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Introduction

The purpose of this article is to prove an explicit
invariant trace formula. In the preceeding paper (1(35)], we
studied two families of invariant distributions. Now we
shall exhibit these distributions as terms on the two sides
of the invariant trace formula. We refer the reader to the
introéuction of [1(3)], which contains a general discussion
of the problem. In this introduction, we shall describe the -
formula in more detail.

Let G be a connected reductive algebraic éroup over a number
field F , and let f be a function in the Hecke algebra
on G( A) . We already have a "coarse" invariant trace

formula

(1) EIO(f) = XIX(f) ,

0€0 X EX
which was established in an earlier paper [1(c)]. This will
be our starting point here. The terms on each side of (1)
are invariant distributions, but és they stand, they are not
explicit enough to be very useful. After. recalling the formula
(1) in § 2, we shall study the two sides separately in § 3
and § 4. These two paragraphs are the heart of the paper.
Building on earlier investigations of noninvariant distributions
({1(e)], [1(g)]), we shall establish finer expansions for each

side of (1). The resulting identity
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will be our explicit trace formula. The terms IM(er)‘ and

IM(ﬂ,f) in (2) are essentially the invariant distributions studied in

[1(3)]. The functioné aMfS,y) and aM(ﬂ) depend only on

a Levi subgroup M , and are global in nature. Theyv are strongly

dependent on the discrete subgroup M(F) of M( A) . We refer

the reader to paragraphs 3 and 4 for more detailed description

of these objects, as well as the sets (M(F))M,S and II(M,t)
The paper [1(c)] relied on certain hypotheses in local

harmonic analysis. Soﬁe of these have since been resolved by

thentrace Paley—Wiener theorems. Others concern the density

of characters in spaceé of invariant distributions, and are

not yet known is general. In fact, to even define the invariant

distributions IM(Y,f) and iM(W,X,f) , we had to introduce

an induction hypothesis in [1(j)]. This hypothesis remained in

force throughout [1(j}], and will be carried into this paper. We

shall finally settle the matter in § 5. We shall show that the

invariant disfriputions in the trace formula are all supported on

characters. Using [1(j), Thecrem 6.1] we shall first establish

in Lemma 5.2 that the distributions on the right hand side of

(2) have the required property. We shall then use the formula

(2) itself to deduce the same property of the distributions

on the left (Theorem 5.1). This is a generalization of an



argument introduced by Kazhdan in his Maryland lectures.
(See [8], [10}.) Theorem 6.1 (in [1{(]j)]) and Theorem 5.1
(here) are actually simple versions.of a technique that can
be applied more generally. They provide a good introcduction
to fhe more complicated versions used for base change [2,

§ Ir.10, § II.171.

It is not known whether the right hand side of (2)
converges as a double integral over t and 7w . This is
basically because one does not know whether £ has a trace
on the discrete spectrum. It is a difficulty which originates
with the Archimedean valuations of F . On the other hand, some
result of this nature will definitely be reguired for many
of the applications of the trace formula. In § 6 we shall
prove a weak estimate {Corollary 675) for the rate of

convergence of the sum over t . It will be stated in terms

of multipliers for the Archimedean part

G(F )
ST
vVES -

o0

of G( A) .. One would then hope that by varying the multipliers,
one could isclate the terms with a given Archimedean infinite-
simal character. For base change, this is in fact what happens.
One can use the estimate to eliminate the problems caused by
the Archimedean primes [2, § II.15].

It is useful to have‘simple versions of the trace formula

for functions



that are suitably restricted. Since the terms in (2) are all
invariant distributions, we will be able to impose conditions
on f strictly in terms of its orbital integrals. If at one
place v , the semisimple orbital integrals of fv are
supported on the elliptic set, then all the terms with

M #+ G on the right hand side of (2) vanish. If the same
thingis true at two places, the terms with M # G on the
left hand side also vanish. These two assertions comprise
Theorem 7.1. They are simple consequences of the descent and

splitting formulas in [1(j), § 8-9]. We shall also see

that in certain cases the remaining terms take a particularly
.simple form (Corollaries 7.3, 7.4, 7.5).

As with the preceeding paper [1{(j}], we shall conclude
(§ 8) by discussing the example of GL{n) . Groups related to
GL(n) by inner twisting or cyclic base change are the simplest
examples of general rank for which one can attempt a comparison.
of trace formulas. However, one must first establish some
properties of the trace formula of GL(n) itself. By imposing
less stringent conditions than those of § 7, we shall establish
more delicate vanishing properties. The resulting forﬁula for
GL(n) 1is then what should be compared with the twisted trace

formula over a cyclic extension.



§ 1. Assumptions on G

Let G be a connected component of a reductive
algebraic group over a number field F . We assume that
G(F) # ¢ . As in previous papers, we shall write ¢t for
the group generated by G , and GQ for the connected
component of 1 in G+ . The component G/F will remain
fixed throughout the paper except in § 5.

We shall fix a ﬁinimal Levi subgroup M, of G0 over F
This was the point of view in the paper [1(g)], and we
shall freely adopt the notation at the beginning of
[1(g)]. In particular, we have the maximal F-split torus
AO = AMO of G0 and the real vector space 3, = aMO .
On 30 , we fix a Euclidean norm which is invariant under
the restricted Weyl group WO of G0 . We also have the

(finite) collection L = 1® of Levi subsets M c G for

which MO contains MO , and the (finite) collection

F = FG‘ of parabolic subsets P = G such that P0 contains
MO . These collections can of course also be defined withO
G0 in place of G in which case we shall write LO = LG
and FO = FGO. Observe ﬁhat M —> MO is aAmap from L

into LO which is neither surjective nor injective. Finally,
we have the maximal compact subgroup

N T & 0
I hx, = | &, n G (F))
v v
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and

In [1(g)] , we studied the geometric side of the
{noninvariant) trace formula as a distribution on
C:(G( 3)1) . However, to deal with the other side of the
trace formula, and to exploit the present knowledge of
invariant harmonic ahalysis, we need to work with K-finite
functions. This was the point of view of ([1(i)] and
[1(§)] . We shall alsc make use of the notation from § 1
of these two papers, often without comment. In § 11 of -
[1(1)] we defined the Hecke spaces H(G(Fg)) and
Hac(G(FS)) , where S is any finite set of valuations of
~F with the closure property. Recall that HaC(G(FS))
consists of the Hecke functions £ on G(FS) of "almost
compact" support, in the sense that for any b €.C:(a

G,5S
the function

b

£(x) = £)bH(x) | x € G(Fg) ,

belongs to. H(G(FS)) - Let s __. be the finite set of

valuations of F at which G is ramified. (By agreement,

Sram contains S, 1 the set of Archimedean valuations

of F .) Suppose that S contains Sram . We can multiply

any function on G(FS) with the characteristic function
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of | ] KS , thereby identifying it with a function on
V€S

G( BR) . This allows us to define the adélic Hecke spaces
H(G( A)) = 1ém> H(G(FS))

and

Hao (BCR)) = Lim, H, (G(Fg))

Similarly, we can define the Hecke space

HiG(m) ) = lin H(G(EH ") ,
==
on G 3)1 . The terms in the trace formula are actually
distributions on H(G( 3)1) . However, the restriction

T sends H (G(RB)) to HIGI A, and

map f —— £

we shall usually regard the terms as distributions on

H(G( A)) or HaC(G( R)) that factor through this map.
In § 11 of [1(i)] we also defined function spaces

I(G(Fs)) and IaC(G(FS)) on

i (G(FS))>< a

temp G,S

Let IN(G( A)) (respectively Huﬁit(G( A)) , I (G( A)))

temp
denote the set of equivalence classes of irreducible

admissible (respectively unitary, tempered) representations
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of G+( A) whose restrictions to GO( A) remain irreducible.

Observe that the discrete group

- 14 - 71 + 0 *
= 1;m = l;.m> Hom (G (FS)/G (FS), T )

acts freely on each of these sets. We shall write
{met AN} , {n;(60aN}, and (M (GOR))} for the
sets of orbits. They correspond to the sets of represen-

tations of Gp( A) obtained by restriction. Suppose that

S contains Sram . Then aG,S = a5 . We can identify any

function ¢ on Htemp(G(FS))xaG with the functlop on
Htemp(G( A))XaG whose value at
(TT,X), TT=®TTvrx€aGf
v
equals
o(e m.,x | ler(y 7 (k)dk.) .
ves Vv vgs kS vV VoV

v

With this convention, we then define

Iicg(mn)) = L%g}I(G(FS))

and

Ta (G0 ) = Lin. 1, (G(Fg))
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Keep in mind that any of our definitions can be transferred
from G to a Levi component M € [ . In particular, we have
spaces I{M( A&)) and Iac(M( A)) . It is easy to see that
the maps f ——> fM and f ——> ¢M(f) , described in

[1(i)] and [1{(j)] , extend to continuous maps from

Hac(G( A)) to IaC(M( Aa))

We are going to use the local theory of [1(3j)] to stﬁay
the trace formula. Because the Archimedean twisted trace
Paley-Wiener theorem has not yet been established in general,
the results of [1(j)] apply only if G equals GO , or if G

is an inner twist of a component

- . *
G = (GL{n)x.....xGL{nhx @&

\ J
v

)

We shall therefore assume that G 1s of this form. However,
we shall write the paper és if it applied to a general
nonconnected group. With the exception of a Galois cohomology
argument in the proof of Theorem 5.1, and a part of the
appendix which relies on the Archimedean trace Paley-Wiener
theorem, the arguments of this paper all apply in general.
Suppose that M € L and that S is a finite set of
valuations of F with the closure property. In [1(3)] we

defined invariant distributions

I (v, £) = Ty, £) - [ Iyly,e (£)) , vy € M(Fg ,
LELO(M)
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and

L (T X, £) = J,(n,%X,6) - |  IL(m,X,6 (£) ,
LEL, (M)

T € I(M(Fg)), X € Ay g
with £ € HaC(G(FS)) . (Recall that LO(M) denotes the
set of Levi subsets L of G with Mc L ¢ G .) These
definitions were contingent on an induction hypothesis
wﬁich we must carry into this paper. We assume that for
any S , énd for any elements M € L and L € LO(M) ,

the distributions

Ii’l(Y) ' Y € M(Fsi ’
on H(L(FS)) are all supported on,characters. (A distribution
attached to G 1is supported on characters, we recall, if
it vanishes on every function £ such that fG = 0 .) Then
the distributions IM(Y) , and, thanks to Theorem 6.1 of
{1(3)1 , also the distributions ' IM(W,X) , are well defined.
In Corollary 5.3 we shall complete the induction argument
by showing that the condition holds when L 1is replaced
by G .

The distributions IM(Y) and IM(ﬁ,X) have many parallel
properties. However, there is one essential difference between

the two. If 7 € T(M{ A)) and X € a it is easy to see

M 7
that IM(W,X) can be defined as a distribution on H(G( A))
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or even Hac(G( A)) . This is a consequence of the original
definition of JM(ﬂ,X) in terms of normalized intertwining
operators, and in particular, the property (RB) of
t1(i), Theorem 2.1] . On the other hand, if <y belongs to
M( A), there seems to be no simple way to define IM(Y) as
a distribution on H(G( R)). This circumstance is responsible
for a certain lack of symmetry in the trace formula. The
terms on the geometric side depend on a suitably large
finite éet S of valuations, while the terms on the spectral
side do not..

If G(A) is replaced by G( A)' , we can obviously

define the sets H(G(‘A)1) , I it(G_( a)) and T (G(‘m)1)

un temp

as above. The terms on the spectral side of the trace formula
will depend on elements M € L and representations

T € {M( A)1) . We shall generally identify a represen-

Tunit
tation 7w € nunit(M( a)") with the corresponding orbit

. *
{HP : u € 1aM}

*
of ia,,. in T ., (M( A)) . With this convention, let us
M unit

agree to write

JM('I'T,f) JM(TTulorf) ’

and

IM('ITIf) = IM(“plo'f) ’ f € Hac(G( A)) ’
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for the values of the distributions at X = 0 . The two
terms on the right are independent of u , and are therefore
well defined functions of m . They also depend only on the
restriction £ of £ to G(A)1 . This notation pertains
also to the map fG . For if 1w 1is an arbitrary represen-
tation in NI(G( A)) and X € a, s we have

fG(n,x) = JG(H,X,f) = IG(W,X,f) .

’
Therefore, if 7w belongs to Hunit(G(‘m) ) , it makes sense

to write

*

G’ f € Hac(G( A))

_ _ 1
fG(w) = fG(np,O) =tr n(f') , wuE€ia
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§ 2. The invariant trace formula: first version

The first version of the noninvariant trace formula
is summarized in [1(b), § 5] and [1{(c), (2.5)] . (See

also [7].) It is an identity

(2.1) Lo, =36y = 13,6, feciG(al),
o€l X E€X

in which a certain distribution J on C:(G( A)1) is
expanded in two different ways. The sets 0 = 0(G,F) aﬁd
X = X(G,F) parametrize orbit theoretic ana representation
theoretic data respectively, but the corresponding terms
are not given as explicitly as one would like.

Suppose that J,(f) stands for one of the summands
in (2.1). Then J, is a distribution on CL(G( A) ") which

behaves in a predictable way,

M
Yy - Q G -1 Q. 0
J,(£5) = % |w0||w0| J, (fQ'y) , Yy € G (A,
QEF '
under conjugation ([1(c), Theorem 3.2]1, [7]). Since we
want to take f to bein H_ (G( A)) , we cannot use this

formula. However, as in the proof of Lemma 6.2 of [1(1)1 ,

we can easily transform it to an alternate formula

M ' M
. G -1
(2.2) T AT 6) = 1 w2 |wy | 92w
QEF

Q,hf) ,

which makes sense for functions f € Hac(G( A}) and



- 2.2 -

h € H(GO( 3)1) . Let LO denote the set of elements L € L

with L # G . We then define an invariant distribution

I, (f) = 19(f) £ € H_(G(A))

* * ’ ac !
inductively by setting

(2.3) L (f) = 3,(6) - I |wolws | The, (61
MeL,

f € Hac(G( A))

The invariance of I, follows from (2.2) and the analogous

formula [1(i), (12.2)] for . (Ssee [1{(c), Proposition 4.1].)

¢M
Implicit in the definition is the inducticn assumption that
for any L € LO , the distribution I& is defined and is
supported on characters. This is what allows us to write
EE . Observe that this induction hypothesis is our second
of the paper. Howéver, in § 3 and § 4 we shall establish
explicit formulas for ‘Io and Ix in terms of IM(Y) and
IM(ﬁ) respectively. This will reduce the second iﬁduction
hypothesis to the primary one adopted in § 1.

It is a simple matter to substitute (2.3) for each of

the terms in (2.1). The result is an identity

(2.4) I oI ) = I(f) = ] I 6, £ € (GLA) ,
o€l XEX

in which the invariant distribution
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(2.5) 1(€) = 3() - T [Wal WS T (e, (8))
MeL,

f € HaC(G( a)) ,

is expanded in two different ways. (See [1(c), Proposition 4.2]).
This is the first version of the invariant trace formula. It
was established in [1(c)] modulo certain hypotheses in local
harmonic analysis. In later papers ([(1(g)] and [1(e}] , we
found more explicit formulas for the terms Jo(f) and

Jx(f) in (2.1). The purpose of this paper is to convert these
formulas into explicit expansions of each side of the in-
variant formula (2.4). In the process, we will establish the

required properties of local harmonic analysis.



§ 3. The geometric side

We shall derive a finer expansion for the left hand
side of (2.4). The result will be a sum of terms, indexed
by orbits in G(F) , which separate naturally into local
and global constituehts. We shall first review the results
of I1(g)] , which provide a parallel expansion for the
noninvariant distributions on the left hand side of (2.1).

Recall that 0 = 0(G,F) is the set of equivalence
classes in G(F) , in which two elements in G(F) are
considered equivalent if their semisimple Jordan components
belong to the same GO(F)—orbit. The formulas in [1(g)]
were stated in terms of another equivalence relation on‘
G(F) , which is intermediate between that of (¢ and .GO(F)-
conjugacy. It depends on a finite set S of valuations
of F . The (G,S)-equivalence classes are defined to be

the sets

GO(F) =1

G(F) n (oU) = 67 ous : 6 € a°(F), ueunclm)
in which ¢ 1is a semisimple element in G(F) , and U is

a unipotent conjugacy class in GO(FS). Any class ¢ in

0 Dbreaks up into a finite set (o)G S of (G,S)-equivalence

classes. The first main result of [1(g)] is Theorem 8.1,

an expansion

G, ~1
(3.1 g 6 = |wy|[WS] y
MeL YG(M(F)no)M s

’

a¥(s,v) 3y (v, £)
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for any o € 0 and any f € CZ(G(FS)j) . Here S 1is any
finite set of valuations of F which contains a certain
set So determined by ¢ . The distributions JM(Y,f) are
purely local, in the sense that they depend only on y as
an element inv M(Fs) . The functions aM(S,y) are .what
carry the global information. These were defined by formula
(8.1) of [1(g)] (and also Theorem 8.1 of [1(f)]), in the
case that S contains S, *

Suppose that M € L . A semisimple element ¢ € M(F)
is said to be F-elliptic in M if the spiit component of
the center of Mgy equals AM . Suppose that S 1is any
finite set of valuations of F which contains Sew - We
shall write
3 - 11 (KD n M(F))

VES VES
Suppose that vy 1is an element in M(F) with semisimple

M
Jordan component o . Set i (S,0) equal to 1 if o is

F-elliptic in M , and if for every v € S , the set

ad(MO(FV))G = {n lom : m€ MO(FV)}

intersects the compact set Ks . Otherwise set iM(S,U)

equal to 0 . Then define

M
3.2)  a%s,ym = M0 Mo T T a T,
{u:ou~y}

in the notation of [1(g), (8.1)] . This definition matches
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the one in f1(g)] in the special case that S  contains
So , where ¢ 1is the class in 0 which contains o .
The second main result of [1(g)] is Theorem 9.2,

an expansion

(3.3) 36 = § |wyllwg|™! 3 a(s,y) 3, (v, ) ,

MeL YE(M(F))M,S

oo

A
hood in G{( A)1 , and S 1is any finite set of valuations

for any f € C (G(FS)1) . Here, A 1is a compact neighbor-

of F which contains a certain set S determined by 4 .

This latter set is large enough so that A 1is the product

1

of a compact neighborhood in G(FS ) with the characteristic

_ A
function of | | XS, and by definition,
VEgS
A
CT(GIF) ) = cTG(m ) n cT(GF) )
A S A ‘ c S

In [1(g)] we neglected to write down the general definition
(3.2) for aM(S,Y) . This is required for the expansion

(3.3) to make sense.

PROPOSITION 3.1: Suppose that s is a finite set of valuations

which contains So , and that f 1is a function in Hac(G(FS))

Then

I, (f) = ] IW§||w§|“_ ) a" (S,Y) Iy, £)
MeL YE(M(F)no)M S

r

PROOF: By definition, Io(f) equals the difference between
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Jo(f) and

LA S tEIY
LeL,

We can assume inductively that if L € LO , the proposition
L .

holds for I, - Since ¢, maps Hac(G(Fs)) to IaC(L(FS)) '
we obtain
2L -1 M °L
Ioeg (e = 1 Wgliwgl™ a™(s,y) Iy (v, ¢y (£))
MeL YE(M(F)N0) o

This is valid whenever S contains the finite set Sg
associated to L . A loock at the conditions defining So
on p. 203 of [1(g)] reveals that S, contains S? , SO
we can certainly take any S > So . Combining this formula

with (3.1) , we write Io(f) as

Dlwgllwgl™" g a(s, ) (3,0, - T IZGy,e (0))) .
MeL YE(M(F)OO)M'S LEL, (M)
The expression in brackets on the right is just equal to
IM(Y,f) ; SO we obtain the required formula for Io(f) .
(]
The original induction assumption of § 1 implies that
for any L € LO , the distributions IE(Y) are all
supported on characters. The last proposition provides an

L

expansion for I, in terms of the distributions Iﬁ(y)

Therefore, I% is also supported on characters. Thus, half

of the second induction hypothesis adopted in § 2 is subsumed
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in thé original assumption. In § 4 we shall take care of
the rest of the second induction hypothesis.

To be able to exploit the last proposition effectively,
we shall establish an important support property of the

distributions IM(Y) . Fix an element M € L , a finite set

S, of valuations containing Sram , and a compact neighbor-
hood A in G(F., ) . Let H, (G(FL. )) denote the set of
1 S1 A1 S1
functions in H(G(Fs )) which are supported on A1 .
1 .
M 1

LEMMA 3.2: There is a compact subset A of M(FS )] such

1 1

that for any finite set S o 81, and any £ in the image of

H

A (G(FS }) in H(G(FS)) , the function

1 1

. 1
Y —> IM(Yff) ’ Y € M(FS) '

is supported on the set

0 MoM =1 0, MM
ad (M (FS))(A1 Kg) = {m ‘cm:m € M (FS), c € A1 Kg }
PROOF : Suppbse that
M1 - ] Mv
v€S1
is a Levi subset of M defined over F . Then for each

S
1
v € 81 ’ Mv is a Levi subset of M which is defined over
1]
Fv . Let MV(FV)_ be the set of elements Yy € MV(FV)

whose semisimple component Oy satisfies the following
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two conditions.

(i) The connected centralizer MU of Ty in Mo is
v
contained in Mg
(ii) o, 1is an Fv—elllptlc point in MV .
Set
M,(Fo ) = T M (P )" .
1 S1 v€S1 v v
Consider the restriction of the map
H, = G9 H : M (F, ) —> 1 = GB'a
Y1 ves, T TS, Y1 ves, My

to M1(FS })' . The map is certainly constant on the orbit of

TfT Mo(F ) .
v v

1 VES1

=
- O

]
0}

1

The Fv-elliptic set in MV(FV) has a set of representatives

which is compact modulo Ay (F,) . It follows easily that
\

as a mép:dn the space of M?(F )-orbits in M1(FS ) ', Hy

S
1 1 1
is proper. To prove the lemma, we shall combine this fact
with the descent and splitting properties of IM(Y:f) . The
argument is quite similar to that of [1(c¢c), Lemma 12.2].

We may assume that

A.l‘-"' | |AV'

V€S1

and that
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so that £ Dbelongs to H (G(Fv)) if v belongs to S

A 1
G

v
and fv equals the characteristic function of Kv if v

belongs to the complement of S.I in S . Suppose that

Yy = T_‘-Y

VES v

is an element in M(Fs)1 such that
IM(Y,f) £ 0 .

For each V € S1 + let Oy be the semisimple part of Yy

and let AO be the split component of the center of

v
M0 . Set M, equal to the centralizer of A0 in M
v v
Then Yy belongs to MV(FV)' . In other words, if
M1= | IMVI
VES

1

the element

Yq 7 Td—TYV

vES1

belongs to M1(FS })' . If we were to replace vy by an

_ 1 .

MO(FS ) -conjugate, M1 would be similarly conjugated, but
1

IM would remain nonzero. Now there are only finitely many

MO(FS )-orbits of Levi subsets M1 over Fg . It is there-
1 1
fore sufficient to fix M1 » and to consider only those



- 3.8 -

)'
Sy

17 we set Mw =M.

elements vy such that vy, belongs to M1(F
For each valuation w in S ~ S

We then define a Levi subset

wo= Mt TT mpy =TTw,,

w€S\S1 veS

of M over Fo . Regarding y as an element in M(FS) '

we can form the induced class

M_ ..M
Y = Y -
veS
o M, . 0
But M =M for each v , so ¥y is just the M (F_.)~-
ViYy Yy S

orbit of vy . Applying Corollary 9.2 of [1(j)] , we obtain

~L
_ G v
IM(YIf) = 2 ‘ dM(MIL) ves IMV (YV'fV,LV
L € L(M)

) # 0

Recalling the definition of the constants dﬁ(M,L) in

[1(3), § 9] , we find that we can choose

so that the natural map

G
L

G G
aM_—-_> aM & a

is an isomorphism, and so that

~L

(3.4) IMV(Y ) + 0 , v €S
v

f
v/’ v,LV
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Suppose first that w 1is a valuation in the complement

of S1 in S . Since fw is the characteristic function
G

of K, , Lemma 2.1 of [1(j)] tells us that
I (Y £ ) =1 (Y £ ) = J (Y £ ) ’
Mw W w,Lw M A w,Qw M "'w w,Qw

for any Q. € P(Lw) . The function on the right is a weighted
orbital integral, and by Corollary 6.2 of [1(h)] , it is the

integral with respect to a measure on the induced class

Yg" Therefore, the class Yg must intersect KS . Combining

the definition of the induced class Ys with the standard
properties of the special maximal compact group Kw , we
find that the MO(Fw)—orbit of Yu intersects Kﬁ . Notice
in particular that HM(YW) = 0

“"We turn, finally, to the valuations in S, . It remains

1

for us to show that the MO(FS ) —orbit of Y4 intersects a
1

? of M(FS )  which depends only on Ay -

1 .

We are already assuming that Y4 belongs to M1(FS )' . so

1
by the discussion above, we need only show that Hy (71)

1

compact subset A

lies in a fixed compact subset of ay Set
1
L1 = L,
vES

1

It is clear that- the natural map
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is injective. But the image of HM (71) in a

1 M equals

Hylyy) = Hyly) - ] Hyly,) =0,

W € S\S1

since vy belongs to M(FS)1 . We have only to show that

the image of Hy (Y1) in a, , namely the vector
1 1

H, (v,) = € 15 (v ,
Ly vEs, Ly 'V

lies in a compact subset of a, which depends only on
1 AL
)

the distribution v(y

A1 . Por any v € S IMv

f
L r
1 v v,Lv

depends only on the restriction of fv to the set

{xV € G(F) : H (x,) = Hp (yv)}
v v

It follows from (3.4) that H_. (y.) belongs to H_. (A.) ,
Lv v LV v

the image of the support of £ . In other words, H, (Y1)
o 1
belongs to
S e w) .,
v€S1 Lv v
a compact set which depends only on A1 . This completes

the proof of the lemma.
o
Suppose that £ belongs to H(G( A) ). We shall write
supp(f) for the support of £ . There exists a finite set

S of valuations of F , which contains Sram , such that
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f 1is the image of a function in H(G(FS)) . We shall write
V{(f) for the minimal such set. If S is any such set,

and Yy 1is a.point in (M(FHM,S , we shall understand

IM(Y,f) to mean the value of the distribution IM(Y) at

f , regarded as a function in H(G(Fs)) . Since we are
thinking of IM‘Y) as a local object, this convention

is quite reasonable. It simply means that when vy € (M(F))M,S
parametrizes such a distribution, we should treat y as a

point in M(FS) rather than M(F)

THEOREM 3.3: Suppose that £ € H(G( A)) . Then

1e) = § |wlws|™! g a"(s, 1, v,6)
MEL YE(M(F))M’S '
where S 1is any finite set of valuations which is sufficiently
large, in a sense that depends only on supp(f} and V(f) .
The inner series can be taken over a finite subset of

(M(F))M s which also depends only on supp(f) and V(f) .
I
PROOF: By (2.4) and Proposition 3.1, we have

e = § o wgllwsiTh g a"(s, 7)1, (v,5) ,
0€0 MeL ye(M(F)né)M’S
where S 1is any finite set of valuations that contains So
We shall use Lemma 3.2 to show that the sum over o¢ is
finite.

Choose any finite set S1 =) Sram , and a compact
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neighbourhood A, in G(FS ) , such that f belongs to
1

HA (G(Fs )) . Assume that S contains 5, - Suppose that a
1 1 o . '

class o¢ gives a nonzero contribution to the sum above. Then

there is an M € L , and an element ¥ € (M(F)no) such that

M,S

aM(S,Y)IM(Y,f) # 0

The nonvanishing of 'aM(S,Y) implies that for each v ¢ S ,

the image of y 1in M(Fv) lies in
: 0 M
ad (M (F,))K .

The image of y in -M(FS) then lies in M(FS)1 , and

therefore belongs to a set
ad (° (r o)) (a% &
S 1 78t !

by Lemma 3.2. It follows that the MO( A) -orbit of vy meets

the compact set A? KM , and in particular that

ad(c( Aa))o n Al;l.KM 0 .

By Lemma 9.1 of [1(g)], o must belong to a finite subset.

0 of (¢ . Since A? depends only on A1, 0 clearly

1 1
depends only on supp(f) and V(f) . The required expansion

for I(f) then holds if S 4is any finite set which contains

the union of S1 with the sets S§_, as ¢ ranges over

Q
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01 . This establishes the first assertion of the theorem.

The union over o¢ € O1 of the sets

(M(F) n O)M,S

is certainly a finite subset of (M(F))M g r SO the second

assertion .also follows.
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§ 4. The spectral side

We shall derive a finer expansion for the right hand
side of (2.4). The result will be a sum of terms, indexed
by irreducible representations, which separate naturally
into local and global constituents. Again, there is a
parallel expansion for the noninvariant distributions on
the right hand side of (2.1). It is provided by the results
of [1(e)] and [7]. However, these results are not
immediately in the form we want, andlit is necessary to
review them in some detail.

The set X = X(G,F) consists of cuspidal automorphic

data ([1()], [7]) . It is the set of orbits

= : ) - . G
x = {sy(Lyrry) = 54 € Wyl {s(Ly,ry) : s € wo} ’

0
where Ly is a Levi subgroup in LO = LG r Ty is an

irreducible cuspidal automorphic representation of LO( m)1 ’

and the pair (ﬂo,r ) is fixed by .some element in the Weyl

0

set WG of isomorphisms of a

0 0
indexed the Levi subgroup with the subscript 0 to emphasize

induced from G . (We have

that it need not be of the form MO for some M € L .) The
set X has been used to describe the convergence of the
spectral side, which is more delicate than that of the
geometric side. However, for applications that involve a
comparison of trace formulas, it is easier to handle the

convergence by keeping track of Archimedean infinitesimal
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characters.

Set

F_ = FS =[ l Fv .
@ v€SOo

Regarding GO(Fm) as a real Lie group, we can define the
Abelian Lie algebra

h = ik, ® h0

as in § 3 of [1(d)]. Then ho is the Lie algebra of a fixed
maximal real split torus in MO{Fm) , and hK is a fixed Cartan

subalgebra of the centralizer of ho in

vES
[« o]

The complexification hm is a Cartan subalgebra of the
complex Lie algebra of GO(Fw) , and the real form h is
invariant under the complex Weyl set WG of G(F) . (By

definition, WG equals Ad(e)W , where € 1is any element

in G(Fm) which normalizes hm , and W 1is the complex Weyl
group of GO(FN) with respect to h .) It is convenient to fix a
Euclidean norm ||-|| on h which is invariant under W .

We shall also write ||°|] for the.dual Hermitian norm on

h; . To any representation = € II(M( A)) we can associlate

the induced representation wG of G+( A) . Let v éenote

the infinitesimal character of its Archimedean constituent.
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*
‘It is a W-orbit in hm . We shall actually be more concerned
with the case that = 1is a representation in T (M( 3)1) .

’ *
Then Vo is determined a priori only as an orbit of a

M,C
*
in hm . However, this orbit has a unique point of smallest
*
norm in hm (up to translation by W ) and it is this point

which we shall denote by Voo If t 1is a nonnegative real

number, let 1 (MA 3)1,t) denote the set of representations

unit

T €I (M( &) ") such that

unit
llIm(\),n,)lI =t ,

where Im(vﬁ) is the imaginary part of Vo relative to the
* *
real form k of hm . We adopt similar notation when M is

replaced by a group Ly € LO . In particular, if
= {s(L,,xr,) : s € WG}
X 0'*o’ ¢ 0
is any class in X , we set

Suppose that Ly is a Levi subgroup in LO . Set

where AL is the split component of the center of the
c,@
group obtained by restricting scalars from F to @ . Let
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2
(4.1 Lyige,c(Bo(FAy g R)

be the subspace of L2(L0(F)AL \LO( A)) which decomposes
0,

under Lo( A) as a direct sum of representations in

| (LO( A),t) . For any group Q4 in

unit

0

PPy = %y

*
and a point A € a let

ot
Ly/C
P (A) : x —> »p (A,x)
QO lt Qo ft

be the induced representation of GO( A) obtained from (4.1).
If Qé is another group in PO(LO) , the theory of Eisenstein

series provides an intertwining operator (A) from

M.,
Q0 1 Qg

(M) to AT

P Pa
Qg+t Q4

(A) 1is admissible.

LEMMA 4.1: The representation P ¢
——————————————— 0-;

PROOF: The assertion is that the restriction of t(A) to

°Qq 7
K contains each irreducible representation with only finite
multiplicity. Since admissibility is preserved under parabolic
induction, it is enough to show that the representation of

LO( A) on (4.1) is admissible. To this end, we may assume that
L0 = GO = G . The assertion is then a consequence of Langlandsf

.theory of Eisenstein series [12, Chapter 7]. For one of the

main results of [12] is a decomposition
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2 N _ 2
Liisc,t (C(F)Ag ,\G( A)) —?Ldi_sc'x(G(F)AG,m\G'( A)) ,
where ¥ ranges over the data in X such that [|Im(vx)||

equals t , and each corresponding summand is an admissible
G( A) “module. On the pther'hand, the set of all y whose
associated cuspidal representations contain the restriction
of a given K-type have discrete‘infinitesimal characters.
That is, the associated poihts {vx} form a discrete subset

* .
of B + iaM , with B a compact ball about the origin in

*

aﬁ . It follows that there are only finitely many modules

T

I

Liisc y in the direct sum above which contain a given K-type.
1

The lemma follows.

The representation ,t(A) of GO( A) does not in

pQO
general extend to the group generated by G( A) . However,

suppose that s 1is an element in wg with representative w

in G(F) . We can always translate functions on GO( A) on
the right by elements in G( A) if at the same time we

1

translate on the left by w ' . Therefore, if y belongs to

G( A) , we can define a linear map pQ. ¢(s,A,y) from the
. 0 r

underlying Hilbert space of on,t(A) to that of psQO:t(SA)
such that '
(4.2) DQO,t(S:ArY1yy2) = pSQO,t(SA’Y‘I)pQOrt(s'A'y)on,t(A'y1).'

for any points Y4 and Y, in GO( A) . This map depends
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L
only on the image of s in Wg/wo0 . In particular, it is
well defined for any element in WG(aL ) , the normalizer
0
of a in Wg . Suppose that s 1is an element in . WG(aL )
0 0 -

which fixes A . If £ 1is a function in H(G({ R)) , we write

1
’t'(slArf ) = I 1 f(X)DQO't(S,A,X)dX .

0
Q G( A)

Then

1

M (AYp {(s,A,£)

is an operator of trace class on the underlying Hilbert space

of Po t(A) . According to (4.2), its trace is an invariant
o’ '

distribution, which by Lemma 4.1 can be written as a finite

sum of irreducible characters

tr T(£}) = £o(m ' me ., (Gl a6 .

Hun

Observe that any such irreducible character depends only on
the orbit of 7w under the group EA . As in § 1, we write

1 . . 1
{Hunit(G( A) ,t)} for the set gf such orbits in Hunit(G( A) ,t) .

Consider the expression

P0G -1 -1
(4.3) zolwo W | gldet(s-1}ag | exlty 5, (900 ¢
Ly€L 0

'1.
(s,0,£) ,

where QO stands for any element in PO(LO) and s is summed

over the Weyl set
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G _ G . -
W (aL ) = {s EW (aL ) : det(s 1)aG £ 0} .

o €9 0 L,

This is just the "discrete part" of the formula for

Y JX(f) , f € H(G( A)) ,
{xEX:IlIm(vX)||=t}

provided by Thecorem 8.2 of ([1(e)] . (For the case that
G # G0 , see the final lecture of [7].) According to the

remarks above, we can rewrite (4.3) as

G
(4.4) adisc{n)fG(ﬂ) P

TrE{Hunit

(G( A),£)}
a finite linear combination of characters. The complex valued

function

G

disc (™ - me (IG( A ,8)7} .,

adisc(“) =a
which is defined by the equality of (4.3) and (4.4), is the
primary global datum for the spectral side.

It is convenient to work with a manageable subset of

1 . . G
{Hunit(G( A) ,t)} which contains the support of adisc(") .
Let Hdisc(G,t) denote the subset of Ea-orb;ts in
{Hunit(G( A)1,t)} which are represented by irreducible

constituents of induced representations

*

. Tk
a. , M€EL,oET (M ( A)1,t),k € ia,/ia. .,

unit
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where oy satisfies the following two conditions.

aM
disc

(1) (o) # 0 .

. . G,.. _
(ii) There is an element s € W (aM)reg _such that s0y = 0y

Observe that the restriction to GO( A) of any representation
in HdiSC(G,t) is an irreducible constituent of an induced

representation
From the last lemma we obtain

LEMMA 4.2: Suppose that I is a finite subset of T (K)

Then there are only finitely many (orbits of) representations
T € Hdisc(G’t) whose restriction to K contains an element
in T . In particular, there are only finitely many orbits

7 € {I(G{ 3)1,t)} which contain an element in T and such

G

that adisc

(m) # 0 .
| (m]
Before going on, we note the following lemma for future

reference.

LEMMA 4.3: Suppose that £ 1is a one dimensional character

1
on G+( A) which is trivial on GO(F) . Then
G G 1
3gigc (6™ = adisc(“) ! me nunit(G( Ay .t
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where

(Em) (x) = E(x)mW(x) , x € G (A) .

PROOF: .If the character £ belongs to EA , the assertion
of the lemma is of course part of the definition of agisc
In general, observe that we can use £ to define a linear

operator Pq (£) on the underlying Hilbert spaces of the
0

representations Pq £(0) . It has the property that
0 !
-1 1 1
pa (E) M (0)p (s,0,£)p, (£)=M (0)p (s,0,8€7),
where
(E£) (x) = E(x)E(x) , x € G(A)

Therefore, (4.3) remains unchanged if £ 1is replaced by ¢&f
The lemma follows.
o
The remaining global ingredient is a function constructed
from the global normalizing factors ([1(e), § €]) . We shall
recall briefly how it is defined. Suppose that M € L , and

that

belongs to Hdisc(M,t) . The restriction of & to MO( Rr) is

an irreducible constituent of some representation
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0 0
(0) , L ELM,ROEPM(LO).

pRo,t 0

If P € P(M) , we can form the induced representation
Ip(wl) ' ‘ A€ a

Its restriction to Go( A) 1is a subrepresentation of

where Q is the group PO(RO) in PO(LO) which is
in P° and whose intersection with _Mg is Ry . If
and Qé = (P')O(Ro) , the operator

Iprip (7)) =1 |JP'1P(“V,A) ’

v

0 (x)
Qo’ t

contained

P' € P(M)

defined as an infinite product of unnormalized intertwining

operators, is therefore equivalent to the restriction

of

MQ 'lQ (A} to an invariant subspace. The theory of Eisenstein
0 0

series tells us that the infinite product converges for certain

A , and can be analytically continued to an operator valued

-
function which is unitary when XA € iaM . But we also

normalized intertwining operator

have the

_ _ -1
RP'|P(WA)—T;TRP'|P(ﬂv,A)“T:TXrP'[P(“v,A) JP'IP(FV,X)) '

described in [1(i)] . The infinite product reduces to a

finite product at any smooth vector. It follows that the

infinite product
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rP'|P(TT)\) =Tv_.rrP'|P(1TV,)l)

of local normalizing factors converges for certain A and
can be continued as a meromorphic function which is analytic

*
for X € iaM . Moreover,

rP"lP(“A) = rp"|P'(Wx)rP'|P(WA) ,

if P" 4is a third element in P(M)

For a fixed P' € P(M) , we define the (G,M) - family

_‘] *
] -— .
rP(U'ﬁl’P ) = rPlP‘(ﬁA) rPIP'(“A+v)’ P€E PM), v € iay, -
Since
TT v
' o EZ- NET .
P P!
for each v ([1(i), § 2]) , we have
r ) o= | r (w A(av))
PIR"A T erfagt o '
where ra(#,z) equals an infinite product
[v ra(wv,z) ’ z €C,

which converges in some half plane. Therefore, the (G,M) -

family is of the special sort considered in § 7 of [1(e)] .
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In particular, if L € L(M) and Q € P(L) , the number

rl(r) = lim 7 rp(v,m, 26l (v

M T n
V20 pep (M) 1P}

can be expressed in terms of logarithmic derivatives
r (m,,0) e (x,,0) o.€ EX(L,A)
o Xl a A’ 4 . r ! M ’

and is independent of Q and P" ({1(e), Proposition 7.5])
As a function of X € ia; » it is a tempéred distribution
({1(e), Lemma 8.41) .

For a given Levi subset M € [ , let 1II(M,t) denote the

disjoint union over MT € LM of the sets

m, € I

o, (M,t) = {m = 1

&* *
M, disc(Mq,t), A€ }aM1/1aM} .

We define a measure dm on II{M,t) by setting

M
f oetmar= T W, [lwg]T" Y [ elry par,
. M . * L * ’
MM, t) M1€L "1€Hdisc(M1't) 1aM1/1aM
for any suitable function ® on I(M,t) . The global constituent

of the spectral side of the trace formula is the function

M,

disc

M

M -
(4.5) a (w) = a ("1)rM1(“1,k) p

defined for any point

»* F 3 .
(M1,t), A€ iay /iaM ,

TS Ty T € Ngise ]
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in T (M,t) . In our notation we should keep in mind that
1
T, is a representation in I

1 .
unit(M.I( A) ) (determined modulo

ut]

) , so that (= } stands for the associated orbit of

1,2

A
*
(M1( A) N M( A)1) . In practice, however,

*
iaMi/laM in 1--[unit
we shall usually identify = = LY with the induced represen-
I

. M s 1 . '
tation Ty, in {Eunit(M( A) )} . In this sense, the invariant
distribution

*
IM(w,f) = IM(wu,O,f) ' u € iaM , £ € H(G( A)) ,

studied in [1(J)] 1is defined. It will be the local

constituent of the épectral side.

‘THEQREM 4.4: Suppose that £ € H(G( A)) . Then

1e) = 3§ wghiws]Tto atmry e, fan
£20 MeL T(M,t)

where the integral and outer sum each converge absolutely .
PROOF: Set

J (£) = ) J () .
{xEX:||Im(vX)||=t}

We shall apply the formula for Jx(f) provided by Theorem 8.2

of [1(e)] (and the analogue in [7] for G # GO'). Then J_(f)

0 M
) '

€ LM , and s € W 1(3
o reg

equals the sum over M, € L, L

1 0 L

of the product of
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L
[W00||Wg| !ldet (s=1) M| !

a1
Lo
with
10
I* tr(MM1(A,QO)MQO|SQ0(O)QQO’t(s,A,f‘))dA..
ia

M,

Here, Q0 is an element in PO(LO) , and the operator

Y -1
e (1,Q) = Lim 1w (b0, (0

1 v+0 P eP(M,) Py 1

is obtained from‘the (G,M1)- family

-1

My (v,h,Q0) = M (M) "'y

(A+V)
P 0 ’
1 P1(R0)ioo

0
P1(Ry) [Qq

for P

*
1 € P(M1) and v € iaM . As above, R is a fixed

Q
1
parabolic subgroup of M? with Levi component Ly - We can
assume. that QO = PO(RO) + for some fixed element P  in P(M1) .

The trace of the operator

My (A,Qq)M (0)pn 4 (S,A,£)
M, 0 QOISQO Q,yt
vanishes except on an invariant subspace on which the represen-

tation P t(A) reduces to a sum of induced representations
OI

Iplmy p) v Ty € NMgygeMqet)

(Actually, (A) 1is only a representation of GO( A) , so

PRyt
we really mean the restriction of IP('n1 A) to this group.)
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With this interpretation, the intertwining operator

M, (A) corresponds to a direct sum of operators
Py (Rg) Qg |

Jp1|p(“1,A’ = rP1|P(ﬂ1,A)RP1IP(“1,A) ro Ty € Dgygc Myt .

Therefore, MM (A,QO) corresponds to a direct sum of operators
1

-1
(v’“1,A'P)@P (v) .

1

L

P1€P(M1)

(v’ﬂ1,A’P)RP

1 1

This last expression is obtained from a product of (G,M)-

families. By Corollary 6.5 of [1(¢c)] it equals

M
) rMT(“1,A)RM(“1,A'P)
MEL (M,)

We now apply the definition of ﬂaG . Given the observations

disc
above, we use the equality of (4.3) and (4.4) (with. G replaced

by M, ) to rewrite Jt(f) as the sum over M, € L and

M
M € L(M,) of the product of |w01|lwg| 1 witn
M, M
L I, Batsc M) Ey (y N EE Ryl B Iplmy y £))d
“1€Hdisc(M1ﬁt) lﬂM1
Observe that rﬁ1(w1 A) depends only on the projection A of
r

*
A onto iaM /ia; . Moreover, by the definition in [1(i), § 7] ,
1
we have
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[* tr(RM(“1,A+u'P)IP("1,A+u’f))du
lay
M
I* JM(ﬂ1,A+u
iaM

(£)du

M
JM(“1,A'0'f)

M

(T4 %

Iy +E)

if P is any element in P(M) . (Since A stands for a coset

* *
of iaM in iaM ¢ i1t is understood that w? A is a represen-
1 ’

tation in (M( A)1) . This justifies the notation of the

IIunit
last line.) Decomposing the original integral over A 1into a

double integral of (iA,u) in

* % *
(iaM1/1aM)X(iaM) ’

we obtain

Jt(f)

M M

- 1 Gy=1 1 M M
- EL ZLMIW0 | W, | ) J o Balec(mny (1 9y 0 D
MEL M € WTEHdisc(M1rt) iaM1/:.aM
= ¥ bWl 1wS1T o a"may s
MEL moet™ o, e

1 M1

=1 |W§|!Wg|-1 If aM(w)JM(w,f)dﬂ .
Mel I(M,t)

The convergence of the integral and the justification for our use



- 4.17 -

of Fubini's theorem follow from the fact that rﬁ (w1 A) is
1 4
tempered.
Set
I (f) = ) I_(£) .

{xEX:|]Im(vX)||=t}

Since the invariant Yy expansion converges absclutely to I(f) ,

we have

(4.6) I(f) =) I (f) ,
tz0
the series converging absolutely. From the definition of IX(f) ’

we obtain

1 (6) = 3.6 - 1 Jwel s T e, 6 .
LELO

Assume inductively that

ote) = 5 qwpllwglT! 0 atmIkin,gdn
‘ L
MeL M(M,t)
for any L € LO and any g € H(L( A)) . Combined with the

formula above for Jt(f) , this tells us that It(f) equals

Diwg WSt &aMm oy (me- 3 Ik(me (£))ar .

MeL I(M,t) 'LELO(M)

It follows that

G -1 M '
(4.7) 1 (£) = 1 [wyl|wWg| [ atmry(r,far .
MelL MM, t)
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The theorem follows immediately from (4.6) and (4.7).
o
The definitions in‘this paragraph have obvious analogues

if the real number t is replaced by a fixed datum y & X

In particular, if ||Im(vx)|| = t , we have a subrepresentation
0 ({A) of »p (A) . As in earlier papers, we shall some-
QOI'X . QO,t
times write Aé ¥ for the space of K-finite vectors in the
0 [
underlying Hilbert space of Pq ,x (&) . Then for any s € Wg
0
1 2
and £ € H(G( A)), QQOrX{S'A'f }) is a map from AQQ'X to
2 N . . M
ASQOrX The definitions also provide functions adlsc,x and
a? on respective subsets
Taisc M) < Mgjge Myrt) o My €L
and
MT({M,x) < II(M,t) , . Mg L

The proof of Theorem 4.4 yields

COROLLARY 4.5: Suppose that f € H(G( A)) and y € X . Then

. G, -1 M, .
I(6) = ] |w§||w0| [ ay(mI(moar .
MeL m(M,x)

For any element L € L0 + the corollary provides an
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expansion for Ii in terms of the distributions
L _ L *
IM(n) = IM(nu,O) ' u € iaM .

But our original induction assumption of § 1 implies that the
distributions Iﬁ(wUIO) are supported on characters. This is

a consequence of Theorem 6.1 and Corollary 9.3 of [1(3)]
Therefore, the distributions Ii are also supported on
characters. We have thus shown that the entire second induction

assumption, adopted in § 2, is subsumed in the original one.



§ 5. Completion of the induction argument

We shall now show that all the distributions which occur
in the invariant trace formula are supported on characters. -
These are local objects, so we shall not start off with the
number field F that has been fixed up until now. Rather, -

we take a local field F of characteristic 0 , and a

1

connected component G1 of a reductive group over F1 , in

which G1(F1) # ¢ . As usual, we shall assume either that

G, = G? . Oor that Gy is an inner twist of a component

* ”
G = (GL{n)x.....xGL(n))xg .

THEOREM 5.1: For any G1/F1 as above, and any Levi subset

M of G

1 1 which is defined over F1., the distributions

IM1(Y1rf1) ' "7’1 € M1(F1); f € H(G1 (F1)) ’
are supported on characters.

PROOF: Fix a positive integer N1 » and assume that the theorem
is valid for any G1/F1 with dimg (G1) < N, . Having made this
1.
induction assumption, we fix Gy and F1 such that
L
. ; : 1
- If L, € LO(M1) , the distributions IM1(Y1)

are by hypothesis supported on characters. This matches the

dimF (G1) = N
1

induction assumption of § 2 of .[1(j)] that allowed us to

define Iy (71) in the first place.
1
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Let f1 be a fixed function in H(G1(F1)) such that-

We must show that the distributions all vanish on £ It

1 -
is convenient to fix M1 , and to make a second induction

assumption that

(5.1) IL1(61,f1) =0, 61 € L1(F1),

for any L1 € L(MT) with L, # M1 . We must then show that

IM1(va1) vanishes for each Y4 € MT(FJ) .

If Yq is an arbitrary point in M1(F1) , we can

write

L
. 1
L1EL(M1)

éi? IM1(aY1'f1) '

by (5.1) and [1(j),(2.2)]. Since a stands for a small

regular point in AM (F1) , we may assume without loss of
1

generality that G =M

1:Y1 1:Y1 . But now we can apply

t1(j), (2.3)]. This formula asserts that the function
Y —> IM1(er1)

co~incides with the orbital integral of a function on

M1(F1) » for all points vy whose semisimple part is close
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to that df Yq oo It is known that the orbital integral of

a function on M1(F1) is completely determined by ifs values
at regular semisimplé points. For p-adic F1 » this is

Theorem 10 of [%(c)]. If F1 is Archimedean, the result is

due also to Harish-Chandra. The proof, which was never actually
published, uses the Archimedean analogues of the techniques

of [9(¢})]. In any case, it follows that if Iy (Y,f1) vanishes
0

whenever vy 1is G1-regular, it vanishes for all Yq o We may
therefore assume that Y, itself is G1-regular. We can also
assume that v, is an F,-elliptic point in M1(F1) . For vy,

would otherwise belong to a proper Levi subset M of MT

defined over F1 , and we would be able to write
_ G °L
IM1(Y1ff1) = ) dy My LY Iylyy £y o)
LeL (M)

by the descent property [1(j), Corollary 8.3]. Since
dg(M1,L) = 0 unless L 1s properly contained in G , the
expression vanishes by our first inductioﬁ assumption. Thus,
it remains for us to show that IM1(Y1,E1) vanishes when
\E is a fixed point in M1(F1i which is G1—régular and
F1—elliptic. For this basic case we shall use the global
argument introduced by Kazhdan . (See [8], [10].f

Suppose that G- is a component of a reductive group
aver some numbér field P , with G(F) #* ¢ , such that
F e F1 and Gv = G1 for a valuation v of F . Then

v.I 1 1

dimF(G) = dimF (G1) = N1
1



- 5.4 -

It follows from Corollary 9.3 of [1(j)] and our induction

assumption on N, that for'any S , the distributions
= (y) MEL, LEL-(M, y€E M(FL)
M r 14 0 ’ S_'

are all supported on characters. Therefore, G/F satisfies
the conditions of § 1, and we can apply the results of

Paragraphs 3 and 4.

LEMMA 5.2: Suppose that

£ =IvlfV , £, € H(G(F))) .
is a function in H{(G{ A}) such that fv = f1 . Then
1
I(f) =0

PROOF: Consider the spectral expansion

e = 5% |wg||wgg“ f aM(ﬂ)IM(n,f)dﬂ
£20 MEL (M, t)

of Theorem 4.4. We shall show that the distributions
*
Ig(m £) = Iy(m ,0,£) , u € ia,, M€ L, me ML),

which occur on the right, vanish. In doing this, we will
make essential use of the fact that = 1is unitary.

It is clearly enough to establish the vanishing of
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the Fourier transform
I, (n,X,f) = jIM(nA,f)e‘A(x’dA ,

where, for a large finite set S of valuations, X belongs

to the vector space of elements in
D ay ,

whose components sum to 0 . The integral is over the imaginary
dual vector space. According to the splitting formula [1(j),
Proposition 9.4)], we can write IM(W,X,f) as a finite sum

of products, o#er v € S , of distributions on the spaces
H(L(FV)), L € L{M) . Buf if L € LO(M) , our induction hypo-
thesis, combined with Theorem 6.1 of [1(j)], tells us that

the distributions

L
IM(TT1IX1If ?

1,L

o 1 € Munge Py )Y Xy € 3y,

Vi

are well defined. They must then vanish, since f1 L " 0 . It
14

is therefore enough to show that the distributions

€ 1€y,

IM1ﬂ1,X1,f1) ’ T 1

(M(F, ), X

1 1

unit

vanish.
The formula [1(j), (3.2)] gives an expansion for
IM(W1,X1,f1) in terms of the distributions associated to

standard representations p € Z(M(Fv)) . Only those o
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with A(p,w1) # 0 can occur in the expansion. (See [1(i),

§ 5-6];) Since T is unitary, this implies that p has a
unitary central character. It is sufficient to establish that
. *
for any such p and any point A € Iy ¢ with a small real
- ' -

part, the distributions

L : —
(5.2) I (oy b (X)) ,£) LeLM, X, €a .

1 M,v1

all vanish. Since its:central character is unitary, p
must either be tempered or be induced from a proper parabolic

subset of M . If p is tempered,

G .
f (p h_. (X ))r if L =G,
L 1, G "AT°G '
I (5 hy (), £ = {

0 , otherwise,

by Lemma 3.1 of [1(j)]. But f1 g = 0 , so the distribution
4

vanishes even if L = G . In the other case,

p = D? ’ M1 E M, 91 € Z(MT(FV }) o,
1
and we can make use of the descent property [1{(j), Corollary 8.5].
We obtain an expression for a Fourier transform of (5.2) in terms
of the distributions

ﬁM

2
IM1(p1,K,Y1,f1’M2) ' M, € Ly(My), Y, € aM1"V1

Since M2 # G , the distributions are well defined, and therefore -



vanish. Thus, the distribution (5.2) vanishes in all cases.
In other words, the spectral expansion reduces to 0 , and
I(f) wvanishes.
(w]
We must decide how to choose G,F and v, in order
to prove the theorem. Our original element Y, in M, (F,)

belongs to a unique "maximal torus"

T1,= T1’0Y1

in M, . By definition, 'I‘1 0 is the connected centralizer
’

of v in G0 . It is a torus in MO which is
1,y 1 1 1
'

F1—anisotr0pic modulo AM . Let E1 =) F1 be a finite Galois
1

extension over which G1 and T1 split. Choose any number

field E , with a valuation w

G

’ such that E s E
1 w1 1

Galois group, Gal(E1/F1) , can be identified with the

The

decomposition group of E at Wy o and therefore acts on

E . Let F be the fixed field in E of this group, and

let v4 be a valuation of F which W divides. Then

F1 = Fv and Gal(Ej/F1) = Gal(E/F)}) . We can therefore use
1

G, to twist the appropriate Chevalley group and "maximal

torus" over F . We obtain a component G and "maximal torus”
T defined over F , with G(F) and T(F) ‘not empty, such

that G1 = Gv and T1 = Tv . Moreover, the construction
1 1 :
is such that M1 = Mv1 and aM1 = aM r where M is a Levi

subset of G which contains T and is defined over F . It

follows that
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IM1(Y1rf1) = IM(YT'f1) .

But the set T(F) is dense in T(FV ) . We can therefore
1
approximate our G-regular point Y4 by elements <y € T(F)

Since IM(Y1,f1) is continuous in (regular) Y, 1 we have
only to show that IM(Y{f1) = 0 for any fixed G-regular

element y in T(F) . We can use the trace formula to do
this.

We shall choose a suitable function
£ .= vlfV ’ fv € H(G(Fv)) ’

in H{(G( A)) , and.épply Lemma 5.2. Observe first that T is

F, -anisotropic modulo AM . This means that T is contained
1

in no proper Levi subset of M which is defined over Fv1 .
We can always replace F .by a finite extension in which v,
splits completely. We may therefore assume that T 1is also
Fv -anisotropic modulo AM  where Vs is another valuation

. 2
of F . Let

v = {v1,v2,...,vk}

be a large finite set of valuations of F which contains

bv1 and v2 , and outside of which G and T are unramified.

At v = vy o we have already been given our function fv = f1
. 0
If v 1is any of:the other valuations in V , let fV be any

function which supported on a very small open neighbourhood of
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Y in G(Fv) , and such that
™My,£ ) = T.(y,E) = 1
My, M G ''""v

If v 1lies outside of VvV , let fV equal the characteristic

functioh of Kg . Then £ =T—va certainly belongs to
H(G( A)) . It follows from Lmea 5.2 and Theorem 3.3 that
(5.3) ) |wf;||w§|'1 ) a™(s,8) I, (5,£) = 0

LeL 6€(L(F))L,S
Since V = V(f) , the shrinking of the fﬁnctions fvé""‘°ka
around vy does not increase V(f) . Nor does it increase the

support of £ . It follows that in (5.3), the .set S may be
chosen to be independent of f , and the sums over § can be
taken over finite sets which are also independent of £ .
Suppose that L € L hand § € (L(F))L,S . We apply the
splitting formula [1(j), Corollary 9.2] to IL(G,f) . If

LclL g G , we have

1

)
L VT,L1

by assumption. It follows that

- . +— 2L
1. (8,£) = IL(G,fv1) TTIf8,E, 1) .

*
VV.]

Now the function fV is supported on the Fv -anisotropic
2 2
set in M(F._ ) . This means that £ = 0 unless L contains
\L VoL
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a conjugate of M . On the other hand, if L contains a

conjugate
wMWw P wEW

of M , we can write

-15w,f )

IL(G,fv ) = I _, (w v,

1 w Lw
- -
by [1(3), (2.4 )]. If M 1is properly contained in w 1Lw ’
this wvanishes by (5.1). Thus, the contribution of L to
(5.3) vanishes unless L 1is conjugate to M . Since the
contributions from different conjugates of M are equal, we

obtain

M : =
(5.4) ) a (8,6) (IM(B,fv1)'f:’|-IG(6,fv.)) =0
S€M(F)) )y o v

/

Once again, 8§ can be summed over a finite set which is
independent of how we shrink £ .

The orbital integrals

I (§,£_ ) , 2¢ 3 5k,
vanish unless 6 1is close to theA GO(Fv )-orbit of ¥y . In
particular, the sum in (5.4) need only be taken over elements

§ which are regular semisimple. Consequently,

at(s,8) = M () \M(F,8) | TvoL i (EN\M () ),
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by Theorem 8.2 of [1(g)]. Moreover, the (M,S)-equivalence
classes of regular semisimple elements in M(F) are just

MO (F) -orbits. Tt follows that

(5.5) L cl8)I (8,£,) =0,
1
§
where § 1is summed over those ‘MO(F)-ofbits in M(F) which
are GO(FV ) -conjugate for 2 £ j § k , and which meet K%

for v outside of V , and where

_ -1 ‘ 1 : .
c(§) = |MG(F)\_3~1(F,6)| vol (M. (F)\Ms( A) ') - TT IG((S,fv) .
vESNV

We must show that every such § is also GO(Fv ) -conjugate
to vy . As in [ 10 1, we use an ﬁrgument from Gglois cohomology.
For the first time in this paper we shall explicitly
invoke our limiting hypbthesis on G . If G is an inner

twist of the component

6" = (GL(A)X ..... xGL (n)) %6
then any two elements in G(F) which are in the same Go-orbit
are actually in the same GO(F)—orbit. There is nothing further
to prove in this case. We can assume therefore that G = GO .
Then T is a maximal torus (in the usual sense) in G . The
set of G(FV)—conjugacy classes in G(FV) which are contained

in the G-conjugacy class of y 1is known to be in bijective

correspondence with a subset of
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1 _ oyl = =
HY(F,,T) = B'(Gal(F _/F ), T(F)) .

A similar aséertion holds for G(F)-conjugacy classes. Let
E/F be a finite Galols extension which is unramified outside
V , and over which T splits. Then H1(FV,T) equals
Hj(Gal(Ew/Fv), T(Ew)) , and Tate—Nakayama theory provides an
isomorphism between thié group and

(5.6) {r’€xX, (T) :Norm (1Y) =0}/{1" =01 :1"€X, (T) ,0€Gal (E /F )} ,
’ v

Ew/F

and an isomorphism between
H' (Gal(E/F), T( Ag)/T(E))

and

(5.7) {Avex*(T):NormE/F(AV)=0}/{AV-0AV:AV€X*(T),OEGal(E/F)} .

Here. w stands for a fixed valuation on E which lies above

a given v . Moreover, there is an exact sequence
H' (Gal(E/F),T(E)) » @H (Gal(E /F ),T(E)) » H (Gal(E/F),T( Ay)/T(E)).
v

The map on the left is compatible with the embedding of G(F)-

conjugacy classes into ] @(Fv) , and the second arrow is
v
given by the natural map

Q;xv—> LA,

v
v
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from the direct sum of modules (5.6) into (5.7). Now,
consider the conjugacy class of y . Any § which occurs

in the sum (5.5) maps to an element EBAV such that
v

If v 1is one of the valuations V2"""’Vk , & 1is

G(FV)—conjugate to Yy , so that Av =0 . If v lies outside
v, 6 is MO(FV)-conjugate.to an element in KS Since

(G,T) is unramified at v , we again have kv =0 I11(a);

Proposition 7.1]. It follows that Av = 0 . In other words,
. 1
§ is G(Fv ) ~conjugate to vy , as we wanted to prove.
1
We are now done. For if &8 is an element in M(F) which

is GO(Fv ) -conjugate to vy , we have
1

-1
S =y Yy

for some element vy € MO(Fv )KV which normalizes MO . It
1 1
*
follows from [1(3), (2.4 )] that

IM(G,fv1) = IM(Y’fT) .

But for any ¢ which occurs in the sum (5.5), the constant

c(8) is strictly positive. It follows from (5.5) that

IM(Y,f1) =0 .
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As we noted earlier, this implies that
IM1(Y1,f1) =0,

for our original point v, € M1(F1) . Theorem 5.1 is proved.

=}

COROLLARY 5.3: Suppose that G/F is as in § 1. Then for

any S and any M € L , the distributicns

Iy(Y) Yy € M(Fg) ,
are supported on characters.

PROOF: The corollary follows immediately from the theorem
and Corollary 9.3 of [1(j)].
' a]
Corollarf 5.3 justifies the primary induction assumption
of § 1. In particular, the distributions which occur in the
invariant trace formula are all supported on characters. We
have at last finishea the extended induction argument, begun

originally in [1(3j)].
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§ 6. A convergence estimate

It is not known that the spectral expansion for I(f)
provided by Theorem 4.4 converges as a multiple integral
over t,M and 7 . The main obstruction is the trace class
problem. This is essentially the question of showing that

the operators

L) 0ef, £eHc A ,

D o

£20 9

are of trace class. As a substitute, we shall prove an
estimate for the rate of convergence of the y-expansion. The
estimate is an extension of some of the arguments used in thé
derivation of the trace formula. Although rather weak, it
seems to be a natural tool for those applications which entail
a compérison of trace formulas.

The estimate will be stated in terms of multipliers. Recall
[1(d)] that multipliers are associated to elements in E(mW '
the convolution algebfa of compactly supported W-invaiiant
distributions on h . For o € E(h)™ and f € H(G(A)) , f

o
is the new function in H(G( A)) such that

n(E) = a(vﬂ)w(f) , 5 € 0(G(A)) .

Similarly, for any function ¢ € I(G( A)) , there is another

function ¢a € T(G( A)) such that
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by (M) = alv)o(m) ™€ (G(R) .

IItemp
(As in § 11 of [1(1i)], we shall sometimes regard ¢ as a

function on Htemp(G( A)) instead of the product

Htemp(G( A))XEG .

Then two interpretations are of course related by the Fourier
transform

p(n,x) = [ etmpe Eay

1aG

’ A€ a., ,

on iag .) Suppose that o Dbelongs to the subalgebra C:(h)W

Then we have

(6.1) ¢ (m,X) = [ “o¢(m,2)a.(r,X-2)d2 ,
ol a- ‘ G
G
where
. _ - -Ax(2) '
aG(ﬂ,Z) = &a* a(vw+k)e dx , Z € ag .
G

Formula (6.1) is useful because it makes sense even if ¢
belongs to the larger space IaC(G( A)) ., For if X remains
within a compact set, the function

z —> aG(ﬂ,X—Z)

is supported on a fixed compact set. It follows that ¢ = ¢a
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extends to an action of C:(h)wl'on IaC(G( A)) such that

(6.1) holds. Similarly, £ ——> fa extends to an action of
=3 W .

Cc(h) on HaC(G( A)) . Recall that if f € Hac(G( A)) and
X € aG ’ fX is the restriction of_ f to

c(m¥ = (xeca :Hx) =X},

and
TEN) = g frtodx " € M(G(A))
G( A)
Then we have
X, _ X, 7 _
(6.2) ﬂ(fa) = ﬂ((fa) ), = £ w{f )aG(ﬂ,X z2)d2
G

Setting X = 0 , we obtain the formula

(6.2") w(f;) = wEagln,-az , T € N(G(A)) ,
e
for the restriction f; of fa to G 3)1 .
We do not want £ +to be an arbitrary function in
Hac(G( A)) . We must insist in some mild support and growth
conditions on the functions fz as 72 gets large. Fix a

height function
=T Tl g [y x € G(A) ,

on G(A) as in § 2 and § 3 of [1(d)]. We shall say that a
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function £ € HaC(G( R)) 1is moderate if there are positive

constants ¢ and d such that £ 1is supported on
{x € (&) : log|lx|| s c(f[H x)|[+1)] ,
and such that

sup (|Af(x)|exp{—d||HG(x)||}) < o ,
XEG( A)
for any left invariant differential operator A on G(F_) .
In a similar fashion, one can define the notion of a moderate
function in IaC(G( A)) . (We shall recall the érecise definition
in the appendix.)
It is not hard to show that the map f ——> fG sends

moderate functions in Hac(G( A})) to moderate functions in

IaC(G( A)) . Conversely, we have

LEMMA 6.1: Suppose that ¢ is a moderate function in Iac(G( A)).

Then there is a moderate function f € Haé(G( A)) such that
fG = ¢

This lemma can be regarded as a variant of the trace
Paley-Wiener theorem. We shall postpone its proof until the

appendix. -

We shall write Cx(h)g , as usual, for the set of functions

in CZ(h)w which are supported on the ball of radius N .

LEMMA '6.2: Suppose that £ 1is a moderate function in
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HaC(G( A)) . Then there is a constant ¢ such that for any

o € C;(h)W , with N > 0 , the function fa is supported on
{x € G( &) : log]||x]|| s c(|lHG(x)|1+N+1)}
PROOF: We can use the direct product decomposition

G(A) =G(m)' xa;

to identify each of the restricted functions

with a function in HI(G( 5)1) . The lemma then follows from
Proposition 3.1 of [1(d)] and the appropriate variant of

(6.2).

We are now ready to state our convergence estimate. Fix

a finite subset I of 1I(K) . If L, € L0 and y € X(G,F) ,

the definitions of § 4 provide a set I (Lo,x) of irreducible

disc

representations of LO( A) 1. Let T (LO'X)P be the subset

disc

of representations in (Lo,x) which contain representations

Hdisc
in the restriction of T to K N Ly( &) .

LEMMA 6.3: Suppose that ¢ 1is a moderate function in

Iac(G( A))F . Then there are constants € and k such that
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for any subset X1 of X(G,F) and any o € C;(h)W , with

N > 0 , the expression

LT o)
xEX1
is bounded by the supremum over Y € X1, Ly € LO, A€ ia;
' : 0

and o € Hdisc(LO'x)r of

c ekN|u(vc+A)| .

PROOF: By Lemma 6.1 there is a moderate function £f in

Hac(G( A)) such that fG = ¢ . Then

z _ _ 1
IX(¢a) = Ix(fa) = Ix(fa) '

for x € X and. a € C;(h)w . By Lemma 6.2, the function f;

is supported on a set
(x € G(A) : logi|x|| s c(1+M) } ,

where the constant ¢ depends only on f . We are first going

to estimate the sum
§ IJX(fa)[
x€X1

of noninvariant distributions. We shall appeal to two results

(Proposition 2.2 and Lemma A.1) of {1(d)] which apply to the
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case that G = G0 . The results for general G , which require

slightly different notation, can be extracted from [7]. We

shall simply quote them.

Fix a minimal parabolic subgroup Q0 € PO(MO) for G0 .

Proposition 2.2 of [1(d)] applies to the distribution Ji(fd) ,

where T is a point in a such that the function

0

d. (T) = min {a(T)}
Q
0EA
Q
is suitably large. The assertion is that there is a constant

C such that if

0

(6.3) dQO(T) > Coc(1+N) R

and if fa is as above, then Ji(fa) equals an expression

: T
02 | *j. . WQ,X(A,fa)dA
{QeF :Q:QO} 1aQ/1aG
Here,
T _ -1 T 1
lPQ;X(A’fO'.) = IP(MQ)| tr(ﬂQ'SQ,X(SA)QQ,X(S’A'fG)) ’

where' s 1is any element in Wg, pQ X(S,A,f;) is the linear

2 2
map from AQ:X to ASQ}XZ discgssedzin § 4, and QQ|sQ,x(SA}
is the linear map from2 AsQ;x to AQ:X such that for any
2
pair of vectors ¢ € AQ:X and ¢s € AsQ,x ,

T
(QQ|SQ,X(S'A)¢S'¢)
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equals

T T
f . A ESQ(x,¢S,sA) A EQ(X,¢,A)dx
G(F)AG'm\G ( A)

(E. stands for the Eisenstein series associated to Q , and

T

Q

A is the truncation operator.) Therefore,

T
(6.4) ¥ Jx(fa)
)(EX1

is -bounded by

-1 T 1
3 Y | P (M) | | J .*|IQQ|SQ'X(SA)OQ,X(SfA,fa)||1dA '
x€X1 QDQO 1aQ/iaG .
where ||-]| denotes the trace class room.
Suppose that f 4is bi-invariant under an open compact

subgroup K, of GO( Afin) . According to Lemma A.1 of

[1(d)], there are constants CK and d0 such that
0
: -1 m =-1,.T
1oL Irmy | Jo M eg (aT g mag o (shy g 1A
XEX1 QDQ0 iaQ/iaG 0 0

is bounded by

0
(6.5) CKO(1+||TI|) '

where A" is a certain left invariant differential operator

on GO(FGO)‘I and ( - ) denotes the restriction of a given

K
0
operator to the space of Ko—invariant vectors. In order to
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exploit this estimate, we note that

1

QISQ(SA) DQ X
is no greater than

1 T

(A, A" ) Q]sQ X

m_.1
o, x ‘SA)KO||1 [ Tog,y (Shn"EN ]

It follows that (6.4) is bounded by the product of (6.5) with

(6.6) sup sup sup IIpQ (s,A,Amf1)]|
o * * rX o
x€X1 Q:QQ AElaQ/iaG
Now Ji(fa) is a polynomial in T , and Jx(fa) is defined
as its value at a fixed point Ty ({1(c), § 2]). We can
certainly interpolate Jx(fa) from the values of Ji(fa) in
which T satisfies (6.3) ([1(d), Lemma 5.2]). It follows that
there is a constant Cé , depending only on Ky v such that
0 /

the original sum

S |Jx(fa)|
)(EX1

is bounded by the product of (6.6) with

a
cp (1+N) o,
0.

Consider the -expression (6.6). For a given Q , write

m.1, _ m.1
Pg, y (818, 8TE) - {f%m | °a,x, Ss A 8TE )
dlSC Q'X
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where denotes the representation induced from the

pQ:XrU
isotypical component of ¢ . Then

(S,A,Amf;)|| s sup
{c€n

:
(S,A,Amfa)|| )

A !‘pQIX |IpQIch
(M_,X)

disc Q" P}

Since

m_1 _ m,., 1
A fa = (A f)a '

the formula (6.2') leads to an inequality

1
[10g,, 0 888 E) ||
m Z - R 4
< f |po’X'0(s,A,A £°) | [uG(cA, z) |dz.
a
G
s | (a™) (x) | -] o (s,A,x)||dx) - |a.(a,,-2)|dZ .
aG G ( A)Z QIX!O’ G A

The operator bQ ¥ 0(S,A,x) is unitary, and has norm equal
r r

to 1 . Observe also that the function’ GG(OA,Z) vanishes

‘unless ||2]] s N . It follows that
' m_1
[1og,y,ts A8 ) LISty [aTstx) [ax)-sup (Jagloy,2) D)
G( A)y z€a
where

G(R)y = {xec(n) : |[|H (x)]] s N}
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Since f 1is moderate, the intersection of its support with

G A)N is contained in a set

{x € G(A) : log||x]|| s c(N+1)} ,
whose volume depends exponentially on N . Moreover, the
supremum of [Af(x)| on G( A}y is bounded by a function
which also depends exponentially on N . It follows that

k. N

f o™ (x) [ax S ¢y e O,

for constants C0 and ko which are independent of N . On

the other hand, we can write

sup |aG(0A,Z)|

ZEaG

S [ « |a(v0+A¥u)]du
ia ’

G
> dim aG -
S C. sup ((1+]|[A+u[]|") la(v _+A+1) |)
¢ P, : o
p€1aG
where
-dim a
2 G
Cs © f *(1+||P]| ) dy
iaG

Combining these facts, we see that the expression (6.6) is

bounded by the product of

koN
CGC0 e
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*
with the supremum over x € X1, Q> Q- A€ ia and

Q
g € Hdisc(MQ’X)r of
dim a _, .
a1l Sawgen |
We can now state an estimate for
(6.7) ) ENICHERS

)(EX1

In order to remove the dependence on Q0 » we shall replace
the supremum over Q by one over Ly € LO . Choose positive

constants C! and. k! such that

1 1

do kON k!N
L] .
‘CK0(1+N) CG COe £ C

Then (6.7) is bounded by the supremum over ¥ € X1, LO € LO ’

*
A E iaLO and o € Hdisc(Lo’x)F of
kiN , dim a R
cie = (+[{allD fa(v_+A) | .
o
To remove the factors (1+||A1|2) from the estimate, we

require a simple lemma.

LEMMA 6.4: For any integer m 2 1 we can choose a bi=-invariant

differential operator z on G(F_ ) , and multipliers

m W o W
a, € Cc(h) and a, € Cc(h) such that
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£ = (zf) + £ '
oy o,

for any function £ € HaC(G( A)) .

PROOF: This follows from a standard argument, which was
first applied to the trace formula by Duflo and Labesse
(see for example [1(a), Lemma 4.1].) For any m , one obtains

a W-invariant differential operator y with constant coeffi-

cients on h , and functions a, € Crcn(h)W and a, € C'.:(h)W ’
such that
)

is the Dirac measure at the origin in h . Let 2z be the
inverse image of ; under the Harish-Chandra map. Then

£ (Zf)a + fa '

= f(ca
1 2

1res)

as required.
a
Returning to the proof of Lemma 6.3, we apply Lemma 6.4,
with m large, tb our moderate function £ . We see that

{6.7) is bounded by

) |JX((zf)a1*a | + 3 IJX(faz*a .

x€X1 xEX1

Since the function zf is also moderate, we can apply the

. estimate we have obtailned to each of these sums. Notice that
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dim aG_
sup  ((1+][4]]%) [ (ag*a) (v *+1) |)
XfLolAlo
dim a
2 G ~ ~
S sup ((1+][A]]%) |ai(v0+A)l’ a(v0+A)|)
dim a
S sup ((1+||A|i2) |ai(v0+A)|)- sup|a(vd+A)|
dim a .
2 G - ~
S sup ((1+||vU+A|! ) |ai(vo+A)|) . sup|a(vc+A)|

But the real parts of the points Vg lie in a fixed bounded
set, and the functions ay decrease rapidly on cylinders
{in a sense that depends on m ). Therefore.
dim a’
2 - . -
sup ((1+] v +A[[) lai(vU-A)I) < ®

It follows that there are positive constants C1 and k

such that (6.7) is bounded by

k)N sup sup (Ia(vG+A)|)

XEX1 LO;A'O

We must convert this into an estimate for

(6.8) E Ix(fa)

xEX1
Suppose that M € LO It follows from Corollary 12.3 of
[1(i)] that the function ¢M(f) in Iac(M( A)) 1is also

moderate. Since

I (6 (£)) = T (6, () )
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we can apply the lemma inductively to ¢M(fa) . We obtain

constants CM and kM , depending only on f , such that

°M
N |Ix(¢M(fa))|
x€x1

is bounded by

Cy © sup sup  ([a(v_+A)[) .
1 LO’A’O-
The required estimate for (6.8) then follows from the estimate

for (6.7) and the formula

_ - Gi-1 IM
I (6,) = 3 (£) - [ IWgllWglT! I (e, (£))
MGLO g
We shall restate the lemma in a simple form that is

*
convenient for applications. Let hu denote the set of elements

&* » -
v in hm/iaG such that v = sv for some element s € W

- : *
of order 2. Here v stands for the conjugation of hm relative
*
to h . As is well known, the infinitesimal character v of

any unitary representation T En (GO( A)1) belongs to

unit
*
hu . Observe that if r and T are nonnegative real numbers,

the set
* * .
R (r,®) = {v eh : | [Re(v) | |5z, ||Im(v)[]2T}
*
is invariant under W . (An element v € hu is only a coset

* * .
of ia; in h; , but l{v|| is understood to be the minimum
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value of the norm on the coset.) Let h1 be the orthogonal
%*

complement of a, in h . Then h_  can be identified with

a subset of the complex dual space of h1 .

COROLLARY 6.5: Choose any function £ € Hac(G( A)) . Then

there are positive constants C,k and r such that

Z [It(fa)] s C ekN sup (l&(v)|) P

t>T veh:(r,T)

for any T > 0 and any a € C;(h1)W , with N > 0

PROOF: Lemma 6.3 is stated for multipliersin 'C;(h)W

it is equal valid if o belongs to C§(h1)W . To see this,

, but
apply the lemma to the sequence

_ 1 '
an(H+Z) = a(H)Bn(Z) ' HeEh , 2 € a.

in C:(h)W , Where Bn € C:(aG) approaches the Dirac measure

at 1. The kupper) limits of each side of the resulting in-
equality give the analogous inequality for o . Notice that
f; depends only on f1 , so that £ can indeed be an arbitrary
function in Hac(G( A))

We shall apply this version of the lemma to the given a ,
with ¢ = fG , and with

X, = {x e x: [|Im(vx) > T} .

Then
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LT e L = 1 1T, (8 |

t>T X€X1

Choose a finite subset I of T1(K) such that ¢ belongs to
IaC(G( A))F . There is a positive number r such that if =
is any representation in Hunit(GO( A)) whose K-spectrum

meets T , the point Vo belongs to

tver : [[Rew)]| s r} .

*
g 0, ia;  and
0

l'[disc(Lo,x)P , as in the inequality of the lemma, the point

If ¥, Ly- A and o are elements in X

*
vO+A then belongs to hu(r,T) . The corollary follows.
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§ 7. Sigpler forms of the trace formula

The full trace formula is the identity

Dwglis§l™h 1 atsnnyye
MeL YEM(F)) o

= 1 T qwmplwsTt g atmryinfan , £ € HG(A))
t20 MeL M{M,t)

given by the two expansions for I(f) in Theorems 3.3 and 4.4.
In this paragraph we shall investigate how the formula simplifies
if conditions are imposed_op f . The conditions will be in-
variant, in the sense that they depend only on the image of
f in TI(G( A)) . Equivalently, the conditions will depend
only on the (invariant) orbital integrals of £

We shall say that a function £ € H(G( A)) is cusgidhl

at a valuation v, if £ is a finite sum of functions

| J £, £, € HIG(F)) ,
such that
fv1'M , M€ L

This is implied by the vanishing of the ofbital‘integral

I (y,,f_) , for any G-regular element vy, € G(F._ } which is
G "1 v, 1 vy
not F_-elliptic.
V1
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THEOREM 7.1: (a) If £ 1is cuspidal at one place vy s we

have

G

IE) =} ) 3aisc

t20 wEHdisc(G,t)

(N)IG(W,f)

(b) If £ 1is cuspidal at two places vy and Vo s We have

I(£)

) a®(s, ) I (v, ) .
YE(G(F))G,S

PROOF: We can assume that

£f = lfv:

v

so that

Part (a) will be a special case of the spectral expansion

1) = 1§ lwhlwS]Tt oy aY (M (n,frar .
t20 MeL MM, t)

The main step is to show that if M € L0 , then

_ 1
Iy(m,£f) =0, _ T € Hunit(M( A) )
But this is very similar to the proof of Lemma 5.2. Using the
splitting formula [1(j), Proposition 9.4], we reduce the

problem to showing that
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IM(W1,X1,fv1) =0, T € Hunit(M(Fv }) ., X1 € a

’M€L .
1 0 "

M,V1

We then apply the expansion [1(jj, (3.2)] into standard

representations, and the descent formula [1(j), Corollary 8.5].
Since T
as in Lemma 5.2. In particular, the terms with M % G in

is unitary, the required vanishing formula follows

the spectral expansion all vanish. Moreover,

;o a%(migin, fran

m{G,t)
= T ity wS T ) f ol (102 (r, I (S L Eran
B ’(‘J’1 0 * « disc 1 M1 1,276 1,07
= G
“endisc(G't)
since
I (WG £) = T, (m,,f, ) =.0 M, # G, 7, €1 M, ( 31)
G 1’ My, f 1 T unit M1
Part (a) follows.
Suppose that £ 1is also cuspidal at a second place vy -

Part (b) will be a special case of the geometric expansion

re) = §lwliwgi™ T ats,mIyly,6)
MeL . : YE(M(F))M,S
The set S8 1s large enough that it contains v, and Vo o
and so that £ belongs to H(G(FS)) . Write
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a0 £y € HGEG D)

where S1 and 82 are disjoint sets of valuations with the

closure property, which contain vy and v, respectively,

and whose union is S . From the splitting formula [1(j),
Proposition 9.1], we obtain
~L

_ G
Iyly,£) = ¥ dy (L, /L,y I
‘ L,sLy€L(M)

ALz

)IM (Y’fz,Lz) .

1

M (Y’f1,L1

The distributions on the right‘vanish unless L, =L, =G .

2
Moreover, dg(G,G) = 0 unless M = G . It follows that if

M # G , the distribution IM(er) equals 0, and the corres-
ponding term in the geometric expansion vanishes. This gives

(b).

COROLLARY 7.2: Suppose that f 1is cuspidal at two places.

Then

, G ) G
N a (S,Y)IG(Y:f) ) ) q3isc

YE(G(F)) g ¢ €20 mEN,; (G, t)

(m) IG(Trrf)

For simplicity, we shall assume that G = G0 in the rest

of § 7. We shall also assume that . £ € H{G( A}) 1is such that

£ T, £, € HIG(F))
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With additional invariant restrictions on f we shall

be able to simplify the trace formula further.

COROLLARY 7.3: Suppose there is a place v1 such that

tr w1(fv1) 0, T € Hunit(G(Fv1)) ,

whenever ™ is a constituent of a (properly) induced represen-

tation
o8 o, €M (M(F_)), M€ L
17 1 unit v, ! 0 -
Then
I(f) = § tr (Rg; o, ¢ (E)) o
t20
where Rdisc,t denotes the répresentatlon of G(A) on
2 ,
Liige,t (6(F)ag NG A)) .
PROOF: If M Dbelongs to LO the condition implies that
tr 6C(E_ ) =0 g, € (M(F ))
L ! 1 € Teemp vyl
so that fV M 0 . Therefore £ 1is cuspidal at vy - Applying
1! )
part (a) of the theorem, we obtain
I(£) = ) ) aS. (mI_(m,£)
qdisc G '
tz20 (G, t)

disc
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tr (M (s,0,£)),

G,=1 -1
= 1 1 |W%||W0| ) [det(s-1)aG| QIsQ(O)pQ,t

t20 Mel SGW(aM)reg M
in the notation of § 4. Here, Q 1is any element in P(M) . If
M+G,

tr(M (Slolf))

alse'? P, ¢

is a linear combination of characters of unitary induced

representations. It vanishes by assumption. If M = G ,
tr (M

(0)og (s,0,£))=tr(p; (0,£))=tr (R (£)) ,

Q|sQ disc,t

by definition. The corollary follows.

COROLLARY 7.4: Suppose there is a place vy such that
IG(Y1'fv1) =0
for any element vy, € G(F, ) ‘which is not semisimple and

1
F, -elliptic. Suppose also that £ is cuspidal at another
1
place Vo . Then

I(f) Y Vol (G(F,Y)Ag \G( A,Y)) /

f(x_1yx)dx '
YE{G(F) } G( A,Y)\G( A)

ell
where {G(F)ell} denotes the set of G(F)-conjugacy classes
of F-elliptic elements in G(F) , and G(F,y) and G( A,y)

denote the centralizers of y in G(F) and G( A)
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PROOF: The conditions imply that £f 1is cuspidal at v,

and v, . We can therefore apply the formula

2

I(£) = 1 aSs, gy, £)
YG(G(F))G,S
of the theorem. If an element Yy € G(F) 1is not F-elliptic,
it is not Fv1—elliptic, and

IG(Y:f) =0

The corollary then follows from Theorem 8.2 of [1(g)] and the

definition of IG(er) .

The conditions of Corollaries 7.3 and 7.4 sometimes

arise naturally. For example, if vy is discrete, Kottwitz

[11(b)] has introduced a simple function fV which satisfies
1
the conditions of Corollary 7.4. Kottwitz also establishes a

version of this corollary in [11(b)]. He imposes stronger conditions
at Vo o but derives a formula without resorting to the invariant
trace formula.

For another example, take G = GL(n) . Suppose that £ 1is

cuspidal at v, - Any element Y4 € G(Fv ) which is not

1
FV -elliptic, belong to a G(Fv ) -conjugacy class
1 1

61 ’ 61 € M(Fv ), M e L

1 0 -

Consequently,
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= 4 -
Igly sf, ) = I (8, ) =0

1 1

Therefore, the first condition of Corollary 7.4 is satisfied.

Moreover, it is known that any induced unitary representation

€0 e MF D)), ME L,

r (0]
1 un 1

is irreducible ([3], [15]1). Since

the condition of Corollary 7.3 also holds. Combining Corollaries

7.3 and 7.4, we obtain

COROLLARY 7.5: Assume that G = GL{n) , and that f is cuspidal

at two places Vi and Vo - Then
I vol(G(F,v)Ay NG( A,v)) f £(x" yx)dx =
YE{G F) 4,1 G( A,y)\G( A)

= ) tr(R
t20

disc,t(f))'
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§ 8. The example of GL(n) . Global vanishing properties

The simple versions of the trace formula were obtained
by placing rather severe restrictions on £ . In many
applications, one will need to prove that certain terms
vanish for less severely restricted functions. We can
illustrate this with the example of GL(n) , begun in § 10
of [1(3)].

Adopt the notation of [1(j), § 10]. Then

*
n:G—>GC = (GL(n)X..... XGL (n)ug*
v —r

is a given inner twist, and G' stands for the group GL(n) ,
*

embedded diagonally in (G )0 . Let us write L' for the set

of Levi subgroups of G' which contain the group of diagonal

matrices. For each L € L' , we have the partition

p(L) = (n1,...,nr) ’ ' n, 2 N, 2.0eas 2n_ ,
of n such that

L s GL{n ) X.....xGL(n) .
Support that Ry and p, are partitions of n . We shall

write g, S g, , as in [1(c), § 14], if there are groups

L, €L, in L' such that gy o= p(L1) and p, = p(Lz)



We shall assume that n(MO) is contained in a standard
* M
Levi subgroup of (G )0 , and that the restriction ¢f n to
AM is defined over F . Then the map
0

M—> M' = n(MO) naG', MEL

’
is an injection of L 1into L' . The image of this map

is easy to describe. For as in [1(3j), § 10], we can assume

that

c% (E) = 6L (3,D8E) x. ... .xGL (3, DeE) ,
L J
°,

where E/F 1is a cyclic extension of degree EE =.&£;1 , 4 is
a divisor of n , and D is a division algebra of degree d2

over F . The minimal group M' in the image corresponds to

the partition
p(d) = (4,...,4)

The other groups in the image correspond to partitions
(n1,...,nr) such that d divides each n, . For each wvaluation
v , we shall write dv for the order of the invariant of the

division algebra at v . Then d is the least common multiple

of the integers dV .
In [1(j), § 10], we described the norm mapping y —> y'

from (orbits in) G(F) to (conjugacy classes in) Gf(F) . It can

be defined the same way for any element M € L . We also
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investigated certain functions on the local groups G'(F )

Let f£' =[ [f! bea fixed function in H(G( A)) whose

v
local constituents satisfy [1(j), (10.1)]. That is, the
orbital integrals of f& vanish at the G-regular elements

which are not local norms.

'PROPOSITION 8.1: Suppose that L € L' and that & € L(F) .

Embed & in (L(F)) , where § o S, is a large finite

L,S
set of valuations. Then

am

I, (§,£') =0,
unless L = M' and 6§ = y' , for elements M € L and vy € M(F) .

PROOF: In the orbital integral, § 1is to be considered as a

peint in L(Fs) . We must therefore regard

£ =TT,
VES
as an element in .H(G’(FS)) . Assume that IL(G,f') #*# 0 . We
must deduce that L = M' and. § = y'
The first part af the proof is taken from p.73 of [1(c)].
Applying the splitting formula [1(j), Corollary 9.2], we
obtain

AL
' - v 1
(8.1) I (8,£") = ] at{L, DI "(s,£ )

v,Lv
(L}

where the sum is taken over collections
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{L, € L(L) . v € S},

and d({Lv}) is a constant which vanishes unless
(8.2) % =D a V.

By assumption, the left hand side of (8.1) is nonzero. There-
fore, there is a collection {LV} for which (8.2) holds, and

such that

L
v '
IL (G’fv,L ) # 0

v

for each v € S . This implies that
p(dv) S p(Lv) ’ v € S

Our first task is to show that p(d) € p(L) . Let p be any

k

rational prime, and let p  be the highest power of p which

divides d . Since d 1is the least common multiple of {dv} '
there is a valuation v € S such that pk divides dv . But

the invariants of a central simple algebra sum to 0, .so there
must be a valuation w € S , distinct from v , such that pk
also divides d . It follows that p(pk) < p(L.) and

w I L v
v W
L "
14.1 of [1(c)]. The result is that p(pk) $ p(L) . In other

p(pk) < p(Lw) . Since a = {0} , we can apply Lemma

words, the integer pk divides each of the numbers Nyrece /Dy

which make up the partition p(L) . The same is therefore true
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of the integer d , so that p(d) s p(L) . In other words,
L = M' for an element M € L

The next step is to show that ¢ belongs to the set

M'(FS)M =T—TM'(FV)M =T Nm eM' (F ) : E(m )eN
vES v

EV/FV(E:),EEX(M')F} .
 Assume the contrary. Then there is a character £ € X(M')F
such that £(8) 1is not a local norm at some place. Conse-
quently, £(§8) is not a global norm. It follows from-global
class field theory that £(8) 1is not a local norm at two
and v both

1 2
1= S\{v1} and 82 = {vz}

places v, and. vy - We can assume that v
belong to S , and that the sets S

both have the closure property. Define

Then by the splitting formula [1(3), Proposition 9.1], we have

' = - 1 1
I (8,£°) Y A7 (L L) I (5,f1,L1)IL (a,leLz) .
L1,L2€L(L)

It follows that there is a pair Ly/L, € L (L) such that

G
dL(L1,L2) # 0 , and

Now, by Lemma 10.1 of [1(j)], we can write

E(8) = £,(8)E,(8) £, € X(Ly)ps &, € X(Ly)
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Suppose that 61(6) is a global norm. Then it is everywhere
a local norm, so that 52(6) is not a local norm at v2 . It

follo&s without difficulty from the given property of f;
2

é L )} wvanishes., This is a contradiction. On
’
2

the other hand, if 51(6) is not a global norm, it is not

that IL (§,£

a local norm at two places in S . At least one of these
: -~ L

places must belong to S1 . It follows easily that IL1(6,f;’L1)
vanishes. This too is a contradiction. It follows that §
belongs to the set M'(Fs)M .

The final step is to apply [1(j), Proposition 10.2]. This
vanishing result was stated only for local fields, but by the
splitting formula it extends immediately to G'(FS) . Since

IM.(G,f') does not vanish, and since § belongs to

M'(FS)M , the element ¢ must belong to a smaller set

Pl M (F,)y -
vES

M (Fg)y =
{The set M'(FQ)M was defined in the preamble to [1(3j),
Proposition 10.2].) Now, any element in M'(FV)M is the local
norm of an element in M(Fv) [1(§), Lemma 10.4]. Since S is
large, this implies that § 1is everywhere a local norm. One
can then show that ¢§ 1is the global norm of an element in
M(F) . (See [2, Lemma I.1.2].) In other words, § = y' , for
some element <y € M(F) . This completes the proof of the

proposition.

PROPOSITION 8.2: Suppose that L1 < L are elements in L' ,
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and that S o Sram is a large finite set of valuations.

Then
IL(W,Y,f') =0,

for any Y € a and any induced representation

L

T o= T, € H(L1(FS)) '

1

unless both L1 and L are the images of elements in L .
PROOF: Suppose that IL(n,Y,f') + 0 . Using the splitting
formula [1(j), Proposition 9.4], we first argue as at the
beginning of the proocf of the last proposition. This establishes
that L = M' , for some element M € [ . We then apply the
local vanishing property [1(j), Proposition 10.3]. This
proves that L.I = M; , for another M1 € L

Propositions 8.1 and 8.2 are the first steps toward
comparing the trace formulas of G and G' . They assert
that for functions f' on G'( A) as above, the distri-
butions vanish at data which do not come from G . The trace

formula for G' becomes

LA I a (s, v I, (v EY)
M€ L YEM(F))y o

= 1 1 |w§||w§|“ f aM'(W)IM.(n,f')dw .

£20 MeL T(M',t)
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It is considerably harder to compare the terms which remain

with the corresponding terms for G . This problem will be

one of the main topics of [23.
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Appendix. (The trace Paley-Wiener theorems)

We shall prove Lemma 6.1. The result can be extracted
from the trace Paley-Wiener theorems {6(a)l]l, [6(b)], and
[5]1, [14] for real and é-adic groups. For implicit in these
papers is the existence of a continuous section ¢ —> £
from I(G(Fs))r to H(G(FS))F , in which the growth and
support properties of £ can be estimated in terms of
those of ¢ . I am indebted to J. Bernstein for ‘explaining
this to me in the p-adic case.

Suppose that S 1is any finite set of valuations of
F with the closure property. The notion of a moderate
function £ € Hac(G(FS)) can be characterized in terms of
the behaviour of the functioné

£ (x) = £(x)b(HEgx) , becila, o) -

G,S

Indeed £ will be moderate if and only if there are positive

constants ¢ and d such that for any N > 0 , and any

b € C )

€ Cxlag,s) -

(1) fb belongs to Hc(N+1)(G(FS)) . the set of functions in
H(G(FS)) supported on the ball of radius 'c(N+1) , and

(ii) 11£2]] < syl .

Here,

(A.1) ilh|| = sup fah(x) | , h € H(G(Fg)) ,

x€G(FS)
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where A 1is an arbitrary (but fixed) left invariant

differential operator on G(FS n S) , while
==
r

. 00 .

(A.2) §(b) = ) sup [Db(X) |, b ecC (a; o)y
k=1 xeaG's
for invariant differential operators D1""'Dr on aG s
r

which depend only on A . (If S consists of one discrete
valuation, we take A and {Dk} to be constants.) The reader
can check that this definition is equivalent to the one in

§ 6. Similarly,the notion of a moderate function 4 é Iac(G(Fs))
can be defined in terms of the behaviour of the functions

b ) w
¢ (Trlx) = ¢(Trlx)b(x) ’ b € Cc(aG’ )

S
More precisely, ¢ 1s said to be moderate if there are positive
constants ¢ and d such that for any N > 0 , and any

b € Co )
€ N(aG, ’

S

?

. b
(1) ¢ belongs to Ic(N+1)(G(FS)) , and

(ii) 16P]]* s s(byaY .

Recall ({1(i)]) that IC(N+1)(G(FS)) is the set of 1y € I(G(FS))

such that for every Levi subset

M = [ M,

vES

of G over FS » and every representation
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o = 3 Og * Oy € Meomp My (Fy)) »

the function

- G -A(X)
Y(o,X) = . { vlog,hg(X))e an , X € ;M’S ,

iaM'S/ia

G,S
is supported on the ball of radius c(N+1) . In the second

condition, it i1s understood that

(a.3)  |lvll* = sup |a'ylo, )| . v € T(G(Fg)) ,
where A' 1is an arbitrary invariant differential operator on

aM,S n s, for some fixed M and o , while d&(b) is a

semi-norm on C:(a ) of the form (A.2) which depends

G,S
only on A' .

LEMMA A.1: "Suppose that [ 1is a finite subset of II(K) .

Then there is a continuous linear map
h : I(G(FS))F E— H(G(FS))F

with the following four properties.

(a) h(cb)G ¢ ¢ € I(G(FS))P .

h()? , b e c(a. )

(b) h(sD) lag g

(c) There is a positive constant ¢ such that for each

N >0 , the image under h of IN(G(FS))F is contained
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in H ney (G(Fg)) |

(d) There is a positive constant d such that

N :
[Ih(e) [1 s [le]]'a” . ¢ € T (G(Fg)) o, N >0,
where ||-|| 1is an arbitrary semi-norm of the form (A.1),
while |[|*]|*' is a finite sum of semi-norms (A.3) which
depends only on ||°|]| .

Lemma 6.1 follows easily from Lemma A.1. Take S o Sram
to be a large finite set of valuations of F , and let ¢ be
a moderate function in Iac(G(FS))F . Let {bi} be a smooth
partition of unity for aG , and set
bi
£=173 h{o ) .

1

Then f obviously belongs to Hac(G(FS))P . We have

bi bi
fg =L h(e Hg=10 " =0.
i ' i

Suppose that N > 0 and that b € C;(aG) . Then

b.b b.b
£ =T hie L) =n(l o) =neb) .
i i
The required support and growth properties of fb then follow

from conditions (¢} and (d) of Lemma A.1.

The main point, then, is to establish Lemma A.1. It is
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evident that we can treat the valuations in S separately.
We shall therefore assume that S consists of one valuation
v . To simplify the notation, we shall also assume that F
itself is a local field (rather than a number field), so
that F = FV = FS .

Suppose first that F is non-Archimedean. In this case,

the space is discrete, and the required condition (b)

aG,v

presents no problem. For if h satisfies all the conditions

but this one, and if

1, 2 = X
b(Z)={
X 0, 2 + X,
for elements X,Z € a r the map
G,v

b b
o6 —> ) hip ¥y X
XEaG'v
will satisfy all the required conditions. It is therefore
enough to construct a map h for which the conditions (a}),

{(c) , and (d) hold.

The Bernstein center is a direct sum

2(c(F)) =@ zic(m)
X X

of components indexed by supercuspidal data y . Recall that

a supercuspidal datum is a Weyl orbit

- . - - G
x = {sylLy.xy) = S, € WO} {s(Lyrry) s € Wil



- A.6 -

where L0 is a Levi subgroup of G0 and Ly is an irreducible
supercuspidal representation of LO(F)1 which is fixed by some
element in Wg . The definition, in fact, i§ in precise ana-
logy with that of a cuspidal automorphic datum, given in § 4.

We also recall that
2(6(F))_ = 2(c° ()
X X

is isomorphic to the algebra of finite Fourier series on the

torus

*
{rO,A : A€ laLO,v}

which are invariant under the stabilizer of the torus in W

0
Let X(F)F denote the finite set of data Y such that Ty
contains a representation in the restriction of T to
Kn LO(F) . Then X(F)F is a finite set, and
26 = @ 2eE),
xEX(F)F
is a finitely generated algebra over & . Let z, = 1,
ZoreesrZy be a fixed finite set of generators. There are
actions ¢ —> z¢ and f —> zf oOf Z(G(F))r on I(G(F))F

and H(G(F))r , and the module I(G(F))F is finitely generated

over Z(G(F))r . Let ¢1 = 1,¢2,...,¢m be a generating set.
Then any function ¢ € I(G(F))r can be written as a finite

sum
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m .
(A.4) ¢ = .{ ) c3(27¢j) ,
j=1 v

where {cz} are complex numbers, and where

for any n-tuple
Y = (Y-II"‘fYn)
of nonnegative integers. Assume that the functions

X——>¢ (TT,X) ’ TTEH (G(F))l Xea

. temp G,v '

are supported at X = 0 . Then by the trace Paley-Wiener
theorem, there are functions f1""'fm in H(G(F)1)r such

that
(f
We are going to define

m
(A.5) hi¢) = } 1} ci(szj) .

i=1 v
However, the expansion (A.4) for ¢ is not unique. We must
convince ourselves that it can be defined linearly in terms
of ¢ in a way which is‘éensitivé to the growth and support

properties of ¢
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We can identify each ¢ € I(G(F))r with a collection

of functions

_ G a L ¥ '
G,v
in which
. . . 1
0 = (M,o0) , MeL, g ¢ Htemp(M(F) )

ranges over a finite set of pairs which depends only on T

Each ¢, is a finite Fourier series which is symmetric under

the stabilizer W, of the orbit {OA} in wW(a,) . The size

of the support of ¢ is determined by the largeét degree

of a nonvanishing Fourier coefficient. Let ||¢]||' denote

the largest absolute value of any of the Fourier coefficients.

It is a continuous semi-norm on I(G(F))F of the form (A.3).
Let us embed I(G(F))F into the space J(G(F))F of

coliections
P =‘{w0(cA)}

of finite Fourier series which have no symmetry condition.

Then J(G(F))F is also a finite ‘Z(G(F))F-module. By averaging
each function over W, } we obtain a Z(G(F))F-linear projection
y —> § from J(G(F))r onto I(G(F))F . We can assume that

our generating set for I(G(F))r is of the form

b = Vs 1< 3jsm,
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where the funcﬁions w1 = 1, wz"'°'¢m generate J(G(F))F .
Now, for each ¢ = (M,0) , we fix a basis of the lattice
aM,v . This allows us to identify the corresponding functions
with f;nite sums

(A.6) v, = Y bB'oyB , b €EC,
B

in which
B = (Byse-esBy) o d =4 =din 2, ,

d
runs over 2Z  , and

denotes the function on {cA} whose BEE Fourier. coefficient is
1 and whose other Fourier coefficients vanish. The functions
Yy and y;1 of course belong to j(G(F))F , so we can define

finite expansions

vi' =11 (63)*(zij) , (53)* €C .
iy '

Substituting these expressions into the SEE term of (A.6), and
iterating

8] = 18y 0+.. 0.4y

times, we obtain an expansion
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a7 oy, =11l 2Ny,
J Y

which is now well defined. If Bmax and Y max index the
nonvanishing coefficients of greatest total degree in the
expansions (A.6) and (A.7), one sees that

s cl|8 1)

‘ Ymax I max I

and

P

J
for constants ¢ and d which depend only on [ . Finally,
observe that if wo equals an element ¢O in I(G(F))P , we
can project.each side of (A.7) onto I(G(F))F . We obtain a

canonical expansion
6 =73 3 cJ (z¥¢.) .
g : Y0 J
Jy

We have shown how to define the expansion (A.4) in a way
that depends linearly on ¢ . Moreover, if ¢ Dbelongs to
IN(G(F))P , and Ymax indexes the nonvanishing coefficient
of highest degree in (A.4), we have

(A.8) < c(N+1)

Y pasx!

and
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J 1N
(A.9) sup(lcYI) s lefl'a” ,

for fixed constants ¢ and d . We are thus free to define
h(¢) by (A.5). It remains to check conditions (c) and (d)
of Lemma A.1.

Let K0 be an open compact subgroup of GO(F) which lies
in the kernel of each of the representations in T . Set go-
equal to the characteristic function of KO divided by the
volume of KO . Then 9, acts by convélution on H(G(F))P as
the identity. The algebra Z(G(F))F acts on H(GO(F)),, SO we

can set
gi=zig0' 1 <1 sn.

These functions each belong to H(GO(F)) , and they commute

" with each other under convolution. Consequently, for any

Y = (yqeeearyy) o

the function

is well defined and belongs to H(GO(F)) . Since Z(G(F))F
acts as an algebra of multipliers on H{G(F)) , the function

(A.5) can be written

= ) j Y
h{g¢) EE CY(g *fj) .
JY
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To estimate the support of h(¢) , we use the inequalities

supp(g+h) < supp(g) "supp(h) , ' g € H(GO(F)), h € H(G(F)) ,

and

=yl < [lx[[-Flyl] o

both of which are easily established. It follows that h(¢) 1is

supported on a set

{x € G(F) : log||x|| s cq(ly  [+1} ,
where <4 is a constant which is independent of £ . The support
condition (c) of the -lemma then follows from (A.8). To establish

the growth condition (d) , we may assume that |{|-|| is the

supremum norm on H(G(F)) . Then

gl s [lglllinll , g e H@& (), heHEE) ,

where |[-||, is the L,-norm. Condition (d) then follows from

(A.8) and (A.9). This completes the proof for non-Archimedean F .

¥

Next, suppose that F 1is Archimedean. If G # G~ , we

must invoke our assumption that G is an inner twist of
G* = (GL(n)X..... xGL(n) ) @8*

in order to have the trace Paley-Wiener theorem. (See [2, Lemma
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I.7.1].) We shall say no more about this case. For one can
obtain Lemma A.1 from the trace Paley-Wiener theorem by
arguing as in.the connected case heloﬁ. We assume from

now on that G = G0 . In this case the lemma is implicit

in the work of Clozel-Delorme [6(a)]), [6(b)]. They construct
a function £ = h{(¢) for every ¢ ; and they give an estimate
for the support of £ which is stronger than our required
condition (c) . Our main tasks, then, are to convince
ourselves that the map ¢ —> h(¢) is well defined, and to
check the growth conditions (d) . We shall only sketch the
argument.

The analogy between real and p-adic groups becomes clearer
if we describe the steps of Clozel-Delorme in a slightly
different order from that presented in [6(a)]. Let DK(G(F)1)P
be the space of distributions on G(F)1 which are supported
on K , and which transform under K according to representations
in T . For a typical example, take 1y € T, and let X be an

element in U(g(F)1)K , the centralizer of K in the universal’

enveloping algebra. Then the distribution

K, : £ —> [ (XE)(R)erlu(x))dk £eciemE)
K

belongs to DK(D(F)1)F . Suppose that D 1is any element in

DK(G(F)1)F . Since it is a compac;ly supported distribution,

it -can be evaluated at a smooth function from G(F) to some

vector space. In particular, one can evaluate D on the

function w(x) , for w € NM(G(F)) , to obtain an operator

m(D) . Set



- A.14 -

\

DG(W) = tr(w (D)) , T € Htemp(G(F)) .

Then DG is a scalar valued function on (G(F)) . Let

ntemp
us write AG(G(F)1)F for the space of complex valued functions

§ on Htemp(G(F)) which satisfy the following two conditions.

(i) 6(m) =0 , unless 7 contains a representation in T .

(ii) For any Levi subgroup M € L , and any o € Htemp(M(F)) '
the function 4
A 5 (o© -
—_— OA) ’ A € RM’E )

*
is a polynomial which is invariant under A ¢ *
. ’

It is easy to see that the map D ——> DG

into AK(G(F)1)F . One of the main steps in the proof of

1
sends DK(G(F) )P

Clozel-Delorme can be interpreted as an assertion that the
map is surjective., In fact, any function § € AK(G(F)1)F is
the image of a finite sum of distributions XH . This is
obtained by combining the characterization of the action of
U(Q(F)T)K on a minimal K-type ([6(a), Theorem72] and |
.f6(b), Theorem 2]) with the reduction argument based on
Vogan's theory of minimal K-types ([6(a), p.435]}.

Smooth multipliers'on G(F) map DK(G(F)1)P to H(G(F))r .
More precisely, if D € DK(G(F)1)T and o € C:(h)W ; there

is a unique function Da in H(G(F))F such that

(3.10) (D) = a(v )Tm(D) T € T(G(F))
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(See [6(a), Lemma 6].) Observe also that if ¢§ belongs to
AK(G(F)1)P  the function

5,(m = s(malv) € (G(F)) ,

l-[ternp

belongs to I(G(F))r . It is clear that

The second main step of Clozel-Delorme can be interpreted as
an assertion tﬁat over C:(h)w , the module I(G(F))F has a
finite set of generators in AK(G(F)1)F . In other words, there
is a finite set 51"""'6m of elements in AK(G(F)1)F with

the property that any function ¢ € I(G(F))F can be written
(A.11) ¢ = &6 oo +4 '

7

for multipliers Qqre-esay in C:(h)W . Fix elements D1,...,Dm

in DK(G(F)1)P such that

(D.)G = 8. , : 1) sm.
We are going to define
(A.12) h{(¢) =D +oeren +D

However, we shall first indicate briefly how the expansion

(A.11) can be defined in terms of ¢ so that it has the
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the approriate properties.
As in the p-adic case, we can identify each ¢ E-I{G(F))r

with a collection of functions

Y
6,0 = J ¢(ci,x)dx , A€ day ,
d
'G
in which
]
0= (M,0) , MEL, o€ Htemp(M(F) ) .

ranges over a finite set of pairs. For each ¢o , one constructs
a Paley-Wiener function ¢, ‘on h; by following the proceed-
ure on p. 439 of [6(a)]. Clozel and Delorme then appeal to
a result in [13}, which asserts that
* ~ * W ~ * W

PW(ho) = u,PW(hp) "+.... *u PW(he)
for elements u, = 1,u2,...,ud in S(h1) ¢ the éfmmetric
algebra on’ h1 . Indeed, one need only take {ui} to be
homogenous elements which form a basis of the quotient field
of S(h) over that of s(h) " . From the corollary of Lemma 11

of.{9(a)], one can then construct continuous projections
h* ~ * W : _
PW(hy) —> u,PW(h ) . 1 $1isad :

whose-sum is the identity. Apply the decomposition to ¢0 '

and then restrict the functions obtained to the affine sub-

. % *
spaces v _ + a of h, . This provides a well defined
g M, T T
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expansion (A.11) for ¢0 . The expansion for ¢ is then the
corresponding sum over ¢ . In particular, we take {6 ron Gm}
to be the union over o0 of the sets of d. functions

~

A —> ui(v0+A) ’ A€ ia

It follows that the expansion (A.11) is given by a well
defined linear map
(A.13) 6 —> (agseeesa) . a, € o .
m c

The map h 1is then determined by (A.12).

It is clear from the definitions that h(¢)G equals ¢
The other conditions of the lemma come from properties of the
map (A.13). For one can check that the map commutes with the
natural action of ia* on I(G(F))r and Cc(h)W . This
gives the required condition (b). If ¢ € IN(G(F))P , N>0 ,
it can be shown that each a, belongs to C;(h)W . Since
the support of a function (or distribution) behaves well
under the action of a multiplier, condition (¢) follows. To
prove (d), first note that a semi-norm (A.?1) is continuous on
the Schwartz space of G(F) . It follows from the corollary
of Theorem 13.1 of [9(b)] that the value of any such semi-

norm on h(¢) is bounded by a finite sum of continucus semi-

norms, evaluated atvclassiéal Schwartz functions
. ’ I . *

Here P € F(MO), o € (M (F)) and I (o,) 4is the induced

temp p P A



- A.18 -

representation of G(F) . We are assuming that h(¢) is
given by (A.12), so that

~

I,(0,,h(8)) = 1 oy (v +A)1 (0,,D;)

n e~-3

i=1

But for any k there is a semi-norm |]- on I(G(F)) of

e
the form (A.3) such that

- . v _||N _
suplog (vorh) |5 [loll e 7 (el AlD) k,
*
for any X € iaE and any ¢ € IN(G(F)) , N> 0 . This is a

consequence of the continuity properties of the map (A.13).

The final condition (d) of the lemma follows.
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