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Introduction

Let 7 : X — C be a ruled surface over a smooth algebraic curve C, defined
over the complex number field C. Let ¢; € Num(X) and ¢; € HY(X,Z) 2 Z
be fixed. For any polarization H, denote the moduli space of rank-2 vec-
tor bundles stable with respect to H in the sense of Mumford-Takemoto by
My (ci, ca). Stable 2-vector bundles over a ruled surface have been investi-
gated by many authors; see, for example [T1], [T2], [H-S], [Q2}, [F]. In this
paper we shall study the non-emptiness of the moduli spaces Mg(cy, ¢2).

For an algebraic 2-vector bundle over a ruled surface X' one introduced
two numerical invariants d and r and one defined the set M (¢, ¢, d,7) of
isomorphism classes of bundles with fixed invariants ¢;, ¢z, d, 7; see [B],
[B-St1], [B-St2]. The integer d is given by the splitting of the bundle on
the general fibre and the integer 7 is given by some normalization of the
bundle. The moduli spaces M(c;,co,d,7) are defined independent of any
ample divisor (line bundle) on X; see also [Brl], [Br2], [W]. In [A-B2] we ob-
tained necessary and sufficient conditions for the non-emptiness of the space
M (¢, ¢3,d,7) and we applied this result to some moduli spaces M (cy, ¢2)
(see, also [A-B1]).

In section 1 we give necessary and sufficient conditions for a 2-vector
bundle E € M(cy, ca,d,7) to be H-stable for some ample line bundle H. By
using this result, the results in [A-B2] and some results of Qin in [Q1], [Q2],
[Q3], we solve in section 2 the problem of non-emptiness of moduli spaces
My (e, ¢2) of stable 2-vector bundles in almost all cases.
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1 Stability of vector bundles in M(c;, ¢, d, )

We recall from [B], [B-St1], [B-St2], [A-B2] some basic notions and facts.

The notations and the terminology are those of Hartshorne’s book [Hal.
Let C be a nonsingular curve of genus ¢ over the complex number field and
let 7 : X—C be a ruled surface over C. We shall write X = P(£) where £ is
normalized. Let us denote by e the divisor on C corresponding to A% £ and
by e = —deg(e). We fix a point py € C and a fibre fo = 77 (pp) of X. Let
Co be a section of m such that Ox(Cp) = Ope(1).

Any element of the group of divisors on X modulo numerical equivalence
Num(X) & H*(X,Z) can be written aCy + bfy with a, b € Z. We shall
denote by O¢(1) the invertible sheaf associated to the divisor pg on C. If L
is an element of Pic(C) we shall write L = O¢(k) ® Ly, where Ly € Pic{(C)
and k = deg(L). We also denote by F(aCy + bfy) = F ® Ox(a) @ m*Oc(b)
for any sheaf F on X and any a,b € Z.

Let E be an algebraic rank-2 vector bundle on X with fixed numerical
Chern classes ¢; = (o, ) € HY(X,Z) ¥ Z x Z, ¢, € HY(X,Z) = Z, where
o, f,c0 € Z.

Since the fibres f of w are isomorphic to P! we can speak about the generic
splitting type of E and we have E|; & O;(d) ® O;(d) for a general fibre f,
where d < d, d+d = . The integer d is the first numerical invariant of E.

The second numerical invariant is obtained by the following normaliza-
tion:

—r = inf{l| 3L € Pic(C), deg(L) = I, s.t. H(X, B(—dCy) ® n*L) # {0}}.

We shall denote by M(cy,co,d,7) the set of isomorphism classes of al-
gebraic rank-2 vector bundles on X with fixed Chern classes ¢;, ¢; and
invariants d and 7.

With these notations we have the following result (see [B]):

Theorem 1 For every vector bundle E € M(cy,co,d,7) there exist Ly, Ly €
Pico(C) and Y C X a locally complete intersection of codimension 2 in X,



or the empty set, such that E is given by an eztension
0—Ox (dCo + rfo) @1 Ly= E=Ox(d Co + s fo)®n* Li®Iy =0, (1)

where ¢, = (,8) € ZxZ,cs € Z,d+d =a,d>d, r+s = B,
[(c1,¢0,d,7) := ¢y + a(de — 1) — Bd + 2dr — d?e = deg(Y) > 0.

For the following result see [A-B2]:

Theorem 2 M(cy,cy,d, ) is non-empty if and only if | := (¢, co,d,7) > 0
and one of the following conditions holds:

(I} 2d> a or,

(IN2d=a, B-2r<g+l.

Let Cx be the ample cone in Num(X') ® R generated by ample divisors:
We fix the Chern classes & € Pic(X) and ¢, € Z. We shall use (see, for
example [Q2]) the following definitions:

Definition 3 (i) For ¢ € Num(X) ® R, we define
W¢:=CxN{r e Nun(X)®R|z( =0}

(i) We define W(¢;,c;) to be the union of W¢, where ¢ is the numerical
equivalence class of (2F — ¢;) for some divisor F, and which satisfies the
conditions:

—(4c; - &) < ¢* < 0;

(iii) A wall of type (¢}, c;) is an element W¢, where ¢ satisfies the conditions
in (i1). A chamber of type (&, c2) is a connected component of the set Cy \
W(El , 62);

(iv) A numerical equivalence class ¢ which represents a nonempty wall W¢
is normalized if the integer (¢.f) is positive.

(v) Let W¢ be a nonempty wall of type (¢, ¢z) and let I;(¢y, ¢z) be the integer
co + (¢? — &1) /4. We define E¢{(¢;, c2) to be the set of isomorphism classes of
2-vector bundles E' given by nontrivial extensions

05 Ox(F) =2 E—=0x(& - F)®1Iy — 0,

where F is a divisor such that ( is the numerical equivalence class of (2F—¢;),
and where Y C X is a locally complete intersection of codimension 2 in X
such that deg(Y") = l(&, ¢2).



Remark 4 The definitions (i)-(iv) depend only on the numerical type (c;, ),
where ¢; is the numerical equivalence class of ¢,. We fix the numerical
Chern classes ¢; = (o, ) € Num(X), c; € Z and the integers d, r such
that the conditions 2d > «, (¢, ¢2,d,7) > 0 are satisfied. We denote by
¢ =(d-d')Co+ (r — 5) fo and we have that the condition I(c;,cz,d,7) > 0 is
equivalent to the condition —(dc; —¢?) < (2, and that { + ¢, is the numerical
equivalence class of 2F for F' a divisor on X. If we suppose, moreover, that
¢? < 0 and there exists an ample line bundle L over X such that ¢;(L).¢ = 0,
then the element { represents a nonempty wall of (numerical) type (¢, ¢z)
and we have F (¢, c2) C M(cy,ca,d, 1) (see [A-B1]).

In the next result we shall investigate the stability of vector bundles in the
moduli space M(c1, ¢, d, 7). For F' a torsion-free sheaf on X and H an ample
line bundle, we use the notation py(F) := ¢ (F).H/rank(F).

Theorem 5 Let E € M(cy,c,,d, 7). Then, there exists an ample line bundle
H such that E is H-stable if and only if 2r — § < min{0, e(2d — «)/2} and
the extension (1) of E is non-splitting.

Proof: Let us suppose that E € M(c1, co, d, ) is H-stable for some ample line
bundle H on X. From Theorem 1 we know that E is given by an extension

02Ny, E—-3N®Iy =0, (2)
where
Ny = Ox(dCy +1rfo) @ m" Ly, Ny = Ox(d'Co+ sfo) @ m* Ly,

with Ly, Ly € Picg(C). As a stable vector bundle E is non- splitting. Let
¢ =(2d—a)Cy+ (2r — ) fo € Num{(X}. From the definition of the invariant
d we have 2d > «, i.e. {.f > 0. Let us suppose that 2r — § > 0. Then,
(2d — a)Co + (21 — B) fo is an effective divisor and, therefore, H.{ > 0 for any
ample line bundle H on X. It follows from the exact sequence (2) that

i (Ne) > pu(E),

i.e. N; is destabilising, contradiction.

Now, let us suppose that 2r — 8 > e(2d — «)/2. If 2d = « we get the
above case 2r — § > 0. Assume 2d > «. We shall prove that H.{ > 0, which
gives as above a contradiction. A simple computation gives

2r—f>e(2d—a)/2 = (*>0.
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If H.¢ = 0, by the index theorem we get (2 < 0. It follows (2 = 0, ie. (
is numerically trivial. But {.f = 2d — « > 0, contradiction. If H.{ < 0, let
D= (Hf)—(HL)f. Since H.D =0, D* <0 by the index theorem. But

D*<0 <= (H.f)*¢-2HHOE.F) <O,
and we get a contradiction, since (H.f)}(H.{)(C.f) < 0. It follows
2r - B < min{0, e(2d — «)/2}. (3)

Conversely, suppose that E is given by a non-splitting extension (1) and
the inequality (3) is satisfied.
Case 1. 2d> a.
We show firstly that ¢ defines a nonempty wall of type (c1,cz). From the
extension (1) we get

<2/4 - (C?/ll - 62) = l(Cl, Co, d, ‘r) > 0.
Since 27 — 8 < e(2d — @) /2, we get (2 < 0, so
—(dey =) < * <0,

Therefore ¢ is a normalized numerical equivalence class of type (¢, cz) and
defines a wall W< of type (c,,c;). We show that W¢ is nonempty, i.e. there
exists a € Q, a > max{e, e/2} such that the polarization D = Cy + afy
satisfies D.( = 0. But

D(=0 < a=e¢—(2r—0)/(2d— a).

From 2r — f < 0 we get a > e and from 2r — § < e(2d — ) /2 we get a > e/2,
i.e. W¢ is nonempty. Now, take the chamber C below the nonempty wall
W< such that W< N Closure(C) # @. Then, by the Theorem 1.2.3, Chap.II in
[Q3], every non-splitting 2-vector bundle E of the extension (1) is H-stable
for any ample line bundle H € C.

Case 2. 2d=«.

In this case the inequality from hypothesis is equivalent to the inequality
2r — 8 < 0. Let By = E(—dC,). Then, E;, € M((0,0),{,0,7), where
l:=1(c1,e0,d,7) 2 0and ¢;(Ey) =& = (0, 0), c2(E,) = ¢ = 1. Since, for an
ample line bundle H, E is H-stable if and only if E; is H-stable, it sufficies
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to show that ), is H-stable for some ample line bundle H. One may remark
that [ > 0 is equivalent to ¢} — 4¢; < 0.

Subcase (a) ¢ —4dcy; <0

We shall prove that E, is H-stable for any ample line bundle H € Cy,, where
Cy, is the chamber of type (c1, cz) such that the [fo]-axis in Num(X) ® R is
part of the boundary of Cy,. Clearly, by the definition, the chambers of type
(c1, c2) coincide with the chambers of type (¢1,2). The 2-vector bundle E;
is given by an extension

0— OX(TfO) ®7T‘L2 -3 E1 — OX(Sfo) ®7T‘L1 ®I}’ - 0,

and Ey|; = Of @ Oy, for a general fibre f of X.

Let Ox(D) C E) be a subsheaf of rank 1 with the quotient torsion-free
and let 7 be the numerical equivalence class 2D — ¢;. We shall show that,
for any ample line bundle H € Cg,, we have

u(Ox (D)) < pn(Er).
For a general fibre f of X we get
deg(Ox(D)|;) <0,

ie. D.f <0. Since ¢;.f =0 we get .f < 0 and we have two subcases:
(a1) n.f =0. It follows

Ox(D) = Ox(qfo) @ 7"L, L € Pico(C).
Since Ox (D) C FE1, by the definition of r = rg, we get ¢ < r, hence
1 (Ox (D)) < pr(Ox(rfo) ® 7* La).
But 2r < # implies
na(Ox(rfo) ® 7* L) < pu(Er),

for any H € Cy, and we are done.

(a2) n.f < 0. We show that H.p < 0 for any H € Cy, ( the inequality H.n <
0 is equivalent to the inequality py(Ox (D)) < pg(E))). If Hy > 0, by the
index theorem applied to the divisor (H.n}f — (H.f)n, which is orthogonal
on H, we get

(H.f*n* = 2(Ha)(f)(H.f) < 0.
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Counting the signs it follows n? < 0. Since —(4dc; — ¢) < 7? (from the
extension corresponding to the inclusion Ox(D) C E;}, we get that 7 is
a numerical equivalence class of type (c1,c;). For any H € Cp,, H and f;
are not separated by any wall, hence sign(f.n) = sign(H.n), contradiction.
If Hn = 0 then, by the index theorem, it follows n* < 0. If % < 0, it
follows that n is a numerical class of type (cy,¢;), since —(4dcy — %) < 52
Then H € W", contradicting the inclusion H € Cy. If n* = 0, by the
index theorem, we get n numerically trivial. Then 2D = & = (0, §), hence
D.f =0. But Ox(D) C E and, by the definition of r = rg, we get 8/2 < 7,
contradiction.

Subcase (b) ¢ ~4dc; =0 1=0

Then the canonical extension of F| becoines

00 Ox(rfo)®n*Ly = By = Ox(sfo) ®7" L) — 0.

In this case we shall prove that F) is H-stable for any ample line bundle H.
Indeed, let a € Q,a > max{e, e/2} and Ox(F) C E; an invertible sheaf with
torsion-free quotient det(E) ® Ox(—F) ® Iz, where Z is a zero-dimensional
subscheme of X and F' = —mCy + nfy with m > 0. We have
F(¢)—F)+deg(Z)=cy(Ey)=0 = F.(¢, - F) <0 (& me-+2n-4<0).
But now, if m > 0, since a > €/2, so me—ma+n < me/2+n < /2 leading
us to F.(Co+afy) < 8/2 = c1(E1).(Co+afo)/2,i.e. Fyis H-stable. If m =0,
then n < r (by the definition of r = rg), hence n < #/2 and, again, E, is
H-stable.

We obtain, in the particular case of ruled surfaces, the Bogomolov in-
equality, which was proved in this case by Takemoto; see Theorem 3.7 in
[T1].

Corollary 6 Let X be a ruled surface and let E be an algebraic 2-vector
bundle over X, with Chern classes ¢\(E) = ¢; € Num(X) and cu(E) =
c2 € Z. If E is H-stable for some ample line bundle H, then A(E) =
(co — c2/4)/2 > 0.

Proof: With the notations of the previous theorem, we obtain from the first
implication that ¢? < 0 for a stable vector bundle E. Since —(4c; —¢?) < (3,
hence A(E) > 0.



2 Non-emptiness of moduli spaces Mg(ci, cs)

Let 7 : X — C be a ruled surface and let ¢; = (@, 8) € Num(X), ¢; € Z
be fixed numerical Chern classes. Let H be an ample line bundle over X.
We investigate the question of existence of H-stable 2-vector bundles F with
ci(E) = ¢ and ¢(E) = g, i.e. the question when M (c),c0) # @ If
¢1 € Pic{X) and ¢; is the numerical equivalence class of ¢, then, clearly,
My (e, ez) # 0 if and only if Mg(Gy,cz) # 0.

By the Bogomolov inequality, if 4c; — ¢ < 0 then, M (¢, ¢;) = @ for any
polarization H on X. The next case, 4c; — ¢! = 0 (projectively flat bundles),
which follows by the proof of Theorem 5, has been studied by Takemoto; see
[T1], Theorem 3.7:

Corollary 7 Let H be an ample line bundle over a ruled surface X. An
algebraic 2-vector bundle E over X with A(E) = 0 is H-stable if and only
if there 1s o stable 2-vector bundle F' over the curve C and a line bundle L
over X such that E=7m*(F)® L.

Remark Thus, in the case 4¢; — ¢2 = 0, the non-emptiness of the moduli
spaces My (cy, ¢2) is reduced to the case of moduli spaces of stable bundles
OVer curves.

From now on, we shall assume 4c; —¢? > 0. As we have seen in Definition
3, there exist in this case walls and chambers of type (¢, ¢p) in the ample
cone Cyx. Let H = aCy + bfy be an ample divisor over the ruled surface X.
Recall that @ > 0 and b > ee if e > 0 and, a > 0 and b > ae/2 if e < 0 (see
[Ha], p. 382). Therefore, in the case of a ruled surface, the ample cone has
a simple description. Moreover, from the conditions in Definition 3 (ii)

~(4cy — cf) <(? <o,

we get that there exist always a finite number of walls and chambers. Recall
that we denoted by Cy, the chamber of type (cy, ¢z) such that the [fp}-axis in
Num(X) ® R is part of the boundary of Cy,.

Firstly, suppose that the ample line bundle H belongs to some chamber. It
is well-known that if H; and H, lie in the same chamber of type (¢, ¢2) then,
My, (c1,¢2) and Mg, (c1,c2) can be naturally identified (see, for example
[F1, [Q2]). In [A-B2], as a consequence of the Theorem 2, we obtained the
following result:



Corollary 8 Let X be a ruled surface. Assume that X is not P! x P! . Let
C be any chamber of type (c1,ca) different from Cy,. Then the moduli space

Me(er,c) # 0.

Remark In fact, in the case X = P' x P!, C} defines the other axis [Cy)
in Num(X) which lies on the boundary of Cx and , by the last remark in
[A-B2], if C is a chamber different from Cj, lying below a non-empty wall
W defined by a normalized class { = uCp + vfy of type (c1,¢2) such that
either Ic(c),c2) > 0 or v < —1 then Mc(e), ) # 0. 1t is easy to see that
if Ic{c1,¢2) = 0 and v = —1 then C = C¢,, where we denoted by C¢, the
chamber that has the [Cyl-axis on its houndary.

Indeed, let H = Cy+afy, a € Q, a > 0 be a class lying on a nonempty
wall W¢, where ¢ = uCy + vfy is a normalized class of type {ci,c;). Then
a = —u/u and we have to prove that (o.H > 0 for {5 = ueCp — fo, i€

(((dep — cf)/2)00 — fo)-(Co + afy) > 0.

Since v? > 1, then —2u/v < —2uv < de¢; — ¢ so —v(dey — ) /2u— 1 > 0.

Let us consider now the case H € Cy,:

Corollary 9 Let X be a ruled surface. Then Mc, (c1,cy) is nonempty if
and only if o is even and the intersection [8/2 — (g + ¢z — ¢4 /4)/2, B/2)NZ
18 nonempty.

Proof: Firstly, we remark that 2d = « if the vector bundle £ is Cj,-stable.
Indeed, the bundle F is given by an extension (2) and, if we suppose 2d > «,
then from the proof of Theorem 5§ it follows that { = (2d — «)Co+ (2r — B} fo
is a normalized numerical class of type (¢1,c;) defining a nonempty wall
W¢. Since Cy, is above W<, it follows that H.( > 0 for any H € Cj,,
which is equivalent to the fact that the subsheaf Ny of the extension (2) is a
destabilising subsheaf of E, contradiction (compare also with {T1] theorem
3.7).

Secondly, in the case 2d = «, if 2r — § < 0 then £ is non-splifting.
Indeed, if E would be splitting, then E would be given by an extension (2)
with ¥ = 0. Since Ny C E, by the definition of 7 = rp, we get s < 7,
contradiction with 2r < .



By Theorem 5 it follows that Mc (¢1,¢2) is nonempty if and only if
« is even (o = 2d) and there exists an integer r with 2r < f§ such that
M(cy,co,d,7) # 0. By Theorem 2 we know that M{c;,cz,d,r) # @ if and
only if | = l(¢y,¢0,d,7) > 0 and 8~ 2r < g+ 1. Thus, M%(cl,cz) is
nonempty if and only if & = 2d , ¢? — 4¢; < 0 and there exists an integer r
such that the following conditions hold:

l(cla CZ:d’T) Z 0) 0< 13 —2r S g + Z(C],Cg,d, T))

which are equivalent to the conditions of the corollary.

Corollary 10 If X = P! xP! then, with the notations from the above remark
Meg, (c1,¢2) # O if and only if B is even and the intersection (/2 — (g +
cy — c2/4)/2, a/2) N Z is nonempty.

Now, suppose that the ample line bundle H lies on some nonempty wall.
In principle, by using the formulae of Qin in [Q1], [Q2], [Q3] and the previous
corollaries one should get the non-emptiness of the stable moduli spaces
for polarizations lying on walls. We were able to obtain only the following
particular result:

Corollary 11 Let X be a ruled surface different from P* x P! with nonneg-
ative tmvariant e and assume g < e+ 1. Let H = aCy + bfy be an am-
ple line bundle lying on some nonempty wall W of type (¢, o) and denote
bja = k. Assume either {.fy > 2 for all normalized numerical equivalence
classes ¢ which represent the wall W or dcy — & > 2k —e. Then Mpy(cy, ¢o)
s nonempty.

Proof: We shall use some results of Qin. Let ¢, € Pic(X) such that ¢; is the
numerical equivalence class of é. By Proposition 1.3.1, Chap.IT in [Q3] we
get

My (€1, ¢2) = Mc(Er,¢2) — lzlEC(61;CQ) ,

where ¢ runs over all normalized numerical equivalence classes which de-
fine the wall W and the chamber C lies below the wall W such that W N
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Closure(C) # @. By Corollary 8 we have M¢(é;,c3) # @. Then, by a well-
known result on deformation theory of vector bundles (see, for example {B2],
p. 144), we get

dim Mc(&y,cp) > dey — ¢ 4 39 — 3,

where 4cy — ¢ 4- 3g — 3 is the “expected dimension”. We shall prove that
the dimensions of all sets E¢(é,c,) are strictly smaller than the expected
dimension.
Following Qin, let us denote the dimension of E, (¢, ¢2) by D¢(é, ¢c;) and
put
d((él,CQ) = DC(E],C2) - (4C2 - C% + 3[] — 3)

By Proposition 1.7 in [Q1] we get
de(Cr,¢2) = CP/4— (des — ) /A + (Kx/2+1—g.

Let ¢ = uCy + vfy be a normalized numerical equivalence class which repre-
sents the wall W. From H.( =0, a > 0 and k£ > e (H ample) we get the
condition v = u(e — k) < 0. By computation, we obtain:

de(é1,02) = (u = 2)(2v — ew) /4 + (u— 1) (g — 1) — (dey — €3) /4.
Let us suppose that u = {.fo > 2 for all {. By Definition 3 we have
—(de; — 2 < 2 <0,
hence
de(Crye) S(u—1)2v—-24+29—eu)/2 < (u—1)(2v+e(2-u))/2<0.

Now, suppose there exist normalized numerical equivalence classes ¢ with
w=C.fo =1 (u > 0) and that 4¢; — ¢? > 2k — e. For these classes we get

de(E1,¢0) = (e — 2v) /4 — (dey — c}) /4.
But v = e — k, hence
de (€1, ¢2) = ((2k — €) — (dep — ¢2)) /4 < 0.

It follows Mg (cy, c2) nonempty.
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Remark If (; = Cj + v fo is a normalized class of type (¢, ;) defining a
nonempty wall W and 4ep ~— ¢ = e — 2uq, then W is a part of the boundary
of cfo'

Indeed, we have to prove that there are no walls between W and the
[ fo)-axis.
Let ¢ = uCy+ v fy be a normalized class of type (¢, ¢) defining a nonempty
wall W¢. Then dc; — ¢ > (2> 0, u > 0 and v < min{0, ue/2}.
Let H = Cy+ afy € WS, where a € Q, a = (ue — v)/u. We want to prove
that H.(p < 0.
But H.(o = (ue — 2v + u(c? — 4¢p))/2u. Now u? > 1 = (u?e — 2uv)/u? <
u’e — 2uv < 4cy — ¢, which implies H.¢p < 0.

Remark By using some proofs as in the previous corollaries one may obtain
results about the non-emptyness of Mg(c¢y,¢z) for X = P! x P! and H lying
on walls.
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