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§ 1. Introduction

For a morphism cp: X~ Y of smooth varieties, if X is birationally isomorphie to

rp(X) via cp, there is a so---ealled double-point locus 01 cp consisting of those points of X

such that for each of them there exists an another point having the same image as its.

Kleiman and others [4] [5] [6] gave a formu1a for expressing the locus by ehern classes

of X and Y under an assumption of genericness.

Now we assume that X is a curve and cp is determined by a linear system ID I
which may have some base points and in the same time may be cp not birational.

Naturally in this case we can factor cp as the composition of abirational morphism and a

finite morphism, but as a double point how to distinguish the one which is caused by the

Ilfinite covering ll from the one caused by birational morphism?

In fact we can associate every point x with a unique codimension 1 subspace U(x)

of HO(X,L) even IL I has a base point, it turns out to be the image

rp(x) E IP(HO(X,L) v) . We lift this family of subspaces to. X )( X ; on each fiber the base

point y of U(x) simply means U(y) = U(x) . Therefore, on X)( X the locus

{(x,y) IU(x) = U(y)} will be splitted into two parts: the discrete part and the

l-dimensional part. The later one is taken as the locus of "finite covering" and the former
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one is the loeus of double points. Using tms maehinery we could discuss the loeus of

Weierstrass points of this family. We have not gone lurther on this direction.

Unfortunately we eould not give an explicit expression of the double-point lormula

for arbitrary linear system and arbitrary cnrve because of the technieal sake. Nevertheless,

for <p being birational we recover the classieal Plüeker formula.

§ 2. Double point

Let C be a smooth eurve over an algebraically closed field k of arbitrary

eharacteristie, D an effective divisor on C with L = t'(D) and V C HO(C,L) a linear

system with dimkV = r+l . Let B be the loeus of base-point of V ,then V determines

a morpmsm cp: C ---t pI . We a&sume that cp is not a eonstant morphism and henee

!J = [k(C) : k(cp(C))] < CD J Where k(C) and k( cp(C)) are the rational fields of C and

cp(C) respectively.

Let p, q be the first and the second projection frorn C x C to C respeetively. We

know from [7] there ia a eanonieal homomorphisID

Denoting the kerne! and the image of aO by E and BO respective!y we have the

following exact sequence

a°------i E ------i VC ° .B°------i ° (1)

Suppose x E C and 0 ~ !JO < !J1 < ... < JJr ~ d = deg D is the Schubert sequence
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of V at x j that means there exists a basis of V , denoted by fO, ... ,fr , such that

/JO IJr ..
fO= t + ... , ..., fr = t + ... , If we restnct V at x and identify Lx with t7x,C and

where t is a uniform parameter of t7 .x
jJ.

We wri te fi = t Ihi , then hi E t7x ia a unit. Hy (1) we aee that Ex ia generated by

Now let us consider the diagram

(C)(C) )( C (C)(C)

:/ ~Q
C)(C C)(C

~c~

We denote C)(C by Y and take it as a variety over C by p.

We have [2] the canonica.l morphism

m * • *where .9y /C(q L) = p.( t'y)(CY/Im+1 GD Q (q L)) ia the sheaf cf the relative

&Y/C
*m-principal of q L and 1& is the ideal for defining diagonal of Y)(CY .

Y/C

By the standard argument of Base Change Theorem (see e.g. [3]) we have
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Therefore by (1) we have an injective homomorphism

and then by compositing we have

* m *Am : p E ----+ 9Jy /C(q L) ,

* *in particular, AO: p E -----+ q L .

*Locally at a point (x,y) E CxC, e1'°o.,e span (p E)( ) = E over O( ) andr x,y x x,y
. fJi-fJO -1. J.'i-IJO-1

AO carnes e· = f. - t h.(t)hO (t)fO lnto f.(s) - t h.(t)hO (t)fO(s) E O( )'
1 1 1 1 1 x,y

where s is a uniform parameter of () C and hence (t,s ) is the system of Iocaly,

parameter of () ( ).x,y
For any m, A is simpIy the partial m-truncated Taylor sery of e. with respectm 1

to s. When restricting Am to the fiber p-1(x) ~ C , this is the canonical homomorphism

for linear systems spanned by fl'oo.,fr , Le.

So actually Am is a family of the canonical homomorphism which corresponds to

sub-linear system passing through point x E C (even x is a base point of V , there still

exists unique such a su'b--linear system.) Therefore the degeneracy of various Am will give

a family of same kind of Weierstrass points.

We shall investigate AO'
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Let the image, the kernel and cokernel of AO be GO' HO and Wo respectively.

The Fitting ideal FO = FO(Wo) defines a subscheme on CxC. As a scheme-theoretic

union Z = Zo U Zl ' where Zl is a divisor contained in Z and Zo is a zero dimensional

scheme which is the residual scheme oI Z1 in Z ([1]).

Definition (1) Z1 is the finite covering part of the double points of V .

(2) Zo ia the double-point part of V .

The reason for so naming Zl is from the following proposition.

Proposition 2.1

Proof. Since jJ = [k(C): k(cp(C))] , so for generic point y E cp(C) # cp-1(y) = jJ .

This means every point of <p-1(y) determines a same hyperplane in V as others. Then

there is a basis of the hyperplane fp ... tfr such ihat fi(xj ) = 0 , where

cp-l(y) = {x1"",xjJ} and 1 ~ i ~ r, 1 ~ j ~ jJ, and there is no point other than xj

making fj vanish for al1 i. Therefore #(p-1(y) n Zl) = jJ and the assertion follows.

It is worih noting that Zl and Zo both are symmetric respect to diagonal, that

means if (x,y) E Zi then (y,x) E Zi . Besides, we have &C CZl .

§ 3 Formula

We intend to compute Zo and try to express it by Chern classes of C and L. But

it seems difficult for a general case. For the time being we restrict our attention to the

case dim V = 3 , namely cp is a morphism from C to 1P2 .
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Theorem 3.1.

or

Remgk. If u ish twnal Md V hu not a base point, then Zl = I:. Md 1:.2 = KC II:. .

Therefore # p* [Zo] = (d-l)(d-2)-2g . When rp(C) has only nodes t P* [Zo] = 2· Je:

where K, denotes the number of nodes. So we have

lt turns out to be the classical Plücker formula.

* *Proof. In the present case rk E = 2 , and we have AO: p E ----t q L ---+ Wo . But

Z defined by FO(WO) is the zero locus oi a section 8: 0 CxC ---+ p*E ~ (q*L)-1 . Since

Zo is the residual scheme of Z1 in Z J then we have a diagram

Z1

1
Z c ~ Z .cxc
° 1 So 1

s

cxc I P E~*L-1

* * -1where So ia the Q-fiection of p E GD q L .
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Therefore by the residual intersection formula [1] we have

* *But C(p E} · C(p Ba} =1 , then the formula folIows.

Now we would like to give [Z1] an explanation. We have an exact sequence

*o----i HO --+ P E --+ GO --+ 0 .

*GO ' as a subsheaf of q L , is torsion-free and rk GO = 1 . HO has a resolution with

length 1, i .e.

* *o--+ HO ----i P E --+ q L ,

then the set where HO is not locally free has codimension ~ 3 , and hence HO islocally

free.

Lemma 3.2.

~. The proof is standard.

Since FO(WO} = GO~*L-1 , so it is the ideal sheaf for defining Z = Zo UZ1 . Let

* -1U = GxC - Zo . GO ~ q L has a locally free resolution on GxC, which is assumed to

be
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Then on U t

* -1 n
Cl(GO 8 q L ) n [CxC] = (Cl(FO)-e1(F1) + ... + (-1) C1(Fn)) n [C x C] . But Fi

islocally free on whole CxC, then the rlght hand of the equality is -[Z1] on CxC and

* -1
80 doea Cl(GO 8 q 1 ).

Since

* -1 * * -1 * * -1C1(GOGD q L ) = C1(p E)--e1(HO)-e1(q L ) =--e1(p BO)--e1(HO)-e1(q L ), by

* *Lemma [ZI] = (C1(p BO)+C1(HO)-e1(q L)) n [C)(C] .

Now suppose the gap sequenee for V is 0, b1, b2 [7].

Lemma 3.3. For the generie 2--subspace of V t the gap sequence is 0, b1 .

Proof. As a generle point of C we can choose a basis for V such that these

elements of basis have the following Taylor serles:

Then the generie 2--space generated by the linear combination of the basis has the property

we expected.

* b! *
Proposition 3.4. The morphism Ab! : p E ------+ Py /C(q L) is injective and the

image of Ai' i < b1 is isomorphie to GO'

Proof. Since for the generic fiber p-l(x)(p*E) I 1 = E 8 0c ,and E is a
p- (x) x x
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. b
1

generie 2-fipaee of V , then by Lemma 3.3 Ab I -1 : E S 0 C --+ .9C (L) is
I p (x) x

injeetive. Therefore aB a torsion-free sheaf the image of Ab has rank 2 and hence it is
I

*isomorphie to pE.

By the same reason as above the rank of image ol Ai i < bl is I and the natural

projection from Im Ai to GO is surjective, 80 that the kerne! ol the projection ia torsion

and heuce zero.

We now have the lollowing diagram

o 0

1o
On each fiber p-I(x) , the degeneracy ol j is the first part ol Weierstrass point lor E

x

[8] . Then the degeneracy of j , which is rationally equivalent to

* * *(bICl(q nC) + CI(q L)-ei (q L) - CI(HO)) n [Cx C] ,is simply the divisor of the first

part of Weierstrass points for the family E, denoted by W . In summary, we have

* * *Proposition 3.5. [ZI] + [W] + [p B] = b1q [KC] + q D ,where B is the
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divisor of base point, [KC] is the canonical divisor of C .
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