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' J.A.Antoniadis, ' M.Bungert and G.Frey

£l Rank estimates by Galois descent

Let E/Q be an elliptic curve with absolute invariant g minimal discriminant L.
and conductor N (cf. [Si]). Let d be a square free integer. '

Definition 1.1 Xy is the Dirichlet character corresponding to Q{/d)/Q, and Ed is
the twist of E by X ie. Ed is an elliptic curve over Q not isomorphic to E over

Q but over Q{/d).

The purpose of the following paper is to describe some methods which can be
used to relate arithmetical properties of Ed to properties of Q(/d) at least for
special curves E. We are especially interested in criterions for the property that
E, (Q) is a finite group. "

One method to find such criterions is to use Galois cohomology and to try to
compute a part of the Selmer group of Ed over Q.

Let us recall the definition of this group.
For a field K we denote by GK its absolute Galois group. Let n be a natural num-

ber. The exact sequence
0 —> EQ), —> E4@) > EJ(@) —> 0
gives rise to .the sequence
0 —> E4(Q)/nE4(Q) —> H'(Gg, Ey@),) &> H'(Gq, E @), —> 0.

{As usual E(X} denotes the group of K-rational points of E over a field X 2 Q,
E(K)_ is the subgroup of points of order dividing n, and Q is the algebraic
ciosure of Q.}

Let p be a (finite or infinite) place of Q, Qp the completion of Q with respect
to p li.e. Qp = R if p corresponds to the absolute value, and Q, = QP if p is the
p-adic place for a prime p). We choose an embedding of Q to ﬁp and hence we
get an inclusion of G into Gg,.
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The natura! restriction maps yield the following commutative exact diagram for
every set T of places of Q:

0
5 N
0 —> EL@/nEl(Q >  Sp(ELQ), —> W (E,Q) —> ¢
02 |
v v v
N 1 I 1 %) — o
o —> Tl Egt@p/mE4@Qy) —> I HiGy Ey@ ) —> [ HliGy Eq@m,—> ¢
. P P
peT : PAT peT
p place of ¢ p place of Q p place of ©

where-_u.r(Ed.Q)n C HI(GQ.Ed(Q))n is the intersection of the kernels of the restric-
tion maps from Hl(GQ.Ed(QHn to HI{GQ .Ed(@p}) for all places of @ not con-
P

contained in T and SL{E;.Q)_ = ¢ 1w (E .Q) ).

Definition 1.3. W (E Q) is the n-part of the Tate-Shafarevic group for E - over Q
with respect to T. and S (E,.Q)_ is the n-part of the Selmer group of E; over

Q with respect to T. If T = § we omit the index T. and get w{E, Q) (resp.
S(E4.Q) ) as the n-part of the Tate-Shafarevic group (resp. Selmer group) of Ej
over Q.

It is important that for all n and T S, (E Q) is finite and can. at least in
principle. be computed. Hence one gets estimates for rank;(E(Q)) if one can
estimate rankZ/n(ST(Ed,Q)}n.

It should be mentioned here that there is no algorithm known which computes
rank; (E (Q)) =: rg, OF #lulE,.Q),) separately. It is conjectured that

uJT(Ed.Q) = nL{:i\ w(E4. Q) is finite and that rEd and (W (E;.Q)) can be com-
puted with the help of the L-series of E. We'll come to this conjecture of

Birch and Swinnerton-Dyer later on (cf. [Sil. and for new results [Rul]. [RuZ],
[Kol]).

The following result is useful to compute S (E_ Q) :

Proposlltion 1.4 {Special case of the theorem of Tate-Bashmakov). Let T be a
set of places of Q containing all divisors of n-NEd-m. Let K be the field ob-

tained by adjoining the coordinates of all points of order n of E; to @ and
let Ky be the maxima! abelian extension of K of exponent n and unramified
outside of T, Then

resQ/Kn(ST(Ed‘Q)n} c HomG(Kn/Q)(G(Kn.T/Kn)'Ed(Q)n)-



Here resQ/Kn is the restriction map: HI(GQ,Ed(@)n) —> Hl(GKn,Ed!Q)n). Its

kernel is HI(G(Kn/Q).Ed(ﬁ)n) which is of order at most equal to n and whose
intersection with S (E .Q)_ is equal to {0} in many cases.

In [Fr1] we used proposition 1.4 to get information about S(Ed.QJp in the case
that E has a Q-rational point of order p with p an odd prime. To formulate
the result we need some notation.

1. For a prime q let Kq be an extension field of Qq such that E has semi-
stable reduction over I\'q. Let P« E(Kq). P is reduced to = mod g if the
image of P in the Néron model & of E over Kq(P) is reduced to the neutral
element of the special fibre of &.

I3
w
1

1

Ep {9 Ng:q#2. 9= -1mod p. v, (Ag) ¢ Omed p} and

o} .

A

n
1

e ! . :
Ep 19 ¢ SE.p‘ vq{JE)

Proposition 1.5 (cf. [Fr 1]. Let p be an odd prime such that E has a Q-rational
point of order p. Assume that either E: YZ = X%+1 (hence p = 3) or that P is
not reduced to « mod p. Let d be a square free negative integer prime to pNg
with

i) If 2N then d = 3{c1in\od 4,

i) if vp(jE) < 0 then ip) = -1.

iii) for qiNg but.q ¢ {ﬂ,p.SE'p} then

\q/

(dy _ 1 if volig) 2 0 or v (jg) < 0 and E/Q is a Tate curve,
1 otherwise .

Let Cl(d)p be the p-part of the class group of Q{Yd). Then
o ; 2
F.Cl(d)p I 4 S(Ed.Q)p | Cl{d,‘rp-sE
with an integer s depending on gE only, with sg = 1 if §E = ¢,

Hence p !4 Cl(d)p if and only if pl4 S(Ed.Q)p, and so especially:

rankzEL(Q) = 0 if pi 4 Cl(d)p.
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Due to a theorem of Mazur one knows that p can be equal to 3, 5 and 7; and
for each of these numbers one has infinitely many curves for which one can
apply the proposition.

We list some examples taken from the tables in [MFIV]:

1. Forp=3:

Name of the curve E Sg = gE congruence conditions for d
14C (—‘E,l); -1, d £ 3 mod 4
19B @) = -1
26B &) =-1.d=3mod a
€)= 1. @) -
36A %) d & 3 mod 4
37¢ &) = -1
38D (§)=-1.a=3mod s
77D (9’) = -1, 1%) =1
8ac ($) = -1, @ = 11 mod 12
= (#) - () - -
208 5 d = 3 mod 4
30A s d = 11 mod 12
34A . 17 d= 3 mod 4
44 A 11 d = 3 mod 4
51A 17 d = 2 mod 3
66A 11 d £ 11 rnod 12
92A 23 d = 3 mod 4



2. Forp=3:
[
Name of the curve E SE = SE congruence conditions for d
. dy _ _
1B = X_a1n (§) =
dy _ =
661 (§) = -1. d = 11 mod. 12
110C _ o d=2mod4 (§)=(8)="
= rdy -
123A d =2 mod 3, () = -1
1868 d = 11 mod 12, (§) = -
38A 19 d 3 mod 4
57F 19 d = 2 mod 3
588 29 d = 3 mod 4
118B 59 d = 3 mod 4
158H 79 d £ 3 mod 4
3. Forp=17:
~ -

Name of the curve E SE = SE congruence conditions for d
174G ‘ Y d = 11 mod 12, {§) = -1
26D 13 d 3 mod 4 -

Next we describe how to estimate the rank of E4(Q) by 2-descent. We study
the G4 = GIQ(/d)/Q)-module E(Q(/d)). Since

_rank, (E4(Q)) +rank,(E(Q)) = rank; (E(Q (Yd)n
we can use the theorem of Tate-Chevalley about Herbrand quotients to get

(1.8)  rank,E4(Q) = rankz(E(Q))-h§(E)+hi(E) with
hi(E) = log, # (HYG,, EQGdN).

The following easy lemma can be useful if one wants to estimate hg(E)A.‘"'
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Lemma 1.9. Let q be a prime dividing d but q/ 2N. Then

P ¢ No_ovin o, (E(Qq(/N if and only if P ¢ 2E(Q,).

Proof, E has good reduction modulo q, and the kernel E_ of the reduction
is uniquely divisible by 2. Hence P is in the image of the norm map from
E(Q,(/d) to E(Q,) if and only if its image P in E(Q )/E_(Q) is in the
image of the norm. Since gld G, acts trivially on this quotient. and so the
lemma follows.

We give two examples which illustrate how one can use lemma 1.9:

LB YT = X341, ,

P = (-1.0) is a point of order 2. The Galois closure of Q(%P! is equal to
Qt/71. =3). Hence P i Ng(rm), o EQ(/AN) if there is a prime qid, q1 6.
which is not completely split in Q(/=1,%=3)/Q{(Y-3), and in this case we have
rank,(E (Q)) = h}(E)-1.

2. E = 17C; i.e. E is the strong modular curve with conductor 17.

Let f (z) = 1?51 a,q' be the corresponding cusp form.
If q is a prime with qi'd, q/ 34 and 8/ ag” {g+1) then hg(E) x 2 and hence
rank{E Q) = h}j(E)-—.‘Z.

To discuss hll(E) we choose a suitable set T of places of © and look at the

map

1 1
ay(d): HIUG,, E(Q(Yd))) —>DPT H (G(QD(JH)/QD).E(QD{JE)))

p place of Q

and estimate the image of «y by computing the order of the local groups.
This computation is straight-forward, and we summarize the result in

Lemma 1.10 Assume that d is a square free integer and
gcd{Ng.d) = gcd(Ng,d?).
Then

§imlar(d) < uwp, THEQQ, N el®) 2



with _
g, =1ifd>0o0r a8, <0or T, and ¢ < 2 in all other cases,

w, = 1if d 1' mod 8 or d =1 mod 4 and 2/ N or 2”NE and v,(jg) odd

or 2 ¢ T, and
b, £ 2 in all other cases, .

[T is to be taken over all odd primes qld, q ¢ T and q/ N,
1 .

[1 is to be taken over all odd primes qINg, q ¢ T and q/ d with (%) = -1
] _

and cg(E) denotes the number of elements of order 2 in the group of connec-
ted components of the special fibre of the Néron mode! of E/Qq,

.d
[:;I runs over all odd primes q ¢ T, gl gcd(Ng,d) with (J—Ea-) = 1.

It is obvious that the estimate for # im ar(d) is unrealistic large if E or d
is "complicated”. But it can be useful in simple cases as the following example
shows:

Example L1. Assume that E is a curve with prime conductor Ny = p. and
assume that d is prime to 2p. Then

s 3
#im ap(d) s 277 - [l 4EQ), 2P
VdqyaysQ
q¢T

with & <1, and o_ = 0 if either @ ¢ T or d > 0 cr Ap < 0 and ép < 1, and
5, = 0 if either () =1o0r v, lig) odd.

We specialize even more:

1. Take T = {=} and assume that E(Q), = {0}. Assume moreover that for all
divisors q of the discriminant of Q(v¥d)/Q one has: q is not split in
QE(Q),)/Q(/AL). Then § im ay,,(d) = 1. :

One should remark that 'Q(Eta)z)/Q(vrﬁé) is an extension of degree 3 con-
tained in the class field of Q{YA;) with conductor 2, and hence by a “higher
reciprocity law" (cf. [A]) we get a criterion for ey ld) = {o}.

A specific elliptic curve which satisfies the conditions made above is X {11).

2. 1f E(Q)2 = Z/2 {for instance E =.17D) then our estimate for #§ im ot'.r[d)
is very bad if d has a lot of prime divisors. But assume that d = q is a prime



with q = 1 mod 4, (§) = 1if v (jg) = 0 mod 2 and E(Q,), = Z/2. Then
4 im o (d) < 2.

After having estimated # im apld) it remains to estimate # ker arld) in order

to estimate h1 (E).
For ¢ e S+(E Q) let f be the curve of genus 1 corresponding to the class of

¢ 4n H! (G F(Q)} Then

#{QEST(E,Q)Z; fc,g has a rational point in Q['/a)}
4 (E(Q)/2E(Q))

tld) = 4 ker apld) =
It will be difficult in general to compute t{(d) exactly, so one will have to be
content to estimate ti{d) by

i S+(E,Q), /# (E(Q)/2E(Q))
{and to hope that this number is small).

For instance we can come back to the curves discussed in example 1.11.
We get

Proposition 1.12, Assume that E has prime conductor Np = q and that
E{Q), = {0}. Then

H S{m}(E Q) # {conjugacy classes of fields K/Q;
deg K/Q = 4, GIK/Q) = S, and 8, ,!2% q} .

Especially
S{e}(Xolli)), = {0},

and so

td) =1 for all d if E = X (1) .

Proof. If Yq (A } 80 mod 2 then Q(E(Q) )} would be an extension of degree 3
of Q or Q(v/_) unramified outside of 2, and since such an extension doesn't
exist we conclude that Va (Ag) is odd and that Q(E(Q) )/Q has Galois group
S5, q is decomposed in Q(E(Q) )/Q(/_) and ramified in Q('/-“)/Q
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An element ¢ ¢ S{m}(E,Q)z\{O} corresponds to an eilement

P e HomSB(GQ(E(a)Z).ElQ)z)\_{O}

since

H'(S,,E(Q),) = 0.

Let K‘? be the fixed field of the kernel of . Then K‘P is a Galois extension
of Q with Galois group §, which is unramified outside 2-q over Q (use pro-
position 1.4 and the invariance of ¢ under Sg). Moreover ¢ {and so @) is

uniquely determined by K,r. Hence ¢ is uniquely determined by the conjugacy
class of an extension K, of degree 4 over Q@ whose Galois closure over Q
has Galois group S, and “hose dlscnmmant divides a power of 2q. Now we
use the local tmxal:t) of res g® in H (G E(Q)) to get that res q® is split in

H! (G ,E(Q) ) by an unramified e.xtensmn. {Cne has to solve the equation

5 Qo Q with Q, ¢ E (Q ), and since v (}E) = 1 mod 2 this equation has a

solution in an unrarmfled extension of Q .} So the discriminant of K ‘P/Q
is equal to 2%-q, and by analoguous conmderatxons one can estimate o by 4.

The next special case is that E has prime conductor q but E(Q}, = Z/2.
After applying an isogeny of degree 2 if necessary, we can assume that
volig) = 1 mod 2. We get

Proposition 1.13. Assume that E/Q has prime conductor q. that E(Q), = Z/2
and that volig) = 1 -mod 2. Then |_LJ{,:E}(E,Q)2 = {0} and so t{d} =1 for all d.

Proof. Let P be a point of order 2 in E(Q). By assumption the reduction of P
modulo q is in the connected component of the unity of the Néron model of

E modulo q.
Since Q(E(Q),) = Q(Yvq) with Y = + 1 we can represent @ ¢ S{m}[E,Q)z by

¢ « Homg o /75),0)C @uap E @2
Let K be the fixed field of the kernel of ¢ with G(K /Q({——)) ( Ez>,
£2 = id. For <1> = GIQWYP)/Q)Y and Q ¢ E{QINPD oné has 1Q =

First case: Assume that {g,,e,> = {e> with ¢ # id.

Since 1e1 = £ the invariance of ¢ under 1 yields: ¢{e) = P. Using the triviality
of v in Hl(GQ ,E(ﬁq)] we conciude as in the proof of proposition 1.12 that
ch/Q (Y¥q) is c{mrami]‘ied at q and so K‘p/Q cannot be cyclic, hence K:P =
QGyp.fu) with y ¢ {-1,2.-2} (since KqJ/Q[fﬁ) is unramified outside of 2).
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Now E has good reduction modulo 2 and hence the triviality of ¢ in
HI(GQ JE(Q,)) implies that K@/Q is "little" ramified (cf. [Fri]) at 2 and so
o 2

u = -1, K(p = QlYq,V-1) = Q%P). and so ¢ corresponds to &P.

Second case: #<¢g,,e,> = 4.

We can assume that 1e,1 = g, and so Te 6,7 = £,&,. Hence ¢leje,) = P,

¢ley) = Q and 9le,) = P+Q for some Q ¢ E,2\{P>.

Now Q and P+Q are not in the connected i:omponent of the unity of E modu-
lo q. and since res q? has to be trivial m H’ (GQ E(Q Mot follo“s that all

q
divisors of q are decomposed in l\ /}\ for i=1, So K f1%2 /Q is not
cyclic and unramified outside of 2, and hence one sees as above that
CE{En ?
] bt

{E  End
K, ° = Q(Yq,¥-1), and, since q has to be decomposed in ]'(-‘p1 27 /007q),
q = 1 mod 4.

Now look at the behaviour of K‘p at the prime 2. .
Firstlv we remark that E has good ordinary reduction over Q, and that P is in
the kerne! of the reduction modulo 2 and so P+Q and Q are not in this kernel

over K‘P b, where p, is a place of k dividing 2. This implies that 1\ /k<E'

is unramified at all divisors of 2, a.nd so Q(/-1,Yp) is unramified over Q(v’—“).
It follows that v = -1t and K_ = Q{-/—_l,wrﬁ.f@) with 7, a uniformizing element
at the unique extension of 2 in Q(Y-p). But this contradicts the fact that ¢ is
split by an extension of Q(E(é)z) which is "little ramified” at divisors of 2,
and so we get the assertion of proposition 1.13.

To end this section we summarize our results we got by 2-descent in special
cases to get some kind of counterpart of proposition 1.5 for p =

Proposition 114- Assume that E is an elliptic curve with prime conductor g and

rankz(E(Q)) = ‘ A
i) If E(Q} = 2/9 and d is a prime with d = 3 mod 4 and (-,__lE) = -1 then

rank E_ Q) = 0.

i) If E(Q), = {0} and d is a square free integer such that for all qld one
has that q is not ';plit in QUE(Q),)/QIYAL) then rank; E4(Q) = log,t{d),
and so rank; E, {(Q) = 0 if there is no e)\tenoion K/Q of degree 4 with
Galois group S, and discriminant dividing 2¢ q.

Examples 1.15,

i) E = (17D) has conductor 17, Ag = 17 and E(Q), = Z/2, rank, E(Q) = 0.
Hence E_p(Q) has rank zero if p = 3 mod 4 and (17) = (,-.) -1, i.e. p has
to satisfy linear congruence conditions.
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i} E = X (11} has rank zero and no point of order 2 over Q, Q(E(ﬁ)z) =
Q(ﬁ)(z), the class field of Q(Y¥-11) with conductor 2. Hence
rank, (X, (11)4(Q)) = 0 if for all qid q is not split in Q(/~11),,/Q(/-11).
{Of course a necessary condition for this is that (-%) =1.)

§2 On the value of the L-series of E at 5 = 1

In this section we recall briefly the conjectured relation between the analytic
behaviour of the L-series L (s) of elliptic curves E at s = 1 and its arithmeti-
cal properties {Conjecture of Birch and Swinnerton-Dyer); this motivates the
usefulnes of a method of Tunnell ([Tu]) based on a theorem of Waldspurger
({Wal]) which makes it possible to compute LEdtl) for twists of many elliptic
curves.

i. The conjecture of Birch and Swinnerton-Dver

From now on we'll assume that E is a modular elliptic curve, i.e. there is a

non-trivial Q-morphism

©: XO(NE) - E‘
where X,{NE) is the modular curve parametrizing elliptic curves with cyclic
isogenies of degree Ng. (For details cf. [Sh1].)
Let wg be the Néron differential of E. Then

p*log) = c-fg-d—cf~ with

% _ 2niz - = 1

ceQ qg=e and fp = 1-!»22 aqlte S,INLNZ),
the ring of cusp forms of weight 2 and level N defined over Z. Moreover fg
is an eigenfunction under the operation of the Hecke algebra, for primes 1/ N
and the Hecke operator T, one has:

a, = 1+1-4 E®@/D)

is the eigenvalue of T, where EY is the reduction of E modulo 1.
It follows that the L-series of E defined by

Lls) = 1 (-2, 1777 1 (1-a,173+1172%)7!
lINE llNE
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is (essentially) the Mellin transform of f_ and hence has analytic continuation
to C satisfying a functional equation under the transformation s —> 2-s.

Conjecture 2.1 (Birch and Swinnerton-Dyer). _
1. The order of zero of Le(s) at s = 1 is equal to rg := rank; E(Q).

(re)
2. Let L "E {s) be the rE—th derivative of Lg. Then

(r) ,

LEE(I) =rg! det(hy)- f wg I1 c," —M—Q)—e

E(R) PN (#E(Q)tor)

where wg is the Néron differential of E, hy the Néron-Tate height on E(Q)
which is a quadratic form, det(hg) its regulator, and ¢ = [E(QP):EO(QP)] with
EO(QP) the subgroup of E(Qp) whose image in the special fibre of the Néron

model of E over Qp is non singular.
Remark, The conjecture of Birch and Swinnerton-Dyer contains inplicitely that

w(E,Q) is a finite group. A recent result of Kolyvagin (cf. [Kol], [Ru 2]) proves
this for modular elliptic curves E with twist E, for which LE(N'L:Ed(l) % 0.

We are interested in a very special case: Assume that d,, d; are square free
integers and that Edo resp. Edl are the twists of E by d; resp. d;. Then

= A = 5 1 j
LEd!(s) LE{5)®)(di 1+ j§2 xdl(ﬂajq .

We assume that LE_cl {1} # 0. Then conjecture 2.1 implies
o

Conjecture 2.2. Either lid {s} = 0 and so rEd >0 or

1 1
e, — §SE, Q)
1 1 _ 1
L m 'a"'- C(do'dl)'
Eg, 0 4S(E, Q)

with an easy computable rational number c{d,,d,} # 0 depending on the numbers
of divisors of d,, d;, which is in most cases a power of 2.

2. Waldspurger's theorem

Let N be a natural number divisible by 4 and ¢ a Dirichlet character modulo N.
By S5,,(N,J) we denote the complex vector space of cusp forms of weight 3/2
with respect to I' (N} and with character {. For the precise definition we refer
to [Sh2].
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F e S;,,(N,4} has a Fourier expansion at iw:

F(z) = iff a_q" .

n=1
for primes pd N we have Hecke operators T(p) = 0 and T{p> given by
TP2F) = & b_gm With
m=1

a , +Lb(p$-1_1 {p)-(F)-a_ + ¢(p2)'p~am (a_ = 0if pP°4 m}.
p°m an

b

m

fl

[
ol

P P

There is a Hermitian form ¢ : > defined on Sa 0N
1
_ 1 Ty 2
(G = ek [ Foy ey ? dxdy
IH/I"O(N)
with [H the upper half plane of € and z = x+iy.
One has for p/ N:

{T(PAF,GY = <(FT(pAG .

We use {, > to define orthogonality in S5 ,(N.p). §5IN,¢) is the subspace of
S4,,(N) generated by forms F of the following type: There is a t ¢ IN and
a quadratic character y with conductor r such that

. 2
N =4r°t, & = ¥ ¥ "Xy and F = ¥ wm) mq“™

m=1

The following important result is a special case of a result due to Shimura
{cf. [Sh2]):

= L
Theorem 2.3. Assume that F = 2 a_,q" e S, ,(N¢) N SoiNg)  is'an
n=t
eigenform under T(p?) for all primes p/ N with eigenvalues % . Assume
that &< = id, Let S(F} = f = f bmqm with b_ such that

m=1

£ omm = (S i) (£

m=1 M b]

Then f is an element in Sz{g’) with N = 2%-N, o 2 0, and f is an eigenform
under the Hecke operator T(p) operating on S,(N) with eigenvalue )\p for all

p4N.
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We are interested in cusp forms of weight 3/2 because of the following result

of Waldspurger.

Theorem 2.4, {(Waldspurger {Wal}. Assume that E/Q is a modular elliptic curve
with corresponding cusp form f, and that

1
F e Sy,,(Nx) N Sy(Ny )™  with

S(F) = fg, F = a_q" .
1

iy

Assume that d and d, are natural square free numbers with

d = dg mod pl_']N Q;z and d-d, prime to N.

Then

2 2 T3 a2
Lg_ W dag =1g , Widgag .

- -tdy

So especially: If

L (1)-a§0 40

E_
t_do

Ly d(l) = 0. if and only if a; = 0.

-t

Using this theorem we can reformulate conjecture 2.2:

Conjecture 2.5. Assume that L J (1)-ado % 0. Then either
-t
[s]

rank, E_ ,(Q) >0

or

So assuming that #S(E_tdo,Q)-ago is known the knowledge of ad2 decides

whether rank,(E_ ,{Q)) = 0 and, if so, gives the size of the Selmer group of
E_,4 over Q. Hence it is only necessary to find finitely many test curves E_ ,

to discuss all twists of E,
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It was Tunnell's idea to use Waldspurger's result in this way for elliptic curves
with j-invariant 122 (cf. [Tul)): in {Fr 2] the case jg = 0 was discussed. In the
following sections we want to describe how one can find more examples of
curves to which Tunnell's method can be applied.

83 Construction of cusp forms of weight 3/2

Let E/Q be a modular elliptic curve with cusp form f. In order to use
'l;unnell's idea we have to find eigenfunctlons Fp ¢ 84,,(N.¢) with ¢? = id.

N = 2%*.Np with S(Fg) = fL.

F. doesn't exist necessarily. In [Wa] one finds a sufficient condition for the
existence in terms of representation theory, another sufficient condition is due
to Kohnen (cf. [Xo)):

Proposition 3.1. Assume that Ng is odd and square free. Then there is a sub-
space 55/2(4NE.¢0) of S5, (4NE,¢,) which is mapped isomorphically to S,(Ng)
by a linear continuation of Shimura's map S.

But even the knowledge that Fp exists may be of no great heip for instance
for deciding whether LEd(l) = 0 or not; it is essential that the Fourier coeffi-
cients of Fg are easily and exactly computable and that the way of construc-
tion reflects arithmetical properties of E . Hence we reverse the problem in
some sense and begin by constructing elements in S5 ,(N¢) for N ¢ 4N and
¢? = id with rather accessible arithmetical properties. and then we decide
whether the Shimura map sends these forms to elliptic curves. Though this
approach is rather experimental it turns out that it leads to interesting ex-
amples for small levels.

One method to construct cusp forms of weight 3/2 is related to ternary qua-
dratic forms: Let f(X,,X,,X3) be an integral positive definite ternary quadratic
form with associated matrix

CA = (?}‘3?—3%1) D := det(A) .

Let N be the smallest natural number such that N-A~! has integral entries and
even diagonal elements. Then the theta series

o(f) == L qf&®
XeZ

is a modular form of weight 3/2, level N and character y,n. If one takes a
suitable linear combination of such theta series one gets a cusp form. For

example one can use the following result due to Schulze-Pillot and Siegel

(cf. [S-P]):
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Propesition 3.2. Let f|. f, be ternary integral positive definite quadratic forms
in the same genus. ie. f; ® Zp =~ ® Zp for all primes p then

OF,) -Of,) ¢ Sy ,,(N

3s2Nxap) -

It is not difficult to implement an algorithm which determines all reduced
ternary quadratic forms which give rise to modular forms of given level and
character, for instance one can use an algorithm of Brandt (cf. [B-1]. and so

one can find a (in general, proper) subspace of S5, ,(N,y,) rather easily.

However it turns out that for levels which are small enough to be accessible
to computation an even more special class of cusp forms gives interesting
examples. ’

Let M., (N,0"?) be the modular forms of weight 172 and level N, and charac-

1/2
ter ¢, Si(x\’,ﬂ,}(m) the cusp forms of weight 1. level N and character ¢ . -
Then

M, (NG @ S (NG € S, NP - ¢ -y )

and we denote by S5 ,,(N.Q} the Hecke-algebra submodule of S, ,,{N.¢)
generated by ’

My, @ S;NGPY (o '
¢ W ')(_1':'4-'

M, o(Ng) is well known:

Proposition 3.3 (Serre-Stark. cf. [S-St]). Let Q(N,§) be the set of pairs (¢.t)
with t ¢ N, ¢ an even primitive Dirichlet character with conductor r{y) such that

i} 4 -ri@)?tIN, and

i) $ln) = ¢n)y, (n) for n ¢ Z prime to N.
Then

o 2
o, = _E 2(n) a0 camven
forms a base of M, ,(N,§). .
Discussion of §,{N); Due to beautiful results of Weil, Langlands, Serre and
Deligne {cf. [D-S]} one has a one-to-one correspondence between new-

forms F of level N (i.e. eigenforms under Hecke operators with exact level N)
in S,(N.¢) and representations p: GQ —> GI(2,£) with the following properties:
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- p is irreducible, det p = ¢ and the Artin conductor of 5 is equal to N.

If L (s) = f a_n"S is the Artin L-series of p then F =
€ n=1 n

The possible images of p are
i)  dihedral groups of order 2Zn, or ‘
i) finite subgroups in GL(2,C) with iniage equal to A . S, or Ag in PGI(2,C).

The first case has a close connection to class field theory: Let K be an imagi-
rary quadratic field with discriminant Dy, let y: G —> €* be a character '
with condly)ir ¢ IN. p = indK/Q‘i. is the 2-dimensicnal complex representation

of Go induced by y. -
lLet t be a generator of G{K/Q). Then p(GQ) is dihedral if and only if

yltor). = x o) for all o « Gy and ¥® % id.

Let K, be the subfield of the ray class field K., of K with conductor r de-
termined by the condition:

16t = ¢! for all ¢ ¢ G(Kr/K) .

Then

lo: Gg — G1(2,€); im(p) is dihedral, cond(p)iDorz}

corresponds one-to-one to

1y: G(K_/K} —> C* with x2 4 id}.
Via reciprocity G(K,_/K) is canonically isomorphic to

Clr) := I(r)/((zi);_,_'[zl)>.p(r) with
Hr} the group of ideals of K prime to r,
P(r) the ray modulo r, and

{z1 ,,2)} @ set of representatives of (Z/rZ) .

So by class field theory it is possible to determine all newforms F, of weight
one that correspond to representations p with dihedral image. The level of Fp is
equal to DNy . (cond(x)} and the character of F_ is equal to XD, if

p = indK/Q(x) and D the discriminant of K. Most convenient is the following
connection with quadratic forms: o

Let H(Dorz) be the group of classes of positive definite primitive binary qua-
dratic forms with discriminant Dor"z. Since H(Dor?') is isomorphic to Cl(r) the
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character y of G(K_/K) can be interpreted as character of H(Dorz). Using this
interpretation we get

Proposition 3.4 (cf. [A]).

F, = z v (k) O(K)
k ¢ H(D, r?)
with O(k) the theta series related to a quadratic form
fek Ok)= Z"i a_q" with

#{(z,.2,) ¢« Z%: flz,,2,) = n}.

PO

with a, =

It is obvious that Fp is rather accessible to numerical computations. As an
example how elements in Si(N,Lp) related to representations p of tvpe ii} can
be constructed we describe a method which is closely related to elliptic
curves and which can be applied to representations with image S, ¢ PGH2,C}.
For a detailed discussion we refer to [B-F].
We assume that E: Y2 = f(x) is an elliptic curve with conductor N and nega-
tive discriminant A. without Q-rational points of order 2. Then « ¢ S(E,Q)\{0}
is given by an equation u? = g{¥} where g is a polynomial of degree 4 with
cubic resolvent f, and so the splitting field of g is a Galois extension K/Q
with Galois group’S,, and K/Q is unramified outside 2-Ng.

Using a criterion of Serre ([Se]) one can find local conditions for o that are

equivalent to the existence of a field f: O K with G(K/Q) = §4 where §4 is

the double cover of S, in which transpositions lift to involutions. Since §4 is
isomorphic’ to GI(2,Z/3) it has a faithful representation

p: §, —> Gl(2,0) .

Moreover, since 4z < O and since detp = x,_, det{g) is odd and ¢ corresponds
to a cusp form F_ of weight 1 with character XAE'

Using the explicit solution of the embedding problem
1 —> 2/2 —> §, —> S, —> 1

due to Crespo ([C}) one can choose K in such a way that the conductor Np of
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p has support in 2-Ng, and one has complete contro! over the prime-teo-6 part
of Np and so over the prime-to-6 part of the level of F_. Moreover it is not
too difficult to implement an algorithm which computes the Fourier coefficients
of «. The most simple examples for elements x are obhtained by division by 2
of points in E(Q): Assume that P ¢ E{(Q) but P { 2E(Q}. Then the cocycle

£ Gg —> E(Q), defined by

Q
glc): c(%P)*%P for o « GQ

defines a non-trivial class in S(E,Q},.

Tables for cusp forms constructed by using.this method will be prepared by
Lario and Quer, the easiest examples are constructed by using E = (48 A},
gX) = X*+2X+1. and E = (121D) with g(N} = N*-16N3+30N7 +30N-74.

After having constructed modular forms H of weight 15 axzd cusp forms G of
weight 1 we get by multiplying cusp forms F, of weight % But now a tech-
nical difficulty arises: In general Fy, = H-G will not be an eigenform under
Hecke operators.

In the following lines we describe an algorithm which énables us to find,
starting with F,, eigenforms F ¢ 5, ,,(N,d). We only have to assume that

Fo ¢ SoINGY .

Let T denote the Hecke algebra operating on S, ,,(N,¢}. We are looking for

F ¢ <F0>"IT’ the cyclic T-module generated by F, which are eigenforms under 7.
We use that cusp forms are uniquely determined by their Fourier expansions
and that it is possible to guarantee equality between two cusp forms by com-
pairing the Fourier coefficients up to an index depending {linearly} on N only.

First step of the algorithm: We fix a (small) prime p, and consider the complex
space

roo 2 23l g
V, = CF TpPIF,, ... ., T V' > .
Since S, ,,(N,§) is finite dimensional we find a minimal i, with

i

v, = V‘o for all i > iy, ie. (Fo,...,T(pf)oF())

is T(pf)—invariant. -

It is not difficult to compute the characteristic polynomial Y‘T( 2, of T(pf)l\’jo
Py
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and to determine eigenforms F,, ¢ V, with respect to T(p?) with eigen-
. o

Py
value )\pl.
Second step: Replace Fy by F, == F . . {In concrete cases choose kp such

: . TRy 1
that this eigenvalue appears as eigenvalue of a cusp form of weight 2 one is

interested in. e.g. look for ‘Ap ¢ Z if one is interested in cusp forms related
1 .

to modular elliptic curves.)

Replace p, by a different prime p, and determine
F, « <Fpq  with T(3IF,) = A F, .

Then F, is an eigenform under T(p'f) and under T(p%) with eigenvalues )‘pl

resp. )\p . Here we use the fact that the Hecke operators commute.
2

We repeat the procedure with primes pg,p,,....p,, and so after n steps we
. I 2 _ .
find a cusp form F_ with T(p{}F = Apan.

Now we use

Proposition 3.5. There exist a number n and primes p,,...,p, such that F . as
constructed above, is an eigenform under all Hecke operators.

to make the algorithm to a finite one.

Proof of the proposition. We look at cusp forms of weight 2 and level N, 5,(N).
lLet {fl....,fd} be a base of S,(N) consisting of eigenfunctions under the opera-

tion of T(p) for primes p/N. We associate the vector of eigenvalues (‘A‘p”}ptn,

to f;, and we choose p,,...p, such that

(1) ") : (1) = (501"
D‘P;)m.....n 4 (xp} )j=1.....n if OO e # OO p

Now look at <F >4 where F_ is constructed as above. Because of the commu-
tativity of T and the existence of the Hermitian product on S, ,,(N,¢) defined
in §2 we find a base of <Fn'\"'ﬁ consisting of eigenforms. Let F be such an
eigenform. Since T(pj‘?)F = )\P F for j=1,....n and S(F} ¢ S,{(N) is an eigenform

under all T(p} with T{(p)(S(F)) = kp {S(F)) it follows that there exists exactly
. J.
one vector of eigenvalues of cusp forms of weight 2 with p,-component 'Ap

It follows that all eigenforms in <Fn>"ﬂ have the same eigenvalues at all
primes p, and so F  is an eigenform under T as claimed.
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We end this section by giving some examples in which we find a cusp form F
of weight 3/2 which is mapped to the cusp form of weight 2 corresponding
to an elliptic curve E which is denoted as in the table of [MFIV]

For the construction of F we use Fy = G+ H with ‘H a modular form of weight
172 and G a cusp form of weight 1 constructed by ©-functions of binary qua-
dratic forms as described in proposition 3.5. We use the notation of proposi-
tion 3.4 and 3.5.

Examples 3.6.

0} The cases in which the image of F corresponds to elliptic curves with
j =123 resp. j = 0 are discussed intensively in [Tu] and [Fr 2].

For H we take @1d‘11 = = (44.%,,)
For G: Take K = Q(wcﬁ), r = ¢
over K, C, & Z/3Z.

H{-44) is generated by the class of f = (3X2+2XY+4Y2).

Take

172

1) N = 44, - ”
E q11n e M
2. K, the ring class field with conductor 2

x: GIK,/K) —> C” given by
2ni
() =e 3

Then

G=F = @(Xé+llk‘2)—@(3X2+2XY+4Y2) ¢ Sy, _,)
and so

Fo = G-H ¢ S,,,44) .

F, is an eigenform under T, and S(F = F,) is the cusp form corresponding
to (11B) = X1,

2} N = 56.
For H we take ©; .
Construction of G: Take K = Q{(/-14), r = 1, K_ the Hilbert class field of
K, C_= Z/4Z.
H({-56) is generated by the class of f = (3X2+2XY+5Y2).

x: GIK . /K) —> C* is éiven by
x((f)) = 1i.
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1)

Hence
‘c = F. = 0(X2+13Y9)-0@XZ+7Y") ¢ S (56,4 )
X ‘ - AR ACALED SIPUT Y

F = Fo = G-H is mapped to the cusp form corresponding to the curve (14C).

N = 60.

For H take @1d.3' . ‘

Construction of G: Take K = Q(/-15), r = 2, K_ is the ring class field with
conductor 2 of K, C_ = Z/2. Hence G(K_/Q} is abelian.

H(-60) = {X%+15Y2,3X2+5Y?}.

In this case ©(XZ2+15Y%)-0(3X%+5Y2) is no cusp form but

G = OIN?+13Y%) -0(4X?+2XY+4Y?) is an element of $,{60.y__)
F=F,=G-His mapbed to the cusp form corresponding to the curve (15C).

N = 68.

" For H take Gld'l.’.'or Gld.l.

4’)

Construction of G. Take K = Q(/-17}, r = 1, K_ the Hilbert class field of K,
C, T 7/47.
H(-68) is generated by (f) = (3X%+2XY+6Y?).

~x: GIK_/K). —> € is given by
x{{f)) = i. ’

Then
G = F, = 0(X?+17Y%)-0(2X?+2XY+9Y%) € §,(68,x_,,) .

F=F,= G'®1d.17 and F = F, = G'@jd,l are eigenforms under T. A little
surprise is that Shimura's map ﬁends both of; them to the cusp form
corresponding to E = (34 A) and not an elliptic curve of level 17. On the
other side Kohnen's result assumes the existence of a cusp form of weight

372 and level 68 mapped to f,,, the newform corresponding to E = (17C),
and so we found an example for the fact that by our method one
doesn't find all interesting cusp forms. of weight 3/2. To repair this

lack we go to a higher level:

N = 272,

For H take © 4 .. .
Take K = Q(Y-17), r = 2 and Kr the ring class field with conductor 2 of K,
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C. = z/s8.
H{-277) is generated by (f) = (3X7+2XY+23Y?).
It we take

x: GIK_/K) —> C’” determined by
y{{H =i
we get

G=F, = OIXZ+68Y2)+20(8XZ+17Y%) - 20(8XZ+4XY +9Y?) .

With F, = G-H we get:
~ 2 2,2
V, = <F,,T(3°)F,,T(3%) Fg >
is invariant under T(Sz), and
F, = oF +2T3%)F.-T3%) F
1 7 0 e} [¢]

is an eigenform under T.
But to our disappointment F, is mapped to the form corresponding to
(34 A) again.
So we try the character

%: G(K_/K) —> €" determined by

x((f)) = Cg. ~
Then

_ (1) (2) .
F,=F +/2F° with

FS) = O(X2+68Y2) - 0(4X%+17Y%) and

F2 = 0(3X2-2XY+23Y%) - 07X %+ 6XY + 11Y?) .

It turns out that
i
F:=F 0,7

is an eigenform under T mapped to f .-

N = 76.

For H take @jd,19‘ _

Construction of G: Take K = Q(Y-19), r = 2 and K, the ring class field
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7)
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with conductor 2 of K.
C, % 2/3 and HE-76) = (f) = 4X7+2XY+3Y7))
10 GIK /K) —> C* is determined by
wUfN = g
G = F, = 0(X*+19Y%) - 0(4X?+2XY +5Y?) ¢ 5,76y _ ).
Fo=GH=F 0,4,

F. is no eigenform but <FO,T{32) FO) is Ti-invariant. We get eigenforms

0

1}

F=F,-T3F, and

F

2o+ T(3") Fy .

The image under Shimura's map of F is equal to the cusp form correspon-
ding to E = (19B), the image of F' corresponds to E = (38D).
N = 80.

For H take O, ,,.
Construction of G: Take K = Q(/-5), r = 2, K_ the ring class field of K

with conductor 2.
C_% Z/4Z and HI(-80) = () = BX”+2XY+7Y%).
¥ is determined by y{{f}) = i

G =F, = 0(X%+207%)-014xX?+5Y%) ¢ §,(80.%__).

F=F,=GH-= Fx'eld.:!o is an eigenform under T which is mapped to
the form corresponding to (20 B).

N = 196 = 4-49. -
For H take ©,,,, K = Q(/-1). r = 7 and K, = Q(4/-7,/-1) the ring class
field with conductor 7 of K. A

C, ¥ Z/4Z and H(-196) = <(f) =(5X%+2XY+10Y?))

¥ is determined by x({f)) = i, and

G =F = 0(X2+29Y%)-02XZ+2XY +25Y7) .

x
Fo = G'H= Fx-(ald‘? is no eigenform but (FO.T(Sz)FO)a is invariant under

TG%), F = 4F0+T(32)F0 is an eigenform under 7, and S{F) corresponds to

the elliptic curve (98 B).
Of course we would have liked to get E = (49 A), the elliptic curve with



complex multiplizatiovn by the ring of integers of Q(Y-71.
S2 we enlarge N to 4-N,
77 N = 16-49.
Again H = @4 -,
Construction of G: Take K = Q(/-1) tut r = 14 and K_ the ring class field
of K.
C, % Z/8Z and H{-16-49) = () = (GX"+4XY+40Y%)).
z is determined by y((f)) = {,.

F, = FXV+/2 B2 with

F_ﬁ” = B(XT+196Y7) - ©(4X7+49Y")  and .

2 - OBNTFINY +40Y™) - 0U3NT+10XY +17Y7) .

e B o (2) ¢
Now F:'. c:ldj,rx Oid.?

image under Shimura's map corresponds to E = {49A).

and hence Fy-@ld , are eigenforms under T. and their

Remark: This example has been found by Lehman (cf. [Le].

In the following table we list the essential datas of our examples.

Table 3.7.
Ellipuic
Expl. K FO F curve E
1 Qi) (@2-uvy?H-eax®axNy-1y"Ne, 4 Fq 1B = X ,a1)
' ' 2 .2 e ol
2 QTTa, @xZaavh-eex?-7yey . F, 14C
3 Q18), (@(x2-15yD-0X-2XY-a YN, 4 F, 15C
< (e d " . -'I

4 QG (@(3xX2-2xY-23YD-0(7X"~eXY- 1IN0, 4 17  Fp 17¢
4 QG @2 177D -0@xXZ2XY+9YNO, 4 45 Fq 33A

—— " 0 ) . 0 n ‘
5 QLD @(X7+197 %) -0 WX+ 2XY+5YN@, 4 g Fo-T(3DF, 198

2
2FoeTG%F, 38D

— .2 .2 RO
6 QLTH), @x-20vN-06x2-5vN0,, L, ¥, 208
) .2 .2 .2 .2 .
7 QWD (@(X"+196Y7)-QEXN"+49Y N0y Fo $9A

.n e N P e ~ Le]

7 Q= (@(X7+49Y)-0(2X"+2XY+25Y N0, 4 5 4Fo~TGBHF, ven
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&4 Comperison of the methods

In this section we want to discuss connestions between the results of §l1
stating triviality of parts of the Selmer groups of twists E, or the finiteness
of E,(Q) and results concerning the values of L-series LEd(l} obtained by
Waldsptirger's theorem. These connections confirm conjecture 2.5 at least in a
weak form for some examples.

We begin with the 2-part and an easy observation:
Letrma 4.1. Assume that Fj is a cusp form of weight 3/2 and level N given by
n .' K - - -
Fo = [O(X"+F Y*)-0@X+bXY+cYH)] @y with b= 0.

Assumie that g is a prime with q4 2N such that aN“+bXY +cY? represents q
over Z. Then the g-th Fourier coefficient ag of F, is odd.

Proof. By definition we have

ag = lz Yoty e 2% x3+§}-2+ti2 = gl-#{lx.y) ¢ Z2: ax®+bxy+cy2+ti? = q}],
f= - ,

q) are divisible

Since all terms inside the sum except £{{x,y) ¢ -Zz; axZ+bxy +cy?
by 4 and since g has at most two integral representations by aX2+bXY+cY” the
assertion follows.

3

Lemma 4.1 can be applied to examples 1, 3, 4, 5 and 7. Examples 1 and 5 are of
special interest for in these cases the field K_ used for the construction of F is
closely related to the elliptic curve E obtained by Shimura's map: K, = Q(E(Q)zl.
and thz condition that the prime q is represented by the quadratic form
aXZ+bXY+cY? with b 2 0 is equivalent with the condition that q is not split in
Q(E(Q?E)/Q(JK;_:). Hence it is easily seen that these examples are special cases of
the following

Proposition 4.2. Let E be an elliptic curve with prime conductor p and EQ), = {0}.
Let y be the character of G(Q(-.’K;E)Z/Q(-/E;)) whose kernel fixes Q(E(@)z), and let
Fo =G94, ¢ SS/Z(N,:(I), t!4p, and hence o

G = F, = 8(X?+pY*)-0@X?+bXY+cY?) with b 3 0.

Let q be a prime not dividing 4p. Then the q-th Fourier coefficient.of Fy is not
equal to zero if g is not split in Q(E@)z)/Q(JEE-). '

Assume now moreover that fo = S{F) with F = E‘A”T(p;‘z)i F, such that the g-th
Fourier coefficient of F is not zero if the g-th Fourier coefficient of F, is not



_27_

zero. Then we get:

4.3, LE-Jq(” £ 0 if g is not split in Q(E(@)Q/Qf@).

It is clear that 4.3 has a close connection to the result 1.14ii} confirming “"the
2-part of conjecture 2.53” for examples in which S(E.Q) = {0]. {If S{E.Q), *# 0
one should expect that the cusp forms of weight 1 constructed with the help
of nontrivial elements. of this group play an important role.)

For instance one can easily verify that 4.3 holds for E = .‘(0(1.1) and E = (19B).

It is not difficult to find conditions for the non-vanishing of Fourier coefficients
of F, {and so for F) in the other examples too. we only mention:

Example 2: If q is a prime not dividing 14 then a, # 0 if q is represented by
2 .2
INTHTIY T

Example 6: If q is a prime not dividing 20 then a %0 if q is represented by
2 2
AXNT+5Y", -

Example 7': If: q is a prime not dividing 14 then a_ # 0 if q is represented by
exactly one of the forms X2+196Y2, X2+7i% and 4X2+72Y7,

The other case in which Galois descent gave information about Selmer groups

was that E has a Q-rational point of order p ¢ {3,5,7}: Proposition 1.5 relates
S(E_d,Q)p with the -p-part of the class group of Q(y~d). Hence, if F is a cusp form
of level 3/2 mapped to fg by Shimura's map the Fourier coefficients aj of F
should be related with this class group too. One.possible approach to see this

is given in [A-K]:

To simplify we assume that E has prime conductor | with | = 3 mod 4. (For
example take E = X,(11) or E = (19B).)

Define
[ =Ll ¥ ¢.n),q® with
2,1 24 nai 1 |
c,{n),= ¥ d.
1 1 din
14d

The assumption that E has a Q-rational point of order p implies:

fp = 52_1 module p,

and especially

1-1
Pl -
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Now there is a {unique) modular form of weight 3/2 and leve! 41 whose Fourier
coefficient are class numbers:

Hz) == ¥ Hin)g" with

nxQ

H(n}, = H(1? n)-1H(n)

where H(m) is the number of classes of positive definite binary quadratic forms with
discriminant -m.

Define

Gial®) = Fhi-+ T (0 T (§0q" with h-1) = & CUQKT) and

nxi din
C,(2) := T G 400Uz}~ h(-V H (2) == T ¢ q".

12 nz

The following result is the main result of [A-K]:

Theorem 4.4. C, is a cusp form of weight 3/2 in §; ,,(41.4y) with

c, = -+ h(—l)Hllmod p and

SICP = -2 h(-12&, ) mod p. "V

The T -module generated by C, is generated over € by those eigenforms

F_ e S3,,(41) for which '

LISCF)) LISFI® y_,1) 2 0.

Now assume that p# h(-1}.

Then

. -2
4.5, fo = 8(F) = —=— S(C,}) mod p.
s E L he-p2 " ! g

1)
cf. Propositon 3.1
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Let F(z) = Y 8,Q" ¢ S4,,(Ny ) be a form with S{(F) = f, then the question

nzi
arises under which conditions the equivalence

play if and only if ptec, {(for certain d)

is a consequence of 4.5.

To be more precise:

Question 4.6. Let d, be a square free natural number such that p/ ado-cdo
and Lg (1) # 0.

-td
Under which conditions implies the congruence 4.5 the equivalence

play if and only if plcy
4.7. for all square free natural numbers d with
d = dy mod pl_lIN Q;‘? and d 'd, prime to N?

Using Waldspurger's result {(Theorem 2.4) a sufficient condition for an affirma-
tive answer is that p is not a congruence prime for f. i.e. that there is no
cusp form g % f of weight 2 and level | which is congruent to f modulo p.

Examples for which thi':sl condition is satisfied are given by the curves X, (11}
{p=25) and (19B} (for p = 3). -

Since, for square free n prime to p
H(n), = HUZn)-1Hn) = -5 1+ (3D H®)

we get (with the notation introduced above}

og . .
Proposition 4.8. Assume that F(z) = n; a q" : 5;,,INy,) is mapped to f.
Assume that 4.7 holds with a natural number d,, for instance assume that p
is no congruence prime for fz. Then for d ¢ IN square free with

d = d, mod I'IIN Q;z and d-d, prime to N one has
P

plag if and only if p!H{IZd) - 1 H(d)

hence Lg d(l) 4 0 if p/ h{-d).
T

In view of our proposition 1.5 this result should be taken a support for conjec-
ture 2.5.
For X,{11) we get: Assume that (1%) = 1. Then 514 S(E_4,Q) if and only if 5 di-
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vides the class number of Q{{-d) (Prcp. 1.5) and so Sla, if and only if

Sta S(E_4,Q) (cf. [Mal).

For E = (19B) we get: Assume tﬁt (.1%) = 1 then 314 S(E_,,Q) if and only if 3
divides the class number of Q(y-d) and so 3la, if and only if 3t4S(E_,,Q):
Since the form F in example 5, table 3.7, which is mapped to the form corres-
ponding to E = (38D) is congruent modulo 3 to the form corresponding to (19B)
we get the same result for (38D
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