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Variations of equimultiplicity snd graded Cohen-Macaulay rings

Manfred Herrmann

Summary of lectures, given at Tata Institute autumn 1983,

These lectures have their geometric roots in the resolution and
classification of singularities of algebraic varieties. These two
aspects are not independent ef each other: Any canonical process

of desingularization leads to some kind of classification, and
conversely one may expect that a "good" classification contains
enough information to give a recipe for resolution. For plane curve
singularities these two aspects coincide: Blowing up points for
resolution gives a multiplicity sequence which determines the topo-
logical type of the singularity, and vice versa.

In generalizing the plane curve case to higher dimensions (and
codimensions), the procedure of Zariski, Hironaka and Abhyankar
vas to blow up non-singular centers contained in the singular locus
of the given variety. To decide about an improvement of a singular-
ity under this process, a numerical measure of the singularity was

needed, and the choice of the center of blowing up was related to
this measure. Here is 8 hierarchy of numerical conditions on a

non-singular center D :

i) all points of D have the same multiplicity;
11) all points of D have the same Hilbert polynomial;
1i1) all points of D have the same Hilbert function .

These conditions coincide for hypersurfaces, but they differ in
general. For each condition there is an algebraic description :

For 1) by reduction of ideals ([H-01)), for ii) and 1ii) by flatness
conditions on the associated graded ring ([0-R], [Be]l).

Besides blowing up non-singular centers, there are also approaches
vhich amount to blowing up singular centers:




(1) VWhen Zariski - followihg Jung - used'QEhefic'projections'df"
surfaces and embedded resolution of the discriminant locus, blowing

up points on the discriminant induced blowing up of "thick pointé"

on the original surface. Zariski's procedure also used normalization;
vhereas a "good" proof of desingularization should combine the follo-
wing features : it should be canonical, it should not use nor-aiization‘
and globalizing should be no problem. The first canonical proof for
surfaces not using'nornalization was given by Zariski in 1967.

(2) Another possibility to blow up a singular center is to blow up
the intersection of the given (ehbedded) variety with a8 linear sub-
variety of a suitable embedding space. Then the center on the given
variety will be singular in general.

An obvious problem is how to generalize the numerical conditions,
their algebraic descriptions and the consequences to singular centers.
In [#-0-1] , [H-0-2], [H-S-Vv], [0] , [0-R] , [Li] such a generali-
zation was developped by using generalized Hilbert functions. In the
first section we will give an account of this theory. Here we view

in particular 3 types of numerical conditions as three possibilities
to make precise the naive idea of equimultiplicity along a subvariety.

The important role of multiplicities and Hilbert functions is that
they furnish some way of measuring and comparing singularities.
Measuring singularities by multiplicities is much cruder than by
Hilbert functions. One aspect of the difference is to be seen in the
fact that lower dimensional components do not enter into multipli-
cities. Therefore, in order to get satisfactory results on multi-
plicities, one has to use a restricted class of rings for which
certain dimension formulas hold. From this point of view Ratliff's
extension theory of quasi-unmixed ("formally equidimensional"™) rings
fumishes an appropriate frame for multiplicity theory. [Therefore
already Chevalley 1943 assumed his local rings to be quasi-unmixed.]
Tkis opinion is supported by the nice behaviour of quasi-unmixed
rings under blowing-up, and by the connection of these rings to
multiplicities via reduction of ideals.



In the zero eection ve recall to some of Ratliff's results. We
also inclnde some consequences thet don't seem to have been
noticed explicitely before.

The idea of hyperplane sections leads to the investigation of
Hilbert functions and multiplicities for ideals of the principal
class. In section 1 we describe some results in this direction.

One essential problem in this connection is to give a characteri-
zation of stability of multiplicities resp. Hilbert functions under
blowing-up.

In section 3 and 4 we turn to the problem how to link the Cohen-
Macaulay (CM for short) property of a local ring R to the CM

properties of the various graded rings related to the blowing-up

along an ideal I c R : '

a) the blowing-up BlI(R) - ProjOIn

b) the associated graded ring ng(R) with respect to 1
c) the Reesring Re(I,R) = R[It,t"ll

d) the Reesring Re'(I,R) = R[It}.

We will also treat the question how far it is necessary to assume
R to be Cohen-Macasulay. Our main tools to give some answers to
these questions come from multiplicity theory. On the other hand
we also indicate some cohomological approach in section 4 .

§ O . Notations. Auxiliary results.
0.1. Quasi-unmixed rings ([Ra-0] - [Ra-3) , [Nal)

Definition O0.1.1: A semilocal ring R is said to be quasi-unmixed,
if each minimal pri-e ideal P in the completion R satisfies

di-(ﬁ/g) - din(ﬁ) (= dimR) .,

These rings can be characterized by chain conditions. For that we
recall to the following definitions.



Definition 0.1.2 : (i) An (integral) domain A “ti.gi"_ﬁh9
"altitude formula" if for each finitely geﬁerited (iétégiii)
domain B over A and for any prime ideal 'g C;B the'folloviag
relation is fulfilled:

dim(By) + trd(B/P/A/AaP) = dim(A, p) + trd(B/A) .

(i1) The ring R satisfies the altitude-formula if R/P satis-
fies the altitude formula for each minimal prime ideal P .

Remark : Note that a noetherian ring R satisfies the altitude-
formula if and only if R is universal catenarian.

Definition 0.1.3 : (i) A local ring R 1is said to be formal-
catenarian, if R/P is quasi-unmixed for every minimal prime ideal
Pc R .

(ii) A noetherian ring R 1is said to be locally-formal-catenarian,

if every localization of R 1is formally catenarian.

Theorem 0.1.4 ([Ra-1] : Let R be a noetherian ring. Then the

following are equivalent:

(1) R 1is locally formal-catenarian

(ii) R is satisfies the altitude formula

(iii) R satisfies the chain condition [Na] for prime ideals.

If R in the theorem 0.1.4 is a domain then condition (i) may be

replaced by R 1is locallx-guasi—unnixed y 1.e. every localization
is quasi-unmixed.

The next propositions describe the situation for a local ring, see
[Ra-0].

Proposition 0.1.5 : A local ring R is quasi-unmixed if and only
if R 1is formal-catenarian and equidimensional (i.e. dimR/P = dimR
for all minimal primes).




Proposition 0.1.6 : A quasi-unmixed local ring R satisfies the
following conditions : ‘

(1) RP is quasi-unmixed for all primes PG R ,
(i1) dim.R= dim R/a +ht(a) for all ideals a <R,
(iii) the polynomialring R{X) is locally quasi-unmixed,

(iv) if R 1is a domain then any finitely generated
R-algebra is also quasi-unmixed.

Proposition O0.1.7 : Let R be 8 quasi-unmixed local ring and &
an ideal in R . Then R/a ‘is quasi-unmixed if and only if all
minimal primes of a have the same height.

0.1.8. From the geometric point of view it is interesting that
quasi-unmixed local rings R can be characterized by the "equimultiple”
ideals I of R, s. [Ra-3]. To describe this result we have to
recall in section 0.2 and 0.3 .the properties of the analytic spread

of an ideal I and the two types of Reesrings Re(I,R) and Re+(I.R);

0.2 Analytic spread.

Proposition 0.2.1 : Let I and J be two ideals in a local ring
(R,M) with I > J ., Then the following statements are equivalent:

(i) J1" - In+l for some n

(ii) 01" is a finitely generated ® J"-module
n20 n20

(iii) © I"/MI®™ is integral over the R/M-subalgebra
n>0
(of ©1"/MI") generated by J+MI/MI .

Definition 0.2.2 : If one the statements (i), (ii) or (iii) holds,
J 1is called a reduction of I . A reduction J of I is said to
be minimal if the properties J'& J and J' is a reduction of

I imply J' = J.




Consider the blowing up of the ideal I :

Proj(®I") — Spec R, let Y = Proj © A°/MI® be the "closed"
n>0

fibre £ 1(M) . Let 1(I) = dim¥+l = dim(® F /ME) .
1>0

Proposition 0.2.3 : Let (R,M) be a local ring with infinite
residue field and I an ideal in R . Then 1(I) is the least
number of generatons of any minimal reduction J of I .

Definition 0.2.4 : 1(I) = dim(® I7MI') is celled the analytic
n>0

spread of I .

Note that reductions of ideals are closely related to nultiplicitj.
So we know by Rees that two M-primary ideals Q1 <-Q2 in a quasi-
unmixed ring R have the same multiplicity if and only if Q1 is

a reduction of 02 . A corresponding statement is trese for ideals
J <1 of height less then dim(R) by Biger [BBI.

Theorem 0.2.4*(Béger) : Let R be quasi-unmixed and let JcI
be ideals in R such that

(1) J and I have the same radical
(11) he(J) = 1(J)

(iii) e(IRP) - e(JRP) for every minimal prime P of I .

Then J 1is a reduction of I

See furthermore the remark to Teissier's "principal of specialization
of integral dependence” in section 1.2.

Proposition 0.2.5 : Let (R,M) be & local ring and I an ideal
in R . Then the following is true :

(1) 1(I) s dim R; equality holds if I is M-primary.
(i1) 1(I) 2 1(IRP) for every prime P containing I

(111i) 1(I) 2 ht(P) for every minimal prime P of I ;
in particular 1(I) 2 ht(I) .
(iv) ht(I) s dim R - dim R/I 51(1) .



Note that (ii) describes the upper semicontinuity of the fibre
dimension of the blowing-up of the ideal I, [EGA IV], 13.1.3.

0.3 Auxiliary results on Reesrihgs.

0.3.1. Definition : Let (R,M) be a local ring and I a proper
ideal. Let t be an indeterminate over R and let u-t-l (in
the total quotient ring of R{t]) . Then we consider the follo-
wing subrings of R[t,u), which are called Reesripngs of R with

redgect to I, defined by

Re*(I,R) = R[It] = ¢ I"
n20

and
Re(I,R) = R{It,u] = Re*(I,R)(u]

(The last one has been introduced by Rees).

0.3.1*%*, We have the obvious relations :
+° 44 i
(0) Re(I,R) = !al t with I" =R if 1 < 0.

(1) Re*(I,R)/IRe*(I,R) 5 Re(I,R)/uRe(I,R) = gr.R .

I

(2) Re(I,R)/(It)Re(I,R) = R/I [u], where the residue class u
of u is algebraically independent over R/I ;

in particular it follows that

(2') dim(Re(I,R)/(It)Re(I,R) = dim(R/I)+1 .

(3) u"*Re(I,R) AR = I" for all n » 0 ; and
u is a non-zero-divisor in Re(I,R).

If R:= Re(I,R) , i the normalization of R, Z.e the integral
closure of R in its total quotientring, and Y the integral closure
of the ideal I in R , then

(4) o RnaRa1".



Lemma 0.3.2 : Let (R,M) be a local ring, I s proper idesl of
R and let N denote the unique homogeneous maximal idesl of
Re(I,R) . Then we have :

(1) dim®Re(I,R) = ht(N) = dimR+l
(11)  dim@ry(R) = ht(N/uRe(I,R)) = dimR

(i11) dim@Re(I,R)/MRe(I,R)+ uRe(I,R))= ht(N/MRe(I,R) + uRe(I,R)
= 1(1I), theanalytic spread
of I .

Statement (i) has been proved by Ratliff, (ii) follows directly
from (i), and (i11) is an easy consequence of the definition of
analytic spread.

Later on we will ask for the existence of a homogeneous system
of parameters for graded rings of the type Re*(I,R), Re(I,R) and
ngR . If A 1is any of these rings, then it has a unique homo-
geneous maximal ideal,let's say Q , and to have a homogeneous
system of parameters we need to know that dim A =« dim AQ .

Remark 0.3.3 : For a graded ring, a homogeneous system of para-

meters need not exist in generasl. There is an important special
case of graded rings A for which the existence of homogeneous

systems of parameters is guaranted, namely if A = 0 An is
n30

positively graded (noetheria;) and Ao is a field k . Since systems
of parameters are invariant modulo nilpotent elements, the same is
true if Ao is an artinisn local ring. In particuler, 1if Q 1is an
M-primary ideal in a local ring (R,M), then grQR has a homogeneous
system of parameters. We shall indicate in § 2 that for a proper
ideal I in a quasi-unmixed local ring (R,M) the associsted graded
rings ngR and Re(I,R) have a homogeneous system of parameters
if and only if I is "equimultiple" in the sense that ht(I) = 1(I):;
see § 1.

For. RE(I,R) one has the folloving answer (see § 2) : If ht(I) > O
and if R/M 4is infinite, then Ro*(I.R) has & homogeneocus system



of parameters if and only if 1(I) = 1 : If ht(I) = 1(I) =1 ,
and d = dim R, then dim R/I = d-1. Hence there exists a system
bl"“’bd-l of parsmeters mod I; furthermore we have one paras-
meter element a - sinimal reduction of I . It is easy to show
that therefore

is s homogeneous system of parameters of Re*(1,R) = R(1t].)

In particular, if dim R 2 2 , then Re+(H.R) cannot have a homo-
geneous system of parameters.

More exactly one can show that the number of homogeneous elements
in Re+(Q.R), vhere Q 1is an M-primary ideal in R , is at most 2 .

For dim R = 1 we get the homogeneous system {al,alt) in
Re*(M,R), see [H-0-G].

Now we want to explain one direction of the proof of Rafliff's theorem
on the characterization of quasi-unmixed rings (see 0.1.8).

Theorem 0.3.4 : A local ring (R,M) is gquasi-unmixed if and only
if for every ideal I such that ht(I) = 1(I) , the integral closure
I has no embedded prime divisors.

Sketch of the proof of "=s" (after Ratliff) :

Let ig be any prime divisor of Y . For x e« R, x ¢ 1 iff

x'¢ I+P/P for all minimal primes P 4in R (where x' = x mod P).
Hence there exists a minimal prime ideal Po of R contained in
the given ? , 80 that ?/Po is a prime divisor of I + P_/P_ .
By &* we denote the Reesring Re(I+P°/P.°,R/P°) . Since

|a&; P R/P° - f+Fo7F° by 0.3.1%,(4) we find a prime divisor f“
of u-ii; such that

Pe* n R/P = PIP_ .

We have ht(P**) = 1 since R* = integral closure of a noetherian
domain is a Krullring, s. [Na], 33.10 .



Nov there is a big Step to shoy that, since R and 't_heriffﬂrc‘
R/P, are quasi-unmixed (s. Prop. 0.1.7), the Reesring R* is
locslly quasi-unmixed. Hence &* satisfies the altitude foraula
(see theorem 0.1.4 and prop. 0.1.5). Note that ht(P** n R*) = 1,
since R * satisfies the chain_.cond. for prime ideals. Denote

P**A R* by P* . Then the altitude formula tells us that for
the situation A = R/I’o and B =« R* we have :

(#)  ht(Px) +er.d(a*/P='/R/;g) - ht(‘?/po) + :rd(m/R/Po) .
f |
1 1

From this we get finally

WEUR*/PR/RIP) = din(Re(IRy ;R?)/ﬁne(m,’ Ry ) s L(IR ),

vhere P is en ideal in R corresponding to P* under
R‘ M k/PO' , where R- RQ(I,R) y ?.';emﬂIt')fl

1 ¥ 4
From (+) and (*) we get :

(3) ht(I) s ht(;e) - ht(;e/po) 3 l(IR?) s 1(1) .

By assumption, ht(I) = 1(I), hence (3) yields

ht () = ht(I) - he(T) 4
q.e.d.

Ratliff's proof of "ém" is pPurely algebraic and rather compli-
cated, see [Re-3]. A simplificgtion of Ratliff's proof from the

algebraic point of view is Contgined in the forthcoming thesis
of U. Grothe; see [Gr].

Remork 0.3.5 : We have indicaped in two cases that the condition
ht(l) « 1(I) is useful from the algebraic point of view. In the
next section we describe g8eOmeyric meanings of this condition. In
particular, since the notion ©f quasi-unmixed rings gives the
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correct frame for the study of multiplicities it seems reasonable
to clarify the link between Zariski's equimultiplicity e(R) =
c(kp)‘ and the condition ht(P) = 1(P) for a prime ideal PC R .

§ 1 Equimultiple ideals

1.1. Definitions, facts and exa-pies.

For s local (noetherian) ring (R,M) and an ideal I G R we
recall the following two definitions that grew out of the naive

idea of equimultiplicity along a subvariety :

(1.1.1) Definition. For a p:iie ideal I = P, R is said to be
equimultiple slong P in the sense of Zariski, if

e(R) = e(RP) .

{1.1.2} Definition. R is said to be normally flat along I 1if
n,.n+
/1

I is a free R/I - module for all n > 0 .

Let us first look at the case that I = P 4is a regular prinme,
i.e. R/P 1is regular., If furthermore R is a hypersurface, i.e.
R = Q/fQ for some regular local ring Q , then equimultiplicity
in the sense of Zariski and normal flatness coincide, whereas they
differ considerably in general,.

For regular primes P normal flatness is generally stronger then
equimultiplicity.

Example s. [H-0-2]) : Let

R = k[[X,Y,Z,W]}}/ (Zz—ws.tz-\xz) =k(lx,y,z,vw]] .

Note that R = k[[uz,uts,tlo,tbll .

Let P = (y,z,v) = (“tS'th.tA)

Then we have : R/f’z k[[x]] and e(R) = e(Rp) = & .

But R is not normally flat along P , since P/P2 has torsion:
x°z ¢ p2 , but x ¢ P .



Note that here R 1is even a strict complete ;ntcrsqetion,‘i.c.-
also the graded ring gryR - k[x,Y,z,w]/(zz,yz.xz) is a8 complete

intersection.

Let f : Bl (R)-+ Spec(R) be the blowing up of R along I,

and let fo : (Spec R/I1) —+ Spec(R/I) denote the restriction

of £ to the exceptional divisor. For a regular curve V(I) = V(P)
on a surface Spec R (analytically irreducible), Zariski proved '
that e(R) = e(Rp) if and only if fo is a finite morphisnm.

In [H~0-1] we have generalized this fact to any dimension, using
Boger's theorem. We recall this result in the following Theoren,
which also contains the well-known translation of normal flatness
into a depth~condition (see e.g. [A-K]) :

(1.1.3) Theorem. Let P be a regular prime ideal in a local ring

R and let fo denote the restriction to the exceptional divisor
of the blowing up morphism f : BlP(R)—+ Spec(R). Then the follo-
wing hold :

a) Assume that R 1is quasi-unmixed. Then e(R) = e(RP)
if and onlyif fo is equidimensional (i.e. all fibres
of fo have the same dimension).

b) R is normally flat along P if and only if
depth Pn/Pn+1 = dim R/P for all n > 0 .

A proof of a) is included in.the proof of the following prop. 1.1.5.

Normal flatness implies (Zariski-)equimultiplicity in the case R/P
is regular, but this conclusion needs not hold for arbitrary R/P .

(1.1.4) Example. Let k be a field and
R = k[[X,7,211/(22-(x2-v3)) - k(lx,y,z]] ,
P =(z, xz-y JR = 2R ; i.e. RP regular,

Then e(R) = 2 *.e(RP) = 1, but R is normally flat along P ,
since P 1is generated by a non-zerodivisor.



‘On the other hand (see [H-0-3]) normal flatness of R along I
implies the equidimensionality of f  for any I . {1t should

be remarked that the flatness of the morphisam Proj(gr R) — Speq(R/I)
implies "projective normal flatness" (s. [0-R]), i.e. 1%/l

is flat over R/I for n >>0 and vice versa. And this last condition
also implies the equidinensiouality of f . provided that

dimR = dim(R7Z)éM(I)see [H-0-3].] Also the condition depth I"/1™*l.
dim R/I for all n implies that f° is equidimensional, provided
that dim(R)= dim (R/I) + ht(I).Now ht(I) -1 4is the smallest dimen-
sion of the fibres of fo at the generic points of Spec R/I , while -
the dimension of the fibre of fo at the closed point is, as we

have pointed out, 1(I)-1 , where 1(I) denotes the analytic spread
of I . Because of the semicontinuity of the dimensions of the fibres
of fo » Ve.see that fo is equidimensional if and only if

ht(I) = 1(I) . We will view this last equation as an equimultipli-
city condition, and in fact it can be translated into an equality

of certain multiplicities to be introduced below.

Choosing elements x = {xl,.,xr}c; R whose images in R/I form

a system of parameters, and using the multiplicity symbol e(x;-)
of Northcott and Wright (see [No]), we define a numerical function
by '

1O [x,I,R)(n) = e(x;I7/17*1) |

Then

B [x,1,R] .o = e(x:t/P)-R(D) [IR,R1,

: PeAssh(R/I) '

where Assh(R/I) = {P € Ass(R/I) |dim R/P = dim R/I},and where
H(q)[IRP.RP] = H(O)[J.IRP,RP} is the usual Hilbert function
of the PRP‘prinary ideal I-RP . From the above equation we se
that the values of H(o)[g,I.R](n) for large n are given by a
polynomial, of deg;ge d and with highest coefficient 8, let's
say. We define the multiplicity of I with respect to x by

| e(x,I,R) = d?ad .

(This multiplicity has been introduced indepently, and with diffe-
rent methods, by E.Dade [D] and R. Schmidt. Our approach



1s due to R. Schmidt.) If we Rdve dim 6D s dta(R/1)" + ht(I), then
the "multiplicity-Lormula®

(™) e(x,I,R) = I e(x,R/P)e(IRp,Rp)
PeAssh(R/I)

and the following semicontinuity property hold :

e(x,I,R) < e(I+xR,R) for any x .

We assume R/M to be infinite. Then this inequality can be seen
by using step 1 in the proof of the following propositionm 1.1.5.
By*this st:p ve know that far V := I+xR there exists a sequence

Xy seeesX of superficial elements for V such that

r
(1) V ie I+xR = I+x'R

(2) e(x,I,R) = e(xtl.l) and
(3) e (V) = e (V/x'B) .

Then by the second step in the proof of proposition 1.1.5 we have:

e(x,1,R) = e(x’,I,R) 5 e (I+x'R) = e (I+zR) .

Now the interpretation of ht(I)
is given in the next proposition

1(I) &8s a multiplicity condition

(1.1.5) Proposition. Let R be & local ring, I an ideal of R
and x = {x;,...,x } any elements vhose images in R/I are a

system of parameters. Then

ht(I) = 1(I) => e(x,1,R) = e(I+xR,R) ,

and both conditions are equivalent if R 1is guasi-unmixed.
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Proof: Ve assume ht(I) > o and |R|M| « « ., [For ht(I) = o
s. [H-0-4]].

I) Let ht{(I) = lfllq and let XjseeesX, any system of parameters
for R/I . We put s := ht(I) and r := dim R/I .
Let Ziseee 2, generate a minimal reduction B of I . Then

Band I have the same minimal primes, and for each such prime P wve
have

(1) eo(BRP) - eo(IRP) .

Note that for the proof eo(q) := e(q,R), q any M-primary ideal +n

R , denotes the Samuelmultiplicity of a primary ideal q in R,
wvhereas e(yl.....yt,S) denotes the multiplicity of a multiplicity-
system Yy of the ring S 1in the sense of Northcott (s. [H-s-V],
p. 100).

Furthermore xR+B is a reduction of xR+I , hence

(2) e°(£R+B) - °°(£3+I) .

Since /xR+zR = /xR+1 we get dim R/xR+zR = O ; and we know by the
assumption ht(I) = 1(I) that r+s s d, hence r+s = d . There-~

fore RysooesXy ZygecesrZ is a system of parameters for R .

r s
[Note thet this argument shows in particular that ht(I) = 1(I)

implies dim(R)= dim (R/I) + he(I).].
Now, for a system of parameters we have :

e (xR+zR) & e(x;,...,x ,2),...,2,,R) = Peuinne(l.R/P).e(z,kp)

= )3 e(g*R/P)oeoﬁg)RP)
PeMinB

Since Min B = Min I we obtain from (1) and (2)

e (x,I,R) = e°(5R+B)- e°(53+1) .

II) To prove the converse, assume that therp is a s.0.p. y = (’1""”r)
for R/I such that e(y,I,R) = e (YR+I) and ht(I) > o as before.
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We may assume that r >0 (for r = o the statement of prop.
1.1.5 is trivial).

Step 1: Put V = I+yR . Then there is a sequence of superficial
elements x;,...,x_ for V with the following properties (see
[H-0-11]):

(1) V=1I4+2xR
(2) e(irloR) = e(llIlR)
(3) e (V) = e (V/xR)

(4) XpseeesX, is part of a system of parameters for R .
In the following we use the system x instead of y .

Step 2: Since R/M 1is infinite, we can choose a system
z=1{2,,...,2,} of elements in I , which is a system of parameters
for R/xR such that

e (V/xR) = e (zR+xR/xR) .

By definition, 8 = d-r, i.e. XpveoesX 9ZjeceesZg is a system of
parameters in R , and dim R/zR = dim R/I , hence Assh(R/I) Q
Assh(R/zR)

Then we get the following relations:

e(x,I,R) s e(x,zR,R) = e°(53+33) s e _(xR+zR/xR) = e (V/xR) = e (V)
\ . [+] — [+ o

associativity x,z is s.0.p. x is part of s.o.p.
law ’

Hence by assumption we get equality everywhere, so that
(*) e(x,I,R) = e(x,zR,R)

[(Not that s >0 , since we assume ht(I) > o] .

Since R is quesi-unmixed, the "dimension formulas" for I and
zR hold. Therefore we may use the corresponding multiplicity-
formulas for e(x,I,R) .and e(x,zR,R) . Then, using (*), it comes
out (see [H-0-1]) that

(**) Assh(R/I) = Assh(R/zR) and eo(IRP) - eo(gxp)
for all P € Assh(R/I) .
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Step 3: Since R is quasi-unmixed, hence dim R = dim R/2R) +
ht(zR) , ve know that zR 1is an ideal of the.principal class,

i.e. ht(zR) = 1(2zR) . Therefore the integral closure zR in R

has no embedded primes, and all (minimal) primes of Zf have the
same height (8. proof of thm. 0.3.4); hence all minimal primes of

zR have the same height. So we get Assh(R/I) = Assh(R/zR) = Min(zR),
hence Assh(R/I) = Min(I) .

Using Béger8 theorem 0,2.4*% , we see that Zy,...52, generate a
reduction of I and consequently ht(I) = 1(I), q.e.d.

For a general prime ideal P , Zariski-equimultiplicity and the
condition ht(P) = 1(P) are totally unrelated, as we can see from
the following examples.

(1.1.6) Examples.

a) Let R = k[[s?,83,st,t1) € klls,t]] , k any field, and take

P = (st,t)R. Then R 1is a Buchsbaum ring of multiplicity 2 ,and

RP is regular, so e(R) 4=e(RP) . But ht(P) = 1(P) = 1 since

teP = P2 . Note that R 1is not normally flat along P . This follows
from lemma 3.19 p. 76 in [H-S-V], saying that P/P? is R/P-free,

R/P 1is CM and RP is regular imply R 1is Cohen-Macaulay.

3

b) Example (1.1.4) shows that e(R) # e(Rp) and ht(P) = 1(P) is
also possible for R a Cohen-Macaulay ring.

c) Let P be any prime ideal in a regular local ring R , so that
e(R) = e(RP) = 1 . In [H-0-1] we have shown that ht(P = 1(P) if
and only if P is generated by a regular sequence, i.e. P defines
a complete intersection. For example, if R = k[[x,y,z]] and

P -'(yz-xz;xa-yz;zz-x?,),ihen ht(P) & 1(P) (see [Ha]).

These considerations, together with the fact that ht(I) = 1(I)
a

impliesvYnice behaviour of multiplicities under blowing up (see

section 1.2) lesad us to the following

(1.1.7) Definition. Let R be a local ring. An ideal I of R
will be called equimultiple 1if ht(I) = 1(I) .

Similarly, for R/I non-regular, the condition of normal flatness
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along I should be replaced by the depth-condition givéa‘in
Theorem (1.1.3), b)!

(1.1.8) Definition. Let R be a local riﬁg and I an ideal of R .
R will be called normally Cohen-Macauly along I if

depth (I"/1"*1) o dim R/I  for all n > O .

This means that gry(R) 1is a so-called balanced big Cohen-Macaulay
module over R/I .

If R is normally Cohen-Macaulay along I , then the Hilbert func-
tion behaves well under blowing up (see [0]; actually it is suffi-
cient for this purpose that depth (In/1n+1) = dim R/I for large n_,
see [0-R]). Using the numerical characterization of normally Cohen-
Macaulay ([H-S-V], Satz 3.13) it was shown in [H-0-3], [H-0-4] that
normally Cohen-Macaulay and equimultiple (in the sence defined above)

coincide for hypersurfaces under some additional agsumptions, which
are trivially satisfied for R/I regular.

(1.1.9) Remarks:
a) If R is normally flat along I and R/I is Cohen-Macaulay
then, of course, R 1is normally Cohen-Macaulay along I . This need

not be true in general, a trivial example being I = (0) 1in any
local ring R which itself is not Cohen-Macaulay.

b) R 1is normally Cohen-Macaulay along any M-primary ideal I

without 1%/17*! being R/I-flat. For example, take R = k{[x,y]]
2 2 2 -

and I = M" = (x%,xy,y%).

(1.1.10) Remark: Normal flatness is somevhat more difficile than
Normal Cohen-Macaulayness in the following sense:

For any ideal I « (R,M) and for a regular sequence Xx = {xl.....xri
w.r.t. R/I (dim R/I =: r) we have the statement

x_is superregular (i.e. x is regular on ng(l))

if and only if the canonical map
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(*) gryR @ RAT,X)R [xl.'....xr] --Z)’gr(l,x)(k)
is an isomorphism. (Xi are indgterninates)

In the same situation R is normally flat along I if and only if

(1) % 1is an isomorphism and

(i) gr(I.xik is flat over R/(I,x) ;
see [0-R],

1.2 Blowing up equimultiple centers

Our claim is that for an arbitrary prime ideal P c'(R,M), the
"correct”™ equimultiplicity condition on P should be ht(P) = 1(P)
instead of e(R) = e(RP) . One reason for this is the nice behaviour
of multiplicity under blowing up ideals P for which ht(P) = 1(P).
This we will indicate in the following. Another reason for our view-
point is that ht(P) = 1(P) implies equimultiplicity conditions

for flat families of ideals parametrized by Spec R/P.

Let me indicate the geometric background:

Let F : X—+ Y be a morphism of complex analytic varieties,
take Xs € X and ¥o = F(xo) . The corresponding local rings of
germs of holomorphic functions are denoted by S := oY,y and

R = Ox’x . Let § : S—= R be the ring homomorphism °
by F . © We choose a coherent Ox—ideal J such that for

I1:=3 ¢k !
*o

(1) R/I is a finite S-module,
(11) ¢ 31) =0 .

induced

Let Z be the subspace of X defined by J . Furthermore we assume
that F 1is flat at x .



J

R s

Perhaps after shrinking X and Y, we have 2Z n F'l({yo}) = (xol.
and F induces a proper surjective map Z-~+ Y with finite fibres,
The problem is to characterize algebraically the constance of the
multiplicity ey(S) of the fibdbres Xy = F"l({y)) in points of Z;
where

(3) A (30 )
e tm e
y xeX;\Z ° Xy,x

(eo(..) = Samuel-multiplicity).
Then the following are equivalent:

(1) ey(3) is constant in a neighborhood of yo("geometric"
equimultiplicty)

(ii) ht(I) = 1(I) . ("static" equimultiplicity of R = 0x x

along 3& = I.,) °
o
Note ‘that "if 30.13 a coherent ideal contained in 3 such that 36°X x
yo0, o
is a reduction of 3 Ox , then 30 is a reduction '
Y . »X
o’’o

of 3 in some neighborhood of Xqe Refering to Teissier we may
call this fact "principle of specialization of reduction".

Let me finally mention some more technical reasons for using the
equimultiplicity ht(I) = 1(I) :

1) Normal flatness of R along I implies ht(I) = 1(I) .

(it is enough to assume InIIn+1 is flat for infinitely many
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values of n - for this implication; s. [H-0-3], Thm. 1).

Since _9:(1) = 1(I) implies that there are s = ht(I)
elements in I giving the same radical as I , this impli-
cation contains the result - due to Grothendieck - that normal
flatness along I makes Spec(R/I) a set-theoretic complete
intersection (in & very weak sense).

2) The condition ht(I) = 1(I) 1is an open condition on V(I).
This can be deduced from Chevalley's semicontinuity theorem
(EGA IV,], 13-1-5 .

3) There exists a transivity property of equimultiplicity
ht(I) « 1(I) eas in case of normal flatness, s. [H-0-3].

1.2.1 Theorem [0]: Let R, be a local ring of the blowing up of
I in a guas;—unnixed local ring R which dominates R . Let

X = (xl,...,xr) be any system of parameters with respect to 1
and let r = dim R/I . Then the following holds:

If ht(I) = 1(I) , then e(R;) s e(x,I,R).

To give a glilﬁse\of the proof let me give the proof of the follo-
wing corollary which is interesting for itself.

j11.2.2 Corollary: Let R be quasi-unmixed and let P be a regular
prime in R such that e(R) = e(RP) . Then for a blowing up ring
R1 as above ve get

e(Rl) s e(R) .

Note that for a 2-dimensional variety embedded in a 3-dimensional
regular space this result is due to Zariski. After the La-Rabida
conference on Algebraic Geometry in 1981 Teissier skectched a proof
of the corollary in the complex-analytic case. Inspired by ideas

of Dade, U. Orbanz gave an elegant proof of Thm. 1.2.1 in [0]. He
also proved a similar result for the behaviour of Hilbert functions

under blowing up an ideal I such that R is normally Cohen-Macaulay

along I . Here one of the main ingredients is the use of generali-
zed Hilbert-functions introduced in § 1.1; see [0}, Theorem and
Corollary, page 6.
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Proof of the corollary:

1) We know that e(Rl) s e(Rll?Rl) , where PRI- toRl for some
non-zero-divisor ¢t .

@
Let R* := grp(R) > M+ := M/P © I pPi/pi*l  ang
i>0
Pt := 0 PPtz g (pR)
i>0 -
RI/t Rl is the local ring of & point in the exceptionsl locus
of the blowing.up, hence

RI/t-R = R*(Q*) for some homogeneous prime Q*c R¥* .

1

Taking advantage of the good behaviour of blowing-up vis-d-vis
completion we may assume R is complete . By [Ra-3] and [cAd also
R* is quasi-unmixed, hence R*H* is quasi-unmixed (see § 0.1).

Furthermore R* is finitely generated over the excellent ring
R/P , hence we have the Lech-Nagata inequality é(R*Q*) s e(R*H*)
since Q*#: M* ., So we know that

(1) e(R)) 5 e(R*(04)) = e(R¥o,) 5 e(R¥y,) .

2) We always have 1(P) = 1(P*M*) and ht(P) = ht(P*",) and
e(R*P*) - e(RP) . By assumption R*/P* = R/P is regular, hence
by theorem 1.1.3 we obtain: e(R*H*) - e(R*P*) . So (1) implies
finally:

(2) e(Rl) s e(RP) = e(R) , q.e.d.

1,2.3 Remarks:
1) The same idea works for the proof of theorem 1.2.1. Then one
uses prop. 1.1.5 instead of theorem 1.1.3 (for the regular case).

2) Quasi-unmixedness is alwvays used in the previous ptoﬁ. l.l.S
or 1.1.3 for having the appropriate dinension-conditions. For
blowing up R along centers for which R 4is normally Cohen-
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Macaulay, and looking for the behaviour of Hildbert-functions.
one slso needs in Orbanz’proof that in our terminology

dim (R*/Q*)-1 = dim (R) - dim (R,) .

Question: Can one describe "stability-conditions" for the situations
in theorem 1.2.1 and Cor. 1.2.2 7 Note that theorem 1.2.1 doesn't
tell us anything about those points £'in the blowing up having

the game multiplicity as & (§,£' are to be supposed to be corres-
ponding points). One advantage of "permissibility" of the centers
(i.e. normal flatness and regularity) in Hironaka's work seems to

be that one can characterize stable points g' ("stable" with
respect to Hilbert-functions). :-.»

-

1.3 Blowing up some singular centers.

Let me indicate the forthcoming situation by the following picture:

m b'd Y has a singular point Poe Sing X,
m but Y ¢ Sing X ;
but e, (X) = ey, (Y)
f’ Po Po

Jing X
Let us say, we have "bounded multiplicities”. Our claim is that
under blowing up equimultiple ideals I with bounded multiplicities,
the multiplicity doesn't ﬁecone worse.

1.3.1. Proposition: Let (R,M) be a quasi-unmixed local ring.-
Let I be an equimultiple ideal, which is locally a complete
intersection in R , satisfying e(R) = e(R/I) . Then for any
local ring of the blowing up of I dominating R , we get:

e(R)) 5 e(R).

Proof: By theorem 1.2.1, we have e(Rl) s e(x,I,R) for al

systems of parameters with respect to I . Now:

(1) ‘(}_919R) - L e(lvR/P).GO(I'RP)
PeAssh(R/I)
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(2) E(_X_.R/I) = g IRP(RP,IP)..(‘!'R/P)

But 1R (RP/IP) 2 eo(I RP) , since IP is an ideal of the principal
class.

Hence we get:

(3) e(x,I,R) s e(x,R/T)

Now choose x in such a way that 'e(i,R/I) = e(R/I) . Then (3)
implies: e(Rl) s e(R) ; gedl

For a prime ideal I = P we know that ht(P) = 1(P) implies
e(R) s e(R/P)-e(RP) . So it is natural to consider ideals of
"bounded multiplicity" in the sense that: e(R) = e(R/P)°e(RP) .
Under the assumption that RP is regular, this means that
e(R) = e(R/P) , corresponding to the special fact that RP
CM for P >1 and I 1is locally a complete intersection.

is

B. Singh has recently noticed that for any ideal I ¢ R we
always have
n
(*  H'(RI(n) s HCR/ID * HOLI)(n) = I HOR/1)(1)*HOlI)(n-1)
i=o0 ’
where H®°[I)(n) 4is the Hilbert function dimR/H(I"/HI?)- w(IM
(ufer) is the least number of generators of an ideal «r ).

Note that for I = P we don't get from Singh's inequality the
inequality e(R) s e(R/P)'e(RP) since the last one means to

pass from Hilbert-functions above to certain Bilbert-polynonials,
and for this transition we have to use the condition ht(P) =
1(P).

B. Singh also remarked that equality holds in (*) iff
"gry(R) 1is flat over gry(R) QDR/IR/M;n

Question 1: In which relation is normal flatness of R along I
to this last condition? ' "

Question 2: "How far" is e(R) = e(R/P)se(Ry)  from ht(P) = 1(P)?
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1.3%;: Remarks to low multiplicities.

The proof of the next well known lemma contains in some sense a.
situation of equimultiple ideals (x)R of "bounded multiplicity"”.

1.3?1. Lemma: Let (R,M) be a local Cohen-Macaulay-ring and
let e(R) =1 . Then R 1is regular.

Proof: We may assume R/M is infinite. Then we can construct a

sequence of superficial elements XpseoorXy of order 1 for M ,
which gives a minimal reduction of M.

Therefore we have

e(R) = e(R/xR) = e(x,R) .

Hence 1(R/xR) = e(R) =1 , i.e. M = (xl,...,xd)R, q.e.d.

Another use of "bounded multiplicity" yields a statement of
Ikeda:

1.3%#.2 Lemma: If (R,M) is an equicharacteristic complete Cohen-
Macaulay ring of multiplicity e(R) = 2, then R is a hypersurface,i.e.
R = Q/(f) , where Q is regular and f 4 o .

Proof: As in the proof of lemma 1.3*%,1 we get e(R) = e(R/xR) =
e(x,R) = 1(R/xR) where x = XpseeesXy is again a minimal reduction
of M.

Therefore 1(R/xR) = 2 , hence 1(M/xR) = 1 . So M/x is princi-
pal, generated by an element y = y mod x with y e M .

Take the map S := k[[xl,;..,xd,r}]-2Q>R , sending Xi to x
and Y to y . Then ht(ker®) = 1 , and the ideal kery is
unmixed, since R is CM . As S is factorial, kery = (f) is
principal, q.e.d.

i

1.3%.3. Remark. Huneke has the weaker assumption "Serre-

condition SZ” instead of "R is CM" . Then he can show that

'e(R) s n and Serre-cond. S; imply 'R is CcM". Here the

direct summaund-theorem of Hochster and the syzygy-theorem of Griffith-

Evans are used, which are only known to hold when R is equi-
characteristic.

We will generalize lemma 1.3*.2 in some sense in section 1.4,

vhere we use testideals to check the CM-property of R ' or of

the Reesring R[Mt].
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1.4 Testideals for Cohen-Macaulay-singularities

Equimultiple ideals imply a nice behaviour of multiplicities
under blowing up. Here we want to show that equimultiple briie
ideals can also be used to check whether (R,M) or the arith-
metical blowing up of R in the maximal ideal M is Cohen-

Macaulay or not.

1.4.1 Lemma: Let R be a local ring. If the prime ideal P in
R is equimultiple then e(R) S e(R/P)* e(RP) .

Proof: For any system .x = [xl,...,xl} of parameters with respect
to the equimultiple ideal P we have (s. prop. 1.1.5)

G(L,P,R) = e(P"’erR) ’

hence e(P+xR,R) = e(x,R/P)-e(Ry) .

Now choose a special system x of narameters such that
e(x,R/P) = e(R/P) . Since e(R) s e(P+xR,R) , this implies the
claim,

Testideals.

1.4.2. Definition: R is said to be a hypersurface,‘if
R = Q/(f) , where Q 1is a regular local ring and f ¢ o .

1.4.3. Propostion: Let .(R,M) be an excellent local ring of

dim R 2 2 , containing a field. If there exists an equimultiple
prime ideal P € R such that e(R/P) s 2, if Rp is regular
and if R satisfies S2 then R is a hypersurface.

Proof: Since R 1is excellent, we may assume that R is
complete. Lemma 1.4.1 tells us that e(R) s 2 . Then, by the
result of Ikeda (s. 1.3%.2) we know that S2 and e(R) s 2
imply that R is a hypersurface, gq.e.d.

1.4.4 Remark: Prop. 1.4.3 shows, that a non-hypersurface
singularity (R,M), dim R 2 2 (R containing a £1eld) cannot

be CM if there exists an equimultiple testideal P with RP
regular which has a point of -ultiplicity 2 in this singularity.
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1.4.5. Examplel: Let R = k[[sz.sa,st,t]] , k any field,
and take P = (st,t)R . Then e(R/P) = 2 , ht(P) = 1(P) = 1 ,
RP regular, and R is certainly not a hypersurface. And R
is indeed not Cohen-Macaulay (depth R =1 < dim R = 2)

Example 2:
lef

R = kllx?,xy,y%,x2,y2,2]]
1Y)

P = (Xz,yz,z)/' {Af’z

we have: R is CM
e(R/P) = 2 (and R/P CM)
ht(P) = 1(P) = 1

But R is not a hypersurface; hence RP cannot be regular,
and indeed PRP = (xz,yz2,2) RP cannot be generated by 1 element
only.

1.4.6. Proposition: Let R _be a Cohen-Macaulay ring of
dim R 2 3 . If there exists an equimultiple ideal P ¢ R such
that e(R/P) s 3 and if RP is regular, then the Reesring

R(Mt]= o M" is Cohen-Macaulay.
n>o

Note that here we are controlling the CM-property of R[Mt]
by using testideals P #'M . The idea is that R/P might
be "simpler" (e.g. a hypersurface) than R .

Proof: Tﬁe existence of the testideal P implies e(R) s 3,

hence e(R) s dim R .

Furthermore e(R) s 3 and R CM imply [Sa] that ng(R) is

CM. Therefore the Reesring RI[Mt] is CM.

A slight generalization of Prop. 1.4.6 is the following propo-
sition.

1.4.7 Proposition: Let (R,M) be a local ring and let
ng(R) be Cohen-Macaulay. If there exists an equimultiple
ideal P € R such that e(R/P) s dim R and Rp is regular,
then the Rees-ring .R[Mt] is CM.
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1.4.8 Remarks: (1) If (R,M) is a hypersurface-singularity then we know by
[H-0-G] that RI[Mt] is CM if and only if e(R) $dim R .

(2) In concrete cases it might be easier to compute e(R/P) than
e(R). For instance, R/P might be an hypersurface, but R itself
is not. So in the case of example 1 in 1.4.5 it is innediaﬁely clear
that e(R/P) = 2 and for e(R) we get in this example e(R) S 2,
Since R is a non-regular complete equidimensional ring con-
taining a field, it cannot have multiplicity 1, hence e(R) = 2,
{Of course this is also clear by considering the semigroup of

exponents. )

1.4.9 Lemma (Orbanz) Let (R,M) be quasi-unmixed, |R/M| = »

and let x = {xl,...,xr} be a part of a system of parameters in

M. Then the following are equivalent:
a) e(R) = e(R/xR)

b) x is part of a minimal reduction of M,

and RP is CM for all P e Assh(R/xR) .

For r=d=dim R we have: e(R) = e(R/xl..u,xd) iff x is a
minimal reduction of M and R 1is Cohen-Macaulay. —

Ikeda's result can immediately be used for the following propo-
sition.

1.4.10 Proposition: Let (R,M,k) be an equicharacteristic,

quasi-unmixed complete ring. If there exists a system XyveoesXy

of paramters in R such that e(R/xR) = 2 , then R 1is a hyper-

surface (in particular a CM-ring).

[Note: generally if R «+ CM, then e(R) % e(R/xR) , by Orbanz'
lemma 1.4.9.]

Proof: R/xR is a ring of dimension zero, hence is Cohen-Macaulay.

Therefore we have
2 = e(R/xR) = e(é; R/xR) = 1(R/xR) .

This implies 1(M/x) = 1, hence M/x = (y) with y = y mod(x)R .
Take the map S := k[[Xl,...,Xd,Y]]-J:¢>R by sending X,— x
and Y= y .

i
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Then ker ¥ =: I has ht(I) =1
Since R = S/I (and S) is guasi-unmixed, I is (height-)
unmixed (see [Ral). As S is factorial, I = (f) is principal,

Remark: e(R)9 2 is possible in our case.

1.4.11 Corollary (to 1.4.10): R equichar, q.u. complete ring.
Assume, there exists a system of parameters, say xl,u.,xd, such
that 1(R/xR) = 2 . Then R[Mt] is CM iff e(R) s dim R =: d .

The next step is to indicate that equimultiple ideals guarantee
a kind of "transitivity" of the CM-property for Reesrings.

1.4,12 Proposition: Let (R,M) be a local Cohen-Macaulay-ring
and let J<C I be ideals in R such that 1(I/J+MI) = ht(I) -
ht(J) and ht(J) = 1(J).

Then we have the implication:

RE(J,R) 15 CM ==> RE(I,R) is CM .

This shows that generally the CM-property of nt(a,n) for a smaller
ideal Jc I 1is "stronger" than the CM-property of Rz(I,R)

Example: R = k[txz,xy,yz,xz,yz,z]] ; consider the ideals:
J= (xHRcT = (x%,y2,2)R .
RE(J,R) is clearly CM, hence RE(I,R) is CM.

In a forthcoming preprint (with U. Orbanz and S. Ikeda we shall
prove this proposition as well 88 some "converse" of propostion
1.4.12.

Supplenentt I should remark that our methods are directed to

singular rings (R,M). And most of the results can only be proved
for equimultiple idesls I in R .

R.C. Cowsik asked me the following question: Start with a regular
local rihg R and consider a non-regular prime ideal P ¢ R .

How does the blowing up of R along P 1looks like? The inter-
esting case concerns prime ideals P which are not equimultiple.
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In our example 1.1.6 ¢) the prime ideal P in R = k[[x.y.;]]
was generated by fl - yz-xz, fz - xs—y'z, f3 = zz~x2‘y,;
This means that P can be generated by the maximal minors of

the 2x3 matrix Y, 2, x2

Therefore P is generated by a d-sequence [Hu-3]. This implies
(Hu-2] '
RE(P,R) = Sym (P,R) ,

where Sym(P,R) 1is the symmetric algebra w.r.t. P . It is
defined by all linear forms of R[xl,xz,x3] vanishing at f
(i.e. by the syzygies of P ).

1085015

Hence we get:
RE(P,R) = RIX,,X,,X,] /  (yX +2X +x2X ;xX +yX +2X,)
’ 1°%2°%3 (1X3+2X, 11 X%3%Y%272%44) »

i.e. in particular that Ré&(P,R) is CM. (Note that in this case
grPR is Gorenstein, [Hu-2)). Here Rt(P,R) is also normal.

Cowsik observed that for the monomial curve, defined by the

equations:
f1 = xl‘y3 - 27 = 0
7
f2 = X - yz~ = o0
f3 = x322 - ya = 0

23 ¢23yy, RE(P,R) 1is not

(i.e. the generic point is '(tla, t
normal.

So the question arises: which are the necessary and sufficient
conditions on & prime ideal P in e regular local ring R for
RE(R,P) being normal. For monomial curves multiplicity e(R/P) = 3

is sufficient.

G. Valla has indicated (Bonn, December 1983) that for monomial
curves R$(R,P) is always normal if e(R/P) s 5 . An essential
observation is that one only has to check if the ideal MS (where
S := Sym (P,R)) 1is a regular prime or not, since every'other
height one prime ideal in S 1is regular.



Note that generally R is not normally Cohen-Macaulay along P
for monomial curves. More general we know that for R = k[[xij]]'
xij ‘indeterminates, 1 < i < n and 1 < j< n+l , and the ideal

I = In(X) , generated by the n-minors of (xij) » the Reesring
Rt(I,R) is CM (since I can be generated by a d-sequence). But
I/I2 is not CM for n 2 2 , hence R 1is not CM along I ; see

also [ I-H.] prop. 1.5.
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§ 2. Auxiliary computations in graded rings.

2.1 Homogeneous systems of paramters in graded rings.

2.2 Remarks on systems of parameters and generalized multiplicities
of RE(I,R)

In this section we will roughly indicate the proofs of some results.
The details will appesr in a forthcoming paper of Herrmann-Orbanz-
Grothe. According to the title of these lectures the main technique
used in § 2 and § 3, comes from multiplicity-theory.

2.1 Homogeneous system of parameters in graded rings.

We have already mentioned in 0.3.2 and 0.3.3 that we will define
a homogeneous system of parameters in a graded ring A as follows,
vhere A is always one of the graded rings Rt(I.R) » Re(I,R) and
ngR . Those rings have a unique homogeneous maximal ideal, say N,
such that dim A = dim AN .

Definition: Homogeneous elements BireeerBy,y wvhere d = dim A =

dim A" » form a homogeneous system of parameters if /(al,...,ad) = N.

Remark: Recall that Nagata gave the following general definition

for a system of parameters in any noetherian ring A , s. (Nal,

§ 24, p. 77 : A set of d elements 81secesd is called a system

of parameters in R if dim (R/(al,...,ar)k) = 0 and max ht(P) = r,
where P runs over the minimal prime divisors of (al....,ar)R.

(Note that by the sltitude theorem of Krull we always have

max ht(P) s r.) Hence a homogeneous system of pataiéters in all

the cases mentioned above is a system of parameters in the sense

of Nagata.

2.1.1. Proposition: Let (R,M) be a quasi-unmixed local ring
and I anideal of R . Then the following conditions are equi-
valent:

(1) I 1is equimultiple .
(i1) ngR has a Aomogeneous system of parameters.

(111) Re(I,R) has a Aomogeneous system of parameters,
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Proof: Note that in quasi-unmixed rings condition (i) is
equivalent to '

(i") dim R = dim R/I + 1(I) .

Now we can prove the equivalence of (i'), (1i) and (iii) without
any assumption on R:

(i') =>(ii): Let Bl....,Bs € R/I a system of para-eier..

Then A = gr;(R) // (51,....58) gry(R) 1is of dimension 1(I)

and has a homogeneous system of parameters 3‘,...,3* (£ := 1(1)),
since Ao is an artinian local ring.

Let a,,...,8, & gry(R) be any homogeneous inverse images of

al,....a* respectively. Since

dim gry(R)/(B,,...,6_:18,,...,8,)gr;(R) = 0 and l+s = dim R

by assumption (i') , we conclude that (51,...,5.,;1,....31} is

a homogeneous system of parameters of ng(R).

[(Note that the ideal S = (51....,58,31,...,3t)3r1(k) is contained
in the unique homogeneous maximal ideal N of ng(R) and that
rad S = N.]

(ii) => (411): 1is trivial since Re(I,R)/(u) = griR .

(ii1) =>(i'): Assume that
r r 8 s
{qlu 1....,qku k; bl""’bm; c,t 1....,cnt ny
is a homogeneous system .of paranetérg of Re(I,R), where
Qpre--19y € R, bl,...,b-e M;. c,e r9 y J=1,...,n and ry > o,
sy > 0 and k+m+n = dim (R) + 1.. Then ve obtain the following ine-
qualities for k,m,n :

(1) dim Re(I,R)/MRe(I,R) + uRe(I,R) = 1(I) s n

(2) dim Re(I,R)/(It)Re(I;R) = dim R/I + 1 s kém .
(1) and (2) imply thet 1(I) + dim R/I s dim R . On the other

hand we have: ht(I) s dim(R) - dim R/I s 1(I) , hence (i')
follows, q.e.d.
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2.1.2. Remark: v

An analogous possibility to prove (i') = (iii) = (ii) is
the following (Re := Re(I,R): Since IRe wuRe, the ideal
(bl....,b..n)ke has the sane radital as (M,u)Re. Hence dividing
out (b,u) gives - up to the radical - the fibre of the blowing
up of R along I 1in the closed point M . The dimension of the
fibre is 1(I) = (d+1) - (s+l) = d-s by (i).

Since Re/(M,u)Re is an algebra over a field, we find 1(I) = d-s
homogeneous parameters in this ring (take the initial forms . _
inIa1 of any minimal reduction 81500008y of I 4in R, which are
by definition a homogeneous system of parameters of ng(R)GDR/M).
Hence

1 1
u,bl.....bs, alt ,...,a*t

is a homogeneous system of parameters in Re = Re(I,R), i.e.
ne=1(I) and k =1 . ’

2.1.3. Corollary: Assume that 8;,...,8, generate a minimal
reduction of I, where 1 =« 1(I) . Assume also that bl,...,bs
is a system of parameters mod I . If 2+s = dim R , then

(1nIal,...,imIalg inIbl,..., inIbB} is a homogeneous systeh
of parameters for ngR .

It is easy to see that contrary to the rings ngR and Re(I,R),
the rings Rt(I.R) have "almost never" a homogeneous system of
parameters,

2.1.4 Lemma: Let (R,M) be a local ring and let I be an ideal

of R sdch that ht(I) > o . Let M* be the irrelevant homogeneous
ideal of Rt(I,R), and let [hl,....hr}eu* be a part of a system
of parameters of Re+(I.R) . Then the number of homogeneous element
among {hl""'hr } is at most dim R - 1(I) + 2 . If Rt(I,R) has

a homogeneous system of parameters, then 1(I) must be 1.

2.1.5 Remark: If dim R 22 (therefore ht(M) = 1(M) = 2),
Rt(H.R) does not have a homogeneous system of parameters,
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2.1.6 Example: (see 1.1.6., c)): R = ki[x.,y.2]],

P = (yz-xy: 13-yz; zzéxzy). Since ht(P) « 1(P) > 1 Fie‘kiév
that there is no homogeneous system of parameters for tni'of
the rings gtIR , Re(I,R) and Rt(I.R)'{

2.2 Remarks on systems of parameters and generalized multi-.
plicities for 33(1,51;

Program:
For R Cohen-Macaulay we can compute the length of Rt(I.R)

mod a special system of parameters (first defined by G. Valla).
Then we are able to relate generalized Hilbert functions and
geieralived multiplicities of R&(I,R) to those of the ground
ring. These computations and results are our main .technical tools
for a characterization of the Cohen-Macaulay property of Rt(I.R) »
for equimultiple ideals I, without using local cohomology. Since

these computations are very technical I will only sketch the
ideas. For details - in particular for the proofs- see the
forthcoming paper [H-0-G].

Throughout this section we fix a quasi-unmixed local ring (R,M)
and a proper ideal I of R such that ht(I) > o . Rt(I.R) = R[It]
will be denoted by R¥*.

We are looking for a special system of parameters. The idea due

to G. Valla is as follows: If Bireees8y generate a minimal
reduction of an equimultiple ideal I, and if {xl.....xr} is a
system of parameters mod I, then a system of parameters of

Rg(I,R) \iill be 8iven by {81,alt-az,...,‘._1t-a.3l't.!1,....Xr}.

The reason is that {al,alt—az,...,a.t} is a reduction of

V = I~R$(I,R)+(It)k$(I.R) , and that the elements XpsoeorXy form
a system of parameters for Rt(I,R)/V = R/1I . To indicate this,
let us fix some notations:

For any ideal J in R , we define the ideal J* of R&(I,R)

by

J* « @ (JAIMe" .
ngo
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Recall that in the proof of theorem O.3.k+3e used this type
. ~ n i, 1
of ideal in Re(I+P /P _,R/P_) = Re(I,R)/ O(P,n I7)e

5 Re(I1,R)/P_R[t,t™1]A Re(1,R)
Putting R* = RZ(I.R) we get the corresponding relation:

R*/J* = RE(I+I/J, R/J)

For any sequence g = (a;,...,8)) of elements in I we consider
"associated" sequences a* := (‘1"1t'°2:""°st) and
at := (llt.....ast) .

Then one can easily check that the following statement holds.
2.2.1 Lemma: For any sequence a = (al....,as) of elements
of I and any ideal J of R , we have

(8R* + StR* + JR*)(aR+J)* =(a*R*+JR*)+(aR+J)*

Lemma 2.2.1 yields the following proposition:

2.2.2 Proposition:
a) If ht(aR) > o , then a*R* + JR* 1is a reduction of
aR* 4+ atR* + JR* ,

b) In particular, if aR 1is a reduction of I , then
a*R* is a reduction of I* = IR*+(It)R* .

Sketch of proof:
a) It is enough to prove the assertion in R*/P , where P is
any minimal prime ideal of R* .

Since o < ht(aR) s ht(aR+J) s ht(aR+J)*, the image of (aR+J)* in R*/P
is nonzero for all P . Therefore, if ¥ is any (discrete) valuation
ring containing R*/P, then (a*,J)R* and (a,at,J)R* generate

the same ideal in & , since we may cancel the principal ideal
(aR+J)*Y¥ 9 o . Therefore they have the same integral closure,

which proves the assertion.

b) follows from a).
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2.2.3 Remark. In the case J=0 and s=2 proposition 2,2.2
tells us that (a,,a ;t-s,,8,t)R* is a reduction of
(al,az,alt.azt)l* ,» in particular a,t is integral over
(al.alt-nz.azt). And indeed we find at once one of the eguations
of integral dependence:

(alt)2 - (alt-az)(alt) - 8,8,t =0 .

In this case it is easy to see that IR* + (aR)* + ItR* = I*Ca*R*:a,.
If a = (al.az) is a regular sequence then we have even equality:

IR* &+ (al,az)* + It(R* = g*R* : a,

These relations "contain" the equation of integral dependence,
mentioned above.

More general one can show the following lemma.

2.2.4 Lemma: Let s 2 2, let a8 = (al.....a.) by any sequence
of elements of I and let J be any ideal of R. Then

IR* + (aR+J)* + (It:l!")"l C (a*R* + JR*) : a, .

If a is a regular sequence mod J, then equality holds.

The first statement in a consequence of lemma 2.2.1. The second
statement is obtained by "comparing coefficients"™, for this one
can use the regularity of a8 mod J.

As a corollary of proposition 2.2.2 we get the result [s. also
(R-I) , prop. 1.5]:

2.2.5 Corollsry: Let ht(I)= 1(I) =: s>0 and let L TERERRY W

generate 8 minimal reduction of I .Choose any systea XireoooX,

of parameters mod I . Then

(‘l’alt-‘z'...'..-lt-... "t' Xl.....xr)

is a system of parameters of Rt(I.R) = R* ., Furthermore I*l‘"‘

is also eguilultiglg,
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Now ve are able to relate the length 154(R%/a%*R®4JR*) to
the correspondiag leagth ln(llgx+J) for the ground ring R .

2.2.6_ Proposition: Let J be an idesl of R such that R/J

is Cohen-Macsulay. Let 81100008, € I be a system of parameters
mod J. Assume that gl" - In*l. Then

104 (R*/a%R*+JR*) = s°1(R/aR+J) + g 13(11+33+J/5R+J) +
i=s

n
+ I 10(1% (ared) /a1ty g1ty |
imo

Remarks to the line of the proof:

1. Step: By proposition 2.2.2 the radicsl of a*R%® 4 JR* coincides

vith the radical of # R* + at R*, vhere o= SR + J . Since at
is a reduction of It , this radical must be M* .

Since R*/M* = R/M , we get
1, 1= 1p,(R*/a%R* + JR*) = 1, (R%/a*R* + JRY) ,

hence

1, = 1,(R*/(aR+J)*) + 1, ((aR+J)*/JR* + aR* + atR*) +

+ 1,(JR*+aR*+atR*/a®R* + JRS) .

2. Step: By induction on s , one can check that
s-1

1p(aR*+J-R* + atR*/a*R* + JR*) = I 1,(R/aR+J+I'), following
i=0

from the fact that:

(SR*4JR* + atR*)n (8%R% + JR* + (8;R)%) C a%R* + JR® 4+ (o ¢t)R®

Therefore we ob;ain:

n
1, = I 1(1Y/1ta (ared)
° im0

n
+ T 1.1 (ar+d)/a1i-legrl)
im0 L -

-1
o T 1p(R/aRrede1t) |

imo
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(Note that the first two sums are fiuite,iaince ';In -'I-"'l
for m 2 n ).

This proves the claim.

Generalized Hilbert functions and multiplicities in Rt{l,lz.

Let XiseeosX, € M be a s.o.p. mod I . Then the images of «x
are a s.o.p. of R*/I* = R/I = ‘R¥ya/I¥R*y, .

i

Therefore we may consider the Hilbert functions H(i)[g,I*R*H*,R*“,] .

Since R*/I* is local, there is no ambiguity in writing these
functions simply as H(i)[l.l*,R*] and the corresponding multi-
plicities as e(x,I*,R*), instead of e(g,I*R*H*.R*H‘) .

Now it is easy to check that if in particular
dim R = dim R/I + ht(I) , then

e(x,I*,R*) = ht(I)-e(x,I,R) .
This implies the following proposition.

2.2.7 Proposition: Let I be an equimultiple ideal of R and
let a_ = (al,...,as) generate a minimal reduction of I , where

s = ht(I) . Let XiseeosX be a system of parameters mod I ,
Then

e(xR*+a*R*,R*) = ht(I)-e(xR+aR,R) .
For the proof apply proposition 2.2.2 and corollary 2.2.5.

§ 3 Graded Cohen-Macaulay-rings

Following our general viewpoint we will study the Cohen-Macaulay.
property for equimultiple ideals only.

First we recall to some well known facts:

3.1 Definition : A noetherian ring A will be called Cohen-
Macaulay, if AP is CM for all - P & Spec A.
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3.2 If A is any graded noetherian ring with unique homogeneous
~maximal 1deal N , then A is CM if and only if AN is CM.

1f . Yyse+++Y, are homogeneous elements of A , then (’l""”n)

is a regﬁlaf sequence in A if and only if it is so in A" .
3.3 If R is a locsl ring and I a proper ideal of R , then
Re(I,R) is CM if and only if ngR is CM.

Using results of [80—2] and prop. 2.1.1. one can prove the follo-
wing result (the details of the proof will be given in [H-0-G].

3.4 Proposition: Let (R,M) be a local Cohen-Macaulay ring

end I an equimultiple ideal of R . Let {xl....,xr} be a system
of parameters mod I . If a = (aI,....as). s = ht(I) , generates

a minimal reduction of I , then the following conditions are
equivalent:

(1) gtIR ié Cohen-~-Macaulay

i-1

(ii) (5R+3R)r111 = 511 + al for all i > 1

Now we can prove the main theorem. The idea of the following proof
is due to U. Grothe.

3.5 Theorem : Let R be a local ring and I an equimultiple

ideal of R of height > 0o . Let a = (al.....as) generate a
minimal reduction of I, s =ht(I) = 1(I) . Then the following
conditions are equivalent:

(1) Rt(I.R) is Cohen-Macaulay and R 1is Cohen-Macaulay

(i1) ngR is Cohen-Macaulay and Is.c aR .

If ngR is Cohen-Macaulay (and ht(I) = 1(I), then Isc: aR
is equivalent to 3-18'1 - 1%,

Proof : We may assume R _to be CM from the beginning, since

this is a consequence of ngR being CM .

Let x = {xl,....xr} be a system of parameters mod I and let
ak = (al, alt-az.....a’t) as in 2.2, Then, by corollary 2.2.5,
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{xl""’xr"l’alt“°2"“‘°at} is a system of parsmeters of
R* = Rt(I,R), generating an ideal primary to M® . Hence we
have the following implications:

3.2
R* CM ememd R*.,. CM
Gumme)  @(xR*+a*R* ,R*) = 1o (R*/xR*+a*R*) .,

By proposition 2.2.7, we have:
e(xR*+a*R* ,R*) = sce(xR+aR,R) = s'IR(R/53+£R) .

hence proposition 2.2.6 implies that

n

R* CMé&=> (1) I 1, (I'+aR+xR/aR+xR) =o and
i=g
n i 1-1, -4
(2) I 1p(I7n (aR+xR)/aI* " 4xI%) = o ,
i=o0

where n 1is any integer such that G a1® .

Therefore we get finally the following implications:

(aR+xR) n 1t . lIi+311-1 y 121

R* CHé-}’IsC aR+xR and
8 8

— ? I%c (aR+xR)n I and

(aR+xR) n Ii -{5Ii+2li~l , 12 1.

a) If 1% gIs'l and (aR+xR)n I%a xI% 4 _1'-1 N

then I®c (aR+xR)n I° ,

b) If I%c (xR+2R)A I% w=> I% xI%+aI® ! , hence
Iscgla-l .
Therefore:
R* CMempjI%c a1%7! and
(aR+xR)n 1t . 5Ii+g
) {I‘ C _G_Is-l and
ng(R) is CM , q.e.d.

I"'1 , 1z 1.
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3.6 Remarks : By an easy application of cohomological methods
Huneke [Hu-2] has shown that R&(I,R) and R Cohen-Macaulay
igply. ng(R) ,then-Hacau1ay without any assumption on I . This
ve vill mention in section 4.1. But note that the harder part
in the prbqt of theorem 3.5 is to show (ii) =» (i) .

A result similar to theorem 3.5 has been announced by P. Schenzel,
but we don't know of a written proof. In this announcement the '
condition Iﬂc.gx is replaced by vanishing conditions on the
local cohomology of ngR (without assuming ht(I) = 1(I)).

3.7 Corollary: Let (R,M) be a local Cohen-Macaulay ring with
infinite residue field. Let I be an equimultiple ideal of
height I > o . If RE(I,R) is Cohen-Macsulay, then RE(I%,R)

is Cohen-Macaulay for all t 2 1 .

Another consequence of theoremd5 is the following statement for
height 1 ideals:
3.8 Proposition: Let R be a local ring with infinite residue

field and let I be an equimultiple ideal of R of height 1 .
Then the following conditiong are equivalent:

(i) Rt(I,R) is Cohen-Macaulay

(i1) >_ I is principal and ngR is Cohen-Macaulay.

Proof: (ii)==> (i) : follows from theorem 3.5.

(i)==> (ii) : Let x be any element of I and let (a) be a minimal
rgductioh of I . Then the elements a,at of Rt(I,R) are part
of a’hohogeneons system of parameters, hence they form a regular
seque;ce. Furthermore we have the relation

x(at) = a(xt) £ o mod (a)th(I.R) .

Therefore x ¢ (a) RZ(I.R) , hence (as an element of degree o)
x ¢ (a)-R, i.e. I is generated by the non-zero divisor a .
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Now R/eR = RE(I,R)/aR&(I,R) + (at)RE(I,R) 18 CH , s0o R 1is
CM, hence ngR is CM, .q.e.d.

From this proposition the question arises of hov far tne CM-
property of Rt(I.R) (where I is any equimultiple 1d§i1) implies
thet R 1itself is CM . The following examples show that without
any additional assumptions this implication is not true.

3.9.1 Example. (s. Ikeda [I]): Let k be a field and let
xl,xz,x3,rl,12,t3 indeterminates over k . Let
2
Am kLX) X0 Xy Y Y TR Y 4K, YK, Y0, (Y,,7,,1)2)
and let N denote the maximal ideal of A .

Then dim A = 3 , depth A = 2 , e(A) = 2 and RE(N,A) is CM .

From this example one can easily get an example with any embedding
dimension of R/P :

R := A[[Tl,...,Tn]], Ti indeterminates; :t= NR .
Since R is faithfully flat over A we get RE(P,R) is CM
and ht(P) = 1(P) = 3 , and R is not CM .

3.9.2 Example (the same example was recently found by Goto-

Shimoda - oral communication by N.Suzuki):

A= k[[oz,s?st.t]]. Copsider the following system 8,,8, of
parameters with a, = s? .8, = t . Then (azzzalu) - (nzzzalhg(az)l.
Therefore by a result of U. Grothe Rt((al.az)A,A) is CM , but

A 1s not.

As in example 3.9.1 we can pass to R = A[[TI,....Tn]] and
I := (°1’°2)R to get an example with big embedding-dimension of
R/I , and ht(I) = 1(I) = 2 .

The following proposition states a sufficient condition for the
implication R&(I,R) 1s CM==> R is CM.

3.10 Proposition: Let (R,M) be a complete equicharacteristic
local ring such that RQ is CH fir all QeSpecR~M . Let I
be an equimultiple ideal in R of height I > o with the follo-
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wing propcfticc:

(1) lt(l.l) is Cohen-Macaulay

(11) e(R) + ¢(R/I) s emdim (R/I) + 2 .

Then R is CM .

3.11 Corollary: (R,M) as in 3.10. Let I=P_, be aw equimultiple
prime ideal (height Po > o) with the following properties:

(1) Rt(Po,R) is Cohen-Macaulay

(i1) 2e(R/P°) s emdim (R/Po) + 2, and Rpo is regular.

Then R is CM .

3.12.1 Example; In example 3.9.1 condition (ii) im 3.10 for
P=NcCA is not fulfilled, and indeed A is not CM . If we
take R = A[[Tl....,Tn]] , n 8ig enough, P = NR then (i) and (it)
in 3.10 sre fulfilled, but R, = A[[TI""'Tu]]',"[[;ﬁ]] is not

CM . Again R 1is not CM .

3.12.2 Example (s. example 1.1.6 8)) : R = k[[sz,sa.lt.t]] is a
non-CM-Buchsbaum-ring with e(R) = 2 . Let Po = (st,t) . Then

IP is regular and ht(Po) - l(Po) =1 . Nov we have e(R) = e(l/Po)-2.
o

endinm (R/Po)) = 2 , hence (ii) in Cor. 3.11. 4is fulfilled. Since R
is not CM , Rt(?b.k) cannot be CM .

3.12.3 Exzample: In example 3.9.2 A and I = (az.t) ‘satisfy
all assumptions of prop. 3.10 except (ii) , since (1i) implies
in case of a M-primary ideal I that e(A) s 1 . Again A is not CM,

Question 1 : .Let (R,M) be a complete equicharacteristic local
ring such that RQ is CM for all Qe SpecRNM. Let I be an

equimultiple ideal of heightl > o such that Rt(l.l) is CM .
Are the following conditions equivalent:

(1) R is CM
(2) e(R) + e(R/1) s emdim (R/1)+2 ?

Question 2 : For Cohen-Macaulay rings (R,M) and Cohen-Macauly
ideals IC R (i.e. R/I is CM) wve have [Sa], p. 80
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WI) i e(R/D)  lee(R) + t -1,

where t = height I . This implies:

(1) v(I) s e(R) for t =1 .,

For height 2 ideals one knows a better bound due to Rees:
(2) W(I) 5 e(R) + e(R/I)  for t =2 .

So, giving 8 bound for e(R) or e(R)+e(R/I) means in these cases
restricting the number of elements in a minimal base of I.

Is there a "natural” condition on e(R) and e(R/I) which implies
v(IP) s ht(P) for P DO ) g4 (See also section 4 )

Proof of proposition 3.10 : 1, Step: Let LSEERRRL be a8 minimal

reduction of I and Xpsees5X, @ system of parameters with respect

to I . Then by corollary 2.2.5 and the assumption (i)

{algalt-azg LY ,8

s_lt—as,ﬂst,xl,...,xr}

is an R*, ,-sequence. [R* = Rt(I,R), M* the unique honogenedus
maximal ideal of R*}. Using the fact that ay is also a non-zero-
divisor on R* one can show that

. = IR*
(aIR* : alt) IR* ,

Therefore we get the exact sequence
o+ ng(R)(—l) > R*/alk*-+ R*l(al,alt)k* — 0 .
The case r = 0 is trivial. Se we may use induction on r = dim R/I.
If r > o, then a,,x; is a R*M*—sequence, hence (by the exact
sequence) xli is 8 non-zero-divisor on ng(R). Therefore
xIRnIn = x,1 for n > o . This implies that
RE(1+x;R/x R, R/x;R) & R*/x;R* is CM .
By induction hypothesis we have
depth R/xlk > dim (R/I+xlk) +1 = dim R/I ,
i.e. depth R 2 dim R/I + 1 .
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: Purther-ore. it is easy to see that R/I is Cohen-Macaulay.
(One cen even show, that depth I"/I™! . diaR/I for all
n>o ; see [I-B ], proof of prop. 1.5.).

2. step: We set n = dim R/I + 1 . Since depth 3 2 n, by
step 1 and since RQ is CM for all primes Q¢ M , R satisfies

Serre‘g condition Sn .

)
Since R/I is CM wé have the Abhyankar-inequality:

e(R/I) % emdim (R/I) - dim(R/I) +1 .
Hence by condition (ii) of proposition 3.10 we get

e(R) s n, .

Sinct R 1is a complete equicharacteristic ring we get by [Hu-1]
that R 1is CM , q.e.d.

Note that the conditions (i) and (ii) of prop.3.10 imply (s.

theorem 3.5) in particular 1% . 213—1 , where s = ht(I) = 1(I).
Furthermore (by [Ro-2] and prop. 2.1.1 they imply R is normally

CM along ‘I . The following proposition shows that this implications
doesn't depend on the special assumptions on R 4in prop. 3.10 .

3.13 Proposition: Let (R,M) be a local ring and I an equimultiple
ideal in R of s = ht(I) > o . Let (al....,as) be a minimal
reduction of I . If Rz(I,R) is Cohen-Macaulay then

(1) (al,...,as)Is-l -1

(ii) depth R 2 dim (R/I) + 1

(1ii) R 4is normally Cohen-Macaulay along I

For the details see [I-H ].

The method used in step 2 of the proof of prop. 3.10 can also be
applied to get statements about the CM-property of monoidal trans-
forms Rl of R with center I .

We will say "(A,M) 1is locally CM" if Ap is CM for all P« M,
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3.14 Proposition: Let (R,M) be a quasi-unmixed excellent ring
containing a field k . Let I be a Cohen-Macaulay-ideal of ‘the
principal class satisfying the fnllowingvpropettieuz

(1) R is nérnally Cohen-Macaulay along I for n >Do
(ii) e(R/1I) s dim (R/I) + 1 .

1f Rl is locally Cohen-Macaulay-then it is Cohen-Macaulay.

For the proof one can use the fact thét (1) implies

depth R, & dim(R/I) + 1 . This follows from [0-R], Cor. 1.7, p.8.

Furthermore we get.. in particular the following proposition.
3.15 Proposition: Let (R,M) be an unmixed complete local ring

containing a field. Let P be a prime ideal in R satisfying the
following properties:

(1) Rp is regular and R/P is Cohen-Macaulay
(i1) f : Proj (grPR)-4 Spec (R/P) is flat
(i11) e(R/P) = 2 .

Then the completion of any monoidal.transfdrl 'R1 of R with
center P , satisfying 82 » 1s a hypersurface. ’

Proof: The flatness of £, implies [ O-R] projective normal
flatness of R along P (i.e. Pn/Pn+1.'1a flat over R/P for
n >> o). Since R/P is CM, we get [0]:

n* D[R] s e(r/p) BV R)

where r = dim R/P and s = dim R - dim RI , hence by (1), (1ii):
A
e(Rl) $ 2 . Then if R1 satisfies 82 . Rl is a hypersurface.
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§ 4 Cohomological approach

We make several remarks of hov to use homological methods for the
questionings of these lectures. In 3.6 we remarked that RZ(I,R)
and R Cohen-Macaulay imply ngR Cohen-Macaulay without any
assumption on I . The proof of this statement (which is even true
for any commutative ring and any ideal I of height > 0) is due

to Huneke.

4.1 Proposition: Let R be a local Cohen-Macaulay-ring, I an ideal
of height at least 1 . If Rt(I.R) is Cohen-Macaulay then gtI(R)
is Cohen-Macaulay.

Proof: »He>set:
R* = RE(I,R), M* = (M,It),

T = gryR, Q =MIe £ 1%t
n>1

Then there are exact sequences:

(1) 0 — It — R*

+— R— 0

M

(2) 0O— I —+ R¥, _— T.— 0 .

M* Q

Note that d:= dim R = depth R and depth R*
Furthermore we set K = R*/M* = R/M .

M+ = d+1 Dby assumption.

Applying HonR*H*(K,-) we get the exact sequence

loo‘_’Extd’l(‘,R) — thd(K’It) '—'*'thd(xgk*"*) _’ e e 00y
"

0 _ 0
hence thv(l,It) =0 for V¥< d+1 .

Since It = I as R*-modules, we also have Extv(K.I) = o for
Y < d+l1 .
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Now apply HonR*H*(K,-) to the sequence (2):

oo = ExehLRe ) — Exedlr, 1) — medx,ny =L,
" "

0 0

i.e. depth TQ = d , hence ngR is CM.
In [I-H] we have characterized the Cohen-Macaulay-structure of
RZ(I,R) by a vanishing-theorem of local cohomology of ngR with

respect to M* = M ® I I"™ ;, see [I-H], prop. 2.1 and 1.5. There
nzl
we assumed that R is normally Cohen-Macaulay along I. Recently

S. Ikeda has observed that the proof of prop. 2.1 in [I-H] also works
if we replace this strong condition on I by equimultiplicity, {i.e.
ht(I) = 1(I). By using local duality one can even omit equimulti-
plicity as S. Ikeda and N.V. Trung have pointed out; see theorea
4.5 and remark 4.7.

4.2 Résumé of local cohomology:

If Q is a homogeneous ideal of a Noetherian ring S , which here

we assume to be a finitely generated (nonnegatively) graded algebra
over a Noetherian ring So, and if rad(Q) = rad((fo,...,fn)S) ’
wvhere fi are forms of S, then the local cohomology modules -33(8)
can be expressed as direct limits of Koszul cohomology

Hé(S) ~ 11m #i(xf(gt;8)) AT SN
=

acquiring a Z-grading (which is independent of the choice of the fi)‘

The corresponding formula holds for a graded S-Module G which may
have finitely many negative pieces: Ha(G) = lim Hi(lo(ft;c».

e

-t

Recall that if f has degree d , the right complex l'(fo.G) of
graded modules and maps of degree 0 is
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K°(f°;G) - G

elgg6) = 6a) L 68, =Gy L
] [+

xi(f ;6) =0  for 1401,

wvhere the map l°(f°;G)'—-+ Kl(fo;G) is induced by multiplication

by fo . The complexes x’(gt;c) form a direct limit system. For

f =f , this system is given by the diagram:
+] '
£ t+t

K'(fﬁ*t’,c) : O—> ¢ 1oy G(t+t')-do))——-> o
1 J E4 i

x‘¢efe) ; 06— 6 —— G(t-d) — 0

)

the graded limit complex may be identified [EGAI No4] , 1.61 with

0O — G — Gf — g
o
-_..&.. - L4 .
vhere P e.(Gfo)n if deg g = k d°+n)
o

this is what one denotes by K'(f:,G) .

t

For £ =f_ ,...,f and £° = £

o....,fﬁ we define

. ® n .
K (£.,6) -(;e K (Ff,5R)) 8,6 ,

o
vhere G 1is concentrated in degree @ and OR is graded. Then
the limit 1im K°(£%,BE) may be identified with

—e

., . @
8 X'(£3:R) 0,6 =: K°(£7,6)
i=o0

£ we forget the grading of S and if we consider any ideal I and
any elements fo""'tn such that rad I « rad(fo,...,fn). then
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the cohomology modules Hi(G) are usually defined in this affine
case as 1im Ext.(S/1%,6) = B (x"(£°;6) .

T B

1y
Therefore, for the graded ring S and for an homogeneous ideal I c S

we may first choose forms fo,...,fn such that rad (1) = v
rad (fo....,fn); then we can also choose a part of a system of bara-
meters, say Byrere18y (t =1(I)) which is a reduction of I, so that

rad(l) = rad(fo,...,fn) = rad(gl.....gt) ’

and we get

Hy(6) 5 BY(K*(£7,6)) 5 H'(K'(g,6)) , vhich is therefore
graded.

In particular, take a M-primary ideal I in the local ring R of
dimension d and let Biseees8y be & minimal reduction of I . Set
S = R* = RE(I,R), M*«M 0 T I", G = gr;R- and 4, = initial form
of aiin I/Iz. Note that aR* + atR* = (al"""d’alt"“"dt) is

a reduction of M* and al.az—nlt,...,ad-ad_lt,adt is s system

of parameters of R¥*. The images of these inhomogeneous elements in
G = R*/IR* are the initialforms al*,....ad* (aird»aéai~ai_1ta—ba;
since at ¢ Izt), and rad(al*,...,ad*) = maximal homogeneous ideal

of G . Therefore we get

d
(#) ® G v —Z-rc. *—+nd(c)-——»g
i=1 a;...ai...ad* a:.s.ad M*
hit

and rad(D) = M* ;
d T <. ;.
vhere @(gy,....84) = 151(—1)+' for g, ¢ G;:c.".*:.:%ﬁ )

As in 4.1 we will use the following exact sequences (now setting
R: for (It)R* and R:(l) for IR*):

(1) 0——+R:——$R* - R > O

(2) @ —R¥(1) —»R* — G —> 0 ;
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they imply the exact sequences:

1+1

(1) — BlLz%) — BhR) — B Re) — BAH (e ——

(2') —> Hi,(R®) — Hy (G) — n‘*‘cn*)<1) — arlre) —

[ﬁote that in (1') we get Hi(k) as second term, for the images
of 8,:8,-8:t,...,8 -8, ;t,a,t (vhich also determine the cohomology

) i
H;,(R‘/R:)) are a,,8,,...,8,, hence:

. 4 "
. ’.1...‘.'1..‘..(, ) R.l""d — Hy (R¥/R¥)—> 0.]

These sequences (1') and (2') are the main tools for the cohomological
approach,

A version of the following theorem 4.3 was first proved in [I-H]
prop. 2.1,

4.3 Theorem: Let (R,M) be a local ring such that l(H;(R)) < » for

1 <d = dim R. Let I. be an ideal in R. Then the following conditions
are equivalent:

(i) R* = Rt(I,R) is Cohen-Macaulay and I is equimultiple.
i
i H (R) for n = -1
(ii) a) H"*(G)n - M
0 for n £ -1

and 1 < d

b) HJ,(G) =0 for nzoO.

c) RnCM I

Sketch of the proof: (i) => (ii)
from (1') and (2') for 1 < d :

i i+1
Hy(R) =

Since R* 1is CM we obtain

.o

(R*) and

Hiy(G) = n1+1<n*)(1) :

hence (11) ). [Note that [Hy,(E)] = n’(ggg?.z)) 3
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and H;(R) is concentrated in degree o, hence Ri+1(k*) - 0.

i+l

1 .
for v 4 o . Therefore Hys(G) = HH* (R®) 41 ™ O for all n4 -1.]

To prove (ii) b) and c) we recall that by corollary 2.2.5, page 36
{al.alt—az,....ast,xl,....xr} is a system of parameters of R¥*,

vhere L TEREERT M is a minimal reduction of I and XyseeasX, is a

system of parameters mod I. (Here we use that fact that ht(I) = l(I)
= 8). Therefore by assumption, {al,alt-az.....a’t} is a Rﬁ*-sequence.

Furthermore R is normally Cﬁ along I as we have indicated in the
1. step of the proof of proposition 3.10. Therefore we find elements
b,...ob (r = dim R/I), forming a G-sequence b . Nov take

r

C = ng+2R/2R(R/gR) = G/bG.

Then one can show that

(3) H;*(E)n = 0 for n > o ,

using the previous relation (# ) (page S0) for G and the M/bR -
primary ideal I+bR/bR .

From the exact sequence

by
0—> G > G/blc-——> (o]
we obtain
4) ...— 8i;l@e)—s n 21(G/b ,6) — uu,(c)——-» HM,,(G) —_—
hence by (ii) a): H;*(G/blc)n - 0 for né -1, 1 < d -‘1 .

For 1 = d -1 we get the equivalence:

Hya(G), = O for n 2 o demd HIZ1(6/b.G) =0 for n2o
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Repeating this argument ve get

Hg‘(Gfa =0 fOr nz 0 > Hg;r(ﬁ)n = o . for n>o0.

Note that d-r = s . Now, using the previous sequence (#) in
4.2 and the fact that I° = (_g_)I8 (which in easy to be'proved).
we can show indeed that H;*(C)n =0 for nzo.

To (14) == (i): Now we know by assumption that R is normally
CM along I , hence - as before - we find a G-sequence bl,...,b
such that

r

(b1’°"’br) N 1" - (b.,....br)In for n > o0 ,

hence

RECI+bR/BR,R/BR) = @ I"/BRAI™ = @ I7/bI™ « RE(I,R)/bRE(I,R).
n2o n2o

(see proof of 3.10).
Since b1 is a non—zefo-divisor on R3(I,R) we can conclude that

b is a homogeneous Rg(I,R)—sequence by induction on s. Therefore
ve have only to prove that

¥ e R:(I+QR/2R, R/bR) 1is Cohen-Macaulay.
From (4) and (ii) a) we obtein for 1 < s by induction on r :
(5) Hi*(c)n =o forn4 -1 and
1(H},(8)) < =
Gyt

(5) implies by an essential result of Goto that
I(H;*(ii)) < o for i Ss .
As in the first part of the proof we have again

(6) H;‘(C)n =@ for nzo.
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From the analogous exact sequences (1') and (2') in 4.2, now
applied on K¥ , we get for i < s :

Heo(FE)y & Huu(F%) . for v 4 o
Hyo(RE), 0 5 Hyo(R®)y , for vé -1 .

But
() Hu(RF), = o fofy> o or ¥<<o, 135 s,

since I(H;*(R*)) < ®» , Therefore by diagram ~chasing we have

H;,(K‘) =0 for 1i<s .

So it remains to prove that H;.(K‘) = 0 (note that dim K* =
dim (R/bBR) + 1 = s+l1). But this follows from (5),(6) and (7), q.e.d.

4.4 Blowing up conductor ideals.

In a recent paper [Shi] M. Shinagawa investigated the Cohen-Macauly-
property of the blowing up of (R,M) along the conductor. His ideas
and theorem 4.3 can be used to get some idea of the gap between R

is Cohen-Macaulay and Rt(I,R) is Cohen-Macaulay for special ideals
I; compare 3.9 - 3.12.,

4,41 Proposition: Let (R;H) be reduced with a finite normali-
zation R oder R . Let I be an unmixed ideal of height 1 with
the following properties:

(1) R/T —> R/IR is flat
(ii) IR « IR is principal in K .

Then we get the two statements:
(1) Proj(Ri(I,R)) is Cohen-Macaulay iff R 1is Cohen-Macaulay.

(2) Rt(I,R) is Cohen-Macaulay 1iff
a) H;*(G)n-o for all n and i <4 = dim R

) H3,(C) =o for allno .
c) R is Cohen-Macaulay.
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Proof: (following the ideas in [{shil]).
By the assumptions the blowing-up morphism

nm: Proj(Rt(I.R)-————* Spec R
is finite, since ht(I) = 1(I) = 1

Since I is the conductor we have OI" = O(IR)n , hence
' n>o n>o

(by [EGA II], 2.4.7)

Spec B = Proj(RECIE,R)) = Proj(Re*(I,R))

Now I°/1™*! 15 free over R/IR for all n , since IR is
principal, generated by a regular element. Since R/IR 1is free
over R/I by condition (i), we get that R is normally flat along
I . Therefore by [Shi), thm. 3, R is CM 4iff Proj(RE(R,I)) is
CM , proving (1),

(2) follows from thm. 4.3 and statement (1).

4,4.2 Remark: Conditions (i) and (ii) have been used to get
normal flatness of R along I . This doesn't mean, that I ¢ R

is principal.

Example: R = k[[X,Y,211/(x3-v%) = k((t2,¢3,211 ,
k = infinite field
I = (t2,e3)r , he(D) = 1 = 1(D)

Then : R = k{[(t,z]) and IR = (tz)k[[t,z]]. Here I c R is
not principal, hence Rt(I.R) is not CM by theorem 3.5. But of
course R is normally flat along I, and Proj(kt(R,I)) is CM.

Note that R 1is a hypersurface with e := e(R) = 2 = dim R =: d}
clearly gr R is CM . But for hypersurfaces we have always

M® = (x)M®*”" for some minimal reduction of M; see [H-0-G], 5.1.
Therefore we get in our case: Hd = de-l, hence Rt(H,R) is CM.

As we have aslready mentioned that S. Ikeda and N.V. Trung can prove
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the equivalence of (i) and (11), a), b) in theoream 4.3 without
any additional condition-on R eand I using local duality. Ve
wvill sketch this proof but ve assume for the sake of simplicity
that R is quasi-unmixed. Furthermore we add to (ii) a), b) the
condition "Proj R* is CM" ; see theorem 4.5.

4.5 Theorem: Let (R,M) be a quasi-unmixed (noetherian) ring
and I an ideal of R with ht(I) > o . Then the following condi-
tions are equivalent:

(1) R* = Rt(I,R) is Cohen-Macaulay

(2) a) Proj R* is Cohen-Macaulay

i H(R) for n = -1}
b) HH*(G)n = { . and i < d = dim R
0 for n # -1

c) H:*(G)n = 0 for n 2 o .

Idea of the proof ,(after S. Ikeda in a letter from March /83 to
M. Herrmann): (1) = (2),a) is clear and (1) => (2), b) we have
shown in the proof of theorem 4.3:

(1) =(2),c) can be seen as follows (see again proof of thim.4.3):

Take the exact sequences (1) and (2) of 4.2; since R* is CM
they imply the exact sequences:

(1) o— Hg(R)—> Bl (re)— mdtlze)—s o .
H:(R) is concentrated in degree o; therefore we get:
&) d+1(R ) Hd+1(R*)1 for 1 > o0 .

Since Hd+1(R*) is artinian we have Hg:%kz)n = 0o for n > o ,

d+1

hence (R*) o for n > o .

The second sequence (2) implies

(2') 90— Hy(O)— B8t L(re) (+1) —Soo gsl(Re) — 0 .



- S7 -

The map 4 i-pliei:

®

d+l d+1 d+1 d+1
HH* (R:)(*l)n = HH* (R:) — HH* (R*)n - HH* (R:)n

n+l

in particular: KS:I(R:)I————éé H::l(k*)o .

Therefore H::I(R:2(+l)n_l - Hﬂtl(ki)n =0 for n 21, hence

by (2') we have: H:*(G)n =0 for mz O

For (2) = (1): I) We want to use duality-theory of graded rings
. over a given local ring. Recall that the canonical module of a

noetherian graded ring S = @ S_  with So = (A,N) a complete
ni

local ring is defined by:

d

where ds = dim S , MS the maximal homogeneous ideal of S, and
Bs is the injective hull of S/MS in the category of graded S -
modules.

Then the "Poinearé - Serre - duality" - theorem implies for

Cohen-Macaulay-rings S and for any finitely generated S - module
vV

(1) Homg(Hy (V), Eg) = Extg™H(V,Kg)

vhere o s i s dg .

(2) S 1is Gorenstein iff KS = S(n) for some ne¢ Z .

II) For the proof of (2) => (1) we may assume that the given ring
(R,M) is complete. Then there exists a (complete) local Gorenstein
ring B such that R = B/b and dim R = dim B . Obviously R* is

an homomorphic image of the graded Gorenstein ring S := n[xl.....xn].
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where Xi are indeterminates of degree 1 , = -);(I)> and
dim S = d+m . Setting V = G = ngR » we get by the duaiity
theorem:

(*) Homg(Hp,(6),Eg) = Ext$*™i(g,x

s) -

[Note that Hi (G) = Hi (G) = Hi (G) where M is the maximal
MS M* MG ’ G .

homogeneous ideal of G ; see 4.2]).

By (*) the conditions (2) b) and (2) ¢) of theorem 4.5 are
equivalent to:

d-1i »
. Ext (R,B) for g =1

(7) b) Extsd*“‘l(c,xs) - B " for i < d
" 0 for p 4 1

(2) ¢) l:".xt:g'((;,lts)‘l =0 for py s o.

III) Claim: l(H;*(R*)) <o for o sisd.

Proof of the claim: Since R is quasi-unmixed, R*y» 18 quasi-

unmixed. To prove the claim it is enough to show that for any
graded prime P*=M* of R* we have R*p;, is Cohen-Macaulay. If P*

is relevant, R*P* is CM by condition 2) a). Hence we may assume

P* > @ I, i.e. P*A R =: P 4 M . Again by 2) a) we may assume
n>o )

PO1I,

Assume first that P 1is a minimal prime of I . Then we have
ht(I-Rp) = 1(I-Rp) . Furthermore the conditions (Z) b) and (2Z) c)
are satisfied by R, and G(IRp) since S, is Gorenstein.

(Note that KS = S(n) for n = - y(I) and use the Gorenstein-
property for computing the Ext's).

But these conditions are equivalent to (2) a) and (2) b) for
Rp » G(IRp) by duality.Therefore (since ht(IRP) - l(Ilp))
by theorem 4.3, R*P* is CM .
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Now by induction on dim R/I , we may assume that R*P is CM
for all P +'H [by_dividing out parameter-elements XyseoosX

, . r-1
with respect to R/I] . This prove the clainm.

IV) Now we can continue in analogy to the proof of theorem 4.3 to
finish the proof of theoream 4.5.

4.6 Remarks to the proof of theorem 4.5:

1) The assumption "R is quasi-unmixed" was used in step III to
conclude that R*H* is quasi-unmixed. What one really needs is
some dimension-condition in Rﬁ* . Therefore Ikeda and Trung can
avoid this assumption on R .

2) "Proj R* is CM" is used in the proof (2) > (1) to deal with

the case PP I . Ikeda observed that this case can also be settled
without the assumption Proj R* is CM.

4.7 Remark. There exists another homological approach to the
question of how to get Rz(I,R) or ngR Cohen-Macaulay if R 1is
Cohen-Macaulay by Herzog, Simis and Vasconcelos [H-Si-va]:

4.8 Theorem: Let R be a local Cohen-Macaulay ring. Let I be
an ideal with the properties:
(i) I is generically a complete intersection.

(1i) The homology modules of the Koszul complex on a system of
generators of 1 are Cohen-Macaulay

(iii) ,/(IP) < ht(P) for every prime P> I .,

Then Rt(I,R) is Cohen-Macaulay.

The condition (iii) is used to show that R:(I,R) is isomorphic to
the symmetric algebra with respect to I, which is "easier" to
work with. The hard problem is of course how to check the very
strong condition (ii).[hvramov and Herzog have considered certain
special cases where (ii) is fulfilled.]
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