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ON INSTABILITY OF TYPE (II) LAWSON-OSSERMAN CONES

ZHAOHU NIE AND YONGSHENG ZHANG

ABSTRACT. We obtain the instability of Type (II) Lawson-Osserman cones in Eu-
clidean spaces, and thus provide a family of (uncountably many) unstable solutions
with singularity to the Dirichlet problem for minimal graphs of high codimension
versus smooth unstable ones by Lawson and Osserman through the min-max tech-
nique. To our knowledge, these are the first non-smooth unstable minimal graphs.

1. INTRODUCTION

Given an open, bounded, and strictly convex  C R"™ (n > 1) and a continuous
map ¢ : 9 — R™ (called the boundary data), the Dirichlet problem (cf.
[JS68, BAGM69, dG57, Mos6(, LO77]) searches for ® € C°(Q) N Lip(£2) taking values
in R™! such that the graph of @ is a minimal submanifold in R™*"*2 and ®|yq = ¢.

When m = 0, for any continuous boundary data there exists a unique Lipschitz
solution according to J. Douglas [Dou3l], T. Rad6 [Rad3(, Rad33], Jenkins-Serrin
[JS68] and Bombieri-de Giorgi-Maranda [BAGMG69]. Furthermore, the solution is in
fact analytic by E. de Giorgi [dG57] and J. Moser [Mos60], and its graph turns out
to be area-minimizing, e.g. see [Fed96].

When m > 1, situations are completely different. With Q = B"*! (the unit ball,
the case that we shall consider in this paper), Lawson-Osserman [LOT77] constructed
real analytic boundary data for n,m > 1 for which there exist at least three analytic
solutions; boundary data for which the problem is not solvable for n > m + 1 > 3;
and boundary data that support Lipschitz but non-C' solutions.

Recently systematic developments on Lawson-Osserman constructions in [LO77|
have been made in [XYZ19,Zhal]. In particular, uncountably many boundary data
are discovered in [XYZ19], each of which supports infinitely many analytic solutions
and at least one singular solution. The graph of such a singular solution is just the
cone over the graph of the boundary data, and it is called a Type (II) Lawson-
Osserman cone. In more details, the boundary data are suitable multiples of Type
(IT) LOMSE:S (see Definition @ below) between unit spheres and the corresponding
countably many analytic solutions have graphs with increasing volumes. The limit
is the volume of the truncated Lawson-Osserman cone. Therefore, such cone is not
area-minimizing. Since these analytic solutions do not form a continuous family
around the Lawson-Osserman cone yet, it remains open whether the cone is stable
or not. In this paper, we settle this question.
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Theorem 1.1. Type (II) Lawson-Osserman cones are all unstable.

The idea is to study a corresponding quotient space endowed with a canonical
metric. Inspired by [Bro66, HL71, Law72] for orbit spaces, we focus on a preferred
subspace W associated to the given LOMSE and the quotient space of the subspace.
With canonical metric, the length of any curve in the quotient space equals the
volume of the corresponding submanifold in the Euclidean space. Hence, the above
solutions induce geodesics in the quotient space connecting a fixed point (associated
to the LOMSE) and the origin (a boundary point of the quotient space). Conse-
quently, we have a LOC curve standing for the entire Lawson-Osserman cone and
a LOC segment for the truncated part respectively.

Note that the instability of LOC segments for Type (II) naturally implies the
instability of the truncated Lawson-Osserman cones. However, it is not simple to
gain stability for Type (I) in Euclidean spaces (besides those area-minimizing LOCs
of (n,p,2)-type proven in [XYZ18]). In this paper, we show that an LOC segment
for Type (I) turns out to be locally length-mimimizing (namely length-minimizing
in certain angular sector that contains the LOC curve) as announced in [Zha2]. As
a result, we have

Theorem 1.2. LOC segments for Type (I) Lawson-Osserman cones are all stable.

The paper is organized as follows. We shall briefly review Lawson-Osserman cones
in §. The construction of canonical metric on quotient space mentioned above will
be provided in §a It will be verified explicitly in §@ that the geodesic equation
is equivalent to the minimality requirement(R.5) of corresponding submanifold rep-
resented. Section §f will be devoted to computations of instability of Type (II)
Lawson-Osserman curves on quotient spaces and stability of Type (I). We further
explain in §0 the interesting translation from behavior around the spiral stable fixed
point of (p.11)) for Type (II) to Jacobi fields along the LOC curve. In §H the con-
struction of certain calibration forms can be achieved for the local length-minimality
on the quotient space for Type (II).

Acknowledgment. The authors would like to thank MPIM for warm hospitality
and financial supports, where they conducted the research during their visits in
Spring 2019. The research of Z.N. is partially supported by the Simons Foundation
through Grant #430297. The research of Y.Z. is sponsored in part by NSFC (Grant
Nos. 11971352, 11601071), the S.S. Chern Foundation (through IHES), and a Start-
up Research Fund from Tongji University.

2. BACKGROUND ON LOMSE

Let us recall some materials from [XYZ19)].

Definition 2.1. For a smooth map f : S™ — S™, if there exists an acute angle 0,
such that

(2.1) Mgy = {(cosf-x,sinf- f(x)):z e S"}
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is a minimal submanifold of S™" 1, then f is called a Lawson-Osserman map
(LOM), My the associated Lawson-Osserman sphere (LOS), and the cone Cj g
over My the associated Lawson-Osserman cone (LOC).

For ¢ = tanf - f, the cone over the graph of ¢ is minimal and determines a
Lipschitz but non-C? solution to the Dirichlet problem. Therefore, it is important
to establish a characterization of LOM. Let g be the induced metric on S™ via (Ell)
from the standard metric g, 4,41 of S™F"HL,

Theorem 2.2 (Characterization of LOM [XYZ19]). For smooth f :S™ — S™ and
6 € (0,7/2), My is an LOS in S"™* 1 if and only if the following conditions hold:

o f:(S" g)— (S™, gm) is harmonic.
e For each x € S™ and the singular values Ay, -+ ;N\, of (fe)e : (TwS™, gn) —
(Tt@)S™, gm), namely {\;} are the diagonals of (f.)"gm with respect to gy,

we have
n

1
2.2 —
(2:2) Z cos? ) + sin? 9)\?

j=1

Since the second condition is in general hard to interpret, [XYZ19] restricts dis-
cussions to a special case.

Definition 2.3. If f is an LOM and in addition, for each x € S™, all nonzero
singular values of (f)s are equal, i.e.,

{/\17 T J)\n} - {07 >\}7
then it is called an LOMSE.

Note that the distribution of singular values (counting multiplicities) has to be the
same pointwise. Moreover, LOMSEs have a very pleasant structure decomposition.

Theorem 2.4 (Structure of LOMSE [XYZ19]). Smooth f between unit spheres is
an LOMSE with {\,--- , A} = {0, A} if and only if f =i onm where w is a Hopf
fibration from S™ to a (complez, quaternionic, or octonionic) projective space (PP, h)
of real dimension p and i is a minimal isometric immersion: (PP, \2h)%(S™, gp).

Remark 2.5. As a map to Euclidean space, an LOMSE has (m + 1)-components
and all of them are spherical harmonic polynomials of even degree k. We call such
LOMSE and associated LOC of (n,p, k)-type. Furthermore, [XYZ19, eq. (2.26)]
gives

k(k+mn—1)

(2.3) A= T

Different solutions to the Dirichlet problem are obtained by considering
(2.4) M=M,; = {(rz,p(r)f(z)) : x € S*,r € (0,00)} C R™H"*2

for analytic solutions. A characterization of M being minimal is the following.
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Theorem 2.6 (Evolution Equation [XYZ19]). For LOMSE f, M is a minimal
graph if and only if

_ pr _ Np
(2.5) by (= plpe P — )
L+ p; r 14 222

There are two types

,4,4) or n > 7, and
= (5,4), k > 6;

for which solutions to (@) emitting from the origin behave differently.

P p=tanf-r A
p=tanf-r

Here the LOC curve {p = tan6 - r} stands for the LOC. For Type (II) LOMSE
f, each intersection point of the oscillating curve with the LOC curve leads to a
minimal graph over the unit ball B**! C R"*! by rescaling the oscillating curve in
different scales to connect the origin and (1,tan#) as follows

P A (1,tan )

F1GURE 1. Curves representing analytic solutions
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and the boundary of each minimal graph is exactly the graph of ¢ = tanf - f.

3. CANONICAL METRIC ON QUOTIENT SPACE

According to (@), we restrict ourselves to the following (n + 2)-dimensional
smooth submanifold associated to LOMSEs for both Type (I) and Type (II)

(3.1) W= {(rz,pf(x)): x€ 5", reRy, peR}

in Rmn+2,

Every smooth function p(r) (or more generally, a parametric curve with nowhere
vanishing velocity in the rp-plane) would give an_embedded (or immersed) hyper-
surface in W. Stimulated by the ideas of [Bro66, HL71, Law72] for submanifolds of
low cohomogeneity, we consider the right half rp-plane as the “quotient space” of
Ww.

Proposition 3.1. With respect to canonical metric
(3.2) go =05 -g=op- [(r?+Xp*)" - 2] [dr? + dp?]

where oq is the volume of the n-dimensional unit sphere, the length of every curve
equals the volume of corresponding hypersurface in W C R™++2,

Proof. Note that this situation is similar to the cohomogeneity one case. We only
need to figure out the volume function V(r,p) of the n-dimensional submanifold
corresponding to (r, p). Then

2
g0 = (V(r.p)" - [dr*+dp’]
will have the desired property.
For expression of V(r, p), let us fix a point x € S™ and choose an orthonormal

frame {e1, - ,ep, €pt1, -+ ,en} of T,8™ such that {f.(e1),---, fi(ep)} form an
orthogonal set in T's(;;)S™ of length A and fi(ep41) = -+ = fi(en) = 0, by Definition

@. Set f; = @ for i = 1,---,p. Hence, the differential DF, for F(x) =
(raz, pf(z)) sends

ei — (rei, Apfi), 1<i<p

e; — (re;, 0), p+1<j<n.
Thus,

Vi(r,p) = /F(S )dUF(Sn) = i \/det(DFT - DF)dvgn

_ / (VrZ T X2 - P g,
= go(r? + A\2p?)5 - (P
and the proposition gets proved. 0
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Remark 3.2. All solution curves exhibited in Fz’gurelj are geodesics. In particular,
p=tanf -r is a geodesic with respect to g.

4. GEODESIC EQUATION AND THE MINIMAL SURFACE EQUATION

We show in this section that the geodesic equation with respect to the metric
g=[(r*+Xp*)" 7’2(””’)} dr? + dp®] = u - [dr® + dp?
gives rise to the Evolution Equation (@)
The formula for the Christoffel symbol of a conformal metric is
~ 1
Ffj = Ffj + 5 ((log u)ﬁf + (log u)ﬁf — (log u)k(Sij>.
Direct calculation gives
(n —p)A?p" + nr?

1 ' T
A= §(logu)r = =0, =17,=-T

(\2p2 + 12)r pp?
1 pA*p .
Bi=3logu)y = 5oz = Th =T =10,
Let the arc-length parameter be s, and assume r = r(s), p = p(s) to be a geodesic.
d d
Denote 7 = —r, )= 2 The geodesic equation is then
ds ds

i 4+ Ar? 4 2Brp — Ap* =0,
p— Bi? + 2A7p+ Bp* = 0.

Since p, = g, it follows that
=i

;,1»3
= B — Ap, + Bp? — Ap}
— (1+3)(B - Ap,)
which can be verified to be (@)

p’V‘T‘

Furthermore, we remark that a rescaling of a geodesic is again geodesic.

5. COMPUTATIONS ON STABILITY AND INSTABILITY

In [XYZ1§] it has been shown that every LOC of (n,p,2)-type (subset of Type
(I)) is area-minimizing, thus stable minimal; whereas LOCs for Type (II) LOMSEs
are not area-minimizing. The lengths of the solution geodesics (with more and
more oscillations) in Figure [I] increase to that of the LOC segment connecting the
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origin and (1,tan#) (open at the origin and closed at the other side). However,
these geodesics are isolated, not forming a continuous family of geodesics. So it
was unclear if an LOC segment for Type (II) is stable or not. In this section, we
determine stability and instability of these LOC segments in the quotient spaces.

Theorem 5.1. The LOC segment for an LOMSE is stable if and only if it is of
Type (1) and unstable if and only if it is of Type (II).

Remark 5.2. Theorems and are corollaries.

Proof. The strategy is to study the Jacobi field equation. We shall show that an
LOC segment {(r,tané - r) : r € (0,1]} contains conjugate points to the point
(1,tan ) for Type (II) and no conjugate points for Type (I).

Let us first consider the Gaussian curvature K for metric g in Proposition @
(ignoring the factor 0p). A well-known formula for Gaussian curvature for isothermal
metric h(dr? + dp?) is

1
K =——Alogh.

2h
By h = (r? + X2p?)" - r2("=P) it becomes
1
k= _2(7“2 + \2p2)P . p2(n—p) A (p 10g(r2 + >\2P2) +2(n —p)log r)
1 n — p ,’,12 _ AQ 2

Along the geodesic {p = tan@ - r},
(5.1)

K(r) =

1 p(A\2—1) 0y
(1 + )\2 tan2 0)17 . T2("+1) |:(n —p) - (1 T )\2 tan2 0)2 (1 — A\ tan 9) .

To simplify the above expression, we transform (@) for LOMSE
n—p p _
cos20  cos? 6 + A\Zsin? 0
(by splitting n = (n — p) +p) to

(n —p)sin®0  p(sin® 6@ — A\%sin?0)

(5.2)

cos? 0 cos2 + N?sin2f 0
which implies
p(A* —1)
(5.3) (n—p)= Tt Vil d’
Now (@) gives
(r) = n—op [1_1—)\2‘5&1120]
(1+ A2tan?@)p - r2(nt1) 1+ A\2tan?6

2(n — p) [ 1 }

(14 A2tan20)? - 20+ |© 14+ X2tan?6
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For solutions to the Jacobi equation, we need the arc-length parameter

s = /(1—|—)\2tan29)gr"-\/1+tan20 dr
0
V14 tan?6 (1+ A?tan®6)2

— L entl
55) - S o
Therefore
_ 2
K(s) = 2(n—p)(1 +tan®0) [ 1 i
(n+1)2s? 1+ A2tan?6
Note that (@) implies
L 1 N —n
1+ A2tan’6  p(A2 —1)
2, (A —1)
and 1+ tan 0= m
So
K(s) = 2N —m)n_ 2(K*+kn—k—n)n 1
CopA2(n+1)282  (k+n—1k(n+1)2 s’
according to (@)
Define
2(k? -
(5.6) Y (k* +kn—Fk—n)n

(k+n—1)k(n+1)>
Fix a unit normal vector field N along the LOC segment. Then J(s)N is a Jacobi
vector field if and only if
J"(s)+ K(s)J(s) = 0.
This is a Euler equation. Consider J(s) = s'. Then
(l-1)+a=0,

and the solutions are

14V

(5.7) J(s) = Cre™ =

10gs+026 ) logs‘

1+V/A 1-V/A

(A). When A =1 —4a > 0, all solutions J(s) = Cys~ 2+ Cas Y% are linear
combinations of two power functions whose exponents are distinct real numbers.
Apparently for J to vanish at two distinct sq,s5 > 0, we must have C; = Cy = 0.
Hence the index of the LOC segment is zero and the segment is stable. Similarly,
when A = 0, then J(s) = C1/s + Cyy/slog s can not vanish at two distinct sq, so
unless it is trivial.

(B). When A =1 —4a < 0, all solutions are

J(s) = C1v/scos ( log s) + Cyy/ssin (\/;_Alog s) .

It is clear that there are infinitely many conjugate points to any point on the LOC
segment. Therefore, the LOC segment is unstable.
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Now let us consider (A) first by solving

~ 2(k*4kn—k—n)n _ 1
Tt Dk(n+12 "4

which is equivalent to
Sn(k* +kn—k—n) < (k+n—1k(1+n)?
& 8nk®>+8n(n—1)k—8n* < K (1+n)*+k(n—1)(n+1)>
and further transformed to
(1+n)*=8n)k* +k(n—1)[(n+1)>—8n] +8n* > 0
(5.8) — M —6n+ Dk +k(n—1)(n*=6n+1)+8n%> > 0

If n > 6, then the leading coefficient of &2 is positive and (@) holds for all positive
k. Note that positive integer n has to be odd as the dimension of source space of
an Hopf fibration and positive integer k is always even (see Remark R.5). Direct
computation shows that for n = 5 the solutions are k = 2,4; for n = 3 the only
solution is k = 2. It turns out that a = % has no solution in our situation.

Therefore, the solution situation of (B) is exactly the opposite to (A).

By comparing with the (n, k) values of Type (I) and Type (II), we have shown
that the LOC segment is stable if and only if it is of Type (I); and unstable if and
only if it is of Type (II). O

Remark 5.3. As pointed out in [Sim68|, in general a (compactly supported) Jacobi
field along a surface can not generate a family of nearby minimal surfaces corre-
spondingly. In our case, the Jacobi field along the LOC segment has a lifting to
an “upstair” Jacobi field along the reqular part of the minimal cone LOC in the
FEuclidean space, and it can produce a family of nearby minimal surfaces by lifting
geodesics around the LOC segment.

6. SOME REMARKS ON INSTABILITY

In this section, we further discuss the close relationship of above calculations
with that in [XYZ19], where conditions for Type (II) Lawson-Osserman cones were
discovered. The Jacobi field method here is derived from the linearization of geodesic
equation; while, in [XYZ19], the ODE requirement (R.5) for a minimal surface is
transformed to a dynamic system with linearization analysis at a fixed point that
corresponds to the LOC. We shall see that the periods of Jacobi fields observed in
current paper coincide with those of dynamic behaviors in [XYZ19], and moreover,
we shall establish an explicit translation between these two perspectives.

By (@), the arc-length s is a constant multiple of 7"*1. Therefore, solution (@)
in variable r becomes

(69) J(r) = C~(161+2\/E(n+1)10gr + 026175/E(n+1)10gr'
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From (@), the solutions are linear combinations of
1 n
Z 2 - @
(6.10) exp (2((n+1)i\/(n+1) +8n<k‘(n+k—1) 1))logr).

In [XYZ19], the ODE (@) for minimal graphs is rewritten as

Pt = %
6.11 32
(6.11) { Yy = =9 — [(n—p+1+§+¢2)w+ (n—p+ ﬁiﬁ;&’)g@} [1+ (o +9)?].
in variables 0
t:=logr, ¢:= o Y= py.
Then the point (¢, 1) = (tan, 0) is a stationary point of the ODE system. Denoting

—nA7?
Yo = tanf = p—,
n—p

the linearization of the ODE system at the point is

() =8(“2™) 2= (onrpiy 1) )

The eigenvalues of B are the solutions of

)\2+(n+1))\—2n< n

o) =0

and hence are

(6.12) )\172:%(—(n+1)j:\/(n+1)2+8n<M—1>>.

In our case, these two eigenvalues never equal. Therefore, following standard proce-
dure, we use the matrix P of the corresponding eigenvectors to get

_p(M 1
B—P( )\2)P .

Although A; 2 and P may be complex, the product_on the right hand side is real.
Then every solution to the linearization of system (6.11)) at (¢, 0) is

e)qt _ o
(6.13) P ( e’\2t> P~ (@ — (0,0)) + (¢0,0),
for some initial point 7. The product term, a linear combination of

(6.14) €M =exp (%(— (n+1) £ \/(n+ 1)2 +8n(m - 1)) logr) ;

is real. We see that when the square root is imaginary, the ODE system has a stable
spiral singularity at (tan,0). This is how [XYZ19] defines Type (II).

The square root term in () is the same as that in () This explains the
coincidence of the periodicity. Furthermore, for a more clear correspondance on the
instability of Type (IT) Lawson-Osserman cones, we shall give an explicit translation
from (a) to (@) to show the intimate connection.
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Theoretically, it is well known that (@) is obtained by linearization along {p =
wor}; while (@) is gained by linearization at (o, 0) exactly corresponding to the
LOC curve {p = ¢or}. This is the essential reason that makes it possible and natural
to derive Jacobi fields from orbits to () in the py-plane around (g, 0).

We take (n,p, k) = (5,4,6) for example with
0 1 1
B = 5 )\ = —3 :l: = and
<_% _6> b V6

P can be chosen to be 1 ]

=3+ 3-7
1 1
Based on (), the orbit through point (¢g, —€) is

t t t
e 3t (3\/6 sin — + cos —) V6e 3t gin —
V6 V6 V6 0 %o

55 t t t —€ 0
—Z=V6e 3t sin — e~ 3t (3\/6 sin — — cos —)
6 V6 V6 V6

Although the above expression is an approximate orbit to system (), it is
exactly what we need to consider in the limiting procedure. Note that by setting

t
r = ¢! one has ¢ = @y — ey/6e 3 sin —. Therefore,

V6

{ = or = r—e@sinbgr' GE]R}
1Y 2 ®o 7"2 \/6 . +

provide a family of approximations of geodesics in C! sense for ¢ — 0+ with the
following picture

P A p=%o-T
V6 . logr
€z sin =7
d(e)—"
.- >
0 r r

F1GURE 2. Illustration on the translation back to rp-plane

20 d(e).

V1+@E

which demonstrates r = 7 +
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The Euclidean length of the red vertical segment leads to

log <7"+ md(e))
(6.15) J1+ 02 de) = v/ - - LR
(f—i— \/ﬁ—%d(e))

and further, the derivative of the expression in € at zero gives

. logT
Sin
(6.16) 1+ @2 d0)=6- fﬁ .

Assume that N is the pointing downward unit normal vector field along {p =
wor}. By the formulation of gy in (B.2), its Euclidean length is of order —5 in 7.
Hence, by virtue of the C'* approximation, it produces the Jacobi field

log 7
(6.17) d'(0) = (C’f?’ sin (\)}gg) N, for some constant C.

Moreover, if at the beginning we set r = et 43" instead, then () becomes

y ] 3
(6.18) d'(0) = (CT’ cos %) N, for some constant C.
In such way, we see that linear combinations of () and () exhaust all Jacobi
fields (6.9) for this concrete example.

In general, the same conclusion can also be obtained similarly. Assume that

P11 D12 Pi1 Die 1 D22 —Di12
P = and P! = =
% * det P
P21 P22 Pa1 P2 —P21 Pu
Now the approximate orbit through (g, —¢) is
! 0 ©o ©o eMipripty + M praps,
P Pt + = —€
et —€ 0 0 eMipg1 Pty + €M paaps,
Hence the corresponding curves in rp-plane satisfies
(6.19) p = (po — €(eM'prip}y + €X' p1aps,) ).

By p1ipis + p12p3, = 0 and (), we have
p= (v — epupiy(eM' —e))r
= <<P0 — epuipip(2e" M sin(Im Alt)z'))r

<g00 +€ Pupi2 2 (2eRe Mt gin (Im Aﬂf)z’))r.

det P
We claim that 2 d“f’;fz is a real nonzero number. Note that
P11 P11 D11 D12
det = 2Im (p11pa1)i, and = - for some v £ 0 € C.

P21 P21 D21 D22
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So

pnpmi _ ||1?11||2 i — ||1011||2
det P adet P 2Im (p11pa21)

e R.

Similar to the preceding example, by employing r = ¢’, we have the following
relation for signed d(e)

, sin (Im A1 log (f + \ﬁi—ﬂ(e)))
6.20 14 g2 d(e) = — ellpull® o ,
( ) QOO (6) Im (pllﬁ) nT
<f + 2 d(e))

V142

Since the Euclidean length of N is of order —n in r,

(6.21) d'(0) = (CFRTH sin (Im Ay log f)) N, for some constant C.

By using r = '~ oM g (which generates a rescaling on the rp-plane) instead, ()
becomes

(6.22) d'(0) = (CWHTH cos (Im Ay log f)) N, for some constant C.
Thus linear combinations of () and () provide all Jacobi fields (@)

7. SOME REMARKS ON STABILITY

In this section, we shall show that the LOC curve for Type (I) in the quotient
space is not merely stable minimal but in fact length-minimizing, namely a ray in
the sense of classical Riemannian geometry, in its certain angular neighborhood.

To explain local length-minimality, i.e. being length-minimizing in some neigh-
borhood of the LOC curve, we shall construct a geodesic foliation in some angular

neighborhood around the LOC curve. Note that A = (n+ 1)2+8n(m —1) > 0.

Ly

FIGURE 3. Infinitesimal orbits near (g, 0) for Type (I) in the (¢, ¥)-plane
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Let Ly be the line through (g9, 0) with slopes 3[—(n + 1) F V/A]. Apparently, all
orbits accumulate to Lo expect one to L in the infinitesimal model. Hence, starting
from (1, 0) where @ is sufficiently close to ¢y and p; > g, there exists an orbit of
@) limiting to (g, 0) below the ¢-axis with decreasing ¢ values in (g, p1]. This
orbit corresponds to a geodesic curve 7; in the rp-plane which has strictly decreasing
slopes within (o, ¢1]. Similar discussion works for the other side (with s < ).
However it is convenient to use the unique orbit from (0,0) to (¢o,0), i.e., g2 = 0,

~

p=tand-r

=V

FIGURE 4. Geodesic foliation around the ray p = tanf - r

with increasing ¢ € (0, o) explored in [XYZ19], which corresponds to a geodesic
curve 7, in the rp-plane with strictly increasing slope within (0, ). Thus we can
gain a foliation of homothetic geodesics (i.e., obtained by dilations of 7; and ~2) in
the angular region . between {p = 0} and {p = ¢y - r}.

Therefore, the LOC curve is length-minimizing in the angular region .# following
a standard calibration argument (the fundamental theorem of calibrated geometries)
using the calibration form w = v, 7 where v is the unit tangent vector fields along
the oriented foliation and 7 the oriented unit volume form of ., see [BAGG69,
HL82a, HL82b| for details.
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