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§ 1. Introduction

For a morphism ¢: X —— Y of smooth varieties, if X is birationally isomorphic to
©(X) via ¢, there is a so—called double—point locus of ¢ consisting of those points of X
such that for each of them there exists an another point having the same image as its.
Kleiman and others [4] [5] [6] gave a formula for expressing the locus by Chern classes
of X and Y under an assumption of genericness.

Now we assume that X is a curve and ¢ is determined by a linear system |D|
which may have some base points and in the same time may be ¢ not birational.
Naturally in this case we can factor ¢ as the composition of a birationél morphism and a
finite morphism, but as a double point how to distinguish the one which is caused by the
"finite covering" from the one caused by birational morphism?

In fact we can associate every point x with a unique codimension 1 subspace U(x)
of HO(X,L) even |L| has a base point, it turns out to be the image
o(x) € [P(HO(X,L)V) . We lift this family of subspaces to, X x X ; on each fiber the base
point y of U(x) simply means U(y) = U(x) . Therefore, on X x X the locus
{(x,y)|U(x) = U(y)} will be splitted into two parts: the discrete part and the

1—dimensional part. The later one is taken as the locus of "finite covering' and the former
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one is the locus of double points. Using this machinery we could discuss the locus of

Weierstrass points of this family. We have not gone further on this direction.
Unfortunately we could not give an explicit expression of the double—point formula

for arbitrary linear system and arbitrary curve because of the technical sake. Nevertheless,

for ¢ being birational we recover the classical Plicker formula.

§ 2. Double point

Let C be a smooth curve over an algebraically closed field k of arbitrary
characteristic, D an effective divisor on C with L = ¢(D) and V C H(C,L) a linear
system with dimkV =r1+1 . Let B be the locus of base—point of V ,then V determines
a morphism ¢ : C — P’ . We assume that ¢ i8 not a constant morphism and hence
p= [k(C): k(¢(C))] < w, where k(C) and k(yp(C)) are the rational fields of C and
¢(C) respectively.

Let p, q be the first and the second projection from C x C to C respectively. We

know from [7] there is a canonical homomorphism
* 0

Denoting the kernel and the image of a;, by E and B, respectively we have the
8 g 0 0

following exact sequence

0 - E =VC :BO — 0 (1)

Suppose x € C and 0€ pu, < py < ... < < d=degD is the Schubert sequence
0 1 r
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of V at x; that means there exists a basis of V , denoted by fO""’fr , such that

Jr 7
fo=t 4., ., L=t 4. ifwerestrict V at x andidentify L_ with &_ ~ and
0 I x x,C

where t is a uniform parameter of o -

’j.
We write f, =t lhi , then h. € /_ is a unit. By (1) we see that E  is generated by

H1=Hy -1
e, =1 —t h, ()hy() ™y

.....

CxC CxC

We denote CxC by Y and take it as a variety over C by p.
We have [2] the canonical morphism

b P*Q*(q*L) — 5’%/(}(‘1*14) ,

* *x %
where 2y jca 1) = Py ® Q (q L)) is the sheaf of the relative

4 oY/l
Y/C

*x
m—principal of q L and 1 A is the ideal for defining diagonal of YXCY .

Y/C
By the standard argument of Base Change Theorem (see e.g. [3]) we have
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* X *
PyQ (L) ¥p pul .
Therefore by (1) we have an injective homomorphism
* * %
pPE—ppqlL,
and then by compositing we have
* *
AL ipE— .?%,C(q L),

* *
in particular, AO :pE——qL.
*
Locally at a point (x,y) € CxC, €yy--€, span (p E)(x'y) =E_ over a(x’y) and

: 2 N PR BiHo -1
where § is a uniform parameter of ay ¢ and hence (t,8) is the system of local
parameter of 0(x'y) .
For any m, Am is simply the partial m—truncated Taylor sery of & with respect
to 8. When restricting A_ to the fiber p—l(x) ~ C, this is the canonical homomorphism
for linear systems spanned by fl,...,fr ,i.e

{f,£} 8, 0 — 2E(L) .

So actually Am is a family of the canonical homomorphism which corresponds to
sub—linear system passing through point x € C (even x is a base point of V , there still
exists unique such a sub—linear system.) Therefore the degeneracy of various A m Will give
a family of some kind of Weierstrass points.

We shall investigate Ao .
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Let the image, the kernel and cokernel of AO be G0 , HO and W0 respectively.
The Fitting ideal = FO(WO) defines a subscheme on CxC . As a scheme—theoretic
union Z = Z0 U Z1 , where Z1 is a divisor contained in Z and Z0 is a zero dimensional

scheme which is the residual scheme of Z; in Z ([1]).

Definition (1) Z; is the finite covering part of the double points of V.
(2) 2, is the double—point part of V.

The reason for s0 naming Z1 is from the following proposition.
Proposition 2.1 p«[Z,] = u[C] .

Proof. Since = [k(C): k(¢(C))] , 8o for generic point y € (C) # ¢ “(y) = £.
This means every point of <p_1(y) determines a same hyperplane in V as others. Then
there i8 a basis of the hyperplane fl,...,fr such that fi(xj) =0, where
qp—l(y) = {xl,...,xp} and 1<i<r, 1<j< u,and thereis no point other than X;
making f; vanish for all i . Therefore #(p—l(y) N Z;) = p and the assertion follows.

It is worth noting that Z1 and ZO both are symmetric respect to diagonal, that
means if (x,y) € Z; then (yx) € Z, . Besides, we have 4~ CZ, .
§ 3 Formula

We intend to compute Z0 and try to express it by Chern classes of C and L. But

it seems difficult for a general case. For the time being we restrict our attention to the

case dim V = 3 , namely ¢ is a morphism from C to P2 .



Theorem 3.1.

[Z,] = C,(p By)C,(a L) - (Cy(p By) + 2C,(a L)) n [2,] — [2,12,

or

P+ [Z,] = (d-#)(D-B) — 2p4(C,(a L) N [Z,1) - ps[2,1? .

Remark. If  is birational and V has not a base point, then Z, = A and A% = Ko|a-
Therefore # px [ZO] = (d-1)(d—2)—2g . When ¢(C) has only nodes, p«[Zy] =2+«

where x denotes the number of nodes. So we have

.= (d—1)sd—2) .

It turns out to be the classical Pliicker formula.

*
Proof. In the present case rk E = 2, and we have AO :p E—q L——»W0 . But
* X _
Z defined by FO(WO) is the zero locus of a section s : Ocxc— P E® (q L) 1 Since

Z is the residual scheme of Z, in Z , then we have a diagram

Z, = > Z » CxC

8

" 5 * -1
CxC————p E& L

* *_ _
where S0 is the O—sectionof p E®q L 1



.

Therefore by the residual intersection formula [1] we have
* * —1 2 * -1 2
C2(P E@ L )= [20] —Cl(p E@ L )N [Z]_] + [ZI] .

* *
But C(p E) - C(p BO) =1, then the formula follows.

Now we would like to give [Zl] an explanation. We have an exact sequence
*
0——»H0——rp E——rGO——rO .

x
G0 , as a subsheaf of q L, is torsion—free and rk G0 =1. H0 has a resolution with

length 1, i.e.
* *
O—bHO———rp E—qlL,

then the set where H0 is not locally free has codimension 2 3, and hence HO is locally
free.

Lemma 3.2. C,(G,8 LY n [CxC] = —[2,]
Proof. The proof is standard.

* _

Since F(W,) = G® L, s0 it i the ideal sheaf for defining Z = Z, U 2, . Let
U=CxC- ZO . G0 ® q"‘L'"1 has a locally free resolution on CxC , which is assumed to
be

1

—s0 .

*
0—F —F ,—.—F;—G;®qL




Thenon U,
* -1 A
C1(Gy®q L) n [CxC] = (C{(Fy)-Cy(Fy) + ... + (-l)nCI(Fn)) N [CxC].But F,
is locally free on whole CxC , then the right hand of the equality is _[ZI] on CxC and
¥ _
s0 does C;(G,®q 177).
Since
* -1 * * -1 * * -1
Cl(Go ®@qL )= Cl(f E)_Cl(Ho)_C]_(q*L )= _Cl(P Bo)_cl(Ho)_Cl(q L"), by
Lemma [Z;] = (C(p By)+C,(Hp)—C,(q L)) n [CxC] .
Now suppose the gap sequence for V is 0, b, b, [7].

Lemma 3.3. For the generic 2—subspace of V , the gap sequence is 0, b1 .

Proof. As a generic point of C we can choose a basis for V such that these

elements of basis have the following Taylor series:

fy=1+..
by
£, =Cy(dt) L+ ..

by
£, = Cyfdt) 2+ ..

Then the generic 2—space generated by the linear combination of the basis has the property

we expected.

* b *
Proposition 3.4. The morphism A, :p E—— Py} (¢ L) is injective and the
b, Y/C
image of A,, i <b, isisomorphic to Gy -

— *
Proof. Since for the generic fiber p 1(x)(p E) _1( ) =E ®05,and E_isa
P X
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b

generic 2—space of V , then by Lemma 3.3 A :E @0 — P 1(L) is
b1 p—l X C C

(x)
injective. Therefore as a torsion—{free sheaf the image of Ay has rank 2 and hence it is
1
*
isomorphicto p E.
By the same reason as above the rank of image of A, i <b, is 1 and the natural

projection from Im Ai to G0 is surjective, so that the kernel of the projection is torsion

and hence zero.

We now have the following diagram

0 0
l |

0— Hy—i 031;(13 (a'L)
[

* b]. *
0——p E-—t.?Y/C(q L)

I

b,—1
y G
0

0

On each fiber p_l(x) , the degeneracy of j is the first part of Weierstrass point for E_
[8]. Then the degeneracy of j, which is rationally equivalent to

(b,C,(a Ag) + C;(a L)=C,(a L) — C,(Hy)) N [CXC] , is simply the divisor of the first
part of Weierstrass points for the family E , denoted by W . In summary, we have

* * *
Proposition 3.5. [Z;] + [W] + [p B] =b;q [KC] + q D, where B is the



—10 —

divisor of base point, [K] is the canonical divisor of C .
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