Existence of stable 2-vector bundles over ruled surfaces

Marian Aprodu and Vasile Brinzanescu

Institute of Mathematics of the Romanian Academy P.O. Box 1-764 RO-70700 Bucharest

Romania

,

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 53225 Bonn

Germany

·

.

Existence of stable 2-vector bundles over ruled surfaces

Marian Aprodu and Vasile Brînzănescu

Introduction

Let $\pi : X \to C$ be a ruled surface over a smooth algebraic curve C, defined over the complex number field \mathbb{C} . Let $c_1 \in \operatorname{Num}(X)$ and $c_2 \in H^4(X, \mathbb{Z}) \cong \mathbb{Z}$ be fixed. For any polarization H, denote the moduli space of rank-2 vector bundles stable with respect to H in the sense of Mumford–Takemoto by $\mathcal{M}_H(c_1, c_2)$. Stable 2-vector bundles over a ruled surface have been investigated by many authors; see, for example [T1], [T2], [H-S], [Q2], [F]. In this paper we shall study the non-emptiness of the moduli spaces $\mathcal{M}_H(c_1, c_2)$.

For an algebraic 2-vector bundle over a ruled surface X one introduced two numerical invariants d and r and one defined the set $M(c_1, c_2, d, r)$ of isomorphism classes of bundles with fixed invariants c_1, c_2, d, r ; see [B], [B-St1], [B-St2]. The integer d is given by the splitting of the bundle on the general fibre and the integer r is given by some normalization of the bundle. The moduli spaces $M(c_1, c_2, d, r)$ are defined independent of any ample divisor (line bundle) on X; see also [Br1], [Br2], [W]. In [A-B2] we obtained necessary and sufficient conditions for the non-emptiness of the space $M(c_1, c_2, d, r)$ and we applied this result to some moduli spaces $\mathcal{M}_H(c_1, c_2)$ (see, also [A-B1]).

In section 1 we give necessary and sufficient conditions for a 2-vector bundle $E \in M(c_1, c_2, d, r)$ to be *H*-stable for some ample line bundle *H*. By using this result, the results in [A-B2] and some results of Qin in [Q1], [Q2], [Q3], we solve in section 2 the problem of non-emptiness of moduli spaces $\mathcal{M}_H(c_1, c_2)$ of stable 2-vector bundles in almost all cases. Acknowledgements. The second named author expresses his gratitude to the Max-Planck-Institut für Mathematik Bonn for its hospitality during the preparation of this paper.

1 Stability of vector bundles in $M(c_1, c_2, d, r)$

We recall from [B], [B-St1], [B-St2], [A-B2] some basic notions and facts.

The notations and the terminology are those of Hartshorne's book [Ha]. Let C be a nonsingular curve of genus g over the complex number field and let $\pi: X \to C$ be a ruled surface over C. We shall write $X \cong \mathbb{P}(\mathcal{E})$ where \mathcal{E} is normalized. Let us denote by \mathbf{e} the divisor on C corresponding to $\bigwedge^2 \mathcal{E}$ and by $e = -\text{deg}(\mathbf{e})$. We fix a point $p_0 \in C$ and a fibre $f_0 = \pi^{-1}(p_0)$ of X. Let C_0 be a section of π such that $\mathcal{O}_X(C_0) \cong \mathcal{O}_{\mathbf{P}(\mathcal{E})}(1)$.

Any element of the group of divisors on X modulo numerical equivalence $\operatorname{Num}(X) \cong H^2(X, \mathbb{Z})$ can be written $aC_0 + bf_0$ with $a, b \in \mathbb{Z}$. We shall denote by $\mathcal{O}_C(1)$ the invertible sheaf associated to the divisor p_0 on C. If L is an element of Pic(C) we shall write $L = \mathcal{O}_C(k) \otimes L_0$, where $L_0 \in \operatorname{Pic}_0(C)$ and $k = \deg(L)$. We also denote by $F(aC_0 + bf_0) = F \otimes \mathcal{O}_X(a) \otimes \pi^* \mathcal{O}_C(b)$ for any sheaf F on X and any $a, b \in \mathbb{Z}$.

Let *E* be an algebraic rank-2 vector bundle on *X* with fixed numerical Chern classes $c_1 = (\alpha, \beta) \in H^2(X, \mathbb{Z}) \cong \mathbb{Z} \times \mathbb{Z}, c_2 \in H^4(X, \mathbb{Z}) \cong \mathbb{Z}$, where $\alpha, \beta, c_2 \in \mathbb{Z}$.

Since the fibres f of π are isomorphic to \mathbb{P}^1 we can speak about the generic splitting type of E and we have $E|_f \cong \mathcal{O}_f(d) \oplus \mathcal{O}_f(d')$ for a general fibre f, where d' < d, $d + d' = \alpha$. The integer d is the first numerical invariant of E.

The second numerical invariant is obtained by the following normalization:

$$-r = \inf\{l \mid \exists L \in \operatorname{Pic}(C), \deg(L) = l, \ s.t. \ H^0(X, E(-dC_0) \otimes \pi^*L) \neq \{0\}\}.$$

We shall denote by $M(c_1, c_2, d, r)$ the set of isomorphism classes of algebraic rank-2 vector bundles on X with fixed Chern classes c_1 , c_2 and invariants d and r.

With these notations we have the following result (see [B]):

Theorem 1 For every vector bundle $E \in M(c_1, c_2, d, r)$ there exist $L_1, L_2 \in \text{Pic}_0(C)$ and $Y \subset X$ a locally complete intersection of codimension 2 in X,

or the empty set, such that E is given by an extension

$$0 \to \mathcal{O}_X(dC_0 + rf_0) \otimes \pi^* L_2 \to E \to \mathcal{O}_X(d'C_0 + sf_0) \otimes \pi^* L_1 \otimes I_Y \to 0, \qquad (1)$$

where $c_1 = (\alpha, \beta) \in \mathbb{Z} \times \mathbb{Z}$, $c_2 \in \mathbb{Z}$, $d + d' = \alpha$, $d \ge d'$, $r + s = \beta$, $l(c_1, c_2, d, r) := c_2 + \alpha(de - r) - \beta d + 2dr - d^2e = \deg(Y) \ge 0$.

For the following result see [A-B2]:

Theorem 2 $M(c_1, c_2, d, r)$ is non-empty if and only if $l := l(c_1, c_2, d, r) \ge 0$ and one of the following conditions holds: (I) $2d > \alpha$ or, (II) $2d = \alpha$, $\beta - 2r \le g + l$.

Let \mathbf{C}_X be the ample cone in $\operatorname{Num}(X) \otimes \mathbb{R}$ generated by ample divisors: We fix the Chern classes $\tilde{c}_1 \in \operatorname{Pic}(X)$ and $c_2 \in \mathbb{Z}$. We shall use (see, for example [Q2]) the following definitions:

Definition 3 (i) For $\zeta \in Num(X) \otimes \mathbb{R}$, we define

$$W^{\zeta} := \mathbf{C}_X \cap \{ x \in \operatorname{Num}(X) \otimes \mathbb{R} \mid x.\zeta = 0 \};$$

(ii) We define $\mathcal{W}(\tilde{c}_1, c_2)$ to be the union of W^{ζ} , where ζ is the numerical equivalence class of $(2F - \tilde{c}_1)$ for some divisor F, and which satisfies the conditions:

$$-(4c_2 - \tilde{c}_1^2) \le \zeta^2 < 0;$$

(iii) A wall of type (\tilde{c}_1, c_2) is an element W^{ζ} , where ζ satisfies the conditions in (ii). A chamber of type (\tilde{c}_1, c_2) is a connected component of the set $\mathbf{C}_X \setminus \mathcal{W}(\tilde{c}_1, c_2)$;

(iv) A numerical equivalence class ζ which represents a nonempty wall W^{ζ} is *normalized* if the integer $(\zeta.f)$ is positive.

(v) Let W^{ζ} be a nonempty wall of type (\tilde{c}_1, c_2) and let $l_{\zeta}(\tilde{c}_1, c_2)$ be the integer $c_2 + (\zeta^2 - \tilde{c}_1^2)/4$. We define $E_{\zeta}(\tilde{c}_1, c_2)$ to be the set of isomorphism classes of 2-vector bundles E given by nontrivial extensions

$$0 \to \mathcal{O}_X(F) \to E \to \mathcal{O}_X(\tilde{c}_1 - F) \otimes I_Y \to 0,$$

where F is a divisor such that ζ is the numerical equivalence class of $(2F - \tilde{c}_1)$, and where $Y \subset X$ is a locally complete intersection of codimension 2 in Xsuch that deg $(Y) = l_{\zeta}(\tilde{c}_1, c_2)$. **Remark 4** The definitions (i)-(iv) depend only on the numerical type (c_1, c_2) , where c_1 is the numerical equivalence class of \tilde{c}_1 . We fix the numerical Chern classes $c_1 = (\alpha, \beta) \in \text{Num}(X), c_2 \in \mathbb{Z}$ and the integers d, r such that the conditions $2d > \alpha, \ l(c_1, c_2, d, r) \ge 0$ are satisfied. We denote by $\zeta = (d - d')C_0 + (r - s)f_0$ and we have that the condition $l(c_1, c_2, d, r) \ge 0$ is equivalent to the condition $-(4c_2 - c_1^2) \le \zeta^2$, and that $\zeta + c_1$ is the numerical equivalence class of 2F for F a divisor on X. If we suppose, moreover, that $\zeta^2 < 0$ and there exists an ample line bundle L over X such that $c_1(L).\zeta = 0$, then the element ζ represents a nonempty wall of (numerical) type (c_1, c_2) and we have $E_{\zeta}(\tilde{c}_1, c_2) \subset M(c_1, c_2, d, r)$ (see [A-B1]).

In the next result we shall investigate the stability of vector bundles in the moduli space $M(c_1, c_2, d, r)$. For F a torsion-free sheaf on X and H an ample line bundle, we use the notation $\mu_H(F) := c_1(F) \cdot H/rank(F)$.

Theorem 5 Let $E \in M(c_1, c_2, d, r)$. Then, there exists an ample line bundle H such that E is H-stable if and only if $2r - \beta < \min\{0, e(2d - \alpha)/2\}$ and the extension (1) of E is non-splitting.

Proof: Let us suppose that $E \in M(c_1, c_2, d, r)$ is *H*-stable for some ample line bundle *H* on *X*. From Theorem 1 we know that *E* is given by an extension

$$0 \to N_2 \to E \to N_1 \otimes I_Y \to 0, \tag{2}$$

where

$$N_2 = \mathcal{O}_X(dC_0 + rf_0) \otimes \pi^* L_2, \ N_1 = \mathcal{O}_X(d'C_0 + sf_0) \otimes \pi^* L_1,$$

with L_1 , $L_2 \in \operatorname{Pic}_0(C)$. As a stable vector bundle E is non-splitting. Let $\zeta = (2d - \alpha)C_0 + (2r - \beta)f_0 \in \operatorname{Num}(X)$. From the definition of the invariant d we have $2d \ge \alpha$, i.e. $\zeta \cdot f \ge 0$. Let us suppose that $2r - \beta \ge 0$. Then, $(2d - \alpha)C_0 + (2r - \beta)f_0$ is an effective divisor and, therefore, $H.\zeta \ge 0$ for any ample line bundle H on X. It follows from the exact sequence (2) that

$$\mu_H(N_2) \ge \mu_H(E),$$

i.e. N_2 is destabilising, contradiction.

Now, let us suppose that $2r - \beta \ge e(2d - \alpha)/2$. If $2d = \alpha$ we get the above case $2r - \beta \ge 0$. Assume $2d > \alpha$. We shall prove that $H.\zeta > 0$, which gives as above a contradiction. A simple computation gives

$$2r - \beta \ge e(2d - \alpha)/2 \iff \zeta^2 \ge 0.$$

If $H.\zeta = 0$, by the index theorem we get $\zeta^2 \leq 0$. It follows $\zeta^2 = 0$, i.e. ζ is numerically trivial. But $\zeta f = 2d - \alpha > 0$, contradiction. If $H.\zeta < 0$, let $D = (H.f)\zeta - (H.\zeta)f$. Since H.D = 0, $D^2 \leq 0$ by the index theorem. But

$$D^2 \leq 0 \iff (H.f)^2 \zeta^2 - 2(H.f)(H.\zeta)(\zeta.f) \leq 0,$$

and we get a contradiction, since $(H,f)(H,\zeta)(\zeta,f) < 0$. It follows

$$2r - \beta < \min\{0, \ e(2d - \alpha)/2\}.$$
 (3)

Conversely, suppose that E is given by a non-splitting extension (1) and the inequality (3) is satisfied.

Case 1. $2d > \alpha$.

We show firstly that ζ defines a nonempty wall of type (c_1, c_2) . From the extension (1) we get

$$\zeta^2/4 - (c_1^2/4 - c_2) = l(c_1, c_2, d, r) \ge 0.$$

Since $2r - \beta < e(2d - \alpha)/2$, we get $\zeta^2 < 0$, so

$$-(4c_2 - c_1^2) \le \zeta^2 < 0.$$

Therefore ζ is a normalized numerical equivalence class of type (c_1, c_2) and defines a wall W^{ζ} of type (c_1, c_2) . We show that W^{ζ} is nonempty, i.e. there exists $a \in \mathbb{Q}$, $a > \max\{e, e/2\}$ such that the polarization $D = C_0 + af_0$ satisfies $D.\zeta = 0$. But

$$D.\zeta = 0 \iff a = e - (2r - \beta)/(2d - \alpha)$$

From $2r - \beta < 0$ we get a > e and from $2r - \beta < e(2d - \alpha)/2$ we get a > e/2, i.e. W^{ζ} is nonempty. Now, take the chamber \mathcal{C} below the nonempty wall W^{ζ} such that $W^{\zeta} \cap \text{Closure}(\mathcal{C}) \neq \emptyset$. Then, by the Theorem 1.2.3, Chap.II in [Q3], every non-splitting 2-vector bundle E of the extension (1) is H-stable for any ample line bundle $H \in \mathcal{C}$.

Case 2. $2d = \alpha$. In this case the inequality from hypothesis is equivalent to the inequality $2r - \beta < 0$. Let $E_1 = E(-dC_0)$. Then, $E_1 \in M((0,\beta), l, 0, r)$, where $l := l(c_1, c_2, d, r) \ge 0$ and $c_1(E_1) = \overline{c_1} = (0, \beta)$, $c_2(E_1) = \overline{c_2} = l$. Since, for an ample line bundle H, E is H-stable if and only if E_1 is H-stable, it sufficies to show that E_1 is *H*-stable for some ample line bundle *H*. One may remark that $l \ge 0$ is equivalent to $c_1^2 - 4c_2 \le 0$.

Subcase (a) $c_1^2 - 4c_2 < 0$

We shall prove that E_1 is *H*-stable for any ample line bundle $H \in C_{f_0}$, where C_{f_0} is the chamber of type (c_1, c_2) such that the $[f_0]$ -axis in $\operatorname{Num}(X) \otimes \mathbb{R}$ is part of the boundary of C_{f_0} . Clearly, by the definition, the chambers of type (c_1, c_2) coincide with the chambers of type (\bar{c}_1, \bar{c}_2) . The 2-vector bundle E_1 is given by an extension

$$0 \to \mathcal{O}_X(rf_0) \otimes \pi^* L_2 \to E_1 \to \mathcal{O}_X(sf_0) \otimes \pi^* L_1 \otimes I_Y \to 0,$$

and $E_1|_f \cong \mathcal{O}_f \oplus \mathcal{O}_f$, for a general fibre f of X.

Let $\mathcal{O}_X(D) \subset E_1$ be a subsheaf of rank 1 with the quotient torsion-free and let η be the numerical equivalence class $2D - \bar{c}_1$. We shall show that, for any ample line bundle $H \in \mathcal{C}_{f_0}$, we have

$$\mu_H(\mathcal{O}_X(D)) < \mu_H(E_1).$$

For a general fibre f of X we get

$$\deg(\mathcal{O}_X(D)|_f) \le 0,$$

i.e. $D.f \leq 0$. Since $\bar{c}_1.f = 0$ we get $\eta.f \leq 0$ and we have two subcases: (a1) $\eta.f = 0$. It follows

$$\mathcal{O}_X(D) = \mathcal{O}_X(qf_0) \otimes \pi^* L, \ L \in \operatorname{Pic}_0(C)$$

Since $\mathcal{O}_X(D) \subset E_1$, by the definition of $r = r_E$, we get $q \leq r$, hence

$$\mu_H(\mathcal{O}_X(D)) \le \mu_H(\mathcal{O}_X(rf_0) \otimes \pi^* L_2).$$

But $2r < \beta$ implies

$$\mu_H(\mathcal{O}_X(rf_0)\otimes\pi^*L_2)<\mu_H(E_1),$$

for any $H \in \mathcal{C}_{f_0}$ and we are done.

(a2) $\eta f < 0$. We show that $H.\eta < 0$ for any $H \in C_{f_0}$ (the inequality $H.\eta < 0$ is equivalent to the inequality $\mu_H(\mathcal{O}_X(D)) < \mu_H(E_1)$). If $H.\eta > 0$, by the index theorem applied to the divisor $(H.\eta)f - (H.f)\eta$, which is orthogonal on H, we get

$$(H.f)^2 \eta^2 - 2(H.\eta)(f.\eta)(H.f) \le 0$$

Counting the signs it follows $\eta^2 < 0$. Since $-(4c_2 - c_1^2) \leq \eta^2$ (from the extension corresponding to the inclusion $\mathcal{O}_X(D) \subset E_1$), we get that η is a numerical equivalence class of type (c_1, c_2) . For any $H \in C_{f_0}$, H and f_0 are not separated by any wall, hence $\operatorname{sign}(f.\eta) = \operatorname{sign}(H.\eta)$, contradiction. If $H.\eta = 0$ then, by the index theorem, it follows $\eta^2 \leq 0$. If $\eta^2 < 0$, it follows that η is a numerical class of type (c_1, c_2) , since $-(4c_2 - c_1^2) \leq \eta^2$. Then $H \in W^{\eta}$, contradicting the inclusion $H \in C_{f_0}$. If $\eta^2 = 0$, by the index theorem, we get η numerically trivial. Then $2D \equiv \bar{c}_1 = (0, \beta)$, hence D.f = 0. But $\mathcal{O}_X(D) \subset E_1$ and, by the definition of $r = r_E$, we get $\beta/2 \leq r$, contradiction.

Subcase (b) $c_1^2 - 4c_2 = 0 \Leftrightarrow l = 0$

Then the canonical extension of E_1 becomes

$$0 \to \mathcal{O}_X(rf_0) \otimes \pi^* L_2 \to E_1 \to \mathcal{O}_X(sf_0) \otimes \pi^* L_1 \to 0.$$

In this case we shall prove that E_1 is *H*-stable for any ample line bundle *H*. Indeed, let $a \in \mathbb{Q}$, $a > \max\{e, e/2\}$ and $\mathcal{O}_X(F) \subset E_1$ an invertible sheaf with torsion-free quotient det $(E_1) \otimes \mathcal{O}_X(-F) \otimes I_Z$, where *Z* is a zero-dimensional subscheme of *X* and $F \equiv -mC_0 + nf_0$ with $m \ge 0$. We have

 $F.(\bar{c}_1 - F) + \deg(Z) = c_2(E_1) = 0 \Rightarrow F.(\bar{c}_1 - F) \leq 0 \quad (\Leftrightarrow me + 2n - \beta \leq 0).$ But now, if m > 0, since a > e/2, so $me - ma + n < me/2 + n \leq \beta/2$ leading us to $F.(C_0 + af_0) < \beta/2 = c_1(E_1).(C_0 + af_0)/2$, i.e. E_1 is *H*-stable. If m = 0, then $n \leq r$ (by the definition of $r = r_E$), hence $n < \beta/2$ and, again, E_1 is *H*-stable.

We obtain, in the particular case of ruled surfaces, the Bogomolov inequality, which was proved in this case by Takemoto; see Theorem 3.7 in [T1].

Corollary 6 Let X be a ruled surface and let E be an algebraic 2-vector bundle over X, with Chern classes $c_1(E) = c_1 \in \text{Num}(X)$ and $c_2(E) = c_2 \in \mathbb{Z}$. If E is H-stable for some ample line bundle H, then $\Delta(E) = (c_2 - c_1^2/4)/2 \ge 0$.

Proof: With the notations of the previous theorem, we obtain from the first implication that $\zeta^2 \leq 0$ for a stable vector bundle *E*. Since $-(4c_2 - c_1^2) \leq \zeta^2$, hence $\Delta(E) \geq 0$.

2 Non-emptiness of moduli spaces $\mathcal{M}_H(c_1, c_2)$

Let $\pi : X \to C$ be a ruled surface and let $c_1 = (\alpha, \beta) \in \operatorname{Num}(X), c_2 \in \mathbb{Z}$ be fixed numerical Chern classes. Let H be an ample line bundle over X. We investigate the question of existence of H-stable 2-vector bundles E with $c_1(E) = c_1$ and $c_2(E) = c_2$, i.e. the question when $\mathcal{M}_H(c_1, c_2) \neq \emptyset$. If $\tilde{c}_1 \in \operatorname{Pic}(X)$ and c_1 is the numerical equivalence class of \tilde{c}_1 then, clearly, $\mathcal{M}_H(c_1, c_2) \neq \emptyset$ if and only if $\mathcal{M}_H(\tilde{c}_1, c_2) \neq \emptyset$.

By the Bogomolov inequality, if $4c_2 - c_1^2 < 0$ then, $\mathcal{M}_{II}(c_1, c_2) = \emptyset$ for any polarization H on X. The next case, $4c_2 - c_1^2 = 0$ (projectively flat bundles), which follows by the proof of Theorem 5, has been studied by Takemoto; see [T1], Theorem 3.7:

Corollary 7 Let H be an ample line bundle over a ruled surface X. An algebraic 2-vector bundle E over X with $\Delta(E) = 0$ is H-stable if and only if there is a stable 2-vector bundle F over the curve C and a line bundle L over X such that $E = \pi^*(F) \otimes L$.

Remark Thus, in the case $4c_2 - c_1^2 = 0$, the non-emptiness of the moduli spaces $\mathcal{M}_H(c_1, c_2)$ is reduced to the case of moduli spaces of stable bundles over curves.

From now on, we shall assume $4c_2 - c_1^2 > 0$. As we have seen in Definition 3, there exist in this case walls and chambers of type (c_1, c_2) in the ample cone \mathbf{C}_X . Let $H \equiv aC_0 + bf_0$ be an ample divisor over the ruled surface X. Recall that a > 0 and b > ae if $e \ge 0$ and, a > 0 and b > ae/2 if e < 0 (see [Ha], p. 382). Therefore, in the case of a ruled surface, the ample cone has a simple description. Moreover, from the conditions in Definition 3 (ii)

$$-(4c_2 - c_1^2) \le \zeta^2 < 0,$$

we get that there exist always a finite number of walls and chambers. Recall that we denoted by \mathcal{C}_{f_0} the chamber of type (c_1, c_2) such that the $[f_0]$ -axis in $\operatorname{Num}(X) \otimes \mathbb{R}$ is part of the boundary of \mathcal{C}_{f_0} .

Firstly, suppose that the ample line bundle H belongs to some chamber. It is well-known that if H_1 and H_2 lie in the same chamber of type (c_1, c_2) then, $\mathcal{M}_{H_1}(c_1, c_2)$ and $\mathcal{M}_{H_2}(c_1, c_2)$ can be naturally identified (see, for example [F], [Q2]). In [A-B2], as a consequence of the Theorem 2, we obtained the following result: **Corollary 8** Let X be a ruled surface. Assume that X is not $\mathbb{P}^1 \times \mathbb{P}^1$. Let C be any chamber of type (c_1, c_2) different from \mathcal{C}_{f_0} . Then the moduli space $\mathcal{M}_{\mathcal{C}}(c_1, c_2) \neq \emptyset$.

Remark In fact, in the case $X = \mathbb{P}^1 \times \mathbb{P}^1$, C_0 defines the other axis $[C_0]$ in Num(X) which lies on the boundary of \mathbb{C}_X and , by the last remark in [A-B2], if \mathcal{C} is a chamber different from \mathcal{C}_{f_0} lying below a non-empty wall W defined by a normalized class $\zeta \equiv uC_0 + vf_0$ of type (c_1, c_2) such that either $l_{\zeta}(c_1, c_2) > 0$ or v < -1 then $\mathcal{M}_{\mathcal{C}}(c_1, c_2) \neq \emptyset$. It is easy to see that if $l_{\zeta}(c_1, c_2) = 0$ and v = -1 then $\mathcal{C} = \mathcal{C}_{C_0}$, where we denoted by \mathcal{C}_{C_0} the chamber that has the $[C_0]$ -axis on its boundary.

Indeed, let $H \equiv C_0 + af_0$, $a \in \mathbb{Q}$, a > 0 be a class lying on a nonempty wall W^{ζ} , where $\zeta \equiv uC_0 + vf_0$ is a normalized class of type (c_1, c_2) . Then a = -v/u and we have to prove that $\zeta_0 \cdot H \geq 0$ for $\zeta_0 = u_0C_0 - f_0$, i.e.

$$(((4c_2 - c_1^2)/2)C_0 - f_0) \cdot (C_0 + af_0) \ge 0.$$

Since $v^2 \ge 1$, then $-2u/v \le -2uv \le 4c_2 - c_1^2$ so $-v(4c_2 - c_1^2)/2u - 1 \ge 0$.

Let us consider now the case $H \in \mathcal{C}_{f_0}$:

Corollary 9 Let X be a ruled surface. Then $\mathcal{M}_{C_{f_0}}(c_1, c_2)$ is nonempty if and only if α is even and the intersection $[\beta/2 - (g + c_2 - c_1^2/4)/2, \beta/2) \cap \mathbb{Z}$ is nonempty.

Proof: Firstly, we remark that $2d = \alpha$ if the vector bundle E is C_{f_0} -stable. Indeed, the bundle E is given by an extension (2) and, if we suppose $2d > \alpha$, then from the proof of Theorem 5 it follows that $\zeta = (2d - \alpha)C_0 + (2r - \beta)f_0$ is a normalized numerical class of type (c_1, c_2) defining a nonempty wall W^{ζ} . Since C_{f_0} is above W^{ζ} , it follows that $H.\zeta > 0$ for any $H \in C_{f_0}$, which is equivalent to the fact that the subsheaf N_2 of the extension (2) is a destabilising subsheaf of E, contradiction (compare also with [T1] theorem 3.7).

Secondly, in the case $2d = \alpha$, if $2r - \beta < 0$ then E is non-splitting. Indeed, if E would be splitting, then E would be given by an extension (2) with $Y = \emptyset$. Since $N_1 \subset E$, by the definition of $r = r_E$, we get $s \leq r$, contradiction with $2r < \beta$. By Theorem 5 it follows that $\mathcal{M}_{\mathcal{C}_{f_0}}(c_1, c_2)$ is nonempty if and only if α is even $(\alpha = 2d)$ and there exists an integer r with $2r < \beta$ such that $M(c_1, c_2, d, r) \neq \emptyset$. By Theorem 2 we know that $M(c_1, c_2, d, r) \neq \emptyset$ if and only if $l = l(c_1, c_2, d, r) \geq 0$ and $\beta - 2r \leq g + l$. Thus, $\mathcal{M}_{\mathcal{C}_{f_0}}(c_1, c_2)$ is nonempty if and only if $\alpha = 2d$, $c_1^2 - 4c_2 < 0$ and there exists an integer r such that the following conditions hold:

$$l(c_1, c_2, d, r) \ge 0, \ 0 < \beta - 2r \le g + l(c_1, c_2, d, r),$$

which are equivalent to the conditions of the corollary.

Corollary 10 If $X = \mathbb{P}^1 \times \mathbb{P}^1$ then, with the notations from the above remark $\mathcal{M}_{\mathcal{C}_{C_0}}(c_1, c_2) \neq \emptyset$ if and only if β is even and the intersection $[\alpha/2 - (g + c_2 - c_1^2/4)/2, \alpha/2) \cap \mathbb{Z}$ is nonempty.

Now, suppose that the ample line bundle H lies on some nonempty wall. In principle, by using the formulae of Qin in [Q1], [Q2], [Q3] and the previous corollaries one should get the non-emptiness of the stable moduli spaces for polarizations lying on walls. We were able to obtain only the following particular result:

Corollary 11 Let X be a ruled surface different from $\mathbb{P}^1 \times \mathbb{P}^1$ with nonnegative invariant e and assume $g \leq e + 1$. Let $H \equiv aC_0 + bf_0$ be an ample line bundle lying on some nonempty wall W of type (c_1, c_2) and denote b/a = k. Assume either $\zeta \cdot f_0 \geq 2$ for all normalized numerical equivalence classes ζ which represent the wall W or $4c_2 - c_1^2 > 2k - e$. Then $\mathcal{M}_H(c_1, c_2)$ is nonempty.

Proof: We shall use some results of Qin. Let $\tilde{c}_1 \in \text{Pic}(X)$ such that c_1 is the numerical equivalence class of \tilde{c}_1 . By Proposition 1.3.1, Chap.II in [Q3] we get

$$\mathcal{M}_H(\tilde{c}_1, c_2) = \mathcal{M}_C(\tilde{c}_1, c_2) - \bigsqcup_{\zeta} E_{\zeta}(\tilde{c}_1, c_2) ,$$

where ζ runs over all normalized numerical equivalence classes which define the wall W and the chamber C lies below the wall W such that $W \cap$

Closure(\mathcal{C}) $\neq \emptyset$. By Corollary 8 we have $\mathcal{M}_{\mathcal{C}}(\tilde{c}_1, c_2) \neq \emptyset$. Then, by a well-known result on deformation theory of vector bundles (see, for example [B2], p. 144), we get

dim
$$\mathcal{M}_{\mathcal{C}}(\tilde{c}_1, c_2) \ge 4c_2 - c_1^2 + 3g - 3$$
,

where $4c_2 - c_1^2 + 3g - 3$ is the "expected dimension". We shall prove that the dimensions of all sets $E_{\zeta}(\tilde{c}_1, c_2)$ are strictly smaller than the expected dimension.

Following Qin, let us denote the dimension of $E_{\zeta}(\tilde{c}_1, c_2)$ by $D_{\zeta}(\tilde{c}_1, c_2)$ and put

$$d_{\zeta}(\tilde{c}_1, c_2) := D_{\zeta}(\tilde{c}_1, c_2) - (4c_2 - c_1^2 + 3g - 3).$$

By Proposition 1.7 in [Q1] we get

$$d_{\zeta}(\tilde{c}_1, c_2) = \zeta^2 / 4 - (4c_2 - c_1^2) / 4 + \zeta K_X / 2 + 1 - g.$$

Let $\zeta = uC_0 + vf_0$ be a normalized numerical equivalence class which represents the wall W. From $H.\zeta = 0$, a > 0 and k > e (H ample) we get the condition v = u(e - k) < 0. By computation, we obtain:

$$d_{\zeta}(\tilde{c}_1, c_2) = (u-2)(2v-eu)/4 + (u-1)(g-1) - (4c_2 - c_1^2)/4.$$

Let us suppose that $u = \zeta f_0 \ge 2$ for all ζ . By Definition 3 we have

$$-(4c_2 - c_1^2) \le \zeta^2 < 0,$$

hence

$$d_{\zeta}(\tilde{c}_1, c_2) \le (u-1)(2v-2+2g-eu)/2 \le (u-1)(2v+e(2-u))/2 < 0.$$

Now, suppose there exist normalized numerical equivalence classes ζ with $u = \zeta f_0 = 1$ (u > 0) and that $4c_2 - c_1^2 > 2k - e$. For these classes we get

$$d_{\zeta}(\tilde{c}_1, c_2) = (e - 2v)/4 - (4c_2 - c_1^2)/4.$$

But v = e - k, hence

$$d_{\zeta}(\tilde{c}_1, c_2) = ((2k - e) - (4c_2 - c_1^2))/4 < 0.$$

It follows $\mathcal{M}_H(c_1, c_2)$ nonempty.

Remark If $\zeta_0 = C_0 + v_0 f_0$ is a normalized class of type (c_1, c_2) defining a nonempty wall W and $4c_2 - c_1^2 = e - 2v_0$, then W is a part of the boundary of C_{f_0} .

Indeed, we have to prove that there are no walls between W and the $[f_0]$ -axis. Let $\zeta = uC_0 + vf_0$ be a normalized class of type (c_1, c_2) defining a nonempty wall W^{ζ} . Then $4c_2 - c_1^2 \ge \zeta^2 > 0$, u > 0 and $v < \min\{0, ue/2\}$. Let $H = C_0 + af_0 \in W^{\zeta}$, where $a \in \mathbb{Q}$, a = (ue - v)/u. We want to prove

that $H.\zeta_0 \leq 0$. But $H.\zeta_0 = (ue - 2v + u(c_1^2 - 4c_2))/2u$. Now $u^2 \geq 1 \Rightarrow (u^2e - 2uv)/u^2 \leq u^2e - 2uv \leq 4c_2 - c_1^2$, which implies $H.\zeta_0 \leq 0$.

Remark By using some proofs as in the previous corollaries one may obtain results about the non-emptyness of $\mathcal{M}_H(c_1, c_2)$ for $X = \mathbb{P}^1 \times \mathbb{P}^1$ and H lying on walls.

References

- [A-B1] Aprodu, M., Brînzănescu, V. : Fibrés vectoriels de rang 2 sur les surfaces réglées, to appear in C. R. Acad. Sci. Paris
- [A-B2] Aprodu, M., Brînzănescu, V. : Moduli spaces of vector bundles over ruled surfaces, Preprint MPI Bonn 56 (1996)
- [B1] Brînzănescu, V. : Algebraic 2-vector bundles on ruled surfaces, Ann. Univ. Ferrara-Sez VII, Sc. Mat. vol. XXXVII (1991) 55-64
- [B2] Brînzănescu, V. : Holomorphic Vector Bundles over Compact Complex Surfaces, Lect. Notes Math., 1624, Springer (1996)
- [B-St1] Brînzănescu,V., Stoia,M. : Topologically trivial algebraic 2-vector bundles on ruled surfaces I, Rev. Roumaine Math. Pures Appl. 29 (1984) 661-673
- [B-St2] Brînzănescu, V., Stoia, M. : Topologically trivial algebraic 2-vector bundles on ruled surfaces II, In : Lect. Notes Math., 1056, Springer (1984)

- [Br1] Brossius, J.E. : Rank-2 vector bundles on a ruled surface I, Math. Ann. 265 (1983) 155-168
- [Br2] Brossius, J.E. : Rank-2 vector bundles on a ruled surface II, Math. Ann. 266 (1984) 199-214
- [F] Friedman, R. : Algebraic Surfaces and Holomorphic Vector Bundles, to appear
- [Ha] Hartshorne, R. : Algebraic Geometry, Graduate Texts in Math., 49, Springer, Berlin-Heidelberg (1977)
- [H-S] Hoppe,H.J.,Spindler,H. : Modulräume stabiler 2-Bündel auf Regelflächen, Math. Ann. 249 (180) 127-140
- [Q1] Qin,Z.: Birational properties of moduli spaces of stable locally free rank-2 sheaves on algebraic surfaces, Manuscripta Math. 72 (1991) 163-180
- [Q2] Qin,Z. : Moduli spaces of stable rank-2 bundles on ruled surfaces, Invent. Math. 110 (1992) 615-626
- [Q3] Qin,Z.: Equivalence classes of polarizations and moduli spaces of sheaves, J. Diff. Geom. 37 (1993) 397-415
- [T1] Takemoto, F. : Stable vector bundles on algebraic surfaces I, Nagoya Math. J., 47 (1972) 29-48
- [T2] Takemoto, F.: Stable vector bundles on algebraic surfaces II, Nagoya Math. J., 52 (1973) 173-195
- [W] Walter, C.H. : Components of the stack of torsion-free sheaves of rank-2 on ruled surfaces, Math. Ann. 301 (1995) 699-716

Institute of Mathematics of the Romanian Academy P.O. BOX 1-764, RO-70700 Bucharest, Romania