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Abstract. In this note we classify compact symplectic manifolds M which
admit a Hamiltonian action of a compact Lie group G such that the quotient
space M /G has dimension 1. For a class of these manifolds we compute their
small quantum cohomology algebra. We also construct some symplectic
manifolds of cohomogeneity 2.

1. INTRODUCTION .

An action of a Lie group G on a manifold M is called of coho-
mogeneity & if the regular (principal) G-orbits have codimension &
in M. In other words the orbit space M/G has dimension k. It is
well-known (see e.g. [Kir]) that homogeneous symplectic manifolds are
locally symplectomorphic to coadjoint orbits of Lie groups whose sym-
plectic geometry can be investigated in many aspects [Gr, H-V, G-K].
Our motivation is to find a wider class of symplectic manifolds via
group approach, so that they could serve as test examples for many
questions in symplectic geometry (and symplectic topology). In this
note we describe all compact symplectic manifolds admitting a Hamil-
tonian action with cohomogeneity 1 of a compact Lie group. We always
assume that the action is effective. We also remark that 4-manifolds ad-
mitting symplectic group actions (of cohomogeneity 1 or of S'-action)
have been studied intensively by many authors, see {Au] for references.
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2 V. H. LE

Let us recall that if an action of a Lie group G on (M,w) preserves
the symplectic form w then there is a Lie algebra homomorphism

g =LieG 3 Vect, (M), (1.1)

where Vect, (M) denotes the Lie algebra of symplectic vector fields.
The action of G is said to be almost Hamiltonian if the image of
F. lies in the subalgebra Vectyay,(M) of Hamiltonian vector fields.

Finally, if the map F, can be lifted to a homomorphism g 4 C*(M,R)
(i.e. F.v = sgrad F,) then the action of G is called Hamiltonian. In
this note we shall prove the following theorem.

Theorem 1. Suppose that a compact symplectic manifold (M,w)
is provided with a Hamiltonian action of a compact Lie group G such
that dim M/G =1. Then M 1is diffeomorphic to a CP™-bundle over a
coadjoint orbit of G.

In other words, up to diffeomorphism, the only primitive compact
symplectic manifolds of cohomogeneity 1 are CP". The complete clas-
sification up to equivariant symplectomorphism of these symplectic
spaces shall be shown in section 2.

In section 3 we give a computation of (small) quantum cohomology
ring of some spaces admitting a Hamiltonian U,-action with cohomo-
geneity 1 and discuss its corollaries.

We also consider the case of a symplectic action of cohomogeneity 2.
In particular we get

Theorem 2. Suppose that a compact symplectic manifold M is pro-
vided with a Hamiltonian action of a compact Lie group G such that
dim M/G=2. Then all the principal orbits of G must be either (simul-
taneously) coisotropic or (simultaneously) symplectic. Thus a principal
orbit of G is either diffeomorphic to a T?-bundle over a coadjoint orbit
of G (in the first case) or diffeomorphic to a coadjoint orbit of G (in
the second case).

At the end of our note we collect in Appendix some useful facts of the
symplectic structures on the coadjoint orbits of compact Lie groups.

Acknowledgement. I would like to express my sincere thanks to
Dmitri Alekseevski, Michael Grossberg, Yuri Manin and Tien Zung
Nguyen for stimulating and helpful discussions.
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2. CLASSIFICATION OF COMPACT SYMPLECTIC MANIFOLDS
ADMITTING A HAMILTONIAN ACTION WITH COHOMOGENEITY 1
OF A COMPACT LIE GROUP.

It is known [B] that if an action of a compact Lie group G on a
compact oriented manifold M has cohomogeneity 1 (i.e. dim M/G
=1) then the topological space @ = M/G = w(M) must be either
diffeomorphic to the interval [0,1] or a circle S!. The slice theorem
gives us immediately that G(m) is a principal orbit if and only if the
image 7(G(m)) in Q is a interior point. In what follows we assume
that (M, w) is symplectic and the action of G on A is Hamiltonian.
Under this assumption the quotient Q is [0,1] (see the proof below).

Proposition 2.1. Let G{m) be o principal orbit of a Hamiltonian
G-action on (M*,w). Then G(m) is a S'-bundle over a coadjoint
orbit of G.

Proof. In this case there exists a moment map

M™ L gt < p(m),v >= F,(m). (2.1)

For a vector V € T.G(m) there is a vector v € g such that V =
sgradF, = %tzo(exptv). Hence we get

< 3. (V),w >=dF,(V) =< [w,v], p(m) > (2.2)

which implies that ¢ is an equivariant map. . Therefore the image
#(G(m)) of any orbit G(m) on M is an adjoint orbit G(¢(m)) C g*.

By the very definition the Hamiltonian vector field sgrad, on M**
associated to F, also generates the action of the subgroup ezp(tv) C G
on M.

Lemma 2.2. The preimage ¢~ {d(m)} is e closed submanifold of
dimension at most one in M. If the preimage has dimension one then
it is a orbit of a connected subgroup S), C G.

Proof. Clearly the preimage is a closed subset. We shall show that
its dimension is at most 1. Let V' be a non-zero tangent vector to the
preimage ¢~ {¢(m)} at z. Then V is also a tangent vector to G(m),
so we can assume that V = sgradF,(m) for some v € g. Clearly
¢.(V} = 0. Then for any a € g the following identities hold

0=< ¢u(V),a >E< [v,a], ¢(m) >= dF,(V). (2.3)

From (2.3) we conclude that V' annihilates the space span {dF, |a € g}
which has codimension 1 in T*M. Our claim on the manifold structure
follows from the fact that exp,tV C ¢~ '{#({m)}. This fact also yields
the last statement on the orbit structure of the preimage. Finally, the
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preimage is connected because the quotient ¢(G(m)) = G(m)/{¢7'}
is simply-connected (see Appendix) and G(m) is connected. O

G is compact we can identify the co-algebra ¢g* with ¢ via the Killing
form. From the well-known convexity property of the moment map (see
e.g. [Kiw]) we see that the quotient Q = M /G is canonically isomorphic
to the intersection of the image of the moment map ¢(M) with a Weyl
chamber W in a Cartan subalgebra LieT C g (alternatively we can

use Lemma 2.2 to get the isomorphism between two quotient spaces:
M/G and ¢(M)/G).

Proposition 2.3. There is a Hamiltonian S'-action on M such that
G(p(m)) is a symplectic reduction M//S*.

Proof. First we shall show that if G(m) is a principal orbit then the
image ¢(G(m)) is a topological S'-quotient of the orbit G(m) C M.
It suffices to show that there is a Hamiltonian S'-action on M which
preserves the orbit G(m) invariant and moreover the S'-orbit through
m € M coincides with the preimage ¢~ {¢(m)}. To find a Hamiltonian
function Hy which generates this S'-action we use the following simple
lemma which is a consequence of the fact that the orbits of Weyl group
action meet each Weyl chamber at precisely one point.

Lemma 2.4. For a linear interval I on the Weyl chamber W C
LieT, where LieT is a Cartan subalgebra of g, there exists a Weyl-
invariant smooth function 8y on IT such that dfy(v) # 0 for any v €
T.{I\ 8I} and moreover d6o(Tp;I) = 0.

Since sgrad Hy annihilates the space {dF, | a € g} the characteristic
flow sgrad Hy through m lies in the preimage ¢~'{#(m)}. Clearly the
symplectic form on M descends to a symplectic form on the quotient
G(m)/S' = ¢(G(m)) of G(m). We also note that the stabilizer St of
this coadjoint orbit ¢(G(m)) is the product G,, x S1, where G,, is the
stabilizer of the orbit G(m) C M. Finally to show that the R-action
generated by the Hamiltonian Hy descends to a S'-action we can use
the following simple lemma, a proof of it can be found in [McD-S].

Lemma 2.5. There s a compatible to w almost complex structure
J on M which is G-invariant.

So all the closed characteristic leaves on the same orbit G(m) have
the same length, henceforth we can easily construct a S'-action on M
which lifts to the above Hamiltonian R-action generated by Hp. O

Thus if an action of G on (M, w) is Hamiltonian with cohomogeneity
1 then the quotient space M/G can be identified with the intersection
of ¢(M) with a Weyl chamber. Hence G acts on the image ¢(M) of M
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with only at most three orbit types: a regular one G/Z(v) is the image
of a regular orbit G(m) C M and possibly other two orbit types G/Zmin
and G/Zy,q, which are also coadjoint orbits of G. By the Duistermaat-
Heckman theorem [ D-H] (see also [A-B]) the induced symplectic forms
on the reduced spaces G/Z(v) change linearly on t:

Wy = wy + fe. (26)

Here ¢ is the linear parameter on ¢(M)NW = @Q = [0, 1], and e is the
Euler class of the S'-bundle G/G,, = G/Z(v). Since the volume of
orbit G(¢(m)) tends to zero when ¢(m) tends to a point in a singular
(coadjoint) orbit, from (2.6) we conclude that the action of G on ¢(M)
has no more than one singular orbit. Note that the adjoint action has
no exceptional orbit on g. Henceforth we get

Lemma 2.6. There are only three posibilites:
I) Z(U) = Zmin = Zma:z:

II) Z(v) = Znin C Zmax

III) Z(v) & Znmoz C Zmin.

(Here “2 ” stands for conjugacy.)

Now we shall describe M according to three cases described in Lemma
2.6.

CASE I all symplectic quotients G(m)/S! are G-diffeomorphic. In
this case by dimension reason and the fact that G/Z(v) is simply-
connected, we see immediately that a singular orbit G(m') is G-diffeomorphic
to its image ¢(G(m')} = G/Z(v). To specify the G-diffeomorphism
type of M it is useful to use the notion of segment [A-A]. In our case
we just consider the gradient flow of the function Hy on M. After a
completion and a reparametrization we get a segment [s(t)], ¢ € [0, 1],
in M such that the stabilizer of all the interior point s(t),t € (0,1)
coincide with, say, G, and the stabilizers Gy and G, at singular points
5(0) and s(1) are G, x S§ and G,,, X S].

Lemma 2.7. There is an element g € G such that Ady(Gp) = Gm
and Ad,(S}) = St

Proof. Let v; be a generator of the Lie algebra of S! such that
||| = 1. Denote by T, the maximal torus in G,, and by Lie T, the
Cartan algebra of G,,. Then Ky = Lie T, @ vp is a Cartan algebra of
G. Since v, also commutes with Lie T}, there is a root « (respect to
Ko) such that oygicg,, = 0 and if o = 0 then v, is also in Ky and if
a # 0 then v, is in the Lie subalgebra L{c) generated by «. Thus if
a = 0 then vy = v, since vy is orthogonal to Lie G,, and we can take
g as Id. If & # 0 we have the inclusion vy € L{c) and we take g as an
element in the subgroup exp L{a) such that Ad,(v) = v,. O
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By the slice theorem a neighborhood of the singular orbits in M are
diffeomorphic to G X(gy,4) D? and G x(q, 4,) D? respectively, where
- ¢o, ¢ are the slice representations.

Proposition 2.8. In the case (I) M is G-diffeomorphic to G X (¢q,4)
D*#,G X, .41 D2, where x is G-equivariant diffeomorphism. In par-
ticular M is diffeomorphic to G x¢, S?, where Gy = G,, x 8! and the
left action of Gy on 5% is obtained via the composition of the projection
Go — S! with a Hamiltonian action of S' on T?. Here the action of
S on 8? is free outside two fized points.

Proof. We define the gluing map x with helps of the segment s(t).
Namely s(1/2) gives us G-equivariant map between G X, S' and G x¢,
S!. Hence follows the first statement.

To prove the second statement we first note that G x(g,,4,) D? is
diffeomorphic to G X(g,,¢,) D?, where the action ¢, of G on D? is
induced from the slice representation ¢; of G;. According to Lemma
2.7 the action ¢y and ¢, are conjugate through Ady: ¢, = ¢y 0 Ad,
thus we can write M = G X(g;,40) D*#..G X (Go,do) D?, where y; is
conjugate with x through the above identification (and using the fact
that two actions of S' on D? with only one fixed point at the origin
of D? are equivalent). The gluing map x; : G Xg, S = G x GyS!
is nothing else but the restriction of the action go. Now it is obvious
that M is diffeomorphic to G X(g,.¢,) S* as a S*-fibration over G/Go,
because the gluing map x can be extended to a diffeomorphism of the
whole manifold G x ¢, D? as the same action go.

To show that the action of S on S? is free outside two fixed points
we use the fact that the stabilizer subgroup G,, is connected. 0

Now let us compute the cohomology ring H*(M,R) ( for M in the
case I). Once we fix a Weyl chamber we get a canonical G-invariant
projection Iy ¢(M) — ¢(G(my)), where G(my) is a singular orbit in
M. Let j;= I, o ¢ denote the projection A — ¢(G(mo)) =2 G(my).
Let {z;, R1} denote the set of generators and relations in cohomology
ring H*(¢(G(mo)), R) (see [Bol, correspondingly Proposition A.4 in our
Appendix). Note that G(my) is the image of a section s : ¢(G(mp)) —
M of our $%bundle and in what follows we shall identify the base
#(G(mo) with ist section G(myg). Let f denote the Poincare dual of the
cohomology class [G(my)]. Let zp € H*(¢(G(my)), R) be the image
of the Chern class of the S'-bundle G(m) — G(my), where G(m) is a
regular orbit G/G,,.
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Proposition 2.9. We have the following isomorphism of additive
groups

H*(G x 70 S, R) = H*(G/Z(v),R) ® H*(S% R) (2.11).

The only non-trivial relation in the algebra H*(M,R) are R1, R2,
with
f(f - .’Eg) == 0 (R?)

Proof. The statement on the additive structure of H*(M) follows
from the triviality of the cohomology spectral sequence of our S2-
bundle. The relation (R.2) follows from the fact that the restriction of
(f — o) on the singular orbit G(myg) is trivial. Indeed from the identity

(PDy([G(mo)]))* = PDu([G(mo) N G(mo)]) = PDu[PDp ()]

we get that f2 = PDy[PDg(fo)], which imnplies that the restriction of
f? on G(my) coincides with zg. O

Remark 2.10. (i) If we take the other singular orbit G(m,) =
G /G, then the Chern class of the S'-bundle of G(m) — G(my) is -~z
(after an obvious identification G(mp) with G(m,) since G(m;) can be
considered as another section (at infinity) of our S2-bundle. It is also
easy to see that the restriction of f on G(m) is zero since G(mg) has
no common point with G(m,).

(ii) Given a S'-action on S? which is free outside two fixed points,
the space of S'-invariant measure on S? is parametrized by the space
of positive functions p on interval [0, 1]. Given any S'-invariant metric
Metg on S? there is unique S'-invariant symplectic form on S? in a
given positive class [w] € H*(S%L,R) : |(w] = Alwstand], A > 0 such
that w is compatible to Metg. We can write w = Ap(Z)wgiang, Where
p(z) is a positive S!-invariant function on S? which is the weight of the
measure defined by Mets and X is a positive constant on S2.

(iii) Any G-invariant metric on M = G X¢, D*#G X¢, D?* can be
parametrized by a 1-parameter family of G-invariant metrics on G/Z(v)
and a S'-invariant metric on the (G-invariant) fiber $2. In other words
the space of G-invariant metrics on M is 1-1 corresponding to the space
of G-invariant metrics in the image of M under the moment map ¢ and
the length of the preimage ¢~ {¢(mn)}.

Proposition 2.11. Let M?" be in the case I of Lemma 2.6 and let
us keep the notation of Proposition 2.8 for M . Then M?* admits a
G -equivariant symplectic form w in a class [w] € H*(M* R) if and
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only if [w] = 7*(z) + - f witha > 0, 2™ > 0 and (z + 7o) > 0.
In particular M 2 always admits a G-invariant symplectic structure.

Proof. Let [w] = j*(z) + o f with z € H*(G/Gy,R). Since the
restriction of f on G(m,) is trivial we have [W|iepn,) = 7 (Z)16(m)-
Since w is a symplectic form on G(m;) we get that (5*z)*~! > 0.
Considering the restriction of w to the singular orbit G(my) yields the
inequality (z + zo)"~! > 0. The condition that & > 0 follows from
the fact that the restriction of w on each fiber S? is positive. (Here we
assume that the orientation of M agrees with that of G(m) and the
frame (sgrad H, gradH). This proves the “only if” statement.

Now let us assume that the class [w] satisfies the condition in Propo-
sition 2.11. We know ([D-H]) that the reduced symplectic form wyeq on
on ¢(G(my)) is (z + (1 — t)xzp). Clearly all these cohomology classes
(z + tzg), 0 < ¢t < 1 are realized by G-invariant symplectic forms by
our condition (see also Remark A.5). We fix a G-invariant metric on
¢(M) which is compatible with these symplectic forms. According to
Remark 2.10 (iii) we can construct a G-invariant metric on M which
compatible with the G-invariant metric on ¢(M). Lifting on M we can
define the restriction @ of w to each orbit G(m). From the formula of
[D-H] (or see [A-B], [Au] ) we see that @ is a closed form on M which
reprensents the class [j*(z)] and by the construction, its restriction to
each orbit G'(m) has maximal rank. Next we note that the restriction of
w to each fiber S? represents a positive class - f and hence can be rep-
resented by the unique harmonic symplectic form Hy e - f. Using this
uniqueness (or using the fact that H e+ f minimizers the L?-energy in
the class of closed forms representing the same cohomology) we easily
get that Hpy - f has rank 2. Clearly the form w = @ + Hpra - f is the
required G-invariant symplectic form in the class [w].

The statement on the existence of a symplectic structure follows from
the fact that G/Gy always admits such a class z. Since we can multiply
z with a big positive constant A the class (z + tzo)*~! is also positive.
O

Proposition 2.12. Each G-invariant symplectic form on G X z(,) 52
is Kihler and each G-invariant symplectic form on G X z, D*#G X z, D?
is deformation equivalent to a monotone G-invariant symplectic form.

Proof. The statement on the existence of a Kihler structure follows
from the fact that G x z(,) S? is the projectivization of the holomorphic
vector bundle C; @ C,, where Z(v) acts on C; via the slice repre-
sentation and C, is the trivial line bundle. Clearly the first Chern
class ¢; € H2(M,R) of the tangent bundle 7'M is the sum of the two
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Chern classes: the pull-back from the base G/Z(v) and the other from
the fiber S2. It is well-known that any G-invariant symplectic form
on the base G/Z(v) is deformation equivalent to a monotone one (see
also Remark A.5 ). Using the same construction as in the proof of the
Proposition 2.9 we see that any G-equivariant symplectic form on M
is deformation equivalent to a monotone one. 0

CASES (II) and (III) (in Lemma 2.5). Clearly these cases are equiv-
alent by changing the sign of the function H. Thus we shall consider
the case (II): Z(v) = Zpin. In this case as before, by dimension rea-
son, the preimage ¢~ {@(m)}, where m € G/Gin, consists of only one
point. Hence we have G iy = Znmin. There is two possibilities for Gz

(11a): Grazr = Zmez- In other words the preimage of ¢~ {¢(m)},
where m € G/Gmaz, consists of one point. Note that Gree/Greg = Sk
by the slice theorem. On the other hand we have Z(v) = G, x S™.
Because Zpn,./Z(v) is always of even dimension we have Z,,./Z(v) =
CP'T.

(1 b): Zimaz = Gmaz x S'. In other words the preimage ¢~'{p(m)},
where m € G/Gpaz, consists of a circle. But in this case Zpnep/Z(v) =
(Graz X SY)/(Greg x S') = S™ by the slice theorem. Thus Z,4,/Z(v) =
S™. On the other hand since Z(v) is a subgroup of maximal rank
in Zyae the second homology of Z,,../Z(v) is non-trivial. Hence n
must be 2. Now let us consider the projection [T from M to G/Z;4c:
z — 7o ¢(x). Here ¢ is a moment map and 7 is the projection of
G/Z(v) = G/Zmaz- The fiber 17! is the sum D? x S'US? x D* = §*
(using the constrains on G{m) we easily see that (IT"'(II(m)))NG(m) =
5% x §'). Using the cohomology spectral sequence for a S*-bundle we
see immediately that M admits no symplectic structure. So this case
(IIb) actually never happens.

Lemma 2.13. In the case Ila we have the following decompositions:
Gumaz = SUy1 X Gy and Z, = S(U; x Uy) x Gy, where the inclusion of
Zy = Gag 15 standard.

Proof. By checking the table A.3 of possible coadjoint orbit types
we see that the pair (Z(v), Zynar = Ginae) in case (I a) can be only:

Serie A. Zpap = S(Uig1 X -+~ x Uy, ). Then Z{v) = S(U;x ' x -+ - x
Un,) and Gy = S(Up % -+ - Up,)-

Serie B, (D) Zmaz = Uz+1 X X 50211k+(1)1 Z('U) = U; X U1 e X
SOan+{l) and G,-eg = Un X s X SOghk.._(]).

Serie C. Analogous to B and D.
Exceptional case: the same (see Table A.3 in Appendix).
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If G is a product of compact Lie groups then its coadjoint orbits are
product of coadjoint orbits of each factor. Thus to prove Lemma 2.13
in general case it suffices to consider the above cases. a

The following Lemma is an analog of Proposition 2.8 and Proposi-
tions 2.9 and 2.11.

Lemma 2.14. Let M be in case Ila. Then M is G-equivariantly
diffeomorphic to G xg,... D*#G xg,.., D*™). Thus M is a CP**!-
bundle over G/Gpar- M always admits a G-invariant symplectic struc-
ture. Any symplectic form is deformation equivalent to a monotone
G -equivariant symplectic form.

Proof. The first statement follows from the existence of the slice rep-
resentation nearby the singular orbits. To prove the second statement
we consider the projection M — G/Guaz = z — ¢{z) — I(d(z)),
where IT is a canonical projection from ¢(M) to the singular coadjoint
orbit G/Guaz. We recall that this canonical projection can be chosen
using the intersection of ¢(M) with a Weyl chamber (see [Kir]). Clearly
the fiber of this projection is diffeomorphic to CP!. It is also easy to
describe the cohomology algebra of A/ by the method in Proposition
2.9. Namely we take f the Poincare dual to the singular orbit G/Gin
of codimension 2 in M. Clearly the restriction of f on the fiber CP" is
the generator of the cohomology group H%(CP™ R). Henceforth the
ring H*(M,R) is generated by {f,z;}, where z; are the pull-back of
the generators of the ring H*(G/Gaz, R). The relations in H*(M,R)
are those coming from the base G/Z(v} and from the extra relation
f™(f — zp) = 0. Here zy is the first Chern class of the complex vector
bundle associated with CP™ over G/G,pqz. To investigate the existence
of a G-invariant symplectic structure on A we use the Duistermaat-
Heckman theorem as in the proof of Proposition 2.11. Using the same

line of Proof of Proposition 2.12 we get the last statement of Lemma
2.14. a

Summarizing we get

Proposition 2.15. Suppose that M is prowvided with a Hamiltonian
action of a connected compact Lie group G such that dim M/G=1.
Then M is diffeomorphic to a CP"-bundle over a coadjoint orbit of G.
Conversely a CP™-bundle over a coadjoint orbit of G can be equipped
with a Hamiltonian action of G with dim M/G=1 if and only if M is
G-diffeomorphic to one of manifolds described in Proposition 2.8 and
Lemma 2.12.
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Remark 2.16. The case of a non-Hamiltonian symplectic action
with cohomogeneity 1 of a compact Lie group is a bit more combi-
natorially complicated. The main observation in this case is the fact,
analogous to Proposition 2.1, namely any principal orbit of such an
action is a S'-bundle over a homogencous symplectic action. A sim-
ple case when the quotient space ¢ = M/G is isomorphic to S' can
be done easily because in this case, according to Alekseevskis’theorem
[A-A, Proposition 4.4] M must be an extension of a primitive manifold
T'*1 with a free action of Zx x T* by means of group G and an epimor-
phism ¢ from a subgroup H C G Z; x T, where Zy x T! acts freely on
TH'I.

3. SMALL QUANTUM COHOMOLOGY OF SOME SYMPLECTIC
MANIFOLDS ADMITTING A HAMILTONIAN ACTION WITH
COHOMOGENEITY 1 OF U, .

Small quantum cohomology! (or more precisely the quantum cup-
product deformed at H?(M,C) € H*(M,C)) was first suggested by
Witten in context of quantum field theory and then has been defined
mathematically rigorous for semi-positive (weakly monotone) symplec-
tic manifolds by Ruan-Tian [R-T] (see also [M-S]) and recently for all
compact symplectic manifolds by [F-O}. We do not discuss its physical
meaning just emphasize that this quantum product structure is a defor-
mation invariant of symplectic manifolds and recently M. Schwarz has
derived a symplectic fixed points estimate in terms of quantum cup-
length [Sch]. Nevertheless there are not so much examples of symplectic
manifolds whose quantum cohomology can be computed (see [CF], [D],
[FGP], [G-K], [S-T}, [R-T], [W]). Donaldson’s computations are based
on Salamon’s theorem on the isomorphism between the instanton Floer
cohomology ring and the symplectic Floer cohomology ring. The main
difficult in computation is that it is not easy to “see” all the holomor-
phic spheres realizing some given homology class in Hy(M,Z). In this
section we consider only the case of M being a CP*-bundle over Gras-
mannian Gr(N) of k-planes in C¥: M = U(N) X w@yxu(n-k).¢) CP¥,
where ¢ acts on CP* through the embedding U(k) — U(k -+ 1). Thus
the generic orbit of G-action on M is U(N)/(U(k—1) x U(N —k}) and
its image under the moment map is symplectomorphic to the flag man-
ifold U(N)/(U(1) x U(k = 1) x U(N - k)). With respect to Lemma 2.9
we see that M belongs to the case (I) if and only if £ = 1, in this case
M is a toric manifold. We can also consider M as the projectivization

for a definition and a formal construction of full quantum cohomology see[K-M]
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of the rank (k + 1) complex vector bundle over Gri(N) which is the
sum of the tautological C*-bundle and the trivial bundle C. A special
case of such M is CP2#CP? whose quantum cohomology is computed
in [R-T (example 8.6)] (see also [K-M]}.

To compute the small quantum cohomology algebra of these spaces
we use several tricks well-known before [S-T], [R-T], [W] and the fact
that the projection to the base Gr.(/N) of a holomorphic sphere in M
is also a holomorphic sphere in Gri(N). Combining with some tech-
niques of the theory of area-minimizing surfaces (note that all holomor-
phic spheres are area-minimizing surfaces thus being holomorphic and
being globally minimal in a given homological class impose some extra
conditions on these spheres) we can solve this question in our cases
positively. 1t seems that by the same way we can give a recursive rig-
orous computation of small quantum cohomology ring of full or partial
flag varieties since any k-flag manifold is a Grassmannian bundle over
a (k —1)-flag manifold (see also [G-K], [CF], [FGP] on other approachs
to this problem).

Recall that [Bo] the cohomology algebra H*(Gr(N), C) is isomor-
phic to the factor-algebra of the algebra Clz1, - , zx]®Cly1, - - , Yn—k)
over the ideal generated by S,J}(N)(ml, < yn—k) (see Prop. A.4). Ge-
ometrically z; is i-th Chern class of the dual bundle of the tauto-
logical C*-vector bundle over Gri(N), and y; is i-th Chern class of
the dual bundle of the other complementary C¥—*-vector bundle over
Gri(N). Another description of H*(Gr¢(N),R) uses Schubert cells
which form an additive basis, the Schubert classes, in H*(Gri(N),R)
(see e.g. [FGP] and the references therein for the relation between two
approaches). Summarizing we have (see e.g [S-T], [M-S})

Clzy, -,z
H*(Gry(NV), ©) = —— s
<YN—k+1s " UN >
where yy_x4; = —zf‘;g"*" T;Yn—k+j—i (are defined inductively).

The first Chern class of T,Grr(N) is Nx;.

The quantum cohomology of Gry(N) was computed in [S-T] and
[W]. Now let us compute the quantum cohomology algebra QH* (M, C).
Denote by f the Poincare dual of the singular orbit U(N)/(U(1)xU{k—
1) xU(N —k) in M. Let z1,-- -,z be generators of GRx(N) as above.
It is easy to see that the first Chern class of T, M is (N —1)z+(k+1) f',
where f' = f + z;. Then the minimal Chern number of T, M is GCD
(N —1,k+1). It is easy to get (sce the previous section)
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C[f,.’??],"' amk]

< fk 'f(:yN—k+1:"' yYN >

According to a general principle for computing the small quantum
cohomology ring of a monotone symplectic manifold (M,w) we need
to compute only the quantum relations ([S-T], [W]). More precisely,
let g;(z1,- -, 2m) be polynomials generating the relations ideal of the
cohomology algebra H*(M,C) generated by {z}. Then z are also
generators of the small quantum algebra QH*(M,C) = H*(M,C) ®
Z[q) with the new relations §;(z) = ¢Pi(2;,q). Here ¢ is the quantum
variable, §; is the polynomial defined by g; with respect to quantum
product in QH*(M, C). Denote the quantum product by . There are
several equivalent approachs to small quantum cohomology but we use
notations (and formalism) in [M-S].

Theorem 3.1. Let M satisfies the condition 2(k+1) = N—1. Then
its small quantum cohomology Ting ts isomorphic to

H*(M,C) =

C[fzzlz”' ,fﬂk,‘ﬂ

H* (M) =
QH" (M) < fEx fl=q,yn—k+1," " Un—1, Y~ = (=1)FHg2 f >

Proof. By degree (dimension) argument we see that the only non-
trivial contributions to the quantum relations come from the mod-
uli spaces of holomorphic curves realizing the following elements in
Hy(M,Z). (3.1) : the homology classes [u] generating the homology
group Ho(CP* Z) = Z of the fiber CP*; (3.2) : class 2[u]; (3.3) :
class [v] which can be realized as a the holomorphic sphere on one
singular orbit G(m,) which is diffeomorphic to Grg(N) (see also the
previous section); finally the (exceptional classes) (3.4) : [v] — [u],
and (3.5) : 2([v] — [u]). Note that [u] and [v] are the generators of
Hy(M,Z)=Z & Z.

Let us consider the moduli space of holomorphic spheres in class
[u]. It is easy to see that with respect to the standard integrable
complex structure J on M the J-holomorphic spheres realizing this
class [u] are exactly the complex lines of the fiber CP*. One way to
show it is to use calibration associated to U{N)-invariant harmonic
2-form in the class f. It is easy to see (by the same argument as in
the previous section) that the integral surfaces corresponding to this
calibration should be in the fiber CP". Hence they must be com-
plex line in CP™. We can also use the curvature estimate in [L 1] to
show that the minimal sectional curvature distribution in M consists of
2-planes in the tangent space of the fiber CP*. Using the same curva-
ture estimate we have characterized the space of holomorphic spheres
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of minimal degree in complex Grassmanian and other complex sym-
metric spaces [L 1] as the space of Helgason spheres.) But the sim-
plest way to see it is to look at the projection of these holomorphic
spheres on the base Gri(N). A simple computation shows that the
virtual dimension of the moduli space M, (CP!, M) of J-holomorphic
spheres realizing [u] equals the real dimension of this space and equals
2(k+ 1) + 2k + 2N(N — k). We can also apply the regularity crite-
rion H'(CP?, f*(T.M)) = HY(CP!, f*(T.(CP™)) = 0. Here f is a
J-holomorphic map CP! — M and [ is its restriction on the fiber
CP", Now let us compute the new quantum relation related to class
[u]. First we note by dimension reason that in the new quantum rela-
tion fx(k times)*f * f' there is possibly only one non-trivial contribution
from M,(CP!, M). Secondly by the same dimension argument we see
that f *(k times) *f = f¥. Thus to prove the first quantum relation
in Theorem 3.1 it suffices to show the following relation between two
Gromov-Witten invariants (for definition of ®p, see [M-S]).

D) (PDu(f*), PDu(f), pt) = =®u(PDys(f*), PDps(zo), pt) (+ 1 )
3.1.1

To prove (3.1.1) we first note that the RHS of (3.1.1) is 1 since
PDp(zo) = 77" (PDg(zg)), where as in the previous section we denote
by j the projection of M to Gri(N). Hence, taking into account that
u 1s a “fiber” class we see immediately that there is no holomorphic
curve in class u which intersects j =1 (P Dpg(z) and goes through a given
(arbitrary) point.

To see the meaning of LHS of (3.1.1) first we fix a fiber CP* which
contains the given point pt. We observe that PDy(f) intersects with
each fiber CP* at a divisor CP*~!. Finally we note that PDy(f¥)
intersects with the fixed CP* at one point because f*([CP*!]) = 1.
Since there is exactly one complex line through the given two points
in CP™ (and this line always intersects the divisor CP*~! ¢ CP*) we
deduce that the LHS of (3.1.1) is 1.

Next we shall show that
D) (PDps(p), PDpr(yj-p), PDpgw]) = 0 (3.1.2)

Here the degree of w must be dim M + 2(k + 1) — 2j. Using the
formula PDy[5*(y)] = 7' PDply] for the Poincare dual of a pull-back
cohomology class of the base of a fiber bundle we observe that if (3.1)
is not zero then PDy{w]) N PDp(z,) N PDp(y,-p) # 0. But it is
impossible by the dimension reason.

Thus there remain possibly four other non-trivial contributions to
the quantum relations. The first one is related to the Gromov-Witten
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invariants
(I’[2u] (PDM(:B,,), PDy ('Uj—p): P Dy (w)), (3-2)
the second to the Gromov-Witten invariants
Gu)(PDp(zp), PDps(y-p), PDpr(w)), (3.3)

and the two other Gromov-Witten invariants related to the (excep-
tional) classes

Pro)-(w(PDa(2p), PDpt (y—p), P Dy (w)), (3.4)

(1)2([v]—[u]) (PDM(SBP), PDM (yj—p): PDM (w). (35)

Here in the cases (3.2), (3.3) and (3.5) the degree of w must be dim
M + 4(k + 1) — 27 and in case (3.4) the degree of w must be dim M
+ 2(k+ 1) - 2.

To compute (3.2) we use a generic almost complex structure Jyq,
nearby the integrable one. Thus the image of .J..,-holomorphic spheres
in class 2[u] must in a (arbitrary) small neighborhood of a complex line
in the fiber CP*, that is the projection of a J,e;-holomorphic sphere
in class [u] must be in a ball of radius €/2. Now we can use the same
argument as before. Since PDy(z,) N PDy;(y;—p, N PDy(w) = @ there
exists a positive € such that e-neighborhood of these cycles also do not
have a common point. Now looking at the projection of these cycles
on the base Gri(N) we conclude that the contribution (3.2) is zero.

In order to compute the contribution (3.3) we have to know the
moduli space of the holomorphic spheres in class [v] whose dimension is
dim M + 4(k+1) = dim Grg(N) + 6k+4 = dim Grg(N) + 2N+2(k-1).
All these holomorphic spheres can be realized as sections of CP*-bundle
over CP} where CP[})] is a holomorphic sphere of minimal degree in
Grie(N). Over this CP! the bundle CP* is the projectivization of sum
of (k + 1) holomorphic line bundle with Chern numbers being 0 and
(—1). We can check easily the dimension of this real space and the
Grothendieck regularity criterion. To show that they exhaust all the
holomorphic spheres in the class [v] we look at their projection on the
base Grg(N), or alternatively, use the calibration defined by the pull-
back of the U(V)-invariant 2-form realizing class zo € H*(Gri(N), R).
Now let us to compute (3.3) with j = N —1 or j = N (that are the
only cases which may enter in the quantum relations).

If j = N — 1 then the contribution in (3.3) must be 0 since we
know that on the base B = Gry(N) there is no holomorphic curve of
minimal degree which go through the cycle PDg(z,) and PDg(yn—p-1)
(by dimension reason).
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If j = N then there are two possibilities for PDys(w), namely they
are [u] and [v] - the generators of H*(M, Z).

If PDp(w) is a fiber u then the induction argument on Gry(N) ([S-
T}, [W]) shows that p in (3.3) must be k and there is unique (up to pro-
jection j holomorphic sphere in class [v] which intersects with PDp(zy)
and PDp(yn—x) and goes through the fixed point j(u), which is the
image of the cycle u. Hence we can reduce our computation in the
CP*-bundle over CP}; and get the number (—1)¥+".

If PDp(w) is a class [v] then using the fact that any two section in
the CP*-bundle over CP! has no intersection we also get the contribu-
tion number equal (—1)*¥*!. Thus the only non-trivial Gromov-Witten
invariants related to [v] are

P (PDy(ze), PDr(yn-x), [v]) = @puj(PDas (k) PDr(Yn—k), [?(g);l)(*l)kﬂ

Let us go to the moduli space of holomorphic spheres in the classes
[v] — [u]. It is easy to see that there is no J-holomorphic sphere in
this class because otherwise its area equals the value w([v] — [u]) and
hence is the same as the area of the complex line in the fiber. But our
maximal sectional curvature distribution shows that it is impossible.
Since the class [u]—[v] is indecomposable in the Gromov sense it follows
from the Gromov compactness theorem that for nearby generic almost
complex structure J;,, there is also no Ji,,-holomorphic sphere. Thus
the contribution in (3.4) is zero.

Finally we consider the contribution related to the class 2([v] — [u]).
This space is empty by the following reason. Suppose there is a J-
holomorphic sphere in the class 2(fu] — [v]). Then its projection to the
Grassmannian Grg(N) realizes the class 2[v]. Hence its arca must be
bigger than [v]. Finally by using the Gromov compactness theorem
we can show the existence of a regular almost complex structure J..,
nearby J such that there is no J,.,-holomorphic sphere. (We can use
the same argument for holomorphic spheres in the class ([v] — [u}).)

Summarizing we get that the only new quantum relations are those
involving (3.1.1) and (3.3.1). Note that f is defined uniquely by the
condition f(u) =1 = f(v). This completes the proof of Theorem 3.1.
a

Remark 3.2. Since the rank of Hy(M) is 2 it is more conve-
nient to take 2 quantum variables ¢;,q;. In this case our computa-
tions give a slightly different (formal) answer, namely f* x f' = ¢
and yy = (=1)*'(¢?fi + g2f;). Here fi and f, are the basis of
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Hom (H.(M,C),C) = H%(M, C) which is dula to the basis ([u], [v]) €
Hy(M,C).

Remark 3.3. Let M be a symplectic manifold as in Theorem 3.1.

(i) It follows immediately from Theorem 3.1 and Schwarz’s result
[Sch] that the any exact symplectomorphism on M has at least k + 1
fixed points.

(ii) It seems that after a little work we can apply the result in [H-V]
to show that the Weinstein conjecture also holds for those M.

4. COMPACT SYMPLECTIC MANIFOLDS ADMITTING SYMPLECTIC
ACTION OF COHOMOGENEITY 2

A direct product of (M;,w;) and (Ms,w,) is a symplectic manifold
which admits a symplectic action of cohomogeneity 2 provided that
either both (M;,w;) admit symplectic action of cohomogeneity 1 or
(M,,w;) is a homogeneous symplectic manifold and (M?,w,) has di-
mension 2. These examples are extremally opposite in a sense that, in
the first case the normal bundle of any regular orbit is isotropic, and
in the second case the normal bundle is symplectic.

Proposition 4.1. Suppose that en action of G on (M,w) is Hamil-
tonian and dim M/G = 2. Then either all the-principal orbits of G
are symplectic (simultaneously), or all the principal orbits of G are
coisotropic (stmultaneously). In the last case a principal orbit must be
a T?-bundle over a coadjoint orbit.

Proof. We consider the moment map ¢ : M — g* = g. By Kirwan
convexity theorem the intersection of ¢(M) with a Weyl chamber W
is a k-dimensional convex set P, where 0 < k < 2. Denote by ¢ o the
- map M — ¢(M)/G which factors through M/G and P° the interior
of P. Clearly if y € P° then [¢ o m]~'(y) contains only regular points
T € M, i.e. the orbit G(z) is principal. It follows that the preimage
¢~ 1{¢(m)} for all points m € [¢ o n]~'(P°) has a constant dimension
d. Since dimensions of G(m) and ¢(G(m)) are even d must be either 0
or 2. First we suppose that d = 0. Since G is connected all the other
principal orbit G(m') in M also must diffeomorphic to ¢(G(m)) by
dimension argument and Corollary A.2, hence all the principal orbits
are symplectic. Thus the first statement is proved. Now let us assume
that the “generic” dimension d of ¢~'{¢(m)} is 2. It is easy to see
that any tangent vector to ¢~ {¢(m)} is in kernel of the restriction of
w to G(m). Arguing as in the proof of Proposition 2.1 we see that its
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preimage admits 2 commutative nowhere zero vector fields sgrad F,,
and sgrad F,, . Thus it must be an isotropic torus. a

Remark 4.2. If the action of G is Hamiltonian and the principal
orbit is symplectic then the condition that ¢(M)/G is zero dimensional
1s equivalent to that fact that M is a direct product of a coadjoint orbit
and a 2-dimensional symplectic surface.

More generally we have

Proposition 4.3. Suppose that the action of G is Hamiltonian and
the principal orbit is symplectic and moreover the action of G on ¢(M)
has only one orbit type. Then M is G-diffeornorphic to a coadjoint
orbit of G bundle over a 2-dimensional surface .

The proof of Proposition 4.3 is very simple since in this case there
is also only one orbit type of G-action on M. Note that such a bundle
always admits a G-invariant symplectic structure. To prove the only
non-trivial statement in Remark 4.2 we consider the moment map M —
&(M), where ¢(M) is a coadjoint orbit. The projection M — ¥ and
the moment map ¢ defines a product structure on M.

If the principal orbits of G in M are coisotropic then P = ¢(M)/G
is always a 2-dimensional convex polytop.

Proposition 4.4. If the action of G on M is Hamiltonian and the
principal orbit of G is coisotropic then M-is diffeomorphic to the bundle
of ruled surface over a coadjoint orbit of G provided that the action of
G on ¢(M) has only one orbit type.

Proof. In this case M admits a projection 7 over a coadjoint orbit
¢(G(m)) with fiber 7~! being a symplectic 4-manifold. This symplec-
tic 4-manifold admits a T2-Hamiltonian action. Hence it must be a
rational or ruled surface (see[Au]). O

Appendix. Homogeneous symplectic spaces of compact Lie
groups.

First we recall a theorem of Kirillov-Kostant-Sourrie (see e.g. [Kir]).

Theorem A.l. A symplectic manifold admitting a« Hamiltonian
homogeneous action of a connected Lie group G is isomorphic to a
covering of a coadjoint orbit of G.

If G is a connected compact Lie group then all its coadjoint orbits
are simply-connected. Thus in this case we have the following simple
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Corollary A.2. A symplectic manifold admitting a Hamiltonian
homogeneous action of a connected compact Lie group GG is a coadjoint
orbit of G.

Table A.3. We present here a list of all coadjoint orbits of simple
compact Lie groups. Recall that a coadjoint orbit through v € g can
be identified with the homogeneous space G/Z(v) with Z(v) being the
centralizer of v in G. Element v in a Cartan algebra LieT* C g is
regular iff for all root @ of g we have «(v) # 0. In this case Z(v) = T* -
the maximal torus of G. If v is a singular element with o;(v) = 0 then
Lie Z(v) is a direct sum of the subalgebra in g generated by the roots ¢
and Lie T*. Looking at tables of roots of simple Lie algebra [V-O}] and
Dinkin schemes we get easily the following list (which perhaps could
be found somewhere else)

(A). If G = SUpyy then Z(v) = S(Up, x -+ x Uy, ), g =n+1.

(B,C,D). If G is in By, Z, or D, then Z(v) is a direct product
Un, X -+ Uy, x Gp with 7kGp + Y n; = rkG, and G, and G must be
from the same series B, C, D.

Analogously but more combinatorically complicated are the types of
Z(v) in the exceptional series. Notec that all the listed below groups
are simply connected.

(Es). Except the regular orbits with Z{v) = T°® we also have other
possible singular orbits with Z(v} = S(Uy, x -+ x Uy,) with n > 2,
Y k; =7 and T* x Sping_x with k = 1,2.

(E7). Analogously. Possible are also Z(v) = T x SU, x Spinyy and
Z('U) = Tl X Eﬁ.

(Es). Analogously. ( Possible are also T! x E; and T x SU; x Ej).

(Fy). Singular orbits can have Z(v) being T? x SU, x SU; or T* x
Spiny and T x Sps.

(G3) Except the regular orbit G,/T? there are also singular orbit,
G2/SU2 X Tl.

To compute the cohomology ring of G/Z(v) we use

Proposition A.4. [ Bo, Theorem 26.1). The cohomology alge-
bra H(G/Z(v),R) is a factor-algebra Sz(, over the ideal generated
by pR(SZE) which equals the characteristic subalgebra.

(ii) Let sy — 1,---,s,— 1 and correspondingly, ry — 1,--- ,r; — 1 be
degree of the generators in H*(G) and H*(Z(v)). Then the Poincare
polynom of G/Z(v) equals

(1= 451 .- (1 —49)
(l_tfl)...(]_t"l)
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Here S} is the subalgebra of G-invariant polynomials in g which is
generated by monomials of positive degree.

Remark A 5. All the G-invariant symplectic form on G/Z(v) are
compatible with the (obvious) G-invariant complex structure. Thus all
of them are deformation equivalent to a monotone symplectic form.

Remark A 6. For any symplectic form w on a homogeneous space
M? of a compact Lie group G the averaged form w® is a G-invariant
symplectic form in the same cohomology class with [w]. Thus the nec-
essary and sufficient condition for the existence of a symplectic form
in a cohomology class [w] € H?(M* R) is that [w]* > 0. As an-
other consequence we see that any homogeneous space of a compact
Lie group which admits a symplectic structure is diffeomorphic to a
homogeneous symplectic manifold. But it is not true for a compact
manifold of cohomogeneity 1, {or higher cohomogeneity). Example:
CP*#CP? admist a SU(3) action of cohomogeneity 1 (with no fixed
point) but no symplectic form invariant under this action.
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