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NONCONJUGATE SUBGROUPS OF
INTEGRAL ORTHOGONAL GROUPS

F.E.A. JOHNSON

§0 : Introduction :

In this note we consider a question raised by C. Okonek in connection with his
joint, work with W. Ebeling on diffeomorphisms of algebraic surfaces.

Question :  Let <,>: L xL — Z be a nondegenerate symmetric bilinear form
on a finitely generated free abelian group L. Does there exist an infinite family of
isomorphic finitely generated subgroups (T )yex of Autz(L, <,>) such that T, is
not conjugate to I', fora # 77

We answer the question affirmatively when (L, <, >) splits as an orthogonal
direct sum

(L: < >) & (Lh <1>) 1 (L27 <, >)

where (L, <,>) has signature (2,1), and Autz(Ls, <,>) has a subgroup of finite
index which maps epimorphically onto Z ; this implies, amongst other things,
that rkz(Le) > 3. In particular, this always happens when (L;, <,>) and
(Lg, <,>) each have signature (2,1). More generally, one may show that the
result holds when (L, <, >) splits as an orthogonal direct sum

(L, <,>) =2 (In, <,>) L (Lg, <,>) L ..... 1 (Ly, <,>)

where each (Li, <,>) has signature (2,1). The methods are a variation on those
of our earlier paper [2], although to show finite generation we do actually use the
main theorem of [2].

This work was done whilst the author was on sabbatical at the Max-Planck-
Institut fur Mathematik, Bonn. We wish to thank Professor Okonek for raising
the question here considered. We especially wish to thank Professor Hirzebruch
and the staff of the MPI for their hospitality.



§1 : Arithmetic subgroups and integral quadratic forms :

If G is a linear algebraic group defined and semisimple over Q ( which we may
take to be imhedded Gq C GL,(Q) ), by an arithmetic subgroup of G , we mean
a subgroup I of G which is commensurable with Gz = Gq N GL,(Q) . This
is independent. of the particular imbedding Gq C GL,(Q) chosen. Moreover,
for such a subgroup I', Gr/T has finite volume.

Theorem 1.1 [2]: Let G be a linear algebraic group defined and simple over
Q with the property that Gg is noncompact. If T" is an arithmetic subgroup of
G then T = Geg.

This has the following consequence, where [I, T'] denotes the commutator sub-
group of I" :

Corollary 1.2 :  Let G be a linear algebraic group defined and semisimple over
Q with the property that G; g is noncompact for each Q -simple factor G; . If T’
is an arithmetic subgroup of G then [[,[] = Gg.

Proof :  First observe that G is isogenous with the product of its Q -simple

factors Gy x .... x G,  so that " contains with finite index a subgroup
of the form 'y x .... x [, where T is an arithmetic subgroup of G;. Hence
[T, T3] % .... x [I'h, ] is contained in [, T'] so we need only consider the case

where G is Q -simple.

By Borel’s Density Theorem in the from of [2], T = Gg¢ , and since G¢ s
nonabelian, T' is also non-abelian; hence [T, T] is nontrivial. T normalises [[', T
, so that T normalises [T,T]. However, by (1.1), T = Gg. , so that [[,T] is a
normal complex algebraic subgroup of G¢. moreover, since [[',T] is the Zariski
closure of a subset of Gq , [T, T] is defined over Q , by Weil’s Rationality Criterion
[6]. Since [T,T] is Q -simple, and [, T] is nontrivial, it follows that [[, ] = Ge.
as claimed. O

Let <,>: L x L » Z be a nondegenerate symmetric integral bilinear form
on a free abelian group L of rank n, say. (L , <, >) is said to be isotropic { over
Z ) when there exists a nonzero element x € L such that < x,x> = 0
otherwise (L ,<, >) is said to be anisotropic.

Put T'= Autz(L, <, >). The associated real form

<,>L®R x LR —- R

is diagonalisable as



n

r
DTy — D, Tl
i=1 t=p+1
assigning to (L ,<, >) the signature (p,q),p+ q=n,andI'imbeds as a
discrete subgroup of finite covolume in the group

Autg(LOR ,<,>) = 0O(p,q);

moreover, I' is cocompact precisely when (L , <, >) is anisotropic. (When <, >
is indefinite, we note that, by a classical theorem of Meyer [4], this can only
happenif n < 4).

When the signature of (L , <, >) is (2,1), the symmetric space of O(2,1) is
the upper half-plane, so that I' is a Fuchsian group. When (L , <, >) is isotropic,
" contains a non-abelian free subgroup of finite index, whereas, when (L , <, >)
is anisotropic, I’ contains, as a subgroup of finite index, a Surface group E; ;
that is, the fundamental group of an orientable surface, of genus g > 2, having a
presentation of the following form ;

g
2; = < X],...,Xg, Y],...,Yg, : 1_11 [X;,Yi] > .

We summarise these observations thus :

Proposition 1.3 : Let T be the automorphism group of a nondegenerate integral
quadratic form of signature (2,1) ; then I is finitely generated and

(i) T contains a Surface subgroup of finite index when (L , <, >)
is anisotropic ;

(ii) T contains a nonabelian free subgroup of finite index when
(L ,<, > ) is isotropic.

Let H be a subgroup of a group G ; we denote by NgH the normaliser of H in
G ; that is

NeH = {g€ G : gHg™'}

Let G be a linear algebraic group defined and semisimple over C . For any
subgronp H of G , we denote by H the closure of H in the Zariski topology of G.
H is then an algebraic subgroup of G. Let H be a subgroup of a group G ; we
denote by Ng H the normaliser of H in G ; that is



NeH = {ge G : gHg'}.

If H is an algebraic subgroup of G , then NgH is also an algebraic subgroup
of G .

The obvious isomorphism
C" @ ...@ C'~ = QM+
induces an injection
O(m,C) x.... x O(nm,C) C O(m+ ... +1n,C).
A straightforward matrix calculation in the Lie algebra shows that

Proposition 1.4 :  O(n;,C) %X .... x O(ny,,C) is a self-normalising subgronp
of O(my + ... 4+ 1n,, C), provided that each n; > 2.

Proposition 1.5 : Let L be finitely generated free abelian group, and

<,>: LxL —=Z

anondegenerate symmetric bilinear form which splits as an orthogonal direct sum

(L,<,>)= (Ly, <,>) L (Iy,<,>) L ..... L (L, <,>)
where m > 2, and each rtkz(L;) > 2. Let G (resp. G; ) be the linear algebraic
group whose group of k-rational points s Autip(L ® k, <,>)

»'\(I‘F:Sp. Alltk(Li Rk, <, >) , and let,
H=G1X....XGmCG;

Then Autz(Ly,<,>) x ... x Autz(Lm,<,>) is contained as a subgroup of
finite index in Ng(H ) N Autz(L, <, >).

Proof : Put Ay = rkz(Li),and A = T ;. H and (NgH) are both linear algebraic
groups defined over Q , so that the groups of real points, Hg and (NgH)r
respectively, are Lie groups having only finitely many connected components.
Observe that Gg (respectively Gic) is isomorphic to O(A , C) (repectively
- O(N, C). It follows from (1.4) that

Hec = (NgH)c.

Since H C NgH it follows easily that the identity components of the cor-
responding real groups are therefore equal ; that is, Hggo = (NgH)ryp. Since
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Autz(Ly,<,>) X ... x Autg(Lmn, <,>) and Ng(H ) N Autz(L, <,>) are both
arithmetic in NgH, and Autz(L,<,>) X ... x Autz(Ln, <,>) is contained in
Ne(H ) N Autz(L, <,>), the conclusion now follows.

§2 : Normal subdirect products :

By a product structure on a group G we mean a sequence § = (G;)i<r<n of
normal subgroups of G such that G is the internal direct product

G = G}O..OGn.;

that is, each g € G can be expressed uniquely as a product g = g;. . .gn;
with g € G;. For any gronp H let H*®® denote the abelianisation

H* = H/[H,H].

Observe that to any product structure
g = (Gr)leS“

we may associate its abelianisation

G = (G")1<ren-
Moreover, a product structure G = (G,)1<r<n giVes rise to projection maps

m o Gio . .0G, = G

A subgroup H of G = G0 . . 0 G, is said to be a subdirect product of G

(or, more accurately, of G = (G,)i<r<n) When, for all i , m(H) = G;. Let
S(Gy, .. G,) denote the set of all normal subdirect products of Gio . . oG, ; that
1s, subdirect products which are also normal subgroups. If ¢ : Gyo . .0G, —
G o . .0G* denotes the abelianisation map, ¢ induces a mapping

o'+ S(GP®..G™) 5 S(G,..G))
by means of H — ¢~ '(H). In [3], we showed

Theorem 2.1:  For any product structure G = (G,)1<r<n

o' : S(GP..G™) — S(G,..G,) isbijective.

We shall also need the following result of [3], which is important in the sequel ;

Theorem 2.2: Let H be a normal subdirect product of Gyo ... 0 G,. Then H
is finitely generated (as a gronp, not merely as a normal subgroup ) if and only if
each G; is finitely generated.




The conclusion of Theorem 2.2 is false if the assumption of normality on H is
dropped.

§3 : A construction for abelian subdirect products :

In this section, we will consider product. structures with two factors on abelian
groups ; for this reason we will write our groups additively . Thus suppose that,

A=A 0 A

is a product structure on the finitely generated abelian group A, and suppose,
moreover, that

(i) Asg/ Tor(As) hasrankry > 1, and

(ii) Ay is free abelion of rankry > 2.

By an oriented splitting for Ay we shall mean a triple S of the form S =
(Mg, Ng, €5) where

A; = Mg® Ng

in which Ng is free of rank 1, and €5 € Ng is a generator. We shall denote by
S the set of all oriented splittings of A;.

Now make choices, once and for all, of a specific splitting
Ay/Tor(Ag) = NP
where N is also free of rank 1, and a specific generator ¢ € N'. For each S
€ S, put
A(S) = Mg® <es+¢> PP

and let A(S) denote the preimage of A(S) in A; & Ag under the natural mapping

AP Ay - A1 O (AQ/TOI‘(AQ)).
It is easy to see that each A(S) is a (necessarily normal) subdirect product of
A @ A,
The group Aut(A;) acts transitively on the set S of oriented splittings of A;.
Moreover, Aut(A;) acts on Ay @ Ay by extending its natural action on A; by the



identity on Ag. Fix a ”basepoint splitting” T € S . Since S is obviously infinite,
we obtain the following :

Theorem 3.1: There is a subset @ C  Aut(A,) such that

o(A(T)) (f €0)

is an infinite family of (normal) subdirect products of A; @ Ay having the property
that #(A(T) is distinct from o (A(T)) for 8 # o.

§4 : Infinite families of non-conjugate isomorphic imbeddings :

Let Ay be a nonabelian free group of finite rank m > 2, and let Ay be a finitely
generated group such that AS® is infinite. Put A; = A fori=1, 2. Since
A, 2 Z™, and A, maps epimorphically onto Z , we may apply Theorem (3.1)
above to obtain the existence of a faithfully indexed infinite family of

(A(T))

of normal subdirect products of Ay @ Ay, where # ranges over some subset,
Oof Aut(A;) = GL,(Z)). Let

¢ Ay x Ay - A x Ay

denote the abelianisation map. As we have seen, ¢ induces a mapping
7' S(Ar, Ap) — S(Ay, Ag)

by means of A — ¢~ '(A). Put T' = ¢ '(A(T) ; then T is a normal subdirect
product of Ay X Ag, and so is finitely generated by Theorem (2.2). Furthermore,
the group Aut(Aq) x Aut(A2) acts naturally on subgroups of A; X As , and the
orbit of I' under this action consists entirely of normal subdirect products of
Ay X Ag. In fact, we only need consider the orbit of ' under the action of the
subgronp Aut(A;) (=2 Aut(A) x {1}) of Aut(A;) x Aut(Aq).

Since A; is free, by a theorem of Nielsen [5], every antomorphism 8 of A% =
A, lifts (nonuniquely) to an automorphism Hof Ay & A X {1}. Put,

Ty = A(D)

where for each # € AT = A,, f is some chosen lifting for 4. It is clear that each
I's is isomorphic to I'. We may summarise our progress as follows ;



Theorem 4.1:  Let Ay be a nonabelian free group of finite rank > 2, and let
Ay be a finitely generated group which maps epimorphically onto Z ; there is a
subset © C Aut(A;) parametrising an infinite family

Ty = 8((A(T)) (9 € ©)

of mutually isomorphic finitely generated normal subdirect products of A x As.
with the property that I is distinet from T, for 8 # o.

The analogne of Theorem (4.1) in which A; is replaced by the fundamental
group of a closed orientable surface is also true ; we proceed to outline the nec
essary variations.

Let T4 denote the closed surface of genus g > 2, and let )3;' denote its funda-
mental group

£ = m(54).

vt = <« X1, oo, Xg, Yy, o0, Y,

g X5, Y] >.

I es

We may identify the abelianisation Ai(Z7;Z) of T with Z% : then the intersec-
tion form on ¥%) gives rise to a nondegenerate symplectic form

<,>: 7% x7% 5 7.

With this identification, symplectic automorphisms of Z?9 | that is elements of
Sp2g(Z), lift. back to automorphisms of £} = m(X%), with transvections lifting
back to Dehn twists.

Let {€1, ...,6,Z%,¢1, ..., ¢, } be the standard symplectic basis for the form
<,>:7% x 7% — 7 ; that is,

<€,6>=<d¢i,0;>= 0 ; <e€,¢;>= b

In constructing subdirect prodncts in Ay @ Ag as in §3, where now A; =
H(Z};Z) = Z% , we take our ”basepoint splitting” T of A; & Z?8 to be of
the form

Z* = Mp® Ny

where Spanz{ €, ...,6} C My ,and Ny C Spang{é¢i, ...,¢g}. There is an
infinite subset, of such splittings which we may parametrise by suitable elements



of the group Spe,(Z). With these modifications, we obtain the following analogue
of Theorem (4.1).

Theorem 4.2:  Let Ay be a Surface group of gennis g > 2, and let Aj be a
finitely generated group which maps epimorphically onto Z ; there is a subset
© C of Spy(Z) parametrising an infinite family

Ty = 6((A(T)) (9 € O)

of mutually isomorphic finitely generated normal subdirect productsof A; x Ay
with the property that T is distinct from T, for 8 # o.

Since the families (T'p)sce just constructed consist of normal subgroups of
A1 x Aq, we see that :

Proposition 4.3 :  The families (I'g)gee constructed in Theorems (4.1) and (4.3),
possess the property that no two elements are conjugate in Ay x Ag.

Now let <, >: L x . — Z be a nondegenerate symmetric bilinear form on a
finitely generated free abelian group L, such that (I, <, >) splits as an orthogonal
direct sum

(L, <,>) 2 (I, <,>) L (Ly, <,>).

Then
Autz(Li, <,>) x Autz(Ls, <,>) C Autgz(L, <,>).

Let G (resp. G; ) be the linear algebraic gronp whose group of k-rational
points is Auti(L®k, <,>) (resp. Antp(Li®k, <,>) ,and let H = G, x Ga.
Auty(Lsi, <,>) is a finitely generated linear group, and so, by Selberg’s Theorem
[1], has a torsion free subgroup, A; say, of finite index. Suppose that Ay maps
epimorphically onto Z, and that (L4, <, >) has signature (2,1). If (I ,<, >) is
isotropic, then Ay is free, whilst if (I , <, >) is anisotropic, Ay is a Surface group
of genus g> 2. Either way, if Ay maps epimorphically onto Z , we may apply
the results of Theorems 5 and 6 to conclude that there is an infinite family of
mutnally isomorphic finitely generated subgroups Ty (# € 6) of Ay x Ag.
with the property that no Ty is conjugate to any T, for 8 # 0. The I'y are
still subgroups of Hg so that, since Ay X Ay has finite index in Hg, , each Ty is
conjugate, in Hg , to at most finitely many ;. In particular, we may choose



an infinite subfamily (T,),ex such that no two distinct elements are conjugate.
Thus we have proved ;

Theorem 4.4 : Let <,>: L xL — Z be a nondegenerate symmetric bilinear
form on a finitely generated free abelian group L, such that (L, <, >) splits as
an orthogonal direct, sum

(L, <,>) = (L1, <,>) L (Lg, <,>)

where (Ly, <,>) has signature (2,1), and Autz(Lg, <,>) has a subgroup of finite
index which maps epimorphically onto Z . Then there exists an infinite family of
isomorphic finitely generated subgroups (I, ),ex of Autz(L, <,>) such that T, is
not. conjugate, in Autz(Ly, <,>) x Autz(Ls, <,>) ,to 'y foro # 7.

Subgroups I',, I'; from the family just constructed , although not conjugate
in Auty(Lq, <,>) x Autg(Ly, <,>), may become conjugate in Autz(L, <,>) .
We show, however, that for each 7 € ¥, the set,

{¢ € ¥ : T, isconjugateto I'; inAutz(L, <,>)}
is finite.
Theorem 4.5: Let <,>: L x L — Z be a nondegenerate symmetric bilinear

form on a finitely generated free abelian group L, such that (L, <, >) splits as
an orthogonal direct sum

(Lv <’>) = (Lh <,>) 1 (L% <v>)

where (L, <,>) has signature (2,1), and Autz(Ly, <,>) has a subgroup of finite
index which maps epimorphically onto Z . Then there exists an infinite family of
isomorphic finitely generated subgroups (I, )ueq of Autz(L, <,>) such that T,
is not conjugate, in Autz(L, <,>) ,to T, forw # p .

Proof : Let T, , I'; be subgroups from the family constructed in (4.4), and
suppose that for some g € Autz(L, <,>)}

gl g™ =T,

Since T',, T, are normal subdirect products of A; X Ag, then, by [3], [Ay, A(] x
[Ag, Ag] is contained in both I';, and T,. Moreover, from (1.2), we see that

[Ai, Ai] = Gy
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so that

[A] ’ A]] X [1\2, Ag] = H.

from which it follows that g € Ng(H) N Autz(L, <, >). Let v denote the index
of Autz(Li, <,>) x Autz(Ls, <,>) in Ng(H) N Autz(L, <,>). By (1.5), v
is finite, so that, for each 7 € %, the set.

C, = {0 € T : T, isconjugateto Iy in Autz(L, <,>)}

is finite, with cardinality bounded by v. Let €1 be a subset of ¥ obtained by
choosing exactly one element from each C, ; then € is infinite, and the family
(T.,)weq consists of isomorphic finitely generated subgroups of Autz(L, <, >), and
has the desired property that T, is not conjugate, in Autgz(L, <,>) , to T}, for

w F . O

By means of a more careful analysis, using the methods of {3], one may show :

Theorem 4.6: Let <,>: LxL — Z be a nondegenerate symmetric bilinear
form on a finitely generated free abelian group L, such that (L, <, >) splits as
an orthogonal direct sum

(L, <,>) =2 (i, <,>) L (Ig,<,>) L ... 1 (Ly, <,>)

where k > 2, and each (L;, <, >) has signature (2,1); then there exists an infinite

family (I)weq of isomorphic, nonconjugate finitely generated subgroups of
Autz(L, <,>).
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