ON THE NONEXCELLENCE OF THE FUNCTION FIELDS OF SEVERI-BRAUER VARIETIES

O.T. Izhboldin

.

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 53225 Bonn

Germany

Department of Mathematics and Mechanics St.-Petersburg State University Petrodvorets, 198904

Russia

.

O. T. Izhboldin. On the nonexcellence of the function fields of Severi-Brauer varieties

Abstract. Let F be a field of characteristic different from 2. A field extension L/F is called *excellent* if for any quadratic form ϕ over F the anisotropic part $(\phi_L)_{an}$ of ϕ over L is defined over F. We study the excellence property for the function fields of Severi-Brauer varieties.

.

ON THE NONEXCELLENCE OF THE FUNCTION FIELDS OF SEVERI-BRAUER VARIETIES

O. T. IZHBOLDIN

ABSTRACT. Let F be a field of characteristic different from 2. A field extension L/F is called *excellent* if for any quadratic form ϕ over F the anisotropic part $(\phi_L)_{an}$ of ϕ over L is defined over F. We study the excellence property for the function fields of Severi-Brauer varieties.

CONTENTS

0. Introduction.

- 1. Main notation and facts.
- 2. Special triples.
- A Criterion of universal excellence for the function fields of Severi–Brauer varieties.
- 4. Five-excellence of F(SB(A))/F.
- 5. Examples of nonexcellent field extensions F(SB(A))/F.

Appendix A. Surjectivity of $H^3(F(X)/F, \mu_2^{\otimes 2}) \to \operatorname{Tor}_2 CH^2(X)$

for certain homogeneous varieties.

Appendix B. A criterion of universal excellence for

generic splitting fields of quadratic forms.

$\S0.$ Introduction

Let F be a field of characteristic different from 2 and ϕ be a non-degenerate quadratic form over F. It is an important problem to study the behavior of the anisotropic part of forms over F under a field extension L/F. A field extension L/Fis called *excellent* if for any quadratic form ϕ over F the anisotropic part $(\phi_L)_{an}$ of ϕ over L is defined over F (i.e., there is a form ξ over F such that $(\phi_L)_{an} \cong \xi_L$).

Key words and phrases. Quadratic form over a field, Witt ring, excellent field extension, Brauer group, central simple algebra, Severi-Brauer variety, Chow group, Galois cohomology.

date: December 3, 1996.

Any quadratic extension is excellent. Since any anisotropic quadratic form ψ over F is still anisotropic over the field of rational functions F(t), every purely transcendental field extension is excellent.

Let F(X) be the field of rational functions on a geometrically integral variety X. One of the important problems is to find conditions on X so that the field extension F(X)/F is excellent. We say that F(X)/F is universally excellent if for any extension K/F the extension K(X)/K is excellent. The following varieties are most important in the algebraic theory of quadratic forms: quadric hypersurfaces, Severi-Brauer varieties, varieties of totally isotropic flags, and products of such varieties.

If X is rational (or unirational) then F(X)/F is purely transcendental (respectively, unirational), and it follows from Springer's theorem that F(X)/F is excellent and moreover that it is universally excellent.

In the case of a hyper-surface $X = X_q$ defined by the equation q = 0 where q is a non-degenerate quadratic form, the following results are known: 1) if q is isotropic, then $F(X_q)/F$ is universally excellent (for in this case X_q is rational); 2) if the field extension $F(X_q)/F$ is excellent and q is anisotropic, then q is a Pfister neighbor [Kn2]; 3) if dim $q \leq 3$ (or dim q = 4 and det q = 1), then X_q is universally excellent (see [ELW, Appendix II] or [Ro2], [LVG]); 4) if q is anisotropic, then $F(X_q)/F$ is universally excellent if and only if q is a Pfister neighbor of dimension ≤ 4 (see [Izh1] or [H2]).

Thus the problem whether the field extension F(X)/F is universally excellent is completely solved in the case where X is a quadric surface X_q .

In this paper we study the case where X is a Severi-Brauer variety. In the simplicate case where X is the Severi-Brauer variety of a quaternion algebra (a, b), the field extension F(X)/F is excellent. Indeed, in this case the variety X coincides with the quadric hypersurface X_{ϕ} , where $\phi = \langle 1, -a, -b \rangle$.

The next interesting case is the case of a biquaternion division algebra A. We study this case in Sections 3 and 5. In Section 3 we prove that the field extension F(SB(A))/F is not universally excellent for any biquaternion division F-algebra A. Moreover we construct a unirational field extension E/F such that E(SB(A))/E is not excellent (see Theorem 3.3). Applying this result, we find a condition on a central simple algebra A under which F(SB(A))/F is universally excellent. Theorem 3.10 asserts that the field extension F(SB(A))/F is universally excellent only in the following two cases: 1) the index of A is odd; 2) the algebra A has the form $Q \otimes_F D$, where Q is a quaternion algebra and D is of odd index. In addition, we show that the field extension F(SB(A))/F is not excellent for an arbitrary algebra A of index 8 and exponent 2 (see Theorem 3.11).

In our proof of the main result of Section 3 we apply some deep results of E. Peyre and N. Karpenko concerning the groups $\ker (H^3(F, \mathbb{Z}/2\mathbb{Z}) \to H^3(F(X), \mathbb{Z}/2\mathbb{Z}))$ and $\operatorname{Tor}_2 CH^2(X)$, where X is a product of Severi-Brauer varieties of algebras of exponent 2 (see [Pe], [Kar1], [Kar2]). In Section 2 and Appendix A we prove some results concerning Chow grops and Galois cohomology. In particular, in Appendix A we prove the following

Theorem. Let A and B be central simple algebras of exponent 2 over F. Let

 $X = SB(A) \times SB(B)$. Then the homomorphism

$$\frac{\ker\left(H^3(F) \to H^3(F(X))\right)}{[A] \cup H^1(F) + [B] \cup H^1(F)} \xrightarrow{\bar{\varepsilon}_2} \operatorname{Tor}_2 CH^2(X).$$

is an isomorphism. Here $H^*(F) = H^*(F, \mathbb{Z}/2\mathbb{Z})$ and the homomorphism $\bar{\varepsilon}_2$ is induced by the homomorphism $\varepsilon \colon H^3(F(X)/F, \mathbb{Q}/\mathbb{Z}(2)) \to CH^2(X)$ defined in [Su].

This theorem plays an important part in the proof of the non universal excellence of the function fields of the Severi–Brauer varieties of biquaternion division algebras.

In Section 4 we prove the following statement: For any central simple F-algebra A the field extension F(SB(A))/F is 5-excellent (this means that if dim $\phi \leq 5$ then $(\phi_{F(SB(A))})_{an}$ is defined over F). We prove that if $u(F) \leq 6$ then the field extension F(SB(A))/F is excellent. In §5 we construct explicit examples of a biquaternion division algebra A such that the field extension F(SB(A))/F is not excellent¹. In particular, we prove that the biquaternion algebra $A = (a, b) \otimes (c, d)$ over the field of rational functions in 4 variables F(a, b, c, d) yields such an example (see Corollary 5.11). In Appendix B we study the excellence property for generic splitting fields. In particular, we find a criterion of universal excellence for the function fields of integer varieties of totally isotropic subspaces (see Theorem B.21).

Acknowledgements. The work for this paper was done while the author was a visiting researcher at the Max-Planck-Institut für Mathematik, Bonn. I would like to thank this institute for its hospitality. I am grateful to N. Karpenko for numerous helpful discussions concerning Chow groups. I would like to thank D. Hoffmann for useful suggestions. I also wish to thank A. S. Merkurev who told me about some results of E. Peyre which are of importance in the paper.

§1. MAIN NOTATION AND FACTS

1.1. Quadratic forms and central simple algebras. By $\phi \perp \psi, \phi \cong \psi$, and $[\phi]$ we denote respectively orthogonal sum of forms, isometry of forms, and the class of ϕ in the Witt ring W(F) of the field F. The maximal ideal of W(F) generated by the classes of even dimensional forms is denoted by I(F). We write $\phi \sim \psi$ if ϕ is similar to ψ , i.e., $k\phi = \psi$ for some $k \in F^*$. The anisotropic part of ϕ is denoted by ϕ_{an} and $i_W(\phi)$ denotes the Witt index of ϕ . We denote by $\langle\langle a_1, \ldots, a_n \rangle\rangle$ the *n*-fold Pfister form

$$\langle 1, -a_1 \rangle \otimes \cdots \otimes \langle 1, -a_n \rangle$$

and by $P_n(F)$ the set of all *n*-fold Pfister forms. The set of all forms similar to *n*-fold Pfister forms we denote by $GP_n(F)$. The fundamental Arason-Pfister Hauptsatz (APH for short) states that if $\phi \in I^n(F)$ and dim $\phi < 2^n$ then $[\phi] = 0$; if $\phi \in I^n(F)$ and dim $\phi = 2^n$ then $\phi \in GP_n(F)$. An easy corollary from Arason-Pfister Hauptsatz (APH' for short in what follows) states that if $\phi, \psi \in GP_n(F)$ satisfy the condition $\phi \equiv \psi \pmod{I^{n+1}(F)}$ and the intersection $D_F(\phi) \cap D_F(\psi)$ is not empty then $\phi = \psi$. For any field extension L/F we put $\phi_L = \phi \otimes L$, $W(L/F) = \ker(W(F) \to W(L))$, and $I^n(L/F) = \ker(I^n(F) \to I^n(L))$.

¹Another example (a little more complicated than ours) was independently constructed by A. Sivatskii.

Let ϕ be a quadratic form such that $\dim \phi \ge 2$ and $\phi \not\cong \mathbb{H}$. The function field $F(\phi)$ of the form ϕ over F is the function field of the projective variety X_{ϕ} given by equation $\phi = 0$. In the case where $\dim \phi \le 1$ or $\phi \cong \mathbb{H}$, we set $F(\phi) \stackrel{\text{def}}{=} F$.

Let A be a central simple algebra (CS algebra for short) over F. By deg(A), ind(A), and [A] we denote respectively the degree of A, the Schur index of A, and the class of A in the Brauer group Br(F). By SB(A) we denote the Severi-Brauer variety of an algebra A.

We recall that two field extensions E/F and K/F are stably isomorphic if and only if there exist indeterminates $x_1, \ldots, x_s, y_1, \ldots, y_r$ and an isomorphism $E(x_1, \ldots, x_r) \cong K(y_1, \ldots, y_s)$ over F. We will write $E/F \stackrel{\text{st}}{\sim} K/F$ if E/F is stably isomorphic to K/F.

If [A] = [A'] in Br(F) then the field extensions F(SB(A))/F and F(SB(A'))/F are stably isomorphic. Moreover we have the following

Lemma 1.2. Let A_1, \ldots, A_k and A'_1, \ldots, A'_l be SC algebras over F. Suppose that the subgroup $\langle [A_1], \ldots, [A_k] \rangle$ of the Brauer group Br(F) generated by the classes of algebras A_1, \ldots, A_k coincides with the subgroup $\langle [A'_1], \ldots, [A'_l] \rangle$ generated by the classes of algebras A'_1, \ldots, A'_l . Then the field extensions

 $F(SB(A_1) \times \cdots \times SB(A_k))/F$ and $F(SB(A'_1) \times \cdots \times SB(A'_l))/F$

are stably isomorphic.

Let ϕ be a quadratic form. We denote by $C(\phi)$ the Clifford algebra of ϕ . If $\phi \in I^2(F)$ then $C(\phi)$ is a CS algebra. Hence we get a well defined element $[C(\phi)]$ of $Br_2(F)$ which we will denote by $c(\phi)$.

Good references for the basic theory of quadratic forms and central simple algebras are books of T. Y. Lam [Lam], W. Scharlau [Sch], P. K. Draxl [Dr], and R. S. Pierce [Pi].

1.3. Cohomology groups. Let F be a field of characteristic $\neq 2$. By $H^n(F)$ we denote the cohomology group $H^n(F, \mathbb{Z}/2\mathbb{Z})$. The groups $H^n(F)$ $(n \ge 0)$ form a graded ring, with the multiplication given by the cup product.

Obviously $H^0(F) \cong \mathbb{Z}/2\mathbb{Z}$. By Hilbert theorem 90 we have $H^1(F) \cong F^*/F^{*2}$. Thus any element $a \in F^*$ gives rise to an element of $H^1(F)$ which we will denote by (a). The cup product $(a_1) \cup \cdots \cup (a_n)$ we will denote by (a_1, \ldots, a_n) .

The group $H^2(F)$ is isomorphic to $\operatorname{Br}_2(F)$. This isomorphism maps the element $(a,b) = (a) \cup (b)$ of the group $H^2(F)$ to the class of the quaternion algebra (a,b) in the Brauer group $\operatorname{Br}_2(F)$. We will identify the groups $\operatorname{Br}_2(F)$ with the group $H^2(F)$. Thus for any CS algebra A of exponent 2 we get an element [A] of the group $H^2(F)$.

If the field extensions E/F and E/K are stably isomorphic then $\ker(H^i(F) \to H^i(E)) = \ker(H^i(F) \to H^i(K)).$

For n = 0, 1, 2, 3, 4 there is a homomorphism

$$e^n: I^n(F)/I^{n+1}(F) \to H^n(F)$$

which is uniquely determined by the condition $e^n(\langle \langle a_1, \ldots, a_n \rangle \rangle) = (a_1, \ldots, a_n)$. This homomorphism was constructed by Arason [Ar2] for $n \leq 3$, and by Jacob, Rost [JR] and Szyjewsky [Sz] for n = 4. The homomorphism e^n is a isomorphism for n = 0, 1, 2, 3 (see [Me], [MS], and [Ro1])². The homomorphism e^2 maps a quadratic form $\phi \in I^2(F)$ to $c(\phi) \in Br_2(F)$.

1.4. The group $\tilde{H}^n(F)$. Let A_1, \ldots, A_k be CS algebras of exponent 2 over F. We have $[A_1], \ldots, [A_k] \in Br_2(F) = H^2(F)$. Let $X_1 = SB(A_1), \ldots, X_k = SB(A_k)$. Let us denote by $\tilde{H}^n(F)$ the group

$$\widetilde{H}^{n}(F) \stackrel{\text{def}}{=} \ker \left(H^{n}(F) \to H^{n}(F(X_{1} \times \cdots \times X_{k})) \right).$$

Clearly $\widetilde{H}^*(F)$ is a ideal in $H^*(F)$, i.e., for any m, n we have $\widetilde{H}^n(F)H^m(F) \subset \widetilde{H}^{n+m}(F)$.

Obviously $\widetilde{H}^0(F) = \widetilde{H}^1(F) = 0$. The group $\widetilde{H}^2(F)$ coincides with the subgroup $\langle [A_1], \ldots, [A_k] \rangle$ of $H^2(F)$ generated by the classes of the algebras A_1, \ldots, A_k . The first nontrivial group is $\widetilde{H}^3(F)$. This group contains the group

$$\widetilde{H}^{2}(F)H^{1}(F) = [A_{1}]H^{1}(F) + \dots + [A_{k}]H^{1}(F).$$

It is a natural question whether the group $\widetilde{H}^3(F)$ coincides with $\widetilde{H}^2(F)H^1(F)$. This question gives rise to the study of the following factor group

$$\frac{\widetilde{H}^3(F)}{\widetilde{H}^2(F)H^1(F)} = \frac{\operatorname{ker}\left(H^3(F) \to H^3(F(SB(A_1) \times \dots \times SB(A_k))\right)}{[A_1]H^1(F) + \dots + [A_k]H^1(F)}.$$

We denote this factor group by $\Gamma(F; A_1, \ldots, A_k)$.

It follows from Lemma 1.2 that the group $\Gamma(F; A_1, \ldots, A_k)$ depends only on the subgroup $\langle [A_1], \ldots, [A_k] \rangle$ of Br₂(F) generated by $[A_1], \ldots, [A_k]$. More precisely, if CS algebras A'_1, \ldots, A'_l satisfy $\langle [A_1], \ldots, [A_k] \rangle = \langle [A'_1], \ldots, [A'_l] \rangle$, then

$$\Gamma(F; A_1, \ldots, A_k) = \Gamma(F; A'_1, \ldots, A'_l)$$

In particular, for any algebras A_1 , A_2 , and B with $[A_1] + [A_2] + [B] = 0$, we have

$$\Gamma(F; A_1, A_2, B) = \Gamma(F; A_1, A_2) = \Gamma(F; A_1, B) = \Gamma(F; A_2, B).$$

In the case k = 1 the following result is known

Theorem 1.5. (see [Ar1, Pe]). If $ind(A) \leq 4$ and exp(A) = 2, then $[A]H^1(F) = ker(H^3(F) \to H^3(F(SB(A))))$.

Applying this theorem and the injectivity of the homomorphism e^3 , we get the following

Corollary 1.6. Let A be a biquaternion algebra and q be a corresponding Albert form. Then $I^3(F(SB(A))/F) \subset [q]I(F) + I^4(F)$. \Box

²Bijectivity of e^4 was announced by M. Rost. Recently V. Voevodsky proved that there is a well defined bijective homomorphism e^n for all $n \ge 0$. We do not use these results in our paper.

1.7. Chow groups. For any smooth projective variety X, the homomorphism from the group ε_X : ker $(H^3(F, \mathbb{Q}/\mathbb{Z}(2)) \to H^3(F(X), \mathbb{Q}/\mathbb{Z}(2)))$ to the group $CH^2(X)$ was constructed in [Su, Sec. 23]

We need the following

Theorem 1.8. (see [Pc, Th. 4.1]). Let A_1, \ldots, A_k be CS algebras over F. Let $X = SB(A_1) \times \cdots \times SB(A_k)$.

1) The homomorphism ε induces an isomorphism

$$\frac{\ker\left(H^3(F,\mathbb{Q}/\mathbb{Z}(2))\to H^3(F(X,\mathbb{Q}/\mathbb{Z}(2))\right)}{[A_1]H^1(F,\mathbb{Q}/\mathbb{Z})+\dots+[A_k]H^1(F,\mathbb{Q}/\mathbb{Z})} \xrightarrow{\sim} \operatorname{Tor}(CH^2(X)).$$

which we will denote by $\bar{\varepsilon}_X$ or $\bar{\varepsilon}$.

2) If all the algebras A_1, \ldots, A_k have exponent 2 then the homomorphism ε induces a monomorphism

$$\frac{\operatorname{ker}\left(H^{3}(F) \to H^{3}(F(X))\right)}{[A_{1}]H^{1}(F) + \dots + [A_{k}]H^{1}(F)} \to \operatorname{Tor}_{2}CH^{2}(X),$$

which we will denote by $\bar{\varepsilon}_{X,2}$ or $\bar{\varepsilon}_2$.

Thus $\bar{\varepsilon}_2 \colon \Gamma(F; A_1, \ldots, A_k) \to \operatorname{Tor}_2 CH^2(SB(A_1) \times \cdots \times SB(A_k))$ is a monomorphism.

It is not difficult to show that for any CS algebras A_1, \ldots, A_k the torsion subgroup of $CH^2(SB(A_1) \times \cdots \times SB(A_k))$, depends only on the subgroup $\langle [A_1], \ldots, [A_k] \rangle$ of $Br(F)_2$ generated by $[A_1], \ldots, [A_k]$. More precisely, if CS algebras A'_1, \ldots, A'_l satisfy $\langle [A_1], \ldots, [A_k] \rangle = \langle [A'_1], \ldots, [A'_l] \rangle$, then

$$\operatorname{Tor} CH^2(SB(A_1) \times \cdots \times SB(A_k)) \cong \operatorname{Tor} CH^2(SB(A_1) \times \cdots \times SB(A_l)).$$

In particular, for any algebras A_1 , A_2 , and B with $[A_1] + [A_2] + [B] = 0$ we have

$$\operatorname{Tor}_2 CH^2(SB(A_1) \times SB(A_2) \times SB(B)) \cong \operatorname{Tor}_2 CH^2(SB(A_1) \times SB(B))$$

The group Tor $CH^2(SB(A))$ was studied by Karpenko. One of his reults asserts that for any algebra A of exponent 2 the group Tor $CH^2(SB(A))$ (and hence the group $\Gamma(F; A)$) is either zero or isomorphic to $\mathbb{Z}/2\mathbb{Z}$ (see [Kar1, Proposition 4.1]). It is an interesting question to give an explicit description for an element of $H^3(F)$ which determines a generator of the group

$$\Gamma(F;A) = \ker \left(H^3(F) \to H^3(F(SB(A))) \right) / [A] H^1(F).$$

In the case k > 1 the groups Tor $CH^2(SB(A_1) \times \cdots \times SB(A_k))$ were also investigated by N. Karpenko. In our paper we need the following particular case of the main theorem from [Kar2].

Theorem 1.9. Let A and B be algebras of exponent 2 such that $ind(A) \leq 4$ and $ind(B) \leq 2$. Let $X = SB(A) \times SB(B)$. Then

- 1) The group $\operatorname{Tor} CH^2(X)$ is trivial or isomorphic to $\mathbb{Z}/2\mathbb{Z}$.
- 2) If the group $\operatorname{Tor} CH^2(X)$ is not trivial then $\operatorname{ind}(A) = 4$, $\operatorname{ind}(B) = 2$ and $\operatorname{ind}(A \otimes_F B) = 4$. In particular, if at least one of the algebras A and B is not a division algebra then $\operatorname{Tor} CH^2(X) = 0$.
- 3) If ind(A⊗_FB) = 8 then there is a field extension E/F such that ind(A⊗_FB)_E = 4 and Tor CH²(X_E) = Z/2Z. Moreover we can take for E the function field F(Y) of the generalized Severi-Brauer variety Y = SB(A⊗_FB, 4).

Corollary 1.10. Let A_1 and A_2 be biguaternion algebras and B be a quaternion algebra such that $[A_1] + [A_2] + [B] = 0$. Let $X = SB(A_1) \times SB(A_2) \times SB(B)$. Then the group Tor $CH^2(SB(X))$ is trivial or equals to $\mathbb{Z}/2\mathbb{Z}$. Moreover if at least one of the algebras A_1 , A_2 , and B is not a division algebra then the group Tor $CH^2(X)$ is trivial.

1.11. The group $\Gamma(F; q_1, \ldots, q_1)$. Let $q_1, \ldots, q_k \in I^2(F)$. The Clifford algebras $C(q_1), \ldots, C(q_k)$ are CS algebras of exponent 2 over F. Let us define the group $\Gamma(F; q_1, \ldots, q_k)$ by the formula

$$\Gamma(F;q_1,\ldots,q_k)=\Gamma(F;C(q_1),\ldots,C(q_k)).$$

Note that for another collection $q_1', \ldots, q_l' \in I^2(F)$ with

$$[q_1]W(F) + \dots + [q_k]W(F) + I^3(F) = [q'_1]W(F) + \dots + [q'_l]W(F) + I^3(F),$$

we have $\Gamma(F; q_1, \ldots, q_k) = \Gamma(F; q'_1, \ldots, q'_l)$. In particular, for any $q_1, q_2, q_3 \in I^2(F)$ satisfying $q_1 \perp q_2 \perp q_3 \in I^3(F)$, we have

$$\Gamma(F; q_1, q_2, q_3) = \Gamma(F; q_1, q_2) = \Gamma(F; q_1, q_3) = \Gamma(F; q_2, q_3).$$

Let $X = SB(C(q_1)) \times \cdots \times SB(C(q_k))$. By the Peyre's Theorem 1.8 we have the embedding $\bar{\varepsilon}_2 : \Gamma(F; q_1, \ldots, q_k) \hookrightarrow \operatorname{Tor}_2 CH^2(X)$. Therefore we have a well-defined homomorphism,

$$I^{3}(F(X)/F) \xrightarrow{e^{3}} \ker \left(H^{3}(F) \to H^{3}(F(X)) \right) \twoheadrightarrow \Gamma(F; q_{1}, \dots, q_{k}) \xrightarrow{\tilde{\varepsilon}_{2}} \operatorname{Tor}_{2} CH^{2}(X).$$

Thus for any $\phi \in I^3(F(X)/F)$ we get the elements $e^3(\phi) \in \Gamma(F; q_1, \ldots, q_k)$ and $\bar{\varepsilon}_2 \circ e^3(\phi) \in \operatorname{Tor}_2 CH^2(X)$.

Lemma 1.12. Let $X = SB(C(q_1) \times \cdots \times SB(C(q_k)))$ and $\phi \in I^3(F(X)/F)$. The following assertions are equivalent:

1) $e^{3}(\phi) = 0$ in $\Gamma(F; q_{1}, \ldots, q_{k})$.

2)
$$\bar{\varepsilon}_2 \circ e^3(\phi) = 0$$
 in $\operatorname{Tor}_2 CH^2(X)$.

3) $\phi \in [q_1]I(F) + \dots + [q_k]I(F) + I^4(F).$

Proof. 1) \iff 2) since $\bar{\varepsilon}_2$ is injective. To prove 1) \iff 3) it suffices to show that the isomorphism $e^3: I^3(F)/I^4(F) \to H^3(F)$ induces an isomorphism

$$\frac{I^{3}(F)}{[q_{1}]I(F) + \dots + [q_{k}]I(F) + I^{4}(F)} \to \frac{H^{3}(F)}{[C(q_{1})]H^{1}(F) + \dots + [C(q_{k})]H^{1}(F)}.$$

1.13. The case $\dim(q_1), \ldots, \dim(q_k) \leq 6$ and $q_1 \perp \cdots \perp q_k \in I^3(F)$. Let $X = SB(C(q_1)) \times \cdots \times SB(C(q_k))$. Obviously $(q_1)_{F(X)}, \ldots, (q_k)_{F(X)} \in I^3(F(X))$ The assumption $\dim(q_i) \leq 6$ $(i = 1, \ldots, k)$ and APH imply that $[(q_1)_{F(X)}] = \cdots = [(q_k)_{F(X)}] = 0$. Thus $q_1, \ldots, q_k \in W(F(X)/F)$. Hence $q_1 \perp \cdots \perp q_k \in W(F(X)/F)$. Since $q_1 \perp \cdots \perp q_k \in I^3(F)$, we have $q_1 \perp \cdots \perp q_k \in I^3(F(X)/F)$. Thus we get the elements $e^3(q_1 \perp \cdots \perp q_k) \in \Gamma(F; q_1, \ldots, q_k)$ and $\bar{\varepsilon}_2 \circ e^3(q_1 \perp \cdots \perp q_k) \in \operatorname{Tor}_2 CH^2(X_{q_1, \ldots, q_k})$.

§2. Special triples

Definition 2.1. Let F be a field of characteristic $\neq 2$.

- 1) We say that a triple (q_1, q_2, π) of quadratic forms over F is special if the following conditions hold:
 - a) q_1 and q_2 are Albert forms and π is a 2-fold Pfister form.
 - b) $q_1 \perp q_2 \perp \pi \in I^3(F)$
- 2) We say that a triple (A_1, A_2, B) of *F*-algebras is *special* if the following conditions hold:
 - a) A₁ and A₂ are biquaternion F-algebras and B is a quaternion algebra.
 b) [A₁] + [A₁] + [B] = 0 ∈ Br₂(F).
- 3) We say that a triple (q_1, q_2, π) is anisotropic if all the forms q_1, q_2 , and π are anisotropic. We say that a special triple of forms (q_1, q_2, π) corresponds to a special triple of algebras (A_1, A_1, B) if $c(q_1) = [A_1], c(q_2) = [A_2]$ and $c(\pi) = [B]$.

It is clear that for any special triple of forms (q_1, q_2, π) there exists a unique special triple of algebras (A_1, A_2, B) which corresponds to (q_1, q_2, π) . Converserly, for any special triple of algebras (A_1, A_2, B) there exists a special triple of forms (q_1, q_2, π) , which corresponds to the triple (A_1, A_2, B) . In the latter case, the quadratic forms q_1, q_2 , and π are uniquely defined up to similarity.

In view of 1.13 we have a well defined element $e^3(q_1 \perp q_2 \perp \pi) \in \Gamma(F; q_1, q_2, \pi)$.

Proposition 2.2. Let (q_1, q_2, π) be a special triple. Then:

- 1) $\Gamma(F;q_1,q_2,\pi) = \Gamma(F;q_1,q_2) = \Gamma(F;q_1,\pi) = \Gamma(F;q_2,\pi).$
- 2) The group $\Gamma(F; q_1, q_2, \pi)$ is either 0 or $\mathbb{Z}/2\mathbb{Z}$.
- 3) The element $e^3(q_1 \perp q_2 \perp \pi)$ generates the group $\Gamma(F; q_1, q_2, \pi)$.
- 4) The homomorphism

$$\tilde{\varepsilon}_2 \colon \Gamma(F; q_1, q_2, \pi) \to \operatorname{Tor}_2 CH^2(SB(C(q_1)) \times SB(C(q_2)) \times SB(C(\pi)))$$

is an isomorphism.

Before we adduce the proof, we want to note that the proof of the assertion 3) in Proposition 2.2 presented below is a slight modification of Laghribi's proof of the following result:

Proposition 2.3. (see [Lag]). Let A be a biquaternion algebra and B be a quaternion algebra over F such that $ind(A \otimes B) = 8$. Let $X = SB(A) \times SB(B)$. Then

$$\ker \left(H^{3}(F) \to H^{3}(F(X)) \right) = [A]H^{1}(F) + [B]H^{1}(F). \quad \Box$$

In our paper we need the following

Lemma 2.4. Let A be a biquaternion algebra and B be a quaternion algebra over F such that $ind(A \otimes B) = 4$. Then

$$\ker \left(H^{3}(F) \to H^{3}(F(SB(A) \times SB(B))) \right) = [A]H^{1}(F) + [B]H^{1}(F) + e^{3}(\phi)H^{0}(F),$$

where the quadratic form ϕ is defined as follows: $\phi = q \perp q' \perp \pi$, where q and q' are Albert forms corresponding to the algebras A and $A \otimes_F B$, and π is a 2-fold Pfister form, corresponding to B.

In other words, the element $e^{3}(\phi)$ generates the group $\Gamma(F; A, B)$.

Proof. We actually have rewritten the first part of the proof from the paper of Laghribi cited above. Let X = SB(A), Y = SB(B), and L = F(Y) = F(SB(B)). Since ind(A), $ind(B) \leq 4$, Theorem 1.5 implies that

$$\ker (H^{3}(L) \to H^{3}(L(X))) = [A_{L}]H^{1}(L),$$

$$\ker (H^{3}(F) \to H^{3}(F(Y))) = [B]H^{1}(F).$$

Let $u \in \ker (H^3(F) \to H^3(F(X \times Y)))$. We need to prove that $u \in [A]H^1(F) + [B]H^1(F) + e^3(\phi)H^0(F)$.

We have $u_L \in \ker (H^3(L) \to H^3(L(X))) = [A_L]H^1(L)$. Hence there is $f \in L^*$ such that $u_L = [A_L] \cup (f) = e^3(q_L\langle\langle f \rangle\rangle)$, where q is an Albert form corresponding to A. Since the homomorphism e^3 is surjective, there exists $\phi \in I^3(F)$ such that $u^3(\phi) = u$. We have

$$e^{3}(\phi_{L}) = u_{L} = [A_{L}] \cup (f) = e^{3}(q_{L}\langle\langle f \rangle\rangle) = e^{3}(q_{L} \perp -f \cdot q_{L}).$$

Hence $\phi_L - q_L + f \cdot q_L \in \ker(I^3(L) \xrightarrow{e^3} H^3(L)) = I^4(L)$. Let $\tau = f \cdot q_{F(Y)}$. Since L = F(Y), we have $\tau = f \cdot q_{F(Y)} \equiv (q \perp -\phi)_{F(Y)} \pmod{I^4(F(Y))}$. Hence for any 0-dimensional point $y \in Y$ we have $\partial_y^2(\tau) \equiv 0 \pmod{I^3(F(y))}$. Since $\dim \tau = 6 < 8$, it follows from APH that $\partial_y^2(\tau) = 0$. Since $\partial_y^2(\tau) = 0$ for each 0-dimensional point y on the projective conic Y, it follows from [CTS, Lemma 3.1] that the form τ is defined over the field F (see also [Ge]). This means that there exists a 6-dimensional form \tilde{q} over F such that $\tilde{q}_L = \tau = f \cdot q_L$. Therefore $c(\tilde{q})_L = c(q)_L = [A_L]$. Hence $c(\tilde{q}) - [A] \in \operatorname{Br}_2(L/F)$. Since L = F(SB(B)), we have $\operatorname{Br}_2(L/F) = \{0, [B]\}$. Therefore $c(\tilde{q}) \in \{[A], [A \otimes B]\}$.

Consider the case $c(\tilde{q}) = [A]$. Since [A] = c(q), we have $c(\tilde{q}) = c(q)$. Thus $\tilde{q} \sim q$. Let $k \in F^*$ be such that $\tilde{q} = kq$. Then $f \cdot q_L = \tilde{q}_L = kq_L$. We have

$$u_L = e^3(q_L \perp -f \cdot q_L) = e^3(q_L \perp -kq_L) = (e^3(q(\langle\!\langle k \rangle\!\rangle))_L = ([A] \cup (k))_L.$$

Hence $u - [A] \cup (k) \in \ker (H^3(F) \to H^3(F(Y))) = [B]H^1(F)$. Therefore $u \in [A]H^1(F) + [B]H^1(F)$.

Suppose now that $c(\tilde{q}) = [A \otimes_F B]$. By the assumption of the lemma, $c(q') = [A \otimes_F B]$. We have $c(\tilde{q}) = c(q')$. Hence $\tilde{q} \sim q'$. Choose $k \in F^*$ such that $\tilde{q} = kq'$. Then $fq_L = \tilde{q}_L = kq'_L$. Since $[\pi_L] = 0$, we have

$$u_L = e^3(q_L \perp -fq_L) = e^3(q_L \perp -kq'_L) = e^3((q+q'+\pi) - q'\langle\!\langle k \rangle\!\rangle))_L$$

= $(e^3(\phi) - [c(q')] \cup (k))_L = (e^3(\phi) - [A] \cup (k) - [B] \cup (k))_L.$

Thus $u + [A] \cup (k) + [B] \cup (k) - e^3(\phi) \in \ker (H^3(F) \to H^3(F(Y))) = [B]H^1(F).$ Therefore $u \in [A]H^1(F) + [B]H^1(F) + e^3(\phi)H^0(F).$

Proof of Proposition 2.2. The assertion 1) was proved in 1.11. The assertion 3) follows immediately from Lemma 2.4 since $\Gamma(F; q_1, q_2, \pi) = \Gamma(F; q_1, \pi)$. Obviously 3) implies 2). The assertion 4) is proved in Appendix A (see Corollary A.11). \Box

Remark **2.5.** Both Proposition 2.3 and assertion 2) in Proposition 2.2 are obvious consequences of the results of E. Peyre and N. Karpenko (see Theorem 1.8 and Corollary 1.10).

Lemma 2.6. Let (q_1, q_2, π) be a special anisotropic triple over F and let (A_1, A_2, B) be the corresponding triple of algebras. Let $E = F(SB(A_1))$. Then

- 1) $(q_2)_E$ is isotropic, and $\dim((q_2)_E)_{an} = 4$.
- 2) For any $s \in D_E(((q_2)_E)_{an})$ we have $((q_2)_E)_{an} = s \cdot \pi_E$.
- 3) If $((q_2)_E)_{an}$ is defined over F, then there exists $s \in F^*$ such that $((q_2)_E)_{an} = s \cdot \pi_E$.

Proof. 1),2). Since $[A_1] + [A_2] = [B] \in Br_2(F)$ and $[(A_1)_E] = 0 \in Br_2(E)$, we have $[(A_2)_E] = [B_E]$. Therefore the $(A_2)_E$ is not a division algebra. Hence its Albert form $(q_2)_E$ is isotropic and dim $((q_2)_E)_{an} \leq 4$.

We claim that $\dim((q_2)_E)_{an} = 4$ (and hence $((q_2)_E)_{an} \in GP_2(E)$). Otherwise we would have $[(q_2)_E] = 0$, and hence $[(A_2)_E] = 0$. Then $[A_2] \in Br_2(E/F) =$ $Br_2(F(SB(A_1))/F) = \{0, [A_1]\}$. Therefore either $[A_2] = 0$, or $[B] = [A_1] + [A_2] = 0$, which is a contradiction.

Let $s \in D_E(((q_2)_E)_{an})$. Since $c(q_2)_E = [(A_2)_E] = [B_E] = c(\pi)_E = c(s\pi_E)$, it follows that $((q_2)_E)_{an} \equiv s\pi_E \pmod{I^3(E)}$. By APH' we have $((q_2)_E)_{an} = s \cdot \pi_E$.

3). If $((q_2)_E)_{an}$ is defined over F, we can choose s in $D_E(((q_2)_E)_{an}) \cap F^*$.

Proposition 2.7. Let (q_1, q_2, π) be a special anisotropic triple over F and let (A_1, A_2, B) be the corresponding triple of algebras. The following conditions are equivalent:

- 1) $((q_2)_{F(SB(A_1))})_{an}$ is defined over F,
- 2) $((q_1)_{F(SB(A_2))})_{an}$ is defined over F,
- 3) $q_1 \perp q_2 \perp \pi \in [q_1]I(F) + [q_2]I(F) + [\pi]I(F) + I^4(F).$
- 4) There exist $k_1, k_2 \in F^*$ such that

$$k_1q_1 \perp k_2q_2 \perp \pi \in I^4(F).$$

- 5) The group $\Gamma(F; q_1, q_2, \pi)$ is trivial.
- 6) The group $\operatorname{Tor}_2 CH^2(SB(A_1) \times SB(A_2) \times SB(B))$ is trivial.

Proof. It suffices to prove that $1 \Rightarrow 3 \Rightarrow 4 \Rightarrow 1$ and $3 \Leftrightarrow 5 \Leftrightarrow 6$.

1) \Rightarrow 3). Let $E = SB(A_1)$. It follows from Lemma 2.6 that there exists $s \in F^*$ such that $[(q_2)_E] = [s\pi_E]$. Hence $(q_2 \perp -s\pi) \in W(E/F)$. Since $q_1 \in W(E/F)$, we have $(q_1 \perp q_2 \perp -s\pi) \in W(E/F)$. Therefore $(q_1 \perp q_2 \perp \pi) \in W(E/F) + [\pi]I(F)$. Since $\phi = q_1 \perp q_2 \perp \pi \in I^3(F)$, we have $\phi \in I^3(E/F) + [\pi]I(F)$. It follows from Corollary 1.6 that $I^3(E/F) \subset [q_1]I(F) + I^4(F)$. Hence

$$\phi \in [q_1]I(F) + [\pi]I(F) + I^4(F) \subset [q_1]I(F) + [q_2]I(F) + [\pi]I(F) + I^4(F).$$

3) \Rightarrow 4). Since $\phi \in [q_1]I(F) + [q_2]I(F) + [\pi]I(F) + I^4(F)$, there exist $\mu_1, \mu_2, \mu_3 \in I(F)$ such that $[\phi] - [q_1\mu_1] - [q_2\mu_2] - [\pi\mu_3] \in I^4(F)$. Let $r_i = \det_{\pm} \mu_i$ (i = 1, 2, 3). Since $\mu_i \equiv \langle \langle r_i \rangle \rangle \pmod{I^2(F)}$, we have $[\phi] - [q_1 \langle \langle r_1 \rangle \rangle] - [q_2 \langle \langle r_2 \rangle \rangle] - [\pi \langle \langle r_3 \rangle \rangle] \in I^4(F)$. Since $[\phi] = [q_1] + [q_2] + [\pi]$, we have $[r_1q_1] + [r_2q_2] + [r_3\pi] \in I^4(F)$. Setting $k_1 = r_1/r_3$ and $k_2 = r_2/r_3$, we have $[k_1q_1] + [k_2q_2] + [\pi] \in I^4(F)$.

4) \Rightarrow 1). Let $E = SB(A_1)$. We have $(k_1q_1 \perp k_2q_2 \perp \pi)_E \in I^4(E)$ and $[(q_1)_E] = 0$. Using APH, we have $[(k_1q_1)_E] + [\pi_E] = 0$. Hence $((q_1)_E)_{an} = -k_1\pi_E$ is defined over F.

3) \iff 5). Obvious in view of Lemma 1.12 and Proposition 2.2.

5) \iff 6). See Proposition 2.2.

§3. A CRITERION OF UNIVERSAL EXCELLENCE FOR THE FUNCTION FIELDS OF SEVERI-BRAUER VARIETIES.

In this section for any biquaternion division algebra A over F we construct a field extension E/F such that the field extension E(SB(A))/E is not excellent. The construction is based on the following obvious consequence of Propositions 2.2 and 2.7:

Lemma 3.1. Let (q_1, q_2, π) be an anisotropic special triple over E and (A_1, A_2, B) be the corresponding triple of E-algebras. The following conditions are equivalent:

- 1) For any $k_1, k_2 \in F^*$ we have $k_1q_1 \perp k_2q_2 \perp \pi \notin I^4(E)$,
- 2) The group $\Gamma(E; q_1, q_2, \pi) = \Gamma(E; A_1, A_2, B)$ is not trivial.
- 3) $\Gamma(E; q_1, q_2, \pi) = \Gamma(E; A_1, A_2, B) \cong \mathbb{Z}/2\mathbb{Z}.$
- 4) The group $\operatorname{Tor}_2 CH^2(SB(A_1) \times SB(A_2) \times SB(B))$ is not trivial.

If these conditions hold then the field extension $E(SB(A_1))/E$ is not excellent. \Box

Proposition 3.2. Let A be a biquaternion division algebra. Then there exists a unirational field extension E/F, a biquaternion algebra A' over E, and a quaternion algebra B over E such that $[A_E]+[A']+[B] = 0 \in Br_2(E)$ and $Tor_2 CH^2(SB(A_E) \times SB(A') \times SB(B)) \cong \mathbb{Z}/2\mathbb{Z}$. \Box

Proof. Let K = F(u, v) be the field of rational functions in 2 variables. Let B_0 be the quaternion algebra (u, v) over K. Clearly, $\operatorname{ind}(A_K \otimes_K B_0) = 8$. Let E be the function field F(Y) of the generalized Severi-Brauer variety $Y = SB(A_K \otimes B_0, 4)$. Let $B = (B_0)_E = (u, v)_E$. By Theorem 1.9, we have $\operatorname{Tor}_2 CH^2(SB(A_E) \times_E SB(B)) \cong \mathbb{Z}/2\mathbb{Z}$.

It follows from the properties of the generalized Severi–Brauer varieties [Bla] that the algebra $A_E \otimes_E B$ has the form $M_2(A')$ where A' is a biquaternion E-algebra. Obviously $[A_E]+[A']+[B] = 0 \in \operatorname{Br}_2(E)$. Hence the triple (A_E, A', B) is special and $\operatorname{Tor}_2 CH^2(SB(A_E) \times SB(A') \times SB(B)) \cong \operatorname{Tor}_2 CH^2(SB(A_E) \times SB(B)) \cong \mathbb{Z}/2\mathbb{Z}$.

Now we need to verify that the field extension E/F is unirational. Let $\widetilde{K} = K(\sqrt{u})$. Since $[(B_0)_{\widetilde{K}}] = 0$, we see that $\operatorname{ind}((A_K \otimes_K B_0)_{\widetilde{K}}) = \operatorname{ind}(A_{\widetilde{K}}) \leq 4$. Hence the variety $Y_{\widetilde{K}} = SB((A_K \otimes_K B_0)_{\widetilde{K}}, 4)$ is rational. Therefore the field extension $\widetilde{K}E/\widetilde{K} = \widetilde{K}(Y)/\widetilde{K}$ is purely transcendental. Obviously \widetilde{K}/F is purely transcendental. Hence the field extension E/F is unirational. \Box **Theorem 3.3.** Let A be a biguaternion division algebra. Then there exists a unirational field extension E/F such that the field extension E(SB(A))/E is not excellent.

Proof. Take E/F, A' and B as in Proposition 3.2. Let $A_1 = A_L$ and $A_2 = A'$. Obviously the triple (A_1, A_2, B) is special over E, and $\text{Tor}_2 CH^2(SB(A_1) \times SB(A_2) \times SB(B)) = \mathbb{Z}/2\mathbb{Z}$. It follows from Lemma 3.1 that the field extension E(SB(A))/E is not excellent. \Box

Definition 3.4. We say that the field extensions E_1/F and E_2/F are q-equivalent (and write $E_1/F \stackrel{q}{\sim} E_2/F$) if the following conditions hold:

- 1) For any quadratic form ϕ over F, the form ϕ_{E_1} is isotropic if and only if ϕ_{E_2} is isotropic.
- 2) $W(E_1/F) = W(E_2/F)$.

We have the following examples of q-eqivalent field extensions.

Lemma 3.5. Field extensions E_1/F and E_2/F are always q-equivalent in the following cases:

- (1) $E_1 \subset E_2$ and E_2/E_1 is a finite odd extension.
- (2) $E_1 \subset E_2$ and E_2/E_1 is a purely transcendental field extension.
- (3) If E_1/F and E_2/F are stable isomorphic.

Proof. (1) Obvious in view of Springer's theorem [Lam, Ch. VII, Th. 2.3]; (2) follows from [Lam, Ch. IX, Lemma 1.1]. (3) Since E_1/F and E_2/F are stable isomorphic, there is a field K such that K/E_1 and K/E_2 are purely transcendental. By (2), we have $E_1/F \stackrel{q}{\sim} K/F \stackrel{q}{\sim} E_2/F$. \Box

Lemma 3.6. (see [ELW, Lemma 2.6]) Let E_1/F and E_2/F are field extensions such that $E_1/F \stackrel{q}{\sim} E_2/F$. Then E_1/F is excellent if and only if E_2/F is excellent.

Lemma 3.7. Let A_1 and A_2 be CS algebras such that $ind(A_1 \otimes_F A_2^{op})$ is odd. Then

- 1) The field extensions $F(SB(A_1))/F$ and $F(SB(A_2))/F$ are q-equivalent.
- 2) The field extension $F(SB(A_1))/F$ is excellent if and only if $F(SB(A_2))/F$ is excellent.

Proof. 1) Let $X_1 = F(SB(A_1))$ and $X_2 = F(SB(A_2))$. Since $\operatorname{ind}(A_1 \otimes_F A_2^{op})$ is odd, there is an odd field extension K/F such that $[(A_1 \otimes_F A_2^{op})_K] = 0$. Then $[(A_1)_K] = [(A_2)_K]$. By Lemma 1.2, the field extensions $K(X_1)/K$ and $K(X_2)/K$ are stably isomorphic. Therefore $K(X_1)/F$ and $K(X_2)/F$ are stably isomorphic too. By Lemma 3.5, we have $K(X_1)/F \stackrel{q}{\sim} K(X_2)/F$. Since $[K(X_1) : F(X_1)] =$ $[K(X_2) : F(X_2)] = [K : F]$ is odd, it follows from Lemma 3.5 that $F(X_1)/F \stackrel{q}{\sim} K(X_1)/F \stackrel{q}{\sim} F(X_2)/F$.

2) Obvious in view of Lemma 3.6. \Box

Corollary 3.8. Let A and B be CS algebras over F such that [A] = [B] in Br(F). Then the field extension F(SB(A))/F is excellent if and only if F(SB(B))/F is excellent. \Box **Corollary 3.9.** Let A be a CS algebra over F and let $A\{2\}$ denote the 2-prime component of A. Then the following conditions are equivalent:

- 1) The field extension F(SB(A))/F is excellent,
- 2) The field extension $F(SB(A\{2\}))/F$ is excellent. \Box

Theorem 3.10. Let A be a CS algebra over F. Let X = SB(A). The following conditions are equivalent:

- 1) F(X)/F is universally excellent,
- 2) ind(A) is not divisible by 4.

In other words, the field extension F(SB(A))/F is universally excellent only in the following two cases: 1) index of A is odd; 2) algebra A has the form $Q \otimes_F D$, where Q is a quaternion algebra and the index of D is odd.

Proof. 1) \Rightarrow 2). Suppose that deg(A) has the form deg(A) = 4k. Let $Y = SB(A, k) \times SB(A^{\otimes 2})$ and K = F(Y). Obviously $ind(A_K) \leq 4$ and $2[A_K] = 0$. By the Blanchet's index reduction formula (see [Bla] or [MPW]), we have $ind(A_K) = 4$. Hence there is a biquaternion algebra \widetilde{A} over K such that $[A_K] = [\widetilde{A}]$. It follows from Theorem 3.3, that there is a field extension E/K such that $E(SB(\widetilde{A}))/E$ is not excellent. By Corollary 3.8 the field extension E(SB(A))/E is not excellent too.

2) \Rightarrow 1). In view of Corollary 3.9, we can suppose that A as a division algebra and deg $A = 2^n$. Since ind(A) is not divisible by 4, we see that A is a quaternion algebra or A = F. Hence F(SB(A))/F is universally excellent. \Box

For algebras of index 8 we have the following

Theorem 3.11. Let A be a CS algebra of index 8 and exponent 2. Then the field extension F(SB(A))/F is not excellent.

Since any algebra of index 8 and exponent 2 is Brauer equivalent to a 4-quaternion algebra, it suffices to prove the following lemma.³

Lemma 3.12. Let $A = (a_1, b_1) \otimes_F (a_2, b_2) \otimes_F (a_3, b_3) \otimes_F (a_4, b_4)$ be a 4-quaternion algebra over F such that ind $A \ge 8$. Then the field extension F(SB(A))/F is not excellent.

In the proof of this lemma we will use the following deep theorem.

Theorem 3.13. (see [EKLV, Corollary 9.3]) Let ϕ be a quadratic form over F such that ind $C(\phi) \ge 8$. Let $K = F(SB(C(\phi)))$. Then $\phi_K \notin I^4(K)$ (and hence $[\phi_{F(SB(C(\phi)))}] \ne 0$).

Proof of Lemma 3.12. Let E = F(SB(A)) and $q \in I^2(F)$ be an arbitrary 10dimensional quadratic form such that c(q) = [A]. Since $q_E \in I^3(E)$ and dim $q_E =$ 10, the form q_E is anisotropic (see [Pf]). Hence there is $\gamma \in GP_3(E)$ such that $[q_E] = [\gamma] \in W(E)$. Suppose at the moment that the field extension E/F is excellent. Then γ is defined over F. It follows from Lemma 3.14 below that there is $\alpha \in GP_3(F)$ such that $\gamma = \alpha_E$. We have $[q_E] = [\gamma] = [\alpha_E]$. Let $\phi = q \perp -\alpha$. Then

³We adduce here the proof suggested by D. Hoffmann which is essentially shorter than the original author's proof.

 $[\phi_E] = 0$. Since $\alpha \in I^3(F)$, it follows that $c(\phi) = c(q) = [A]$. Therefore the field extension $F(SB(C(\phi)))/F$ is equivalent to E/F. Hence it follows from $[\phi_E] = 0$ that $[\phi_{F(SB(C(\phi)))}] = 0$, which provides a contradiction to Theorem 3.13. \Box

Lemma 3.14. Let E/F be an excellent field extension and $\gamma \in GP_n(E)$ be a form defined over F. Then there is $\alpha \in GP_n(F)$ such that $\gamma = \alpha_E$.

Proof. Since γ is defined over F, there is $c \in D_E(\gamma) \cap F^*$. Then the form $\phi = c\gamma$ is an *n*-fold *E*-Pfister form which is defined over F. By [ELW, Proposition 2.10] there is an *n*-fold *F*-Pfister form β such that $\phi = \beta_E$. Setting $\alpha = c\beta$, we have $\gamma = \alpha_E$, $\alpha \in GP_n(E)$. \Box

§4. FIVE-EXCELLENCE OF F(SB(A))/F

Let n be a positive integer. We say that a field extension L/F is n-excellent if for any quadratic form ϕ over F of dimension $\leq n$ the quadratic form $(\phi_L)_{an}$ is defined over F. In this section we prove the following

Theorem 4.1. The field extension F(SB(A))/F is 5-excellent for any CS algebra A over F.

The following lemma is obvious.

Lemma-definition 4.2. Let A be a CS algebra. Let us construct an algebra $A_{(2)}$ in the following way. We set $A_{(2)} = F$ if $\exp(A)$ is odd. If $\exp(A)$ is even we let $A_{(2)}$ be a division algebra such that $[A_{(2)}] = \frac{\exp(A)}{2} [A]$.

The algebra $A_{(2)}$ is subject to the following properties:

- 1) $[A_{(2)}] \in Br_2(F)$,
- 2) For any $m \in \mathbb{Z}$ such that $m[A] \in Br_2(F)$ we have $m[A] = [A_{(2)}]$ or m[A] = 0.
- 3) If $m \in \mathbb{Z}$ is a minimal positive integer such that $m[A] \in Br_2(F)$ then $m[A] = [A_{(2)}]$. \Box

Lemma 4.3. Let q be an anisotropic Albert form and A be a CS algebra. Let E = SB(A). Suppose that q_E is isotropic. Then there is $\pi \in P_2(F)$ such that $[A_{(2)}] = c(\pi) + c(q)$. Moreover if $c(q) = [A_{(2)}]$ then q_E is hyperbolic. If $c(q) \neq [A_{(2)}]$, then $\dim(q_E)_{an} = 4$, and for any $s \in D_E((q_E)_{an})$ we have $(q_E)_{an} = s\pi_E$.

Proof. Since q_E is isotropic, we have $\operatorname{ind}(C(q_E)) \leq 2$. By the Schofield–Van den Bergh–Blanchet index reduction formula (see [Bla], [SV], or [MPW]) we have

$$\operatorname{ind}(C(q_E)) = \min{\operatorname{ind}(C(q) \otimes A^{\otimes m}) \mid m \in \mathbb{Z}}.$$

Hence there exists m such that $\operatorname{ind}(C(q) \otimes A^{\otimes m}) \leq 2$. Therefore there exists $\pi \in P_2(F)$ such that $c(q) + m[A] = c(\pi)$. Hence $m[A] = c(q) + c(\pi) \in \operatorname{Br}_2(F)$. By Lemma 4.2, we have $m[A] = [A_{(2)}]$ or m[A] = 0.

We claim that $m[A] = [A_{(2)}]$. Indeed, otherwise m[A] = 0, and hence $c(\pi) = c(q) + m[A] = c(q)$. However $ind(C(\pi)) \leq 2$ and ind(C(q)) = 4, a contradiction.

It follows from $m[A] = [A_{(2)}]$ that $[A_{(2)}] = c(q) + c(\pi)$. Since $[A_E] = 0$, we have $c(q_E) = c(\pi_E) + m[A_E] = c(\pi_E)$.

Case 1. $c(q) = [A_{(2)}]$: we have $c(\pi) = c(q) + [A_{(2)}] = 0$. Hence $c(q_E) = c(\pi_E) = 0$, i.e., q_E is hyperbolic.

Case 2. $c(q) \neq [A_{(2)}]$: It follows from Lemma 4.2 that $c(q) \neq m[A]$ for any $m \in \mathbb{Z}$. Therefore $c(q) \notin \{m[A] \mid m \in \mathbb{Z}\} = Br(E/F)$, i.e., q_E is not hyperbolic. Thus $\dim(q_E)_{an} = 4$. Since $c(q_E) = c(\pi_E)$, it follows that $(q_E)_{an} \equiv \pi_E \pmod{I^3(F)}$. By APH' we have $(q_E)_{an} \cong s\pi_E$ for any $s \in D_E((q_E)_{an})$. \Box

Lemma 4.4. Let ϕ be an anisotropic 5-dimensional quadratic form and A be a CS algebra over F. That $(\phi_{F(SB(A))})_{an}$ is defined over F

Proof. Let E = F(SB(A)). We can suppose that ϕ_E is isotropic. Let $s = -\det \phi$ and $q = \phi \perp \langle s \rangle$. If q is isotropic, then ϕ is a 5-dimensional Pfister neighbor. In this case ϕ is an excellent form (see [Kn2]). Then $(\phi_E)_{an}$ is defined over F. So we can suppose that q is an anisotropic Albert form. Then the conditions of Lemma 4.3 hold. Let $\pi \in P_2(F)$ be as in Lemma 4.3.

If $c(q) = [A_{(2)}]$, then q_E is hyperbolic and hence $[\phi_E] = [q_E] - [\langle s \rangle] = [\langle -s \rangle]$. Then $(\phi_E)_{an} = \langle -s \rangle$. Therefore $(\phi_E)_{an}$ is defined over F.

If $c(q) \neq [A_{(2)}]$, then $\dim(q_E)_{an} = 4$. Therefore $\dim(\phi_E)_{an} \ge \dim(q_E)_{an} - 1 = 3$. Since ϕ_E is isotropic we have $\dim(\phi_E)_{an} = 3$. Therefore $(q_E)_{an} = (\phi_E)_{an} \perp \langle s \rangle$. Hence $s \in D_E((q_E)_{an})$. By Lemma 4.3, we have $(q_E)_{an} = s\pi_E$. Let π' be a pure subform of π . Since $(\phi_E)_{an} \perp \langle s \rangle = (q_E)_{an} = s\pi_E = s\pi'_E \perp \langle s \rangle$, we get $(\phi_E)_{an} = (s\pi')_E$. Hence $(\phi_E)_{an}$ is defined over F. \Box

Proof of Theorem 4.1. Let E = F(SB(A)) and let τ be a quadratic form of dimension ≤ 5 over F. We need to verify that τ_E is defined over F. In view of Lemma 4.4, we can assume that dim $\tau \leq 4$. Since all forms of dimension < 4 are excellent, we can suppose that dim $\tau = 4$.

Let $\phi = \tau_{F(t)} \perp \langle t \rangle$ and $\xi = (\tau_E)_{an}$. We have $\xi_{E(t)} \perp \langle t \rangle = (\tau_{E(t)})_{an} \perp \langle t \rangle \cong (\phi_{E(t)})_{an} = (\phi_{F(t)}(SB(A)))_{an}$. By Lemma 4.4, $(\phi_{F(t)}(SB(A)))_{an}$ is defined over F(t). Hence $\xi_{E(t)} \perp \langle t \rangle$ is defined over F(t). It follows from Lemma 4.5 below that $\xi = (\tau_E)_{an}$ is defined over F. \Box

Lemma 4.5. Let E/F be a field extension and ξ be a quadratic form over E. Suppose that $\xi_{E(t)} \perp \langle t \rangle$ is defined over F(t). Then ξ is defined over F.

Proof. Let γ be a quadratic form over F(t) such that $\xi_{E(t)} \perp \langle t \rangle \cong \gamma_{E(t)}$. We can write $\gamma_{F((t))}$ in the form $\gamma_{F((t))} \cong \lambda_{F((t))} \perp t \lambda'_{F((t))}$ where λ and λ' are quadratic forms over F. Obviously $\xi_{E((t))} \perp t \langle 1 \rangle \cong \lambda_{E((t))} \perp t \lambda'_{E((t))}$. Since ξ and $\langle 1 \rangle$ are anisotropic, we have $\xi = \lambda_E$, $\langle 1 \rangle = \lambda'_E$. Hence ξ is defined over F. \Box

Theorem 4.6. Let A be a CS algebra over F. If $u(F) \leq 6$, then the field extension F(SB(A))/F is excellent.

Proof. Let E = F(SB(A)). Let q be an anisotropic quadratic form over F. We need to prove that $(q_E)_{an}$ is defined over F. By Theorem 4.1, we can assume that dim q > 5. Since $u(F) \leq 6$, we conclude that q is an anisotropic Albert form. Therefore the conditions of Lemma 4.3 hold. Let $\gamma \in I^2(F)$ be an anisotropic form such that $c(\gamma) = [A_{(2)}]$. Then $c(\gamma_E) = 0$ and hence $\gamma_E \in I^3(E)$. Since $u(F) \leq 6$, we have dim $\gamma \leq 6$. By APH, $[\gamma_E] = 0$.

It follows from Lemma 4.3 that $c(\pi) + c(q) = [A_{(2)}] = c(\gamma)$. Hence $[q] \equiv [\pi] + [\gamma]$ (mod $I^3(F)$). Since $u(F) \leq 6$, we have $I^3(F) = 0$. Hence $[q] = [\pi] + [\gamma]$. Therefore $[q_E] = [\pi_E] + [\gamma_E] = [\pi_E]$. Hence $(q_E)_{an} = (\pi_E)_{an}$. Since π is a Pfister form, we see that $(q_E)_{an} = (\pi_E)_{an}$ is defined over F. \Box

Corollary 4.7. Let A be a biquaternion division algebra over F. Then there is a field extension E/F such that A_E is a division algebra and the field extension E(SB(A))/E is excellent. \Box

Proof. By [Me2] there is a field extension E/F such that u(E) = 6 and A_E is a division algebra. \Box

Corollary 4.8. There exist a field F and a biquaternion division algebra A over F such that the field extension F(SB(A))/F is excellent. \Box

§5. Examples of nonexcellent field extensions F(SB(A))/F

In this section we give some explicit examples of nonexcellent field extensions F(SB(A))/F. The main tool for constructing these examples is the following assertion.

Lemma 5.1. Let $\mu_1, \mu_2, \mu_3, \mu'_1, \mu'_2, \mu'_3$ be anisotropic 2-dimensional quadratic forms over K. Let $\pi \in GP_2(K)$. Suppose that $\pi_{K(\mu_i)}$ is anisotropic for all i = 1, 2, 3. Let $\widehat{K} = K((x))((y))$ and $k, k' \in \widehat{K}^*$. Then

 $k(\mu_1 \perp x\mu_2 \perp y\mu_3) \perp k'(\mu'_1 \perp x\mu'_2 \perp y\mu'_3) \perp \pi_{\widehat{K}} \notin I^4(\widehat{K}).$

Proof. In view of Srpinger's theorem we can identify $W(\hat{K})$ with the direct sum $W(K) \oplus xW(K) \oplus yW(K) \oplus xyW(K)$. Moreover we can regard W(K) as a subring of $W(\hat{K})$.

Let $\phi = k(\mu_1 \perp x\mu_2 \perp y\mu_3) \perp k'(\mu'_1 \perp x\mu'_2 \perp y\mu'_3)$. Suppose at the moment that $\phi \perp \pi_{\widehat{K}} \in I^4(\widehat{K})$. Then $\phi \perp \pi_{\widehat{K}} \in GP_4(\widehat{K})$. Since $(\phi \perp \pi_{\widehat{K}})_{\widehat{K}(\pi)}$ is isotropic, it is hyperbolic. Hence $\phi_{\widehat{K}(\pi)}$ is hyperbolic. Therefore $\phi \in [\pi_{\widehat{K}}]W(\widehat{K})$.

Since $W(\widehat{K}) = W(K) \oplus x W(K) \oplus y W(K) \oplus x y W(K)$, we can write $[\phi]$ in the form $[\phi] = [\tau_1] + x[\tau_2] + y[\tau_3] + x y[\tau_4]$ where τ_i (i = 1, 2, 3, 4) are defined over K. Since all the forms μ_i , μ'_i (i = 1, 2, 3) have dimension 2, we have dim $\tau_i \leq 4$ (i = 1, ..., 4). Since

 $[\phi] \in [\pi_{\widehat{K}}]W(\widehat{K}) \cong [\pi]W(K) \oplus x[\pi]W(K) \oplus y[\pi]W(K) \oplus xy[\pi]W(K)$

we have $\tau_1, \tau_2, \tau_3, \tau_4 \in [\pi]W(K)$.

Suppose that there exists j such that $[\tau_j] \neq 0$. Since dim $\tau_j \leq 4$ and $\tau_j \in [\pi]W(K)$, we see that $\tau_j \sim \pi$. By the definition of ϕ , there exists i $(1 \leq i \leq 3)$ such that μ_i is similar to a subform in τ_j . Therefore μ_i is similar to a subform in π and hence the form $\pi_{K(\mu_i)}$ is isotropic, which yields a contradiction (see the assumptions of the lemma).

Therefore $[\tau_i] = 0$ for all i = 1, 2, 3, 4. Then $[\phi] = 0$. It follows from $\phi \perp \pi_{\widehat{K}} \in I^4(\widehat{K})$ that $[\pi_{\widehat{K}}] \in I^4(\widehat{K})$. Hence $[\pi] \in I^4(K)$. By APH the form π is isotropic, a contradiction. \Box

Corollary 5.2. Let r, s, u, v be elements of a field K and let $\pi \in P_2(K)$ satisfy the properties:

- 1) $c(\pi) = (r, u) + (s, v),$
- 2) π is anisotropic over the fields $K(\sqrt{u})$, $K(\sqrt{v})$, and $K(\sqrt{uv})$.

Let $q_1 = \langle \langle uv \rangle \rangle \perp -x \langle \langle u \rangle \rangle \perp -y \langle \langle v \rangle \rangle$ and $q_2 = \langle \langle uv \rangle \rangle \perp -xr \langle \langle u \rangle \rangle \perp -ys \langle \langle v \rangle \rangle$ be quadratic forms over $\widetilde{K} = K(x, y)$. Then $(q_1, q_2, \pi_{\widetilde{K}})$ is a special triple over \widetilde{K} and $\Gamma(\widetilde{K}; q_1, q_2, \pi) \cong \mathbb{Z}/2\mathbb{Z}$.

Proof. Obviously q_1 and q_2 are Albert forms. Since $c(q_1 \perp q_2 \perp \pi) = c(-q_1 \perp q_2 \perp \pi) = c(x_{\langle\!\langle} \langle u, r \rangle\!\rangle \perp y_{\langle\!\langle} \langle s, v \rangle\!\rangle \perp \pi) = (u, r) + (s, v) + c(\pi) = 0$, the triple $(q_1, q_2, \pi_{\widetilde{K}})$ is special. The quadratic forms $\mu_1 = \langle\!\langle uv \rangle\!\rangle$, $\mu_2 = -\langle\!\langle u \rangle\!\rangle$, $\mu_3 = -\langle\!\langle v \rangle\!\rangle$, $\mu'_1 = \langle\!\langle uv \rangle\!\rangle$, $\mu'_2 = -s\langle\!\langle u \rangle\!\rangle$, $\mu'_3 = -r\langle\!\langle v \rangle\!\rangle$, and π satisfy all the conditions of Lemma 5.1. Hence for any $k_1, k_2 \in \widehat{K} = K((x))((y))$ we have $k_1(q_1)_{\widehat{K}} \perp k_2(q_2)_{\widehat{K}} \perp \pi_{\widehat{K}} \notin I^4(\widehat{K})$. Therefore for any $k_1, k_2 \in \widetilde{K} = K(x, y)$ we have $k_1q_1 \perp k_2q_2 \perp \pi_{\widetilde{K}} \notin I^4(\widetilde{K})$. It follows from Lemma 3.1, that $\Gamma(\widetilde{K}; q_1, q_2, \pi_{\widetilde{K}}) = \mathbb{Z}/2\mathbb{Z}$. \Box

Remark 5.3. Under the assumptions of Lemma 5.2, we have $c(q_1) = (x, y) + (xw_2, yw_1)$ and $c(q_2) = (rx, sy) + (rxw_2, syw_1)$.

Lemma 5.4. Let $w_1, w_2 \in F^*$ be such that $w_1, w_2, w_2w_2 \notin F^{*2}$. Let K = F(t) be the field of rational functions in one variable. Let

$$r = -tw_1, \quad s = -tw_2, \quad u = t + w_1, \quad v = t + w_2, \quad and \quad \pi = \langle \langle t, w_1 w_2 \rangle \rangle.$$

Then $r, s, u, v \in K^*$ and $\pi \in P_2(K)$ satisfy all the conditions of Corollary 5.2.

Proof. 1) We have $(r, u) + (s, v) = (-tw_1, t+w_1) + (-tw_2, t+w_2) = (t, w_1) + (t, w_2) = (t, w_1w_2) = c(\pi).$

2) Let p(t) be equal to one of the polynomials $u = t + w_1$, $v = t + w_2$, or $uv = t^2 + (w_1 + w_2)t + w_1w_2$. We need to verify that π is anisotropic over the field $K(\sqrt{p(t)})$. Suppose that $\pi_{K(\sqrt{p(t)})}$ is isotropic. Then $p(t) \in D_F(-\pi')$ where $\pi' = \langle -t, -w_1w_2, tw_1w_2 \rangle$ is the pure subform of π (see [Sch, Ch. 4, Th. 5.4(ii)]). Therefore $p(t) \in D_{F(t)}(\langle t, w_1w_2, -tw_1w_2 \rangle)$. By Cassels-Pfister theorem⁴ there are polynomials $p_1(t), p_2(t), p_3(t) \in F[t]$ such that

$$p(t) = tp_1^2(t) + w_1 w_2 p_2^2(t) - tw_1 w_2 p_3^2(t)$$

$$= t(p_1^2(t) - w_1 w_2 p_3^2(t)) + w_1 w_2 p_2^2(t).$$
(5.5)

If $p(t) = t + w_1$, we have $w_1 = p(0) = w_1 w_2 p_2^2(0) \in w_1 w_2 F^{*2}$. Therefore $w_2 \in F^{*2}$, a contradiction. If $p(t) = t + w_2$, then $w_2 = p(0) = w_1 w_2 p_2^2(0) \in w_1 w_2 F^{*2}$. Then $w_2 \in F^{*2}$, a contradiction.

Let now $p(t) = t^2 + (w_1 + w_2)t + w_1w_2$. Since $w_1w_2 \notin F^{*2}$, it follows that $\deg(t(p_1^2(t) - w_1w_2p_3^2(t)))$ is odd and $\deg(p(t) - w_1w_2p_2^2(t))$ is even. We get a contradiction to the equation (5.5). \Box

⁴Note that the strong version of the Cassels–Pfister theorem assumes that all the coefficient of a quadratic form are polynomials of degree ≤ 1 . In the books of Lam [Lam] and Scharlau [Sch] a slightly relaxed version of the Cassels-Pfister theorem is adduced, in which all the coefficients of a quadratic form belong to F.

Corollary 5.6. Let $w_1, w_2 \in F^*$ and assume that $w_1, w_2, w_2w_2 \notin F^{*2}$. Let E = F(t, x, y) be the field of rational functions in 3 variables. Consider the quadratic forms

$$q_{1} = \langle \langle (t+w_{1})(t+w_{2}) \rangle \rangle \perp -x \langle \langle t+w_{1} \rangle \rangle \perp -y \langle \langle t+w_{2} \rangle \rangle,$$

$$q_{1} = \langle \langle (t+w_{1})(t+w_{2}) \rangle \rangle \perp xtw_{1} \langle \langle t+w_{1} \rangle \rangle \perp ytw_{2} \langle \langle t+w_{2} \rangle \rangle,$$

$$\pi = \langle \langle t,w_{1}w_{2} \rangle \rangle$$

and algebras

$$A_1 = (x, y) \otimes (x(t + w_2), y(t + w_1)),$$

$$A_2 = (-xtw_1, -ytw_2) \otimes (-xtw_1(t + w_2), -ytw_2(t + w_1)),$$

$$B = (t, w_1w_2)$$

over E. Then (q_1, q_2, π) is a special triple (and (A_1, A_2, B) is the corresponding special triple of algebras), and $\Gamma(E; A_1, A_2, B) = \Gamma(E; q_1, q_2, \pi) = \mathbb{Z}/2\mathbb{Z}$. \Box

Corollary 5.7. Let F be a field such that $|F^*/F^{*2}| \ge 4$. Let E = F(x, y, t) be the field of rational functions in 3 variables. Then there is a biquaternion algebra A over E such that the field extension E(SB(A))/E is not excellent.

Proof. Since $|F^*/F^{*2}| \ge 4$, it follows that there are $w_1, w_2 \in F^*$ such that w_1, w_2 , $w_1w_2 \notin F^{*2}$. Now it suffices to set $A = (x, y) \otimes (x(t+w_2), y(t+w_1))$. \Box

Lemma 5.8. Suppose that a field F satisfies the following condition: there exists $w \in F^*$ such that $w, w + 1, w(w + 1) \notin F^{*2}$. Let E = F(a, b, c) be the field of rational functions in 3 variables and define a biquaternion algebra A over E as $A = (a, b) \otimes (a + 1, c)$. Then the field extension E(SB(A))/E is not excellent.

Proof. Let E' = F(t, x, y) be the field of rational functions in 3 variables. Let $w_1 = w, w_2 = w + 1$. Let $A' = (x, y) \otimes (x(t + w_1), y(t + w_2)) = (x, y) \otimes (x(t + w), y(t + w + 1))$. All the conditions of Corollary 3.7 hold. Therefore the field extension E'(SB(A'))/E' is not excellent. Let us identify the fields E' = F(t, x, y) and E = F(a, b, c) by menas of the birational isomorphism $t \mapsto (a - w), x \mapsto ac$, $y \mapsto b$. We have

$$[A'] = (x, y) + (x(t+w), y(t+w+1)) \mapsto$$

$$\mapsto (ac, b) + (ac(a-w+w), b(a-w+w+1)) =$$

$$= (ac, b) + (c, b(a+1)) = (a, b) + (a+1, c) = [A].$$

Since the algebra A' maps to A, it follows that E(SB(A))/E is not universally excellent. \Box

Example 5.9. Let $E = \mathbb{Q}(a, b, c)$ be the field of rational function in 3 variables over \mathbb{Q} . Let $A = (a, b) \otimes (a + 1, c)$. Then the field extension E(SB(A))/E is not excellent.

Proof. It is sufficient to let w = 2 in Lemma 5.8. \Box

Proposition 5.10. Let E = F(a, b, c, d) be the field of rational functions in 4 variables. Then there is a special triple (A_1, A_2, B) over E such that $A_1 = (a, b) \otimes (c, d)$ and $\Gamma(E; A_1, A_2, B) = \mathbb{Z}/2\mathbb{Z}$.

Proof. Let F' = F(z) and E' = F(x, y, t, z) be fields of rational function in 1 and 4 variables correspondingly. Let $w_1 = 1-z$ and $w_2 = 1+z$. Obviously $w_1, w_2, w_1w_2 \notin (F')^{*2}$. It follows from Corollary 5.6 that there is a special triple (A'_1, A'_2, B') over E' so that $A'_1 = (x, y) \otimes (x(t+1+z), y(t+1-z))$ and $\Gamma(E'; A'_1, A'_2, B') \cong \mathbb{Z}/2\mathbb{Z}$. Now it is sufficient to identify the fields E = F(a, b, c, d) and E' = F(x, y, t, z) by means of F-birational isomorphism: $a \mapsto x, b \mapsto y, c \mapsto x(t+1+z), d \mapsto y(t+1-z)$. \Box

Corollary 5.11. Let E = F(a, b, c, d) be the field of rational functions in 4 variables and $A = (a, b) \otimes (c, d)$ be a biquaternion algebra over E. The field extension E(SB(A))/E is not excellent. \Box

Corollary 5.12. For any field F there exist a field extension E/F and a special triple of quadratic forms (q_1, q_2, π) over E such that $\Gamma(E; q_1, q_2, \pi) = \mathbb{Z}/2\mathbb{Z}$. \Box

Example 5.13. 1) Let $E = \mathbb{R}(a, b, c, d)$ be the field of rational functions in 4 variables over \mathbb{R} . Let $D = (a, b) \otimes_E (c, d)$ be a biquaternion algebra over E. Then the anisotropic part of the quadratic form $\langle -a, b, -ab, c, d(a-1), -cd(a-1) \rangle_{E(SB(D))}$ is not defined over E. Sketch of the proof: let K = F(u, v) and r = -1, s = u - 1, $\pi = (u - 1, uv)$. All the conditions of Corollary 5.2 hold. Let us identify the fields F(u, v, x, y) and F(a, b, c, d) by the rool $u \mapsto a, v \mapsto c, x \mapsto bc, y \mapsto d$. One can verify that $c(q_1) \mapsto (a, b) + (c, d)$ and $c(q_2) \mapsto c(\langle -a, b, -ab, c, d(a-1), -cd(a-1) \rangle)$.

2) Let K be an arbitrary finite generated field extension of the field \mathbb{Q} and let E = K(a, b, c) be the field of rational functions in 4 variables over K. Let $D = (a, b) \otimes_E (a + 1, c)$ be a biquaternion algebra over E. Then the field extension E(SB(D))/E is not excellent. (Sketch of the proof: By Lemma 5.8 it is sufficient to find $w \in K$ such that $w, w + 1, w(w + 1) \notin K^{*2}$.)

Appendix A. SURJECTIVITY OF $\bar{\varepsilon}_2 \colon H^3(F(X)/F, \mu_2^{\otimes 2}) \to \operatorname{Tor}_2 CH^2(X)$ FOR CERTAIN HOMOGENEOUS VARIETIES

The main goal of this Appendix is to prove the following theorem.

Theorem A.1. Let A and B be CS algebras of exponent 2 over a field F of characteristic $\neq 2$. Then the homomorphism $\bar{\varepsilon}_2$

$$\frac{\ker\left(H^{3}(F) \to H^{3}(F(SB(A) \times SB(B)))\right)}{[A]H^{1}(F) + [B]H^{1}(F)} \to \operatorname{Tor}_{2}CH^{2}(SB(A) \times SB(B))$$

is an isomorphism. Here $H^{i}(F)$ denotes $H^{i}(F, \mathbb{Z}/2\mathbb{Z})$.

In this section we will use the following notation and agreements.

- We identify the group $H^3(F, \mu_m^{\otimes 2})$ with the *m*-torsion subgroup of the group $H^3(F, \mathbb{Q}/\mathbb{Z}(2))$.
- For any field extension E/F we set $H^i(E/F, \mathbb{Q}/\mathbb{Z}(j)) = \ker(H^i(F, \mathbb{Q}/\mathbb{Z}(j))) \to H^i(E, \mathbb{Q}/\mathbb{Z}(j))$ and $H^i(E/F, \mu_m^{\otimes i}) = \ker(H^i(F, \mu_m^{\otimes i})) \to H^i(E, \mu_m^{\otimes i})).$
- Recall that $H^i(F) = H^i(F, \mathbb{Z}/2\mathbb{Z})$. For any field extension E/F we let $H^i(E/F) = \ker(H^i(F) \to H^i(E))$.

The proof of the following lemma is standard and we omit it.

Lemma A.2. Let X be a variety over F and let L/F be a finite field extension of degree m such that X_L is unirational. Then

1) $H^{i}(F(X)/F, \mathbb{Q}/\mathbb{Z}(j)) \subset H^{i}(L/F, \mathbb{Q}/\mathbb{Z}(j)),$ 2) $H^{3}(F(X)/F, \mathbb{Q}/\mathbb{Z}(2)) = H^{3}(F(X)/F, \mu_{m}^{\otimes 2}).$

Theorem A.3. (see [Ar1]). Let q be an Albert form over F. Then the homomorphism $H^3(F) \to H^3(F(q))$ is injective. \Box

Corollary A.4. Let q be an Albert form over F. Then the homomorphism

$$H^{3}(F, \mathbb{Q}/\mathbb{Z}(2)) \to H^{3}(F(q), \mathbb{Q}/\mathbb{Z}(2))$$

is injective.

Proof. Let X_q be the projective quadric hyper-surface defined by the equation q = 0. Let L/F be a quadratic field extension such that q_L is isotropic. Then the variety X_q is rational. It follows from Lemma A.2 that $H^3(F(X_q)/F, \mathbb{Q}/\mathbb{Z}(2)) = H^3(F(X_q)/F, \mu_2^{\otimes 2}) = H^3(F(q)/F)$. By Theorem A.3, we have $H^3(F(q)/F) = 0$. Hence $H^3(F(q)/F, \mathbb{Q}/\mathbb{Z}(2)) = 0$. \Box

We recall that a field F is said to be linked [Elm], [EL] if the following equivalent conditions hold.

- (a) The classes of quaternion algebras form a subgroup in the Brauer group Br(F).
- (b) All the algebras of exponent 2 have index ≤ 2 .
- (c) All the Albert forms over F are isotropic.

Lemma A.5. For any field F there exists a field extension E/F with the following properties:

- 1) The homomorphism $H^3(F, \mathbb{Q}/\mathbb{Z}(2)) \to H^3(E, \mathbb{Q}/\mathbb{Z}(2))$ is injective,
- 2) The field E is linked.

Proof. Let us define the fields $F_0 = F, F_1, F_2, \ldots$ recursively. We set F_i to be the free composite of all the fields of the form $F_{i-1}(q)$ where q runs over all Albert forms over F_{i-1} . Further we let $E = \bigcup_{i=1}^{\infty} F_i$. By Corollary A.4, the homomorphism $H^3(F, \mathbb{Q}/\mathbb{Z}(2)) \to H^3(E, \mathbb{Q}/\mathbb{Z}(2))$ is injective. By the construction, all Albert forms over E are isotropic. Hence the field E is linked. \Box

Proposition A.6. (cf. [Pe, Lemma 5.3]). Let A_1 , A_2 be two *F*-algebras of index ≤ 2 and let $X = SB(A_1) \times SB(A_2)$. Then

 $H^{3}(F(X)/F, \mathbb{Q}/\mathbb{Z}(2)) = [A_{1}]H^{1}(F, \mathbb{Q}/\mathbb{Z}(1)) + [A_{2}]H^{1}(F, \mathbb{Q}/\mathbb{Z}(1)).$

Proof. By [Kar2], the group $\text{Tor} CH^2(X)$ is trivial. Now it is sufficient to apply Theorem 1.8. \Box

Corollary A.7. Let A_1 , A_2 be F-algebras of index ≤ 2 and let $X = SB(A_1) \times SB(A_2)$. Then $2H^3(F(X)/F, \mathbb{Q}/\mathbb{Z}(2)) = 0$. \Box

Lemma A.8. Let A_1 and A_2 be algebras of exponent 2 and let $X = SB(A_1) \times SB(A_k)$. Then $2H^3(F(X)/F, \mathbb{Q}/\mathbb{Z}(2)) = 0$.

Proof. Let E/F be the field extension constructed in Lemma A.5. Since the homomorphism $H^3(F, \mathbb{Q}/\mathbb{Z}(2)) \to H^3(E, \mathbb{Q}/\mathbb{Z}(2))$ is injective, the homomorphism $H^3(F(X)/F, \mathbb{Q}/\mathbb{Z}(2)) \to H^3(E(X)/E, \mathbb{Q}/\mathbb{Z}(2))$ is injective too. Therefore it is sufficient to prove that $2H^3(E(X)/E, \mathbb{Q}/\mathbb{Z}(2)) = 0$. This assertion follows immediately from Corollary A.7 since any algebra over a linked field has index ≤ 2 . \Box

Proof of Theorem A.1. By Theorem 1.8 it is sufficient to verify surjectivity of $\bar{\varepsilon}_2$: $H^3(F(X)/F) \to \operatorname{Tor}_2 CH^2(X)$. By Lemma A.8, we have $H^3(F(X)/F, \mathbb{Q}/\mathbb{Z}(2)) \subset \operatorname{Tor}_2 H^3(F, \mathbb{Q}/\mathbb{Z}(2)) = H^3(F)$. Hence $H^3(F(X)/F, \mathbb{Q}/\mathbb{Z}(2)) = H^3(F(X)/F)$. By Peyre's Theorem 1.8, the homomorphism $\varepsilon : H^3(F(X)/F, \mathbb{Q}/\mathbb{Z}(2)) \to \operatorname{Tor} CH^2(F)$ is surjective. Since $H^3(F(X)/F, \mathbb{Q}/\mathbb{Z}(2)) = H^3(F(X)/F)$ it follows that the homomorphism $\varepsilon_2 : H^3(F(X)/F) \to \operatorname{Tor} CH^2(F)$ is surjective too. Hence $\bar{\varepsilon}_2$ is surjective. \Box

Corollary A.9. For any *F*-algebra *A* of exponent 2 the homomorphism $\bar{\varepsilon}_2$

$$\frac{\ker\left(H^{3}(F) \to H^{3}(F(SB(A)))\right)}{[A]H^{1}(F)} \to \operatorname{Tor}_{2}CH^{2}(SB(A))$$

is an isomorphism \Box

Remark A.10. The analog of Corollary A.9 for algebras of prime exponent p is proved in [Izh2].

Corollary A.11. Let A, B and C be algebras of exponent 2 over F such that $[A] + [B] + [C] = 0 \in Br_2(F)$. Let $X = SB(A) \times SB(B) \times SB(C)$. Then the homomorphism $\overline{\varepsilon}_2$

$$\frac{\operatorname{ker}\left(H^{3}(F) \to H^{3}(F(X))\right)}{[A]H^{1}(F) + [B]H^{1}(F) + [C]H^{1}(F)} \to \operatorname{Tor}_{2}CH^{2}(X)$$

is an isomorphism.

Proof. Let $Y = SB(A) \times SB(B)$. The vertical arrows in the commutative diagram

$$\begin{array}{ccc} H^{3}(F(Y)/F) & \xrightarrow{\varepsilon_{Y,2}} & \operatorname{Tor}_{2} CH^{2}(Y) \\ & & & \downarrow \\ & & & \downarrow \\ H^{3}(F(X)/F) & \xrightarrow{\varepsilon_{X,2}} & \operatorname{Tor}_{2} CH^{2}(X) \end{array}$$

are isomorphisms (see §1), hence we are done. \Box

Remark A.12. Let A_1, \ldots, A_k be *F*-algebras of exponent 2. Let $X = SB(A_1) \times \cdots \times SB(A_k)$. It is not true that the homomorphism

$$\frac{\ker\left(H^3(F) \to H^3(F(X))\right)}{[A_1]H^1(F) + \dots + [A_k]H^1(F)} \xrightarrow{\boldsymbol{\varepsilon}_2} \operatorname{Tor}_2 CH^2(X).$$
(A.13)

is bijective for an arbitrary collection of algebras A_1, \ldots, A_k of exponent 2. The following counterexample was constructed by E. Peyre.

Example A.14. (see Remark 4.1 and Proposition 6.3 in [Pe]). Consider an arbitrary field F such that $H^3(F) \neq 0$ and $\mu_4 \in F^*$. Let $(a, b, c) \in H^3(F)$ be an arbitrary nontrivial symbol. Then the quaternion algebras $A_1 = (a, b), A_2 = (b, c), A_3 = (c, a)$ yield the required counterexample, i.e., the homomorphism $\bar{\varepsilon}_2$ is not surjective.

Sketch of the proof. Applying Theorem 1.8, one shows easily that the homomorphism (A.13) is not surjective if there exists an element $u \in H^3(F, \mathbb{Q}/\mathbb{Z}(2))$ with the following properties: $u_{F(X)} = 0$, $2u \neq 0$, and $2u \in [A_1]H^1(F) + \cdots + [A_k]H^1(F)$ (one can verify that in this case $\varepsilon(u) \in \text{Tor}_2 CH^2(X)$ but $\varepsilon(u) \notin \text{im} \varepsilon_2$). To complete the proof it is sufficient to define $u \in H^3(F, \mathbb{Q}/\mathbb{Z}(2))$ as the image of the element $\{a, b, c\}$ by means of the following homomorphism

$$K_3^M(F)/4K_3^M(F) \xrightarrow{h_{3,4,F}} H^3(F,\mu_4^{\otimes 3}) \cong H^3(F,\mu_4^{\otimes 2}) \hookrightarrow H^3(F,\mathbb{Q}/\mathbb{Z}(2)).$$

Here $h_{3,4,F}$ is the norm residue homomorphism. \Box

Appendix B. A CRITERION OF UNIVERSAL EXCELLENCE FOR GENERIC SPITTING FIELDS OF QUADRATIC FORMS.

Definition B.1. Let E/F be a finitely generated field extension. We say that E/F is *universally excellent* if for any field extension K/F and for any free composite EK of E and K over F, the field extension EK/K is excellent.

Remarks. 1) By a free composite of K and E over F we mean the field of fractions of the factor ring $(K \otimes_F E)/\mathcal{P}$, where \mathcal{P} is a minimal prime ideal in $K \otimes_F E$. 2) In the case where X is a geometrically integral variety over F and E = F(X), a free composite EK is uniquely defined and coincides with K(X).

Let ϕ be a nonhyperbolic quadratic form over F. Put $F_0 = F$ and $\phi_0 = \phi_{an}$. For $i \ge 1$ let $F_i = F_{i-1}(\phi_{i-1})$ and $\phi_i = ((\phi_{i-1})_{F_i})_{an}$. The smallest h such that dim $\phi_h \le 1$ is called the *height* of ϕ . The *degree* of ϕ is defined to be zero if dim ϕ is odd. If dim ϕ is even then there is m such that $\phi_{h-1} \in GP_m(F_{h-1})$. In this case we set deg $\phi = m$.

The maint goal of this Appendix is to prove the following

Theorem B.2. Let ϕ be an anisotropic quadratic form over F and F_0, F_1, \ldots, F_h be a generic splitting tower of ϕ . Let s be a positive integer such that $s \leq h$. Then

- 1) If the field extension F_s/F is universally excellent then s = h.
- 2) The field extension F_h/F is universally excellent if and only if one of the following conditions holds:
 - (a) ϕ has the form $\langle\!\langle a, b \rangle\!\rangle \gamma$, where γ is an odd-dimensional quadratic form,
 - (b) $\phi \perp \langle -\det_{\pm} \phi \rangle$ has the form $\langle\!\langle a, b \rangle\!\rangle \gamma$, where γ is an odd-dimensional quadratic form,
 - (c) ϕ has the form $\langle\!\langle a \rangle\!\rangle \gamma$ where γ is an odd-dimensional quadratic form,
 - (d) there exist d ∉ F^{*2}, π ∈ P₂(F) and two odd-dimensional quadratic forms γ₁ and γ₂ such that the following conditions hold: π_{F(√d)} is anisotropic, the field extension F(π, √d)/F is universally excellent, and [φ] = [πγ₁] + [⟨⟨d⟩⟩γ₂]. In this case dim φ is even and det_± φ = d ∉ F^{*2}.

Remark B.3. We do not know whether there exist d and π (and hence the quadratic form ϕ) as in item (d) of Theorem B.2.

Definition B.4. Let q be a quadratic form and $k \ge 0$. We say that a field extension E/F is universal in the class of the field extensions over which the Witt index of ϕ is greater or equal to k (for short (ϕ, k) -universal) if the following conditions hold:

- 1) $i_W(\phi_E) \ge k$,
- 2) For any field extension K/F with $i_W(\phi_K)_{an} \ge k$ and for any free composite EK of the fields E and K over F, the field extension KE/K is purely transcendental.

Lemma B.5. Let q be a quadratic form and k be a positive integer. Let E_1/F and E_2/F be (ϕ, k) -universal field extensions. Then $E_1/F \stackrel{st}{\sim} E_2/F$.

Proof. By Definition B.4, E_1E_2/E_1 and E_1E_2/E_2 are purely transcendental. Hence $E_1/F \stackrel{\text{st}}{\sim} E_2/F$. \Box

Proposition B.6. (see [Kn1, Cor. 3,9 and Prop. 5.13]). Let ϕ be a quadratic form over F. Let F_0, F_1, \ldots, F_h be a generic splitting tower of ϕ . Let $k_s = i_W(\phi_{F_s})$ $(0 \leq s \leq h)$. Then the field extension F_s/F is a (ϕ, k_s) -universal.

Theorem B.7. (see [Izh1, Th. 1.1]). Let ϕ be an anisotropic form over F. The field extension $F(\phi)/F$ is universally excellent if and only if dim $\phi \leq 3$ or $\phi \in GP_2(F)$.

Lemma B.8. Let ϕ be a non hyperbolic quadratic form over F and F_0, F_1, \ldots, F_h be a generic splitting tower of ϕ . Let r be an integer such that $0 < r \leq h = h(\phi)$. Suppose that the field extension F_r/F is universally excellent. Then

1) For any s with $0 \le s \le r$, the field extension F_r/F_s is universally excellent. 2) r = h and deg $\phi \le 2$.

Proof. 1) Let F'_s and F'_r be "second copies" of the fields F_s and F_r . Let $k = i_W(\phi_{F_r})$. By Proposition B.6, both field extensions $F'_r F_s / F_s$ and F_r / F_s are (ϕ_{F_s}, k) -universal.

By Lemma B.5, we have $F'_r F_s / F_s \stackrel{\text{st}}{\sim} F_r / F_s$.

Since F_r/F is universally excellent and $F'_r/F \cong F_r/F$, it follows that F'_r/F is universally excellent too. Hence F'_rF_s/F_s is universally excellent. Since $F'_rF_s/F_s \stackrel{\text{st}}{\sim} F_r/F_s$ it follows that F_r/F_s is universally excellent.

2) Since F_r/F is universally excellent, it follows that F_r/F_{r-1} is universally excellent. lent. Let $\phi_{r-1} = (\phi_{F_{r-1}})_{an}$. We see that $F_{r-1}(\phi_{r-1})/F_{r-1}$ is universally excellent. It follows from Theorem B.7, that either dim $\phi_{r-1} \leq 3$ or $\phi_{r-1} \in GP_2(F_{r-1})$. In both cases dim $\phi_r \leq 1$, i.e., $r = h(\phi)$. Since dim $\phi_{h-1} = \dim \phi_{r-1} \leq 4$, it follows that deg $\phi \leq 2$. \Box

Notation B.9. Let ϕ be a quadratic form over F and F_0, F_1, \ldots, F_h be a generic splitting tower of ϕ . We denote by F_{ϕ} the field $F_h = F_{h(\phi)}$. For any field extension E/F, we let $E_{\phi} \stackrel{\text{def}}{=} E_{\phi_E}$.

Lemma B.10. Let ϕ be a quadratic form over F and E/F be a field extension. Then $EF_{\phi}/E \stackrel{st}{\sim} E_{\phi}/E$.

Proof. Let $k = [\dim \phi/2]$. The field extensions EF_{ϕ}/E and E_{ϕ}/E are (ϕ_E, k) -universal. By Lemma B.5, the proof is complete. \Box

Corollary B.11. Let ϕ be a quadratic form over F and E/F be a field extension. Suppose that the field extension F_{ϕ}/F is universally excellent. Then E_{ϕ}/E is universally excellent. \Box

Corollary B.12. Let $\phi \in I^3(F)$ a quadratic form such that the field extension F_h/F is universally excellent. Then ϕ is hyperbolic.

Proof. Suppose that ϕ is not hyperbolic. Since $\phi \in I^3(F)$, we have $\deg(\phi) \ge 3$. This contradicts to Lemma B.8. \Box

Corollary B.13. Let ϕ be a quadratic form over F and E/F be a field extension such that F_{ϕ}/F is universally excellent. Then for any field extension E/F the condition $\phi_E \in I^3(E)$ implies that ϕ_E is hyperbolic. \Box

Lemma B.14. Let ϕ and ψ be quadratic forms over F. The following conditions are equivalent: 1) $F_{\phi} \stackrel{st}{\sim} F_{\psi}$; 2) dim $(\phi_{F_{\psi}}) \leq 1$ and dim $(\psi_{F_{\phi}}) \leq 1$.

Proof. 1) \Rightarrow 2). Obvious; 2) \Rightarrow 1). It follows from Proposition B.6 and Definition B.4 that the field extensions $F_{\phi}F_{\psi}/F_{\psi}$ and $F_{\phi}F_{\psi}/F_{\phi}$ are purely transcendental. Hence $F_{\phi} \stackrel{\text{st}}{\sim} F_{\psi}$.

Examples B.15. 1) Let ϕ be an odd-dimensional quadratic form. Let $\psi = \phi \perp \langle -\det_{\pm}\phi \rangle$. Then $F_{\phi}/F \stackrel{st}{\sim} F_{\psi}/F$.

2) Let π_i be anisotropic m_i -fold Pfister forms $(m_1 < m_2 < \cdots < m_n)$. Let $\gamma_1, \ldots, \gamma_n$ be anisotropic odd-dimensional quadratic forms. Let ϕ be quadratic form such that $[\phi] = [\pi_1 \gamma_1] + \cdots + [\pi_n \gamma_n]$. Then $F_{\phi}/F \stackrel{st}{\sim} F(\pi_1, \ldots, \pi_n)/F$.

3) Let $\pi \in GP_n(F)$ and let γ be an odd-dimensional quadratic form. Let $\phi = \tau \gamma$. Then $F_{\phi}/F \stackrel{st}{\sim} F_{\pi}/F$.

Proof. 1) Since $\psi \in I(F)$, it follows that $\psi_{F_{\psi}}$ is hyperbolic. Hence $\dim(\phi_{F_{\psi}})_{an} = 1$. Since $\dim(\psi_{F_{\psi}})_{an} = 1$, we have $\dim(\phi_{F_{\psi}})_{an} \leq 2$. It follows from $\psi \in I^2(F)$ that

 $\dim(\phi_{F_{\psi}})_{\mathrm{an}} = 0$. By Lemma B.14, we have $F_{\phi}/F \stackrel{\mathrm{st}}{\sim} F_{\psi}/F$.

2). Obviously $\phi_{F(\pi_1,...,\pi_n)}$ is hyperbolic. Let $E = F_{\phi}$. It is sufficient to verify that $(\pi_1)_E, \ldots, (\pi_n)_E$ are hyperbolic. Suppose that there is *i* such that $[(\pi_i)_E] \neq 0$. Let *i* be the minimal integer such that $[(\pi_i)_E] \neq 0$. Obviously, $[(\pi_i\gamma_i)_E] \equiv [\phi_E] \equiv 0 \pmod{I^{m_i+1}(F)}$. Since dim γ is odd, we have $[(\pi_i)_E] \equiv [(\pi_i\gamma_i)_E] \equiv 0 \pmod{I^{m_i+1}(F)}$. By APH, we have $[(\pi_i)_E] = 0$, a contradiction.

3) It is sufficient to set n = 1 in previous example 2). \Box

The following lemma is a consequence of the index reduction formula [Me1].

Lemma B.16. (see [HR, Th. 1.6] or [Ho1, Prop 2.1].) Let $\phi \in I^2(F)$ be a quadratic form with $\operatorname{ind}(C(\phi)) \geq 2^r$. Then there is $s \ (0 \leq s \leq h(\phi))$ such that $\dim \phi_s = 2r + 2$ and $\operatorname{ind} C(\phi_s) = 2^r$. \Box

Lemma B.17. Let $\phi \in I^2(F)$ be a nonhyperbolic quadratic form such that the field F_{ϕ} is universally excellent. Then ind $C(\phi) = 2$.

Proof. By Corollary B.12, we have $\phi \notin I^3(F)$. Hence $\operatorname{ind} C(\phi) \ge 2$. Suppose that $\operatorname{ind} \phi \ge 4$. By Lemma B.16, there is s such that $\dim \phi_s = 6$. Therefore ϕ_s is an anisotropic Albert form. By Lemma B.8, the field extension F_s/F_h is universally excellent. Replacing F and ϕ by F_s and ϕ_s , we can suppose that ϕ is an anisotropic Albert form. Let $A = C(\phi)$. Clearly $F_{\phi}/F \stackrel{\text{st}}{\sim} F(SB(A))/F$. By Theorem 3.3, the field extension F(SB(A))/F is not universally excellent, a contradiction. \Box

Proposition B.18. Let $\phi \in I^2(F)$ be an anisotropic quadratic form. Then the following conditions are equivalent:

- 1) The field extension F_{ϕ}/F is universally excellent,
- 2) ϕ has the form $\langle\!\langle a, b \rangle\!\rangle \mu$, where μ is an odd-dimensional form.

Proof. 1) \Rightarrow 2). Suppose that the field extension F_{ϕ}/F is universally excellent. By Lemma B.17, we have ind $C(\phi) = 2$. Therefore there exists an anisotropic 2-fold Pfister form $\pi = \langle\!\langle a, b \rangle\!\rangle$ such that $[c(\phi)] = [c(\pi)]$. Let $E = F(\pi)$. Obviously $\phi_E \in I^3(E)$. By Corollary B.13, ϕ_E is hyperbolic. Hence there is γ such that $\phi = \langle\!\langle a, b \rangle\!\rangle \gamma$. Since $\phi \notin I^3(F)$, dim γ is odd.

2) \Rightarrow 1). Suppose that $\phi \cong \langle \langle a, b \rangle \rangle \gamma$, where γ is an odd-dimensional quadratic form. Let $\pi = \langle \langle a, b \rangle \rangle$. By Example B.15, we have $F_{\phi}/F \stackrel{\text{st}}{\sim} F_{\pi}/F$. By Arason's theorem, the field extension F_{π}/F is universally excellent. Hence F_{ϕ}/F is universally excellent. \Box

Proposition B.19. Let ϕ be an odd-dimensional anisotropic quadratic form. Then the following conditions are equivalent:

- 1) The field extension F_{ϕ}/F is universally excellent,
- 2) $\phi \perp \langle -\det_{\pm} \phi \rangle$ has the form $\langle \langle a, b \rangle \rangle \mu$, where μ is an odd-dimensional form.

Proof. Obvious by virtue of Proposition B.18 and Example B.15. \Box

Proposition B.20. Let ϕ be an even-dimensional anisotropic quadratic form with $d = \det_{\pm}(\phi) \neq 1 \in F^*/F^{*2}$. Then the following conditions are equivalent:

- 1) The field extension F_{ϕ}/F is universally excellent.
- 2) There exist $\pi \in GP_2(F)$ and odd-dimensional quadratic forms γ_1 , γ_2 such that $[\phi] = [\pi \gamma_1] + [\langle \langle d \rangle \rangle \gamma_2]$ and the field extension $F(\pi, \sqrt{d})/F$ is universally excellent.

Proof. 1) \Rightarrow 2). Let $L = F(\sqrt{d})$. Since F_{ϕ}/F is universally excellent, it follows that L_{ϕ}/L is universally excellent. If ϕ_L is hyperbolic, we set $\pi = 2\mathbb{H}$, which completes the proof. Suppose now that ϕ_L is not hyperbolic. By Lemma B.17, $\operatorname{ind}(C(\phi_L)) = 2$. Since $C(\phi_L)$ is defined over F, it follows that there is $\pi \in GP_2(F)$ such that $C(\phi_L) = C(\pi_L)$. Let $E = L(\pi) = F(\pi, \sqrt{d})$. Since F_{ϕ}/F is universally excellent, it follows that E_{ϕ}/E is universally excellent. We have $C(\phi_E) = C(\pi_E) = 0$. Hence $\phi_E \in I^3(E)$. It follows from Corollary B.13 that ϕ_E is hyperbolic. Therefore $[\phi] \in W(E/F) = [\pi]W(F) + [\langle\langle d \rangle\rangle]W(F)$. Choose γ_1 and γ_2 such that $[\phi] = [\pi\gamma_1] + [\langle\langle d \rangle\rangle\gamma_2]$. Since $\phi \notin I^2(F)$, the dimension of γ_2 is odd. Since $\deg C(\phi_L) = 2$,

the dimension of γ_1 is odd. By Example B.15, we have $F_{\phi}/F \stackrel{\text{st}}{\sim} E/F$. Therefore the field extension $E/F = F(\pi, \sqrt{d})/F$ is universally excellent.

2)⇒1). Obvious in view of Example B.15. \Box

Theorem B.2 is now an obvious consequence of Lemma B.8 and Propositions B.18, B.19, and B.20. \Box

Let ϕ be a non-degenerate quadratic form on an *F*-vector space *V* and *k* be a positive integer such that $k \leq \frac{1}{2} \dim V = \frac{1}{2} \dim \phi$. Let $X(\phi, k)$ be the variety of totally isotropic subspaces of dimension *k*. It is well known that $X(\phi, k)$ is geometrically integral if and only if $k = \frac{1}{2} \dim \phi$.

Suppose now that $k < \frac{1}{2} \dim \phi$. Clearly, the field extension $F(X(\phi, k))/F$ is a (ϕ, k) -universal. Therefore there exists r $(0 \leq r \leq h = h(\phi))$ such that the field extension $F(X(\phi, k))/F$ is stable isomorphic to F_r/F . Obviously r = 0 if and only if $k \leq i_W(\phi)$. In the case where $k > i_W(\phi)$, the integer r is defined by the condition $\dim(\phi_{r-1})_{\mathrm{an}} - 2 \geq \dim \phi - 2k \geq \dim(\phi_r)_{\mathrm{an}}$.

Theorem B.21. Let q be a quadratic form over F and $X(\phi, k)$ be the variety of totally isotropic subspaces of dimension k ($k < \frac{1}{2} \dim \phi$). The field extension $F(X(\phi, k))/F$ is universally excellent if and only if one of the following conditions holds:

- 1) $k \leq i_W(\phi)$
- 2) ϕ_{an} has the form $\langle\!\langle a, b \rangle\!\rangle \gamma$, where γ is an odd-dimensional quadratic form and $k = \frac{1}{2} \dim \phi 1$,
- 3) $\phi_{an} \perp \langle -\det_{\pm} \phi \rangle$ has the form $\langle \langle a, b \rangle \rangle \gamma$, where γ is an odd-dimensional quadratic form, and $k = \frac{1}{2} \dim(\phi 1)$,

Proof. Let r be such that $F(X(\phi, k)) \stackrel{\text{st}}{\sim} F_r/F$. If r = 0 then $k \leq i_W(\phi)$ and the proof is complete. Suppose now that r > 0. By Lemma B.8, we have $r = h = h(\phi)$ and $\deg(\phi) \leq 2$. Therefore $\dim \phi - 2k \leq \dim(\phi_{h-1}) - 2 \leq 2^{\deg \phi} - 2 \leq 2$. By the assumption of the theorem, we have $\dim \phi - 2k > 0$. Therefore $k = \frac{1}{2} \dim \phi - 1$ or $k = \frac{1}{2} (\dim \phi - 1)$. Since $\dim \phi_{h-1} \geq 2 + (\dim \phi - 2k) \geq 3$, it follows that \cdot either $\phi \in I^2(F)$, or $\dim \phi$ is odd. To complete the proof it is sufficient to apply Theorem B.2. \Box

References

- [Ar1] Arason, J. Kr., Cohomologische Invarianten quadratischer Formen, J. Algebra 36 (1975), 448–491.
- [Ar2] Arason, J. Kr, Excellence of $F(\phi)/F$ for 2-fold Pfister forms, Appendix II in [ELW] (1977), 492.
- [Bla] Blanchet, A., Function fields of generalized Brauer-Severi varieties, Commun. Algebra 19, No.1 (1991), 97-118.
- [Dr] Draxl, P. K., Skew Fields, vol. 81, London Math Soc., Lecture Note Series, Cambridge University Press, 1983.
- [CTS] Colliot-Thelene, J.-L.; Sujatha, R., Unramified Witt groups of real anisotropic quadrics, Jacob, Bill (ed.) et al., K-theory and algebraic geometry: connections with quadratic forms and division algebras. Summer Research Institute on quadratic forms and division algebras, July 6-24, 1992, University of California, Santa Barbara, CA (USA). Providence, RI: American Mathematical Society, (ISBN 0-8218-1498-2/hbk), Proc. Symp. Pure Math. 58, Part 2 (1995), 127-147.

- [Elm] Elman, R., Quadratic forms and the u-invariant. III, Proc. Conf. quadratic Forms, Kingston 1976, Queen's Pap. pure appl. Math. 46 (1977), 422-444.
- [EL] Elman, R.; Lam, T. Y., Pfister forms and K-theory of fields, J. Algebra 23 (1972), 181-213.
- [ELW] Elman, R.; Lam, T.Y.; Wadsworth, A.R., Amenable fields and Pfister extensions, Proc. of Quadratic Forms Conference (ed. G. Orzech) 46 (1977), Queen's Papers in Pure and Applied Mathematics, 445-491.
- [EKLV] Esnault, H.; Kahn, B.; Levine, M.; Viehweg V., The Arason invariant and mod 2 algebraic cycles, K-theory Preprint Archive (http://www.math.uiuc.edu/K-theory/), N°151.
- [Ge] Geel J., Applications of the Reimann-Roch theorem for curves to quadratic forms and division algebras, Preprint, Université catholique de Louvain, 1991.
- [H1] Hoffmann, D. W., Splitting of quadratic forms, I, Preprint (1995).
- [H2] Hoffmann, D. W., Twisted Pfister forms, Doc. Math. J. DMV 1 (1996), 67-102.
- [HR] Hurrelbrink, J.; Rehmann, U., Splitting patterns of quadratic forms, Math. Nachr. 176 (1995), 111-127.
- [Izh1] Izhboldin O. T., On the Nonexcellence of Field Extensions $F(\pi)/F$, Doc. Math. (Internet http://www.mathematik.uni-bielefeld.de/DMV-J/) 1 (1996), 127-136.
- [Izh2] Izhboldin O. T., Generalized Severi-Brauer variety and Galois Cohomology (Preprint 1996).
- [JR] Jacob, B.; Rost, M., Degree four cohomological invariants for quadratic forms, Invent. Math. 96, No.3 (1989), 551-570.
- [Kar1] Karpenko, N., Codimension 2 cycles on Severi-Brauer varieties, K-theory Preprint Archives (http://www.math.uiuc.edu/K-theory/), N°90, submitted to K-theory (1995).
- [Kar2] Karpenko, N., Codimension 2 cycles on products of Severi-Brauer varieties, to appear in Publications Mathématiques de la Faculté des Sciences de Besancon (1997).
- [Kn1] Knebusch, M., Generic splitting of quadratic forms, I, Proc. London Math. Soc. 33 (1976), 65-93.
- [Kn2] Knebusch, M., Generic splitting of quadratic forms, II, Proc. London Math. Soc. 34 (1977), 1-31.
- [Lam] Lam, T. Y., The algebraic Theory of Quadratic Forms, Massachusetts: Benjamin (revised printing 1980), 1973.
- [Lag] Laghribi, A., Formes quadratiques en 8 variables dont l'algèbre de Clifford est d'indice 8, to appear in K-Theory J. (1996).
- [LVG] Lewis, D.W.; Van Geel, J., Quadratic forms isotropic over the function field of a conic, Indag. Math. 5 (1994), 325-339.
- [Me1] Merkurev A. S., Simple algebras and quadratic forms, Math. USSR Izvestiya 38 (1992), 215-221.
- [Me2] Merkurev, A.S., Kaplansky conjecture in the theory of quadratic forms., Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova (Russian) 175 (1989), 75-89; English transl. in J. Sov. Math. 57, No.6 (1991), 3489-3497.
- [MPW] Merkurev, A. S.; Panin, I. A.; Wadsworth, A. R., A List of Index Reduction Formulas, Preprint(http://www.mathematik.uni-bielefeld.dc/sfb343/), Bielefeld SFB-343 Series, N°94-079.
- [MS] Merkurev, A S.; Suslin, A. A., The group K₃ for a field., Izv. Akad. Nauk SSSR Ser. Mat. (Russian) 54, No.3 (1990), 522–545; English transl. in Math. USSR, Izv. 36, No.3 (1991), 541–565.
- [Pe] Peyre, E., Products of Scveri-Brauer varieties and Galois cohomology, Jacob, Bill (ed.) et al., K-theory and algebraic geometry: connections with quadratic forms and division algebras. Summer Research Institute on quadratic forms and division algebras, July 6-24, 1992, University of California, Santa Barbara, CA (USA). Providence, RI: American Mathematical Society, (ISBN 0-8218-1498-2/hbk), Proc. Symp. Pure Math. 58, Part 2 (1995), 369-401.
- [Pi] Pirce, R. S., Associative Algebras, Springer-Verlag, New York, Heidelberg, Berlin, 1982.
- [Pf] Pfister, A., Quadratische Formen in beliebigen Körpern, Invent. Math. 1 (1966), 116-132.
- [Ro1] Rost, M., Hilbert 90 for K₃ for degree-two extensions, preprint (1986).

O. T. IZHBOLDIN

- [Ro2] Rost, M., Quadratic forms isotropic over the function field of a conic, Math Ann. 288 (1990), 511-513.
- [Sch] Scharlau, W., Quadratic and Hermitian Forms, Springer, Berlin, Heidelberg, New York, Tokyo, 1985.
- [Su] Suslin, A. A., Algebraic K-theory and norm-residue homomorphism, J. Soviet Math. 30 (1985), 2556-2611.
- [SV] Schofield, A.; Van den Bergh, M., The index of a Brauer class on a Brauer-Severi variety, Trans. Am. Math. Soc. 333, No.2 (1992), 729–739.
- [Sz] Szyjewski, M., The fifth invariant of quadratic forms, Algebra Anal. (Russian) 2, No.1 (1990), 213-234; English transl in Leningr. Math. J. 2, No.1 (1991), 179-198.

DEPARTMENT OF MATHEMATICS AND MECHANICS ST.-PETERSBURG STATE UNIVERSITY, PETROD-VORETS, 198904, RUSSIA

Current address: Max-Planck-Institut für Mathematik, Gottfried-Claren-Straße 26, D-53225 Bonn, Germany

Email adresses: oleg@mpim-bonn.mpg.de, oleg@izh.usr.pu.ru