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Abstract. Denote m2 the infinite dimensional N-graded Lie algebra
defined by the basis ei for i ≥ 1 and by relations [e1, ei] = ei+1 for all
i ≥ 2, [e2, ej ] = ej+2 for all j ≥ 3. We compute in this article the
bracket structure on H1(m2; m2), H2(m2; m2) and in relation to this, we
establish that there are only finitely many true deformations of m2 in
each weight by constructing them explicitely. It turns out that in weight
0 one gets only trivial and one formal non-converging deformations.

Introduction

Recall the classification of infinite dimensional N-graded Lie algebras
g =

⊕∞
i=1 gi with one-dimensional homogeneous components gi and two

generators over a field of characteristic zero. A. Fialowski showed in [1] that
any Lie algebra of this type must be isomorphic to m0, m2 or L1. We call
these Lie algebras infinite dimensional filiform Lie algebras in analogy with
the finite dimensional case where the name was coined by M. Vergne in [9].
Here m0 is given by generators ei, i ≥ 1, and relations [e1, ei] = ei+1 for all
i ≥ 2, m2 with the same generators by relations [e1, ei] = ei+1 for all i ≥ 2,
[e2, ej ] = ej+2 for all j ≥ 3, and L1 with the same generators is given by the
relations [ei, ej ] = (j − i)ei+j for all i, j ≥ 1. L1 appears as the positive part
of the Witt algebra given by generators ei for i ∈ Z with the same relations
[ei, ej ] = (j − i)ei+j for all i, j ∈ Z. The result was also obtained later by
Shalev and Zelmanov in [SZ].

The cohomology with trivial coefficients of the Lie algebra L1 was studied
in [7], the adjoint cohomology in degrees 1, 2 and 3 has been computed in [2]
and also all of its non equivalent deformations were given. For the Lie algebra
m0, the cohomology with trivial coefficients has been studied in [4], and the
adjoint cohomology in degrees 1 and 2 in [5]. The adjoint cohomology in
degrees 1 and 2 of m2 is the object of the present article. The cohomology
of m0 and m2 rose interest only recently, and the reason is probably that -
as happens usually for solvable Lie algebras - the cohomology is huge and
therefore meaningless. Our point of view is that there still remain interesting
features.

Indeed, it is true that the first and second adjoint cohomology of m2 are
infinite dimensional, but they are much less impressive than the analoguous
results for m0. We believe that this comes from the much more restrictive
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bracket structure for m2. Actually, the bracket structure is so rigid that
there is no infinite dimensional filiform Lie algebra “between” m2 and L1.

The space H1(m2;m2) becomes already interesting when we split it up
into homogeneous components H1

l (m2;m2) of weight l ∈ Z, this latter space
being finite dimensional for each l ∈ Z. The bracket structure on H 1(m2;m2)
is studied in Section 2.

The space H2(m2;m2) is discussed in Section 3. This space is here also fi-
nite dimensional in each weight separately. Given a generator of H 2(m2;m2),
i.e. an infinitesimal deformation, corresponding to the linear term of a for-
mal deformation, one can try to adjust higher order terms in order to have
the Jacobi identity in the deformed Lie algebra up to order k. If the Jacobi
identity is satisfied to all orders, we will call it a true (formal) deformation,
see Fuchs’ book [6] for details on cohomology and [Fia2] for deformations of
Lie algebras.

In Section 3.2 we discuss Massey products, in Sections 3.3 – 3.5 we de-
scribe all true deformations in negative weights. Section 3.6 identifies the
deformations in weight zero.

As obstructions to infinitesimal deformations given by classes in H 2(m2;m2)
are expressed by Massey powers of these classes in H 3(m2;m2), it is the
vanishing of these Massey squares, cubes etc which makes it possible to pro-
longate an infinitesimal deformation to all orders. For m2 here, on the one
hand the cocycle equations are so rigid that they select already few cochains
to be cocycles, but on the other hand, there are enough cochains to com-
pensate all Massey powers, leading to formal, non-converging deformations.
The main result reads

Theorem 1. The true deformations of m2 are finitely generated in each
weight. More precisely, the space of unobstructed cohomology classes is zero
in weight l ≤ −5, because there are no non-trivial cocycles. It is in degree
l ≥ −4 of dimension two (but with changing representatives).

The two infinitesimal deformations in weight l = 0 can be prolongated
to all orders and give a trivial deformation and a formal non-converging
deformation.

As a rather astonishing consequence, m2 does not deform to L1.
We believe that the discussion of these examples of deformations are in-

teresting as they go beyond the usual approach where the condition that
H2(g, g) should be finite dimensional is the starting point for the exami-
nation of deformations, namely the existence of a miniversal deformation
[3].

Another attractive point of our study is the fact that here for m2 the
Massey squares, cubes etc. involved can all be compensated and lead to an
interesting obstruction calculus. Thus the second adjoint cohomology of m2

may serve as an example on which to study explicitely obstruction theory.

Acknowledgements: Both authors are grateful to the Max-Planck-Institut
für Mathematik in Bonn where this work was done.
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1. Preliminaries

Recall the N-graded Lie algebra m2 =
⊕

i≥1(m2)i; all graded components

(m2)i are 1-dimensional, and we choose a basis ei of each of them. The
brackets then read: [e1, ei] = ei+1 for all i ≥ 2, [e2, ej ] = ej+2 for all j ≥ 3.

We will compute in later sections of this paper the Lie algebra cohomol-
ogy spaces H1(m2;m2) and H2(m2;m2) of m2 with coefficients in the adjoint
representation. Since m2 is N-graded, the cochain, cocycle, coboundary and
cohomology spaces are also graded. Thus it makes sense to restrict atten-
tion to the graded components of weight l denoted C ∗

l (m2;m2), Z∗
l (m2;m2),

B∗
l (m2;m2) and H∗

l (m2;m2) of the spaces of all cochains C∗(m2;m2), cocycles
Z∗(m2;m2), coboundaries B∗(m2;m2) and cohomology classes H∗(m2;m2).

The cohomology spaces H∗(m2;m2) for ∗ = 1, 2 are interesting from the
following point of view: H∗(m2;m2) carries a graded Lie bracket

[, ] : Hp(m2;m2) ⊗ Hq(m2;m2) → Hp+q−1(m2;m2),

which restricts to a Lie bracket on H1(m2;m2) which is graded with respect
to the weight l. We will compute this bracket in the next section.

The space H2(m2;m2) draws its importance from the interpretation of
being the space of infinitesimal deformations of the Lie algebra m2. Such an
infinitesimal deformation [ω] ∈ H2(m2;m2) is the term of degree one in the
expansion of a deformed bracket with respect to the deformation parameter.
The question whether the infinitesimal term given by [ω] can be prolongated
to degree two or even to all higher powers can be answered by studying the
Massey powers of [ω]. Indeed, it is a necessary condition for [ω] to admit
a prolongation to degree two that the Massey square [ω]2 ∈ H3(m2;m2) is
zero, i.e. if for all i, j, k ≥ 1

ω(ω(ei, ej), ek) + cycl. = dα,

for some 2-cochain α ∈ C2(m2;m2). In this sense, the Massey square is the
first obstruction for [ω] to give a (formal) deformation. The next obstruction
is then the Massey cube, defined using ω and α by

ω(α(ei, ej), ek) + α(ω(ei, ej), ek) + cycl..

In case all obstructions vanish, [ω] gives rise to a formal deformation. The
bracket defined by [, ]t = [, ]+ tω+ t2α+ . . . satisfies then the Jacobi identity
up to all orders. But it is not clear whether setting t = r for some r ∈ R

defines a Lie bracket [, ]r, i.e. it is not clear whether the formal deformation
converges. If this is the case, we call it a true deformation. A deformation
having only a finite number of non-zero terms is always a true deformation.

A homogeneous cocycle ω of weight l ∈ Z for the Lie algebras m0 or
m2 is given by coefficients ai,j such that ω(ei, ej) = ai,jei+j+l. The most
important cocycle equation for m0 was (cf [5]) for i, j ≥ 2:

ai+1,j + ai,j+1 = ai,j.

In [5], we defined some fundamental solutions to this equation which we
named families. The 2-family has a2,k = 1 for all k ≥ 3 and ai,j = 0 for
all i > 2, up to antisymmetry. The 3-family has a3,k = 1 for all k ≥ 4 and
ai,j = 0 for all i > 3, up to antisymmetry. The a2,k coefficients are then
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easily seen to be non-zero starting from a2,5, and they grow linearly in k.
For explicit formulae for the m-family, we refer to [5].

2. The space H1(m2;m2)

We will compute the space H1
l (m2;m2) of homogeneous cohomology classes

of weight l ∈ Z for each fixed l. A 1-cochain ω ∈ C1(m2;m2) is called homo-
geneous of weight l ∈ Z in case ω(ei) = aiei+l for each i ≥ 1. The cocycle
identity reads then for a homogeneous cochain

dω(ei, ej) = ω([ei, ej ]) − [ei, ω(ej)] + [ej , ω(ei)] = 0

for all i, j ≥ 1. We get different sets of equations for i = 1, j ≥ 2, i = 2,
j ≥ 3, and i, j ≥ 3.
(a) If i = 1, j ≥ 3, j + l ≥ 2:

0 = aj+1 − aj − a1δl,0 − a1δl,1,

if j ≥ 3, j+l = 0, 1, we get 0 = aj+1, but there is no equation for j+l ≤ −1.
If i = 1 and j = 2, l ≥ 1:

0 = a3 − a2 + a1(1 − δl,1),

0 = a3 − a2 − a1 if j = 2 and l = 0, 0 = a3 if j = 2 and l = −1,−2, and no
equation if j + 1 + l ≤ 0.
(b) If i = 2, j ≥ 3, j + l ≥ 3:

0 = aj+2 − aj − a2δl,0 − a2δl+1,0,

for j+l = 2, we get 0 = a−l+4−a2δj,3, for j+l = 1, we get 0 = a−l+3+a−l+1,
for j + l = 0, we get 0 = a−l+2, for j + l = −1, we get 0 = a−l+1, and there
is no equation for j + l ≤ −2.
(c) If i, j ≥ 3:

0 = δj+l,1aj + δj+l,2aj − δi+l,1ai − δi+l,2ai.

Now let us discuss 1-cocycles in weight l = 0. For i = 1 and j ≥ 2, we get
by equations (a)

0 = aj+1 − aj − a1,

and for i = 2 and j ≥ 3 by equations (b)

0 = aj+2 − aj − a2.

Call a1 =: a and a2 =: b, then we get on the one hand a3−b = a, a4−a3 = a,
a5 −a4 = a and so on, and on the other hand a5−a3 = b. Therefore b = 2a.
In conclusion, we get a one parameter family of cocycles in weight l = 0.

Now let us discuss 1-cocycles in weight l = 1. For i = 1 and j ≥ 3, we get
by equations (a)

0 = aj+1 − aj − a1,

while for j = 2, we get 0 = a3 − a2. For i = 2 and j ≥ 3 by equations (b)

0 = aj+2 − aj.

We conclude a2 = a3, a3 = a5, a1 = 0, a3 = a4, and all ai for i ≥ 2 are then
equal. This means that we have one free parameter.

Now let us discuss 1-cocycles in weight l ≥ 2. For i = 1 and j ≥ 3, we get
by equations (a)

0 = aj+1 − aj,
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while for j = 2, we get 0 = a3 − a2 + a1. For i = 2 and j ≥ 3 by equations
(b)

0 = aj+2 − aj.

We have a4 = a3 and so on, and a1 and a2 are thus two free parameters.
Now let us discuss 1-cocycles in weight l = −1. For i = 1 and j ≥ 3, we

get by equations (a)

0 = aj+1 − aj,

while for j = 2, we get 0 = a3. For i = 2 and j ≥ 4, we get by equations (b)

0 = aj+2 − aj − a2,

while for j = 3, we get 0 = a5 − a2. We have therefore a3 = 0, a4 = a3,
a5 = a4, 0 = a6 − a4 − a2, etc. This gives a2 = 0, a3 = 0, a4 = 0, a5 = 0 and
so on. Remark that a1 does not exist, because ω(ei) = aiei−1.

Now let us discuss 1-cocycles in weight l = −2. Remark that here a1 and
a2 do not exist. The equations (a), i.e. i = 1, j ≥ 2, read

0 = aj+1 −

{

0 if j = 2, 3
aj if j ≥ 4

The equations (b), i.e. i = 2, j ≥ 3, read

0 = aj+2 +







a3 if j = 3
0 if j = 4

−aj if j ≥ 5

We get thus a3 = 0, a4 = 0, a5 = a4, a6 = 0, and so on. One concludes that
all coefficients are zero.

Now let us discuss 1-cocycles in weight l ≤ −3. Remark that here a1, a2,
up to a−l do not exist. The equations (a), i.e. i = 1, j ≥ 2, read

0 = aj+1 −

{

0 if j = −l,−l + 1
aj if j ≥ −l + 2

The equations (b), i.e. i = 2, j ≥ 3, read

0 = aj+2 +















0 if j = −l − 1,−l

aj if j = −l + 1
0 if j = −l + 2

−aj if j ≥ −l + 3

One concludes that all coefficients are zero.
Next come the coboundaries. It is clear that dC 0

l (m2;m2) = 0 for all
weights l ≤ 0, because coboundaries are brackets with elements. It is also
clear that dC0

l (m2;m2) is one-dimensional and generated by del = [el,−]
for l ≥ 1. Observe that [e1,−] is zero on e1 and non-trivial on all other ei,
that [e2,−] is zero on e2, equal to a constant a on all ei with i ≥ 3 and equal
to −a on e1, while [ei,−] for i ≥ 3 is non-zero on e1 and e2 and zero on all
others.

One sees that Z1
1 (m2;m2) = dC0

1 (m2;m2). We therefore conclude that

Theorem 2.

dimH1
l (m2;m2) =

{

0 if l = 1 or l ≤ −1
1 if l = 0 or l ≥ 2
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In order to compute the bracket structure, we need explicit non-trivial
cocycles. Observe that the (non zero) coboundary for l ≥ 3 is given by
a1 6= 0 and a2 = a1. The explicit non-trivial cocycles are therefore:

• l = 0: the coefficients are growing linearly a := a1, a2 = 2a, a3 = 3a
etc.

• l = 2: b := a2 6= 0 and aj = b for all j ≥ 3.
• l ≥ 3: a1 =: − cl

2 and a2 = cl

2 . Then a3 = cl, a4 = cl, etc.

We express the previous description by introducing generators:

• l = 0: ω(ek) = kek for all k ≥ 1 (we took a = 1).
• l = 2:

α(ek) =

{

bek+2 if k ≥ 2
0 if k = 1

• l ≥ 3:

γl(ek) =







clek+l if k ≥ 3
− cl

2 el+1 if k = 1
cl

2 el+2 if k = 2

It is well known that H∗(g, g) carries a graded Lie algebra structure for
any Lie algebra g, and that H1(g, g) forms a graded Lie subalgebra. Let us
compute this bracket structure on our generators:

Given a ∈ Cp(g, g) and b ∈ Cq(g, g), define

ab(x1, . . . , xp+q−1) =
∑

σ∈Shp,q

(−1)sgn σa(b(xi1 , . . . , xiq ), xj1 . . . , xjp−1
)

for x1, . . . , xp+q−1 ∈ g. The bracket is then defined by

[a, b] = ab − (−1)(p−1)(q−1)ba.

It thus reads on H1(g, g) simply

[a, b](x) = a(b(x)) − b(a(x)).

We compute

ω(α(ek)) − α(ω(ek)) =

{

0 if k = 1
ω(bek+2) if k ≥ 2

}

− α(kek)

=

{

0 if k = 1
b(k + 2)ek+2 − bkek+2 if k ≥ 2

=

{

0 if k = 1
2bek+2 if k ≥ 2

= 2α(ek).

ω(γl(ek)) − γl(ω(ek)) =







ω(clek+l) if k =≥ 3
ω(− cl

2 el+1) if k = 1
ω( cl

2 el+2) if k = 2







−







kclek+l) if k =≥ 3
−k cl

2 el+1 if k = 1
k cl

2 el+2 if k = 2







=







cl(k + l)ek+l − kclek+l if k =≥ 3
(

− cl

2 (l + 1) + cl

2

)

el+1 if k = 1
(

cl

2 (l + 2) − cl

)

el+2 if k = 2







= lγl(ek).
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α(γl(ek)) − γl(α(ek)) =







α(clek+l) if k =≥ 3
α(− cl

2 el+1) if k = 1
α( cl

2 el+2) if k = 2







−







γl(bek+2) if k =≥ 3
0 if k = 1

γl(be4) if k = 2







=







bclek+l+2 − bclek+l+2 if k =≥ 3
− cl

2 bel+1+2 − 0 if k = 1
cl

2 bel+4 − bclel+4 if k = 2







=







0 if k =≥ 3
− cl

2 bel+1+2 if k = 1
− cl

2 bel+4 if k = 2







=

{

0 if k =≥ 3
− cl

2 bek+l+2 if k = 1, 2.

This last cocycle is a coboundary, more precisely,

α(γl(ek)) − γl(α(ek)) =
(cl

2
b
)

[el+2,−].

We conclude
α(γl(ek)) − γl(α(ek)) = 0

as cohomology classes. One easily computes that γl and γm commute.
Therefore the bracket structure on H1(m2;m2) is described as follows:

Theorem 3. H1(m2;m2) is a graded Lie algebra, generated in positive de-
grees by ω (degree 0), α (degree 2) and γl (degree l ≥ 3) such that ω acts as
a grading operator on the trivial Lie algebra generated by α and the γl for
l ≥ 3.

3. The space H2(m2;m2)

3.1. Cocycle identities. For a 2-cochain ω, the cocycle identity reads

ω([ei, ej ], ek) + ω([ej , ek], ei) + ω([ek, ei], ej)

−[ei, ω(ej , ek)] − [ej , ω(ek, ei)] − [ek, ω(ei, ej)] = 0.

In the sequel, we will suppose ω homogeneous of weight l ∈ Z with ω(ei, ej) =
ai,jei+j+l for all i, j ≥ 1. From the cocycle identity, we get the following
equations on the coefficients ai,j:

(a) Setting i = 1 and j, k ≥ 3, we get for j + k + l ≥ 2

(aj+1,k+aj,k+1)ej+k+l+1 = (aj,k−ak,1δk+l,0−ak,1δk+l,1−a1,jδj+l,0−a1,jδj+l,1)ej+k+l+1,

and for j + k + l = 0, 1 (while there is no equation for j + k + l < 0)

(aj+1,k + aj,k+1)ej+k+l+1 = 0.

(b) Setting i = 1, j = 2, and k ≥ 3, we get for k + l ≥ 2,

(a3,k + ak+2,1 + a2,k+1)ek+l+3 = (a2,k + ak,1 − a1,2δ2+l,0 − a1,2δ2+l,1)ek+l+3,

while for k + l = 0, we get

(a3,k + ak+2,1 + a2,k+1)e3 = (a2,k − ak,1 − a1,2δ2+l,0 − a1,2δ2+l,1)e3,

and for k + l = 1, we get

(a3,k + ak+2,1 + a2,k+1)e4 = (a2,k − a1,2δ2+l,0 − a1,2δ2+l,1)e4,
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and for k + l = −1,−2, we get

(a3,k + ak+2,1 + a2,k+1)ek+l+3 = (−a1,2δ2+l,0 − a1,2δ2+l,1)ek+l+3.

(c) If i = 2, and j, k ≥ 3, we get for j + k + l ≥ 3

(aj+2,k+aj,k+2)ej+k+l+2 = (aj,k−ak,2δk+l+1,0−ak,2δk+l,0−a2,jδj+l+1,0−a2,jδj+l,0)ej+k+l+2,

for j + k + l = 1

(aj+2,k+aj,k+2)e3 = (−aj,k−ak,2δk+l+1,0−ak,2δk+l,0−a2,jδj+l+1,0−a2,jδj+l,0)e3,

for j + k + l ≤ −2, there is no equation, and for j + k + l = 0,−1, 2,
we have

(aj+2,k+aj,k+2)ej+k+l+2 = (−ak,2δk+l+1,0−ak,2δk+l,0−a2,jδj+l+1,0−a2,jδj+l,0)ej+k+l+2.

(d) If i, j, k ≥ 3, we get

0 = (−aj,kδj+k+l,1−aj,kδj+k+l,2−ak,iδi+k+l,1−ak,iδi+k+l,2−ai,jδi+j+l,1−ai,jδi+j+l,2)ei+j+k+l.

In equation (d), at most two terms can be non-zero for a given l as i, j and
k must be pairwise distinct.

Let us now compute the 2-coboundaries: a cocycle ω is a coboundary in
case there exists a 1-cochain α such that

ω(ei, ej) = α([ei, ej ]) − [ei, α(ej)] + [ej , α(ei)].

As ω is homogeneous of weight l, α will be, and we set α(ei) = aiei+l for all
i ≥ 1. Then the previous equation gives:

(e) Suppose i = 1 and j ≥ 3, then

a1,jej+l+1 = (aj+1 − aj − a1δl,0 − a1δl+1,0)ej+l+1.

This equation makes sense only if j + l ≥ 2. For j + l = 0, 1, one
obtains

a1,j = aj+1.

(f) Suppose i = 1 and j = 2, then for l ≥ 2

a1,2 = a3 − a2 + a1,

while for l = −1,−2, one gets a1,2 = a3, for l = 0, one gets a1,2 =
a3 − a2 − a1, and for l = 1, one gets a1,2 = a3 − a2.

(g) Suppose i = 2 and j ≥ 3, then for j + l ≥ 2

a2,j = aj+2 − aj(1 − δj+l,2) + ajδj+l,1 − a2(δl,0 + δl,−1),

while for j + l = 0,−1, one gets a2,j = aj+2, and for j + l = 1, one
gets

a2,j = aj+2 + aj.

(h) For i, j ≥ 3 with i+j+ l ≥ 1, i+ l ≥ 1 and j + l ≥ 1, the coboundary
equation reads

ai,j = aj (δj+l,1 + δj+l,2) − ai(δi+l,1 + δi+l,2).

Now stably, i.e. for a fixed l and j, k >> 0, we have just the following
system of equations:

(α) a3,k + ak+2,1 + a2,k+1 = a2,k + ak,1 − a1,2δl,−2 − a1,2δl,−1

(β) aj+1,k + aj,k+1 = aj,k

(γ) aj+2,k + aj,k+2 = aj,k
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Equation (α) means that the 1- and 2-coefficients determine the 3-coefficients.
Equation (β) implies that the differences of adjacent 3- (resp. 4-) coefficients
determine the 4- (resp. 5-) coefficients. But equation (γ) implies that dif-
ferences of next to

adjacent 3-coefficients determine the 5-coefficents directly. We get stably
on the one hand

a5,k = a4,k−a4,k+1 = (a3,k−a3,k+1)−(a3,k+1−a3,k+2) = a3,k−2 a3,k+1+a3,k+2,

and on the other hand

a5,k = a3,k − a3,k+2,

thus we conclude that for l big enough a3,k+1 = a3,k+2. Even if k >> 0,
we take j = 3 in order to get these equations, thus there are extra terms
(coming from equations (c)) for j = −l and j = −l − 1, i.e. in case l = −3
and l = −4. In all other weights, we will finally (i.e. for k >> 0) have the
conclusion a3,k+1 = a3,k+2.

But now when the 3-coefficients are stably equal, the 4-coefficients are
stably 0, and so are all higher coefficients. This limits considerably the choice
of possible cocycles, at least stably. For example, let us suppose l ≥ −2. In
this case, equations (e) and (f) show that we can add coboundaries in order
to have all 1-coefficients equal to zero. It is clear from equations (e), (f),
(g) and (h) that once the 1-coefficients are set to zero, the 2-coefficients and
higher coefficients cannot be changed by addition of a coboundary, because
this would change the 1-coefficients, too.

(a), (b) and (c) then show that we have the system of equations

(α′) a3,k + a2,k+1 = a2,k

(β) aj+1,k + aj,k+1 = aj,k

(γ) aj+2,k + aj,k+2 = aj,k

for all j, k ≥ 3. The system tells us that cocycles must have all 3-coefficients
equal, all higher coefficients zero. Observe that the equations which deter-
mined the solutions for m0 are a subset of the equations which must be
satisfied for m2. We conclude that in weight l ≥ −2, there are at most
two non-trivial families of true deformations: the 2-family and the 3-family.
Whether they give indeed rise to true deformations will be determined in
later subsections by studying their Massey powers.

3.2. Massey powers. Observe that the Massey square does not involve
the bracket of the Lie algebra, so we get for m2 the same Massey square as
for m0. For example, the 2-family has zero Massey square (as a cochain)
in all weights (but observe that the 2-family is not necessarily a cocycle in
all weights). We will examine the 3-family in positive or zero weight in the
following proposition.

An important point is that for m0, we had restrictions on the true defor-
mations coming from the nullity of the Massey squares and higher Massey
powers. For m2 here, we have more possibilities to compensate non-zero
Massey powers, so there are less restrictions. Most of the restrictions for
deformations of m2 come already from the cocycle equations.

Proposition 1. Let ω ∈ Z2
l (m2;m2) be the homogeneous 2-cocycle of weight

l ≥ 0 given by the 3-family and representing an infinitesimal deformation
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of m2. Then ω can be prolongated to a formal deformation of m2, i.e. all
Massey powers [ω]n ∈ H3(m2;m2) of ω are trivial.

Proof . Recall that the homogeneous 2-cocycle ω of weight l is given by
coefficients ai,j such that ω(ei, ej) = ai,jei+j+l. ω represents the 3-family,
thus ai,j 6= 0 (up to antisymmetry) only for i = 2 and j ≥ 5 and i = 3 and
j ≥ 4. The Massey square of ω reads

Mijk = ai,jai+j+l,k + aj,kaj+k+l,i + ak,iak+i+l,j.

We will always suppose i < j < k, up to anti-symmetry. Using ai,j 6= 0 (up
to antisymmetry) only for (i = 2, j ≥ 5) and (i = 3, j ≥ 4), we obtain as
only possibly non-zero Massey squares M2jk, j, k ≥ 4, and M3jk, j, k ≥ 4.
The squares M3jk, j, k ≥ 4 are zero because of the restriction l ≥ 0; indeed,

M3jk = a3,ja3+j+l,k + ak,3ak+3+l,j = a3+j+l,k + ak+3+l,j,

and l ≥ 0, j, k ≥ 4 imply that a3+j+l,k = ak+3+l,j = 0.
The squares M2jk, j, k ≥ 4 are zero for j ≥ 4, because then

M2jk = a2,ja2+j+l,k + ak,2ak+2+l,j,

and once again, l ≥ 0, j, k ≥ 4 imply that a2+j+l,k = ak+2+l,j = 0.
Therefore, the only Massey squares we have to compensate are M23k,

k ≥ 4. We then introduce a homogeneous 2-cochain α of weight 2l with
α(ei, ej) = bi,jei+j+2l. We have for l ≥ −1

dα(e2, ej , ek) = (b2+j,k − bk+2,j − bj,k)ej+k+2l+2,

meaning dα(e2, e3, ek) = (b5,k−bk+2,3−b3,k)ek+2l+5. We may then compen-
sate the Massey square by just the 3-column of b-coefficients. This ensures
that at most the 2- and 3-columns for the a- and the b-coefficients are non-
zero.

Now suppose by induction that we have already compensated all Massey
powers up to some level in such a way that at most the 2- and 3-columns
for the coefficients of the intervening cochains are non-zero. Then we go on
to compute the next Massey power

Nijk = β(γ(ei, ej), ek) + γ(β(ei, ej), ek) + cycl.,

where “cycl.” means cyclic permutations in i, j, k and β and γ are some
2-cochains satisfying the above restrictions. The weights of the cochains β

and γ are positive or zero. Thus by compensating one step further, we will
reproduce cochains such that at most the 2- and 3-columns for the coeffi-
cients are non-zero. This ends the inductive step. �

Let us summerize what we said about true deformations in weight l ≥ 0:

Proposition 2. In weight l ≥ 0, the only non-trivial cocycles are given by
(linear combinations of) the 2- and the 3-family. The 2-family gives rise
to a true deformations (its Massey square is zero as a cochain), while the
3-family gives rise to a formal deformation.

We will be more specific about the convergence of this formal deformation
and about the N-graded Lie algebras to which m2 deforms in weight 0 in a
later subsection.
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3.3. Cocycles in weight l ≤ −5. Let us show in this section that there
are no non-trivial 2-cocycles in weight l ≤ −5. This is somewhat surprising;
we interprete it as being the fact that the cocycle equations for m2 are very
restrictive.

First of all, equations (e) mean that we can compensate the coefficients
a1,j for j + l ≥ 0 by a suitable coboundary. Observe that a1,j does not make
sense for j + l ≤ −1 as a1,j is the coefficient in front of ej+1+l, so it can be
set to zero. Therefore we will suppose in the following that a1,j = 0 for all
j ≥ 2. Thus, by antisymmetry, all coefficients involving an index 1 are zero.

With this in mind, the cocycle equations (a) and (b) become more simple:

• a3,k + a2,k+1 = a2,k

• aj+1,k + aj,k+1 = aj,k

for k ≥ 3, k + l ≥ 2, resp. j + k + l ≥ 2, j, k ≥ 3.
Let us write down the cocycle equations of type (c) with j = 3 (this is the

case of interest for the reasoning which eliminates higher non-zero terms)
and k ≥ 4:

−l − 4 ≤ k ≤ −l − 3 : a5,k = −a3,k+2

k = −l − 2 : a5,k = −a3,k − a3,k+2

k = −l − 1 : a5,k = −a3,k+2 − ak,2

k = −l : a5,k = a3,k − a3,k+2 + a2,k

k ≥ −l + 1 : a5,k = a3,k − a3,k+2

Thus, for k ≥ −l + 1, we have on the one hand a5,k = a3,k − a3,k+2, and
on the other hand (for k ≥ −l − 1)

a5,k = a4,k−a4,k+1 = (a3,k−a3,k+1)−(a3,k+1−a3,k+2) = a3,k−2 a3,k+1+a3,k+2,

and one deduces a3,k+1 = a3,k+2 for all k ≥ −l + 1. We call this coefficient
x := a3,k+1 = a3,k+2 for all k ≥ −l + 1.

The equation a5,−l = a3,−l − a3,−l+2 + a2,−l and the equation a5,−l =
a3,−l−2a3,−l+1+a3,−l+2 imply that 2a3,−l+2 = 2a3,−l+1+a2,−l, and therefore
with a := a2,−l, we get x = a3,−l+1 + a

2 .
Step 1: Using these equations, we fill in the table of coefficients ai,j start-
ing from high k values:

2 3 4 5

−l a

−l + 1 x − a
2 −a

2 −a
2

−l + 2 x 0 0
−l + 3 x 0 0
−l + 4 x 0 0
−l + 5 x 0 0

The −a
2 will repeat itself to the right of the table, meaning a4+r,−l+1 = −a

2
for all r. But a−l+1,−l+1 = 0 by antisymmetry, thus a = 0.
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Step 2: When we call a3,−l =: y, the new table looks like:

2 3 4 5

−l 0 y y − x y − x

−l + 1 x 0 0
−l + 2 x 0 0
−l + 3 x 0 0
−l + 4 x 0 0
−l + 5 x 0 0

Once again, continuing the line with y − x to the right, when we hit the
diagonal, we get y = x.
Step 3: When we call a3,−l−1 =: a, the new table looks like:

2 3 4 5

−l − 1 a a − x a − x a − x

−l 0 x 0 0
−l + 1 −x x 0 0
−l + 2 −2x x 0 0
−l + 3 −3x x 0 0
−l + 4 −4x x 0 0
−l + 5 −5x x 0 0

The same argument as before gives us here x = a.
Step 4: This time, call a3,−l−2 =: y, then we get by the equation a5,−l−2 =
a3,−l−2 − a3,−l that a5,−l−2 = −y − x and a5,−l−2 = −x + y = a4,−l−2 =
−a3,−l−1 + a3,−l−2. One concludes y = 0.
Step 5: Now write the new table:

2 3 4 5

−l − 2 x 0 −x −x

−l − 1 x x 0 0
−l 0 x 0 0

−l + 1 −x x 0 0
−l + 2 −2x x 0 0
−l + 3 −3x x 0 0
−l + 4 −4x x 0 0
−l + 5 −5x x 0 0
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Finally, hitting once again the diagonal shows that x = 0. In order to
conclude that all coefficients must be zero, it suffices to show that a4,−l−3 =
0. This follows from the (a) equation (with j = 3, k = −l − 3): a4,−l−3 =
−a3,−l−2 = 0. a4,−l−3 = 0 suffices, because ai,j can only be non-zero starting
from i + j + l ≥ 0, i.e. i = 2 and j ≥ −l − 1, i = 3 and j ≥ −l − 2, i = 4
and j ≥ −l − 2 and so on.

We summarize in the following

Proposition 3. There are no non-trivial 2-cocycles in weight l ≤ −5.

3.4. True deformations in weights l = −1 and l = −2. Again, by the
same reasoning as before, all coefficients involving an index 1 can be set to
zero (up to addition of coboundaries).

The (a) and (b) equations are like in the general case. The (c) equations
are not yet modified (only for l = −3 and l = −4). There is no non trivial
(d) equation yet.

We are thus still in the range of validity of the reasoning which shows
that there are as only possibly non-trivial cocycles the 2- and the 3-family.

The 2-family is still a cocycle of Massey square zero (as a cochain). The
only thing which may be different here is the proof that the 3-family gives
still rise to a formal deformation.

The first steps are like in the proof of proposition 1: the only Massey
squares we have to compensate are M23k, k ≥ 4. We then introduce a
homogeneous 2-cochain α of weight 2l with α(ei, ej) = bi,jei+j+2l. We have
for l ≥ −2, j, k ≥ 3, j < k:

dα(e2, e3, ek) = b5,k − bk+2,3 − b3,k + δk+2l,0bk,2 + δ5+2l,1b2,3 + δ5+2l,2b2,3.

As for the 3-family b2,3 = 0, this reads more simply:

dα(e2, e3, ek) = b5,k − bk+2,3 − b3,k + δk+2l,0bk,2.

We may choose to compensate once again just by the 3-column, i.e. we may
set b5,k = bk,2 = 0 for all k. This ensures that at most the 2- and 3-columns
for the a- and the b-coefficients are non-zero.

The next Massey power is then the Massey cube:

Nijk = α(ω(ei, ej), ek) + ω(α(ei, ej), ek) + cycl.

= ai,jbi+j+l,k + bi,jai+j+2l,k + cycl..

We see that the terms we have to compensate are once again of type
N23k (up to antisymmetry). We will have more and more Massey powers
to compensate. This can be achieved by a growing, but finite number of
cochains at each level. On the other hand, this process will not stop. We
therefore get:

Proposition 4. In weight l = −1,−2, the only homogeneous 2-cocycles
are the 2- and the 3-family. The 2-family is of Massey square zero (as
a cochain), and gives thus rise to a true deformation. The 3-family has
zero Massey powers, and gives rise to a formal deformation with non-zero
contributions at each level.
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3.5. True deformations in weights l = −3 and l = −4. Let us write
down the cocycle equations. The important equations are those of type (c).
They read:

aj+2,k + aj,k+2 = aj,k − ak,2δk+l+1,0 − ak,2δk+l,0 − a2,jδj+l+1,0 − a2,jδj+l,0.

In weight l = −3, this means for j = 3 and k ≥ 4 that

a5,k = a3,k − a3,k+2 − a2,3.

Compare this equation to

a5,k = a3,k − 2a3,k+1 + a3,k+2,

which follows as usually from the (a) equations. In conclusion, we get:

−2a3,k+2 = a2,3 − 2a3,k+1.

This means once again that the differences of 3-coefficients are constant, and
thus that the 4-coefficients are equal, while the 5-coefficients are zero. More
precisely

2a4,k+1 = 2(a3,k+1 − a3,k+2) = a2,3,

and therefore a4,k+1 =
a2,3

2 . Either a4,k+1 6= 0 and we get a family with
non-zero coefficients in the first three columns, or a4,k+1 = 0, i.e. a2,3 = 0,
and we get the 3-family.

Observe that the 2-family does not satisfy the cocycle identities in weight
l ≤ −3. Indeed, for j, k ≥ 3

aj+2,k + aj,k+2 = aj,k − ak,2δk+l+1,0 − ak,2δk+l,0 − a2,jδj+l+1,0 − a2,jδj+l,0,

and for k >> 0, all terms are zero, but one of the form a2,j. This is a
contradiction.

It remains thus (a linear combination of) the 3- and the 4-family. The
3-family is of Massey square zero in weight l = −3 (see the m0-case !).

Let us turn to weight l = −4. Once again we look at a 2-cocycle ω given by
coefficients ai,j such that a1,k = 0 for all k ≥ 2, which we can achieve possibly
by adding a coboundary, cf equations (e). We cannot exploit independently
equations (f) and (g), because in these equations the same coefficients occur.

Let us write down low degree (a) equations:

aj+1,k + aj,k+1 = aj,k,

for j, k ≥ 3. We therefore have for example a3,4 = a3,5. The (b) equations
read

• k = 3: a2,4 = 0.
• k = 4: a3,4 + a2,5 = a2,4 = 0.
• k = 5: a3,5 + a2,6 = a2,5.
• k ≥ 6: a3,k + a2,k+1 = a2,k.

And the (c) equations, which are the most interesting, read for j = 3:

• k = 4: a5,4 + a3,6 = a3,4 − a4,2 − a2,3 = a3,4 − a2,3.
• k = 5: a3,7 = a3,5 − a2,3.
• k ≥ 6: a5,k + a3,k+2 = a3,k − a2,3.
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The (d) equations are still void.
Let us now start a table with the coefficients ai,j which varify these equa-

tions. First of all, we call a := a2,3, and a3,4 =: b. Then on the one hand
−a4,5 = b − a − a3,6, and on the other hand a4,5 = b − a3,6. This gives
a3,6 = b − a

2 , and a4,5 = a
2 .

Now let us perform the same trick as in the other cases: on the one
hand, we have a5,k = a3,k − a3,k+2 − a2,3, and on the other hand, we have
a5,k = a3,k − 2a3,k+1 + a3,k+2 by the (a) equations, for k ≥ 6. We get
thus a3,k+1 − a3,k+2 =

a2,3

2 , i.e. the differences of the 3-coefficients, which
determine the 4-coefficients, are constant, and therefore the 5-coefficients
zero. We now display the table:

2 3 4 5

3 a

4 0 b

5 −b b a
2

6 −2b b − a
2

a
2 0

7 −3b + a
2 b − 2a

2
a
2 0

8 −4b + 3a
2 b − 3a

2
a
2 0

9 −5b + 6a
2 b − 4a

2
a
2 0

10 −6b + 10a
2 b − 5a

2
a
2 0

We see that a 2-parameter family is building up. The remaining question
is whether the Massey powers are zero, i.e. whether the family gives rise to a
true or formal deformation. We will consider the two cases a = 0 and b = 0
separately. For b = 0, we have (a multiple of) the 4-family (up to a non-zero
coefficient a2,3). One easily varifies that the additional non-zero coefficient
a2,3 does not change the Massey square zero character of the 4-family in
weight l = −4 (cf the m0-case). For a = 0, we have the 3-family which
has non-zero Massey squares. We compute that M234 = 0, M235 = 0, but
M23k 6= 0 for k ≥ 6, that M245 6= 0, but M24k = 0 for k ≥ 6, that M25k 6= 0
for k ≥ 6, that M26k = 0 for k ≥ 7, that M34k 6= 0 for k ≥ 5 and finally
that M35k = 0 for k ≥ 6. These are all ordered Massey squares which are
possibly non-zero.

We have thus a finite family of non-zero Massey squares which can be
compensated by a finite sum of coboundaries. These give then rise to a
finite number of higher dimensional Massey powers, which can also be com-
pensated in the usual way. All in all we get a formal deformation.

Proposition 5. In weights l = −3 and l = −4, the 3-family and the 4-
family (and their linear combinations) are the only 2-cocycles. In weight
l = −3, the 3-family gives a true and the 4-family a formal deformations,
whereas in weight l = −4, the 4-family gives a true and the 3-family a formal
deformation.

3.6. Identification of the deformations in weight l = 0. We have seen
in one of the previous sections that there are exactly two non-trivial cocycles
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(up to linear combinations) in weight l = 0. One is given by the 2-family,
and the other is given by the 3-family. We then examined Massey powers,
and found that while the 2-family is of Massey square zero in weight l = 0,
the 3-family has Massey squares at each step and gives finally rise to a formal
deformation. Let us identify in this section the Lie algebras to which m2

deforms.
First consider the 2-family. Write down the corresponding deformation

m1
2(t) (up to antisymmetry):

[e1, ej ]t = ej+1 ∀j ≥ 2,

[e2, ej ]t = ej+2 + tej+2 ∀j ≥ 3.

We claim that this deformation m1
2(t) is trivial, i.e. it does not leave the

isomorphism class of m2. In other words, for any t 6= −1, the deformed Lie
algebra is isomorphic to m2.

Indeed, define ẽj := (1 + t)ej for all j ≥ 2, and ẽ1 = e1. Then if the ei

obey the m2-relations, the ẽi obey the m1
2(t)-relations for all t 6= −1.

Now consider the deformation given by the 3-family. The corresponding
deformation m2

2(t) reads (up to antisymmetry):

[e1, ej ]t = ej+1 ∀j ≥ 2,

[e2, ej ]t = ej+2 + t(1 − (j − 4))ej+2 ∀j ≥ 4,

[e2, ej ]t = tej+3 ∀j ≥ 4.

We already saw that this deformation has Massey corrections in any power
of t, so that it is a formal deformation. Let us show that it gives a non-
converging deformation. Indeed, if it were converging, the limiting object
would be an N-graded Lie algebra with one-dimensional graded components,
generated in degrees 1 and 2. But by the classification theorem (Theorem
p. 2 in [1]), m2

2(t) must be isomorphic to L1. This is obviously not the case,
as m2

2(t) has a codimension 3 abelian ideal, whereas L1 does not have any
abelian ideal.

Therefore we arrive at the conclusion:

Proposition 6. The deformations of m2 in weight l = 0 described in the
following way: one of them is a trivial deformation, i.e. isomorphic to m2,
and the other is a formal non-converging deformation. In particular, m2

does not deform to any other N-graded Lie algebra with one-dimensional
graded components, generated in degrees 1 and 2. In particular, it does not
deform to L1.
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