P ′ × TF ′),

where R̃ is the following bundle:

π∗NX′ × (pF
′

T )∗ (NF ′ ⊕NF ′)
R̃ : ↓ (π′)∗(pN )× qF ′T

P ′ × TF ′.

Suppose δ = [C]⊗̂ω, where [C] ∈ K0
G×H(P ′), C is the one-dimensional trivial bundle

and ω ∈ K0
G×H(TF ′). Then

ε(τ ⊗ δ) = j!(τ)⊗
{
π∗(j2)∗(Φ

−1
X′ )
∗[C]⊗̂k!(ω)

}
=

= j!(τ)⊗
{

[C]⊗̂k!(ω)
}
.

Since the map K0
G×H(TF )→ K0

G×H(P ×TF ) (as well as the lower line in (12)) has

the form ω 7→ [C]⊗̂ω, we have proved the commutativity of 1 in (12). �

From this theorem we obtain the following corollary.

Corollary 4.7. Let M be a compact smooth H-manifold, let H = B ×H, and let
P be a principal longitudinally smooth H-bundle over X carrying also an action of
G commuting with the action of H. Also, let X → B be a compact longitudinally
smooth G-bundle. Let Y := P ×H M → X be associated longitudinally smooth
G-bundle. Taking F = B × M , we define TMY := TFY . Then TMY is a G-
invariant real subbundle of TvertY and TMY = P ×H TM . Let j : X ′ → X be
a fiberwise G–equivariant embedding and let k : M ′ → M be an H-embedding.
Denote by π′ : P ′ → X ′ the principal H-bundle induced by j on X ′ and assume
that Y ′ := P ′×HM ′. The embeddings j and k induce G-embedding j ∗ k : Y ′ → Y .
Then the diagram

K0
G(TvertX)⊗K0

H(TM)
γ // K0

G(TvertY )

K0
G(TvertX

′)⊗K0
H(TM ′)

γ //

j!⊗k!

OO

K0
G(TvertY

′)

(j∗k)!

OO

is commutative.

Let us assume that in Axiom B2 the class b ∈ K0
G×H(B) is actually in K0

G(B),
namely

indFG×H(b) ∈ K0
G(B) ⊂ K0

G×H(B).

To be precise, the map K0
G(B) → K0

G×H(B) is induced at the level of semigroups
by sending a G-vector bundle E with an action g : e 7→ ge (e ∈ Eb, g ∈ Gb) to
the same bundle with the action (g, h) : e 7→ ge (h ∈ Hb). The existence of a left
inverse map (restriction of action) implies injectivity.

We now consider two following weak forms of Axiom B2:
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Axiom B2′. If indFG×H(b) ∈ K0
G(B) ⊂ K0

G×H(B), then

indYG (a · b) = indXG (a) · indFG×H(b).

Assume in B2 X = P, H = B. We can then formulate the following axiom.

Axiom B2′′. If X and F are longitudinally smooth G-bundles, then

indX×FG (a · b) = indXG (a) · indFG (b).

Since µP and indXG are K0
G(B)-homomorphisms, then Axioms B2′ and B2′′ are

consequences of Axiom B2.

Theorem 4.8. Suppose that an index function indXG satisfies A1, B1, B2′, then

indXG = t-indXG .

Proof. First we extend the axiom B2′ to the non-compact case under some restric-
tions in the following way. Suppose that, in the axiom B2′, F is equal to an open

(G×H)-subbundle of the compact longitudinally smooth bundle F̃ . Let j : F ↪→ F̃ .
Then

indYG (a · b) = indỸG (dJ∗)(a · b) = indỸG (a · ((dj)∗b)) =

= indXG (a) · indF̃G×H((dj)∗b) = indXG (a) · indFG×H(b),(13)

where J is the embedding

Y = P ×H F
Id×Hj
↪→ P ×H F̃ = Ỹ .

Indeed, let us consider the diagram

K0
G(TvertX)⊗K0

G×H(TvertF ) //

1⊗(dj)∗
��

K0
G(TvertX)⊗K0

G×H(P × TvertF ) ∼=

1⊗(Id×dj)∗
��

K0
G(TvertX)⊗K0

G×H(TvertF̃ ) // K0
G(TvertX)⊗K0

G×H(P × TvertF̃ ) ∼=

∼= K0
G(TvertX)⊗K0

G(P ×H TvertF )

1⊗(Id×Hdj)∗
��

K0
G(TvertX)⊗K0

G(TFY ) //

1⊗α∗
��

∼= K0
G(TvertX)⊗K0

G(P ×H TvertF̃ ) K0
G(TvertX)⊗K0

G(TF̃Y ) //

// K0
G(π∗1TvertX)⊗K0

G(TFY ) //

1⊗α∗
��

K0
G(TvertY )

(dJ)∗
��

// K0
G(π∗1TvertX)⊗K0

G(TF̃Y ) // K0
G(TvertỸ ).

This diagram is commutative. In fact, we have

TvertY

dJ
��

TFY ⊕ π∗1(TvertX) α 0
0 1


��

TvertỸ TF̃Y ⊕ π
∗
1(TvertX),
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and α = Id×Hdj under the identification TFY = P ×H TF . We have proved the
second equality in (13), the remaining are obvious.

Let us now take, in particular,

F = Rn×B, F̃ = (Rn)+×B = Sn×B, H = O(n)×B, b = φ!(1), 1 = [C],

where φ : ~0 × B ↪→ Rn × B is the natural embedding. Then P is a principal
O(n)×B-bundle over X, the action of the bundle of groups G on P commutes with
the action of O(n) × B. Suppose G acts on Rn × B in a trivial way. We form the
associated real G-bundle

Y := P ×O(n) Rn = P ×O(n)×B (Rn ×B)→ X.

Let us denote by

i : X → Y, i = 1X ∗ φ,
the embedding of X as of the zero section. Assume that in Theorem 4.6 we have
F = Rn ×B, X ′ = X, F ′ = B. Then we obtain the commutative diagram

K0
G(TvertX)⊗K0

G(B) K
0
G×(O(n)×B)(Tvert(Rn ×B))

γ // K0
G(TvertY )

K0
G(TvertX)⊗K0

G(B) K
0
G×(O(n)×B)(B)

γ //

(1X)!⊗φ!

OO

K0
G(TvertX).

(1X∗φ)!= i!

OO

Since γ (a⊗ 1) = a on the bottom line, we have

i!(a) = γ
(

((1X)! ⊗ φ!) (a⊗ 1)
)

= γ (a⊗ φ!(1)) = a · φ!(1) = a · b.

By Equation (11),

indRn

G×O(n) φ!(1) = 1,

where G acts on Rn ×B in a trivial way. Now by equality in Equation (13),

indXG (a) = indXG (a · 1) = indXG (a · µP (1)) =

= indXG (a · µP (indRn

G×(O(n)×B)(b))) = indYG (a · b) = indYG i!(a).(14)

Let k : X → Z be a fiberwise embedding of X in a compact longitudinally
smooth G-bundle Z with the fiberwise normal bundle N and a fiberwise G-invariant
tubular neighborhood Φ : N →W . By the definition of the Gysin homomorphism,
k! = (di2 ◦ dΦ)∗i!, where di2 : TvertW → TvertZ is an embedding of vertical tangent
bundle and i : X → N is the fiberwise embedding of X as of the zero section in the
normal bundle. In the diagram

K0
G(TvertX)

i! //

indX
G ''

K0
G(TvertN)

(di2◦dΦ)∗//

indN
G

��

K0
G(TvertZ)

indZ
Gvv

K0
G(B)

the left triangle is commutative by (14). Indeed, we can take P equal to the
principal O(n)-bundle of normal vertical orthonormal frames and Y = N . The
map i2 · Φ is an open embedding. Hence by B1, the right triangle is commutative
too. Therefore, indXG = indZG ◦k!. Hence A2 is satisfied. To complete the proof it
remains to apply Theorem 4.5. �
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Let us remark that we have used only a very particular case of Axiom B2′,
namely the following one:

Axiom B20. Let P be the principal O(n) × B-bundle of normal (vertical)
orthonormal frames of the embedding k : X → Z, i.e. the bundle of frames of N .
Suppose G acts on Rn ×B in a trivial way. The associated real G-bundle

Y := P ×O(n) Rn = P ×O(n)×B (Rn ×B)→ X

is just N . Let

i : X → Y, i = 1X ∗ φ,
be the embedding of X as of the zero section. Then the diagram

K0
G(TvertX)

i! //

indX
G &&

K0
G(TvertY )

indY
Gxx

K0
G(B)

commutes.

In the formulation of the next theorem we require the excision axiom, hence
one can use instead of B20 its reformulation for the fiber-wise compactification,
demanding commutativity of the following diagram:

K0
G(TvertX)

i! //

indX
G &&

K0
G(TvertY

•)

indY •
Gxx

K0
G(B)

,

where Y • = P ×O(n)×B (Sn ×B). So we have:

Theorem 4.9. Suppose that an index function indXG satisfies A1, B1, B20, then

indXG = t-indXG .

5. Proof of the index theorem

First of all, let us notice that the analytical index is an index function. Indeed, it
has the property (1) of Definition 4.2, since a G-diffeomorphism takes KER to KER
and COK to COK. The property (2) of 4.2 for the analytical index means that, in
the presence of ψ, the bundles KER and COK can be considered as G-bundles and
H-bundles in a coherent way. Thus, the analytic index function a-ind also satisfies
the property (2) of the definition of an index function.

Lemma 5.1. The analytical index a-ind satisfies the axiom A1.

Proof. An elliptic family of operators over the trivial bundle X = B → B is a
G-morphism P : V → W of equivariant vector bundles and [σ(P )] = [V] − [W] =
a-indP ∈ K0

G(B). �

Before going further, let us note that, if a Fredholm G-family is fiberwise sur-
jective, then its kernel forms a G-vector bundle over B, i.e. KER = ker and
COK = coker = 0, see [32] for the definitions of KER and COK.
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Lemma 5.2. Let H0
b and H1

b be G-bundles of Hilbert spaces together with an equi-
variant Fredholm family Db : H0

b → H1
b , b ∈ B. Let L→ B be a finite-dimensional

G-bundle and T : L→ H a morphism of G-bundles such that Db+Tb : Hb⊕Lb → Hb

is surjective for all b (that is, B + T is fiberwise surjective). Then

a-ind(D) = ker(D + T )− [L].

Proof. Denote by Q the family D+T considered as a family of fiberwise maps from
H ⊕ L → H ⊕ L. Then Q is a fiberwise compact perturbation of D ⊕ Id. Hence
a-ind(Q) = a-ind(D). Also a-ind(Q) = ker(D + T )− [L]. �

Also we need the following statement.

Lemma 5.3. Let (Db)b∈B be an elliptic family with an invariant principal symbol
family (σb)b∈B. Then the fiberwise average AvGD is an invariant elliptic family
with the same principal symbol.

Proof. All facts are known from single operator theory, except for the continuity of
AvGD. However, since this is a local question, we can assume that X|U = X0 ×U ,
G|U = G×U , Db depends continuously on b ∈ U ⊂ B, and the action of G×U on
X0 is smooth (see Condition 4.1). Then, by [5, 5.5], the action of G is continuous
on families of operators, and hence we can integrate over G to project onto the
fixed-point set. �

Theorem 5.4. The index a-ind satisfies the axiom B1.

Proof. We shall use the notation introduced in the statement of Axiom B1. Thus,
suppose that a ∈ K0

G(TvertU), that

j1 : U //

""

X ′

~~
B

and j2 : U //

""

X ′′

~~
B

are fiberwise G-embeddings, and that π : TvertU → U is the natural projection. Let
the sequence

0→ π∗E
ρ−→ π∗F → 0

of G-bundles be exact for x ∈ U \ L, |ξ| > c (point and (co)vector), where E → U
and F → U are longitudinally smooth G-bundles and L is some G-invariant compact
subbundle of U . Suppose

α : E|U\L ∼= (U \ L)×B N, β : F |U\L ∼= (U \ L)×B N,
and ρ = (π∗β)−1 (π∗α),

where N → B is a vector G-bundle. More precisely, one can assume that, for a G-
invariant metric, L is a bundle of open balls of continuously changing radius over B.
Take a representative of the homotopy class of ρ being a symbol of order zero. Then
it is possible to assume the corresponding symbols σ1 ∈ Smbl0(X ′, E1, F1), σ2 ∈
Smbl0(X ′′, E2, F2) (we use the notation Smblk, Intk and CZk for family symbols,
Fourier integral operators and Calderon-Zygmund operators (cf. [37]) ) be as fol-
lows. Suppose

E1 = E ∪j1α (X ′ \ j1L)×B N, E2 = E ∪j2α (X ′ \ j2L)×B N.
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Let the similar equalities hold for F1 and F2, and σ1 = ρ ∪j1 Id, σ2 = ρ ∪j2 Id . Let

us pass to the construction of families of operators D̃1 and D̃2 that represent these
families of symbols in Int0(X ′;E1, F1) and Int0(X ′′;E2, F2), respectively. Let us
take a trivializing cover, a partition of unity and smoothing functions on U . Pull
them back on j1U and j2U , and then complete these collections of open sets (to
obtain covers) by some open sets not intersecting with j1L and j2L, respectively.
By our symbols and with the help of this data, let us construct in the usual way
(non-invariant) families of operators D1, D2 ∈ CZ0, and then (keeping in mind
Lemma 5.3) we let

D̃1 = AvGD1 ∈ Int0(X ′), D̃2 = AvGD2 ∈ Int0(X ′′).

It is necessary to verify the equality

a-indD̃1 = a-indD̃2 ∈ K0
G(B).

Since L is invariant, the averaging over this set is the same for both operators. Since
the operators have the order zero, we compute the index in continuous families of
L2 (square integrable) spaces. For these spaces

L2(X ′, E1) ∼= L2(j1L,E1|j1L)⊕ L2(X ′ \ j1L,E1|X′\j1L)

and
D̃1 : L2(X ′ \ j1L,E1|X′\j1L) ∼= L2(X ′ \ j1L,E1|X′\j1L)

(this is the identity operator). These decompositions are continuous (in L2-norms)

in b ∈ B. Similar relations hold for D̃2. On the second summand of the decompo-
sition of L2, we have the commutative diagram

Γ(E1|j1L)
D̃1 //

(j2j
−1
1 ) ∼=
��

Γ(F1|j1L)

(j2j
−1
1 )∼=

��
Γ(E2|j2L)

D̃2 // Γ(F2|j2L).

This diagram of G-maps demonstrates the coincidence of indices, because KER and

COK for D̃1 can serve as KER and COK for D̃2. �

See also [8, 10].

Theorem 5.5. The analytical index a-ind satisfies the axiom B20.

Proof. Denote by B an O(n)-equivariant elliptic operator of order 1 over Sn, B :
Γ∞(Sn, F 0)→ Γ∞(Sn, F 1), such that

(i) its symbol σ(B) : π∗SF
0 → π∗SF

1 represents the class φ!(1), where we denote
by φ the injection 0 ↪→ Rn as well as its lift to B and πS : TSn → Sn is the
natural projection;

(ii) kerB∗ = 0 and kerB is a one dimensional trivial O(n)-module.

The existence of such B̃ follows e.g. from [6, Lemma 4.1]. Let an a ∈ K0
G(TvertX)

be presented by a symbol s : π∗XE
0 → π∗XE

1 of order one. As it was explained in
the proof of Theorem 4.8, we have i!(a) = a · φ!(1). Thus, by (i) above, i!(a) has a
representative

S =

(
s⊗B Id − Id⊗Bσ(B)∗

Id⊗Bσ(B) s∗ ⊗B Id

)
: π∗Y •((E

0 ⊗B F 0)⊕ (E1 ⊗B F 1))(15)

→ π∗Y •((E
1 ⊗B F 0)⊕ (E0 ⊗B F 1))
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because γ or · is locally the tensor multiplication of 2-complexes reduced over B.

Now we need to verify that a-indXG (s) = a-indY
•

G (S).
Starting from a family A with the symbol s and operator B, using local lifts and

averaging, we construct in a standard way (see, e.g. [6] and [48, p. 173]) an elliptic
family

D =

(
Ã −B̃∗
B̃ Ã∗

)
with the symbol S. The main difference with the standard argument is the new
way of averaging over G. It is explained in Lemma 5.3 that the averaging over
G respects continuity of families, the other properties are known from the single
operator equivariant theory [5].

It remains to verify that a-ind(A) = a-ind(D). Indeed, let h0 ∈ Γ∞(Sn, F 0) be a
generator of the one dimensional O(n)-module kerB. Define for any G-equivariant

bundle Ẽ over X the map

f : Hs(X, Ẽ)→ Hs−1(Y •, Ẽ ⊗ F 0), f(u) = u⊗ h0.

Since h0 is O(n)-fixed, f is a well-defined injective G-vector bundle homomorphism.

Let L be a finite-dimensional G-vector bundle over B and T : L→ Hs−1(X, Ẽ1) a
G-vector bundle homomorphism such that

Qb : Hs(X, Ẽ0)b ⊕ Lb → Hs−1(X, Ẽ1)b, Qb(u, v) = Ab(u) + T (v),

is surjective for any b. For L one can take (a bundle representing) COK(A) and for
T one can take the natural inclusion.

Consider a map

Rb : Hs(Y •, Ẽ0 ⊗B F 0 ⊕ Ẽ1 ⊗B F 1)b ⊕ Lb → Hs−1(Y •, Ẽ1 ⊗B F 0 ⊕ Ẽ0 ⊗B F 1)b

defined by the formula

Rb(u, v) = Db(u) + (f ◦ T (v)⊕ 0).

A standard argument (see e.g. [48, pp. 174–175]) shows that Rb is surjective for
any b and kerR = kerQ. Thus, by Lemma 5.2

a-ind(A) = ker(Q)− [L] = ker(R)− [L] = a-ind(D)

and we are done. �

We can now prove the following topological index theorem for gauge-equivariant
operators.

Theorem 5.6. The index functions a-ind and t-ind coincide. More precisely, sup-
pose that G satisfies the finite holonomy condition, that Y → B is a longitudinally
smooth bundle, and that P is a gauge-equivariant family of pseudodifferential oper-
ators on Y . Then

a-ind(P ) = t-ind(P ) .

Proof. From the results of this section (Lemma 5.1 and Theorems 5.4 and 5.5), it
follows that we can apply Theorem 4.9 to conclude that a-ind = t-ind. �

We conclude with a brief discussion of the homology of the groupoid algebras,
in view of its connections to index theory [12].
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Remark 5.7. Let us denote for any Lie group G by I(G) := C∞(G)G, the space of
smooth class functions on G. We shall use this only for compact G. Let G → B
be a longitudinally smooth bundle of Lie groups. Then I(Gb), b ∈ B, is a naturally
flat bundle over B. It follows then from the Künneth formula in Hochschild and
cyclic homology and using also localization with respect to the maximal ideals of
C∞(B) that the Hochschild homology groups of C∞(G) are isomorphic to the space
of forms on B with values in the sheaf defined by I(Gb). Similarly, the periodic
cyclic homology groups of C∞(G) are isomorphic to the cohomology groups of B
with coefficients in the the sheaf I(Gb). It would be interesting to establish a
cohomological index theorem in cyclic homology, but this seems hard even in the
case of a single operator without any group action, in spite of the many recent
advances on the subject. See [38] and the references therein.

As mentioned in the Introduction, operators invariant with respect to groups
appear in analysis on singular spaces, see [1, 2, 3, 9, 29, 36, 51], for example. It
would be quite important to extend the results of this paper to operators invariant
with respect to bundles of solvable Lie groups [15, 25, 30, 34, 49, 50].
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