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Abstract

The simple definition of the mother body notion is proposed for the two­
dimensional hea.vy body. In generie position, the loeal structure of mother body
near singular points of eontinuation of the potential is investigated. The finite
algorythm of eonstructing mother body in the sense of the introdueed definition
is also given.

Introduction

The problem of constructing families of graviequivalent bodies is a classical geophysical

problem strongly connected with the inverse problem of geoprospecting. This problem

was investigated by a lot of mathematicians and geophysicists (see P.S. Novikov [1],

L. N. Sretenskii [2], D. Zidarov [3), [4], V. N. Strakhov and V.G.Filatov [5], A. V.

Tsirulskii [6], O. I. Kounchev [7, 8], B. Gustafsson [9}, B. Gustafsson and M. Sakai

[10], and others).
In short words, the problem is as follows. Suppose that the external gravitational

field generated by some body (below we use the term "heavy body") is known. One

• Until September 30, 1995.
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wants to find the shape of this body and the mass distribution in it. Such a problem
arises, for example, in tbe geoprospecting if one measures the gravitational field on

tbe Earth surface and wants to find out what mass distribution (inside the Earth) cau
generate such a field. Clearly, the solution of this problem occurs not to be unique.
Actually, from tbe Newton's times it is known tbat a sphere filled uniformly by masses
generates the same gravitational field as the point mass of the same magnitude placed
in the center of the sphere. So, there exist different heavy bodies producing one and
the same gravitational field. Such heavy bodies are called graviequivalent ones, and
one can consider the family of graviequivalent bodies generating oue and the same
gravitational field. Using the Poincare sweeping method one can show that each family

of graviequivalent bodies contains an infinite number of elements. Clearly, this is a
good idea to find a minimal (in some sense) heavy body in each graviequivalent family,
similar as a point mass is a minimal body in the family of concentric balls. Such an
attempt was first done in 1968 by D. Zidarov [3], who named this minimal element
"mother body" of the family in question. This notion was in a great extent heuristic.
Later on, some authors ([7], [8], [9], [11], [12]) have done the attempts to give a more
or less rigorous definition of the mother body nation. The most acceptable description
of mother body notion is given by B. Gustafsson (see [9]).

It seems, how~ver, that there exists a more simple and geometrically clear definition
of the mother body. In this paper we present such adefinition for the two-dimensional
case. We give also a finite algorithm of constructing a mother body in the sense of the

given definition.
To conclude this Introduction, we remark that the problem of constructing a mother

body is not always solvable, and the solution is not always unique. Für example, tbe

unit disc D in tbe two-dimensiünal plane R 2
( ) filled with the mass with the density
X.II

f(x, y) = exp (x) does not determine any mother body at all. This is a consequence of
the fact that tbe continuation of the field generated by such a body inside the unit disc
has an essential singularity at the origin. (Connection between the notion of mother
body and the singularity set of continuation of the corresponding gravita'tional field
will be explained later.) Tbe non-uniqueness of the construetion of mother body. can
be illustrated by the well-known Zidarov's example (see below). The algorithm of

constructing a mother body for any heavy body, proposed in the paper, allows one, in
particular, to find out whether the searched mother body exists or not. Besides, we
give the investigation of the loeal structure of the mother body, at least in the generic
position.

Acknowledgements. We are grateful to Harold Shapiro, who attracted our atten­
tion to this problem and to Björn Gustafsson who had aekquanted us with the preprint
of his interesting paper [9].
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1 Mother body and continuation of the gravita­
tional field

Consider the heavy body concentrated in the domain n c R(x'l/) and having the mass
density f (x, y) ~ o. Suppose that the function f (x, y) can be continued up to an entire
function in tbe complex plane C 1( ), and the domain n has an algebraic boundary,X,l/
that is,

r = an = {(x, y) I P (x, y) = o}
with some polynomial P (x, y) with real coefficients.

The definition of the mather body used in this paper is as folIows:

(1)

Definition 1 A mother body for the givem heavy body n is the body concentrated on

the finite system of curve segments or/and points with positive integrable mass density,

such that the support 0/ this body does not bound a two-dimensional subdomain of n.

Suppose that M is a mother body (in the sense of the above definition) correspond­
ing to n. Then Al consists of a finite set of segments of curves and, possibly, points.
It is clear that the set of curves included into M forms a planar graph which is a tree,
and, therefore, has "hanged" vertexes (vertexes of degree 1).

Later Oll, since the body M generates the same field as n does, one can see that the
potential V (x, y) generated by n can be continued into the complement M of the set
M in R 2( ) a.s a harmonie funetion. As we shall see below, the harmonie eontinuationr,y

of the external field of the heavy body inside the domain oceupied initially by masses
is a ramifying function. So, the mother body Al ean be considered as the"set of cuts
selecting a univalued branch of (ramifying) eontinuation V of the potential V. (During

this analysis we neglect the point components of the mother body M since they are
simply univalued singularities of the continuation. These singularities roust be at most
of the logarythmic type.)

Further, one ean notiee that any hanged vertex of the set M must be a singular
point of the continuation ~. Aetually, if some hanged vertex (xo, yo) E M is a regular
point of the continuation V, then the Une roass density on the eurve originating from
(xo, yo) vanishes identically (we ~ecall that the roass d,:nsity on the curve equals the
jump of the normal derivative av/an of the potential V).

Finally, eacb cut included ioto the mother body M has to satisfy tbe following three

condi tions:
1. This cut must be admissible in the sense that the limit values of the potential

from both sides of the cut must coincide with each other. This follows from the absence
of gravitational dipoles.
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2. This cut rnust be positive in the sense tbat the surn of normal derivatives of
the potential on the two sides of the cut (in the directions of tbe corresponding inner

normals) must be a positive function. This is clear since this surn equals the line mass
density which must be positive from the physical reasons.

3. All the cuts must be contained in the domain O.
Of course, as it was mentioned above, for the mother_body to exist, one should

require in addition that all singularities of continuation V of the potential V have
not more than logarithmic growth. We shall suppose in the sequel that this latter
requirement is fulfilled for all problems in question.

Thus, we ean give another definition of the notion of a mother body which is
equivalent to Definition 1 above.

Definition 2 For given heavy body 0 (defined as a pair (0, I), where 1 is a positive

function in 0) satisfying tbe above requirements, the union of the set of singularities
of continuation V of tbe potential V and a system of cuts subject to conditions 1 - 3
above will be called a mother body for O.

With this definition in hand, we shall describe the algorithm of constructing a
rnother body for any given body n (see Section 3 below). To do this, we need more
detailed information about the continuation Vof the potential V generated by the body
O. In the rest part of this section and in the next one we shall obtain the required
informat ion.

We reeall that the potential V generated by the heavy body 0 IS defined as a
solution to the Laplace equation

ßV= -I
and eao be eomputed with the help of the formula

V(x,y) = -2~! In V(x - XO)2 + (y - Yo)2 f (xo,Yo) dxo A (2)
n

(we suppose that the dOlnain n is oriented with the positive orientation of the spaee

R(x'lI»)'
To describe the required continuation in more detail, it is useful to complexify the

problem, that is, to consider the function V (x, y) in the complex space C(x'lI)' The
variables (xo, yo) can also supposed to be complex ones; in this case integral (2) must

be considered as an integral over a chain in the complex space C(xo,yo) determined by
the real domain n. After such a conlplexification, we perform the variable change

z = x + iy, ( = x - iy

4
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in integral (2). As a result we obtain1

v (z, () = 8~i J[In (z - zo) +In (( - (o)J f (zo, (0) dzo A deo, (4)
n

wbere tbe brauches of the logarythms are chosen in such a way that formulas (2) and

(4) coincide with each other. We remark that tbe variables (z,() are characteristic

variables for the Laplace operator in C2( ).r,Y

Clearly, integral (4) hardly can be computed for an arbitrary function f (zo, (0)'
However, all required information can be obtained from singular parts of the,derivatives

8Vj8z and aVj8(. These singular parts can be computed in terms of the so-called

Schwarz function (see [13], [14], [15]). We recall that the Schwarz function S (z) is

defined a.s a solution of the equation

P(z,()=O (5)

with respect to (, where (5) is a complexified equation of the boundary r of the

domain n in the ·characteristic variables (z, () (see equation (1) above). We need also

a conjugate Schwarz function S (() which is defined as a solution to (5) with respect

to (. Since the polynomial P has real coefficients in the variables (x, y), oue can easily

verify that the functions S (z) and S(() are connected with each other with the help

of the relation

S(() = S (().

Differenti ati ng integral (4) wi th respect to z, we 0 btain

8V (z, () =~Jf (zo, (0) dzo A d(o =~Jd {F1 (zo, (0) dzo} , (6)
8z 87ft Z - Zo 87ft Z - Zo

n n .

where F1 (zo, (0) is any function satisfying the following relation:

aF1 (zo, (0) = f ( i)
8(0 Zo, \:.0 •

Using the Stokes formula, we arrive at the relation

av (z, () =~JF1 (zo, (0) dzo,
8z 87ft Z - zo

r

(7)

1From DOW on we do not distinguish the function V(x , y) and its continuation V(x ,y), as weil aa

functions of (x, y) and functions of (z, ().
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sing (8)

Figure 1: Changing integration eontour.

where r is eonsidered as an one-dimensional homology dass in tbe eomplex-analytie

surfaee rc defined by (5). Deriving ( from (5) and substituting it into integral (7), we

have
8V (z, () = _1_. JPI (zo, S (zo)) dZo, (8)
8z 81TZ Z - Zo

r
where r is again the eontour in the eomplex plane Cro eoinciding with the boundary

of the domain n (here we identify the plane C:co with the real plane Rtr,y) with the

help of the relation z = x + iy).
We emphasize that the latter relation was obtained for values of z lying in the

eomplement of the domain n in the complex plane C:co (or, what is the same, in the

real plane R(:C,II»),. To obtain the eontinuation of this function inside 0, we change this

eontour to tbe eontour i encirding hoth the domain n and the point z hut eontaining

no singular points of the funetion S (zo) lying outside n (see Figure 1). The residue

theorem shows that

8V ( r) __1 JF1 (zo,S(zo))dzo ~F ( S()) = ~F ( S()) "" ( )
8 z, ~ - 8 . + 4 1 z, Z 4 1 Z, Z + ..... 1 Z ,

Z 1Tt Z - Zo
"Y

where cI>1 (z) is holomorphie inside the domain n. The latter expression deseribes all
singularities of continuation of the funetion 8Vj8z inside the domain f2.

Similar, one ean derive the expression of the derivative 8Vj8(:

6



with 4>2 (() regular in 0, where F2 (z, () is any function satisfying the relation

8F2
8z (z, () = f (z, (). (9)

In what follows it will be convenient for us to fix the choice of the function F2 (z, () in
the following way:

F2 (z,() = PI ((,z)

(the reader can veryfy that this function satisfies (9) for any function f which is real
for real values of (x, y)). Now, up to functions which are regular inside 0, one has

As one shall see from the above considerations, the function 8V/8z plays the crucial
role in the investigation of singularities of continuation of the potential V inside the
domain O. This function is known in the Russian geophysical literature as complex
vector of gravitational field (see, e. g. [6]). One can see also that the location of
singularities of continuation of the potential is uniquely determined by the Schwarz
function S (z), that is, by the equation of the boundary of the domain O. On the

cootrary, we shall see below, the geometry of admissible cuts strongly depends 00 the

mass density f (x, y).

2 Investigation of admissible euts and the Ioeal
strueture of mother bodies

Let us turn our mind to the investigation of admissible cuts. As it was already told
in the previous section, if we consider a cut as apart of the system of cuts which

determioes a univalued branch of the function V, then this cut is admissible if and

only if the limit values of this brauch from hoth sides of the cut coincide with each

other. It is easy to see that in this case the admissihle cut is none more than the set of

zeros of the variation of the potential V along some element of the fundamental group

71"1 (0 \ sing (5), ZO)

of the domain 0 \ sing (5) with a base point ZO lying on the curve r (see Figure 2,
where the loop determining the above mentioned element of the fundamental group is

denoted hy l).This leads us to the following definition:
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Figure 2: Definition of the element of fundamental group.

Definition 3 A cut c is called admissible with respect to the element

I E 1rl (0 \ sing (S) ,ZO)

if and only if varl Vl e = O.

Remark 1 All the considerations in this section will be carried out on the real plane
R 2( ). We shall use here the characteristic coordinates (z, (), so that tbe equation of%,11

tbe real space is ( = z.

Using the results obtained in the previous seetion, we ean deseribe the set of ad­
missible cuts as the set of integral eurves of a certain vector field in the plane C z '

To do tbis, we represent any vector tangent to the real space as a complex number c.
Then, in terms of the variables (z, () the derivative D e of the function V (z, () along
the veetor c is given by

modulo regular in the domain 0 funetions. Taking into account the connection between

the functions F1 and F2 , we rewrite the latter formula in the following way:

(10)
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1
Dcvarl V (z, z) = 2"Re [c var, FI (z, 8 (zn]

(regular terms vanish under tbe action of the operator yard. Equating to zero the
right-hand part of the last relation, we obtain the equation of the vector field c:

Let I be, as above, some element of tbe fundamental group 11"1 (0 \ sing (8), zn). Then,
taking the variation of the right- and left-hand sides of the latter relation we arrive at
the equality

Re [cvarl F I (z, 8 (z))] = O. (11)

Integral curves of this vector field are exactly the lines on whicb the function V (z, z) is
a constant. So, any admissible cut is an integral curve of the above constructed vector

field c. We remark also that singular points of the vector field c are singular points of
the Schwarz function 8 (z) and points for which the function PI (z, 8 (z)) vanishes.

Now we must derive the "initial conditions" for integral curves of the vector field c,

so that they are admissible cuts (that is, zero levels of the function FI (z, 8 (z))). Since
admissible cuts cao have singular points of the Schwarz function 8 (z) as their origins, to
do this it is necessary to investigate local structure of admissible cuts in a neighborhoods
of these singular points. We shall carry out such an investigation in the generic position.
In other words, we suppose that the singularity Zo in question is brought from the
finite regular characteristic point of the manifold fc and that the tangency between
this singular point and the corresponding characteristic ray is quadratic. Under such
requirements the function 8 (z) has at the point Zo the singularity of the square root
type:

(12)

where SI (z) and 8 2 (z) are regular in a neighborhood of the point ZOo

Denote by (0 = s (zo) = 52 (zo) the value of the Schwarz function at the singular
point Zn and expand the function F 1 (z, () into the Taylor series at point (zo, (0):

FI (z, () = L bjk (z - zo)j (( - (o)k .
j~O, k~O

(13)

Substituting (12) into (13) and expanding the functions 8 1 (z) and 8 2 (z) inta the
Taylor series at the point Zo, we obtain up to terms regular near zo:

00

FI (z, S (z)) =JZ - Zo L Cj (z - zo)j
j=O

up to functions regular near zoo Using the relation aFI (z, () ja( = f (z, (), one can
easily verify that

Co = f (zo, (0) 81(zo) .

9



(15)

We remark that (zo, (0) is the eharacteristic point of the surfaee fc generating the
singularity Zo of the Schwarz funetion S (z), so that the singularity of the function

8V/8z (as weIl as 8Vj8() is determined by values of the right-hand part f at charac­
teristic points of rc. As we shaIl see below, the number Co determines the behavior
of admissible cuts in a neighborhood of the point zoo Hence, we see, that the set of
admissible cuts depends on the mass density f (x, y) (unlike the set of singularities of
the potential V (x, y) whicb is determined only by the geometry of tbe domain 0).

Now we bave

1 J 1 [2 3/2 .]V (z, z) = 2"Re FI (z, S (z)) dz =2"Re 3Co (z - zo) (1 + tP (z)) ,

where 1/J (z) is a regular near Zo function vanishing at this point. Taking the variation
of both sides of the latter relation, we arrive at the formula

1 [2 3/2 ]var1V(z,z) = 2"vart Re 3CO (z-zo) (1 +1/J(z)) .

Let us introduce .the polar coordinates in a neighborhood of the point Zo:

+ i<.p
Z = Zo pe.

Then the equation of admissible cuts near this point reads

varl V (z, z) = 2:pt Re [eU~+i9) (1 + ,p (zo + pei"'))] = 0,

where Rand 0 are determined by the relation Co = ReiS, or

cos C; +Ii) Re (1+ ,p (zo + pei"')) - sin C; +0) Im (1 + ,p (zo + pe;"')) = O.

. (14)
Let us eonsider this equation as an equation with respect to <p for smaIl values of
p. Then, since the function 1/J (zo + pei<.p) is of order 0 (p), the principal term of this

equation gives

(
3<P ) . 7r 20 27rk

eos 2 + 0 = 0, or <P = <pie = 3" - 3 + -3-' k = 0,1,2.

Since at each point <Pie the derivative with respect to <P of the left-hand side of equation
(14) does not van"ish for p = 0, this equation has the unique smooth solution <P = <.pie (p)
near p = 0 such that <Pie (0) = <Pie. Each of these solutions determine an admissible
(with respect to a smallloop I encircling the point zo) cut near the point zoo So, the
initial condition for an admissible cut near singular points is

lim<p (p) = <pie,
p-o

10



where CPk are given by formula (15). The above considerations can be summarized in

the form of the theorem.

Theorem 1 Each admissible cut is an integral curve 0/ the vector field e determined

hy relation (11). ,Moreover, under the generie position requirement, in a neighhorhood

0/ each point 0/ ramification 0/ the Schwarz /unetion there exist three directions 0/
admissible cuts given by relation (15). These cuts are positive or negative depending 0/
the sign 0/ the derivative with respeet to cP 0/ the left.hand side 0/ relation (14) at the

point (cp = CPk, P = 0).

3 Algorithm of constructing a mother bodies

At this point, we have the sufficient information to formulate the algorithm of con­
structing a mother body for a given heavy body (0., f). We remind that the following

conditions mllst be valid:
1. The boundary r of the domain 0. must be an algebraic surface.

2. The function f (x, y) mllst admit the continuation up to an entire function in

the complex space C[x'lI).
3. The singularities of the continuation of the potential inside the domain n are

not more than of logarithmic type.
The last requirement can be verified with the help of the formulas for singular parts

of the continuation of the potential obtained in Section 1.

The algorithm in question goes through the following four steps:
1. Determination of the set of singularities of the Schwarz function of the domain

n lying inside this domain (that is, of the set of singularities of the continuation of the

potential V (x, y) ioto the domain initially occupied by the mass distribution). This

step requires only solving algebraic equations describing the boundary in terms of the

characteristic variables (z, ().
2. Constructing the set of cuts which are admissible for each simple loop with

base point ZO surrounding one or more points of ramification of the Schwarz function

lying inside n. To carry out this step one has to compute integral curves of the above

constructed vector field c. The initial conditions for this integral curves are defined as

follows:
For a loop I encircling a single point of singularity, (e. g., for the loops 11 or 12 on

Figure 3) the initial conditions are given by the loeal strueture of the set of admissible

euts in a neighborhood of this point.
For a loop 1encircling two points of singularity, (see loop 13 on Figure 3) the initial

condition for the set of admissible cuts is given by the interseetion of admissible cuts

11



o

Figure 3: Non-elementary loop.

for loops 11 and 12 corresponding to each of these points (on Figure 3 one of admissible
cut for the loop 13 comes through the point A of intersection of the admissible cuts

cland C2 corresponding to the loops 11 and 12 ),

For admissible cuts corresponding to a loop I encircling n points of singularity,
initial points can be found as an intersections of admissible cuts corresponding to a

loop 11 encircling the first n - 1 of these points and of that corresponding to the loop

12 corresponding to the last of them.
It is clear that the described process will be completed in the finite number of steps.

Certainly, if there exist points of singularity of the vector field c different from points

of singularities of the Schwarz function (that is, points of singularity of c determined
by zeros of the function F1 (z, S (z)); see relation (11)), then one have to investigate

tbe loca.! structure of the vector field c near such point. This can be done wi.th the help
of the defini tion (11) of the fiel d c.

3. Constructing the set of finite admissible cuts corresponding to simple loops with

base point Zo surrounding one or more points of ramification of the Schwarz function
lying inside n. This step can be fulfilled simply by deleting those edges from the graph

constructed on the previous step which intersect the complement of the domain .0 in

the plane R(x,y)'
4. Constructing a mother body for (.0, f). This can be done by examining of each

maximal tree of the above constructed graph (or of each maximal forest, if this graph
is a non-connected oue). Ir the corresponding maximal tree involves only positive cuts,

12
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Figure 4: Admissible cuts for an ellipse.

then it determines a mother body for (0, f).
In the next section we shall illustrate the work of the described algorithm on dif­

ferent examples.

4 Examples

To be short, in all the examples below we suppose that the mass density of the heavy

body in question equals 1 identically. Thus, all mother bodies below are uniquely

determined by the geometry of the domain fl.

4.1 An ellipse

Let

{

X2 y2 }

n = a 2 + b2 :::; 1

be an ellipse with the half-axes a and b, a > b (see Figure 4). Then it is easy to

compute that the Schwarz function is given by

S ( ) = a
2 + b

2
2ab J 2 _ cP

Z cP +d2 z ,

where d = v'a2 - b2 is the half of the interfocal distance. In this simple case the
complex field vector aVjßz can be computed in the explicit way with the help of

13



Similar,

Since the function

ab ~--:­
a = ([2 vaz. - x 2

•

Since tbis expression is a positive one, the inter/oeal segment is the only mother body

0/ the ellipse uni/onnly filled by masses.

formula (8):

av (z,() = ~JS(zo) dzo = ab ( J z2 - t:P - z).
Bz 811"t Z - Zo 2t:P

r

BV ab ( )Bz (z,() = 2([2 './(2 - t:P - ( .

This allows us to compute tbe potential V up to tbe constant term:

V(z,[\ = 7Re {Jr -+ -d in (z + J l-+) - Zl} +const.

av ab ~~~
varl ßz (z, () = cfl VZ2 - d2

does not vanish at any point except for tbe singular points ±dof tbe Schwarz function,
the vector field c determining tbe set of admissible cuts has singularities only at these
points, too. Let us determine tbe directions of admissible cuts originating, say, from
the point z = d. Using formula (15) above, we obtain

11" 211"k
'Pk=-+--,k=ü,1,2,

3 3

since Co = 2ab/cP and, hence, 0 = O. Similar, the directions of admissible cuts at
z = -d are

From the symmetry reasons, it is clear that one of tbe admissible cuts is an interfocal

segment;the rest four cuts come to inflnity in the plane R 2( ). Hence, the picture of
X,J,I

the admissible cuts is such as it is drawn on Figure 4. So, the finite graph mentioned
in the point 3 of the above formulated algorithm contains only the interfocal segment,
and the only thing rest is to verify tbe positivity of this cut. The simple calculations
lead us to the following expression of the mass density for the mother body consisting
of the interfocal segment:

14
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Figure 5: Admissible cuts for x 4 + y4 = 1.

4.2 A curve of the fourth order

Here we consider the heavy body (0,1) with the domain n given by

x 4 + y4 ~ 1

(see Figure 5). The corresponding Schwarz function is

s (z) = J-3z2 + 2V2Jz 4 + 1.

This function have singularities at eight points

z = ei (tr/4+,rrk/2} k = 0 1 2 3, , , , ,

z = 2V2ei1tk
/,1, k = 0, 1,2,3.

(16)

The last four of these points lye in the complement of the domain n and, hence, are not

of interest for uso The four points of singularity lying inside n are marked on Figure 5.
Similar to the previous example, the veetor field c determining the set of admissible

euts does not vanish 8o.t any point except for the points of singularity of the Schwarz

funetion. Let us investigate the loeal structure of admissible cuts in a neighborhood of

each point of singularity in question. For the point z = eitr/ 4 one has, due to equation

(15), the expression for the directions of the admissible cuts:

71f 21fk
tpk=12+T' k=O,l,2,

15



since the argum~nt 6 of the number Co for this case equals -31r /8 (we leave to the
reader the verification of the last equality). Thus, the picture of admissible cuts is such
as it is drawn on Figure 5. The fact that the straight line segment connecting points
ei1f/ 4 and e5i71;/4, a.s weH as tbe segment connecting e-i";/4 and e3i7r/4, is an admissible

cut follows from the symmetry reasons. The rest of the cuts are not contained in the
domain 0 and, hence, are of no interest for uso So, the graph mentioned in the point
3 of tbe above algorithm, consists of the two above mentioned straight line segments.
This graph is a tree, and tbe only thing rest is to verify the positivity of all the cuts
involved in this graph.

The verification of this last assertion is a little bit more complicated task than it
was in the previous example, and we shall point out the main steps of this verification.
Clearly, from the symmetry reasons it is sufficient to carry out this verification for one
of the four singular points of S (z), lying inside 0, say, for the point z = ei1f/ 4

•

The expression for the sum of normal derivatives of the potential V from both sides
of the cut Cl (see Figure 5) equals

where V+ and V- are values of the potential V from the upper and lower sides of tbe

cut CI, respectively. Here, as above, for any given complex number c we denote the
derivative in the direction of the vector ~E R 2• Due to formula (10), this expression
can be rewritten as

(17)

Let us first compute the first summand of the latter expression up to derivatives of
functions which are regular near the point ei1f/ 4 (such terms c1early do not contribute
in the final expression). We have

(18)

Ta determine the right branches of the square roots involved into the last expression,
we perform the analytic continuation of the function (16) along the path 11 shown on
Figure 6. At the origin A of this path we have ( = S (z), ( = z = 1, and, hence, both
square roots fiust have positive real values. Now one can verify that th.= expression
uuder the square root on the right in (16) is changed along the path /1 shown on

Figure 7. This path consists of the straight line segment [1, 2J21 of the real axis and
the segment of the ellipse
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Figure 6: Paths of analytic continuation.

Figure 7: Expression under the square root sign.
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Figure 8: Jump of the normal derivative.

lying in the fourth quarter of the plane R(r,y)' Extracting the square root of this
expression and multiplying the result by e- i

7l:!4 one can see that the expression under

the Re sign on the right of (18) is changed along the path I~ drawn on Figure 8 when
z is changed along the cut Cl' Hence, we see that the first sUlnmand in the expression
(17) has the posi ti ve sign.

Similar, one can see th~t the expression under the square root on the right in (16)
is changed along the path 12 shown on Figure 7 when the point z is changed along the
path 12 (see Figure 6). Hence, the expression under the Re sign in (17) changes along
the path I~ (Figure 8), and the first summand in (17) is also positive.

So, the union oJ the Jour cuts Cj, j = 1,2,3,4 Jorm the (unique) mother body 0/
(n,I).

4.3 One more curve of the fourth order (Cassini oval)

Here we consider the heavy body (fl, 1), where the domain fl is given by the equation

where a and b are positive constants (the so-called Cassini oval). This curve consists

of two closed curves for a < b, and of one closed curve for a > b. We shall investigate
this last case. .

This example is interesting frOln the following point of view. If we compute the
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-ya}-b}

Figure 9: Cassini oval.

Schwarz function of the Cassini oval, we shall obtain the expression

which has inside the domain 0 two singular points z = ±bwith singularities of the type
of the inverse square root (the domain with points of singularity is shown on Figure 9).
This happens since these singularities are generated not by regular characteristic points
of the surface fc but by singular points of this surface.

Due to this fact we cannot apply directly the result of the investigation of the local

structure of the set of admissible cuts obtained in Section 2. However, the computa­
tions similar to those in the mentioned section show that each of the two points of
singularity possesses exactly two directions of admissible cuts emanated from these

points, namely 'P = 0 and 'P = 1f. The symmetry reasons show immediately that
the only admissible cuts for the heavy body in quest ion are three segments [-00, -b],
[-b, b], and [b, +00] of the real axis. Since only one of these segments is contains in
the domain 0, the only possibility of constructing a mother body is to consider the
segment [-b, b]. Computation of the mass distribution which has to be considered on
this segment to generate the same gravitational field as the initial body leads us to the
expressIon
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Figure 10: Adnlissible cuts for an rectangle.

Since this expression is positive and integrable function on the segment [-b, b], this

segment is the only mother body for the Cassini oval.

4.4 A reetangle

This last example shows that even in the case when we cannot use the Schwarz function

for the investigation of singularities, the above described algorithm of constructing a

mother body is applicable. Consider the heavy body (f2, 1), where the domain n is a
rectangle

{
0 :$ x ::; a,

O::;y:$b

in the plane R'l( ). Here a and b are positive constants and we suppose, to be definite,
X,U

that b < a (see Figure 10).
Using directly relation (6) for the complex field vector, one has

8V
8z

1
_ -. {-2z1n(-z) -2(a-z)ln(a-z)

81rz
+2 (a + ib - z) In (a + ib - z) - 2 (ib - z) In (ib - z)}

and, consequently,

J8V ~z
8z -

1 { 2 2-. -z In(-z)+(a-z) In(a-z)
87l"Z

- (a + ib - z)210 (a + ib - z) + (ib - z)2ln (ib - z)}
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up to regular terms (we omit rather long but simple computations). Hence, we have

where the variation is taken over the loop I encircling the point z = O. Consequently,

. Varl [V] = 2Re Varl [j ~: dZ] = -~ (x2
_ y

2
).

So, the point z = 0 determines four directions of adlnissible cuts emanated from this

points. Moreover, it is clear that the lines x = ±y are admissible cuts.
Similar, investigation of all other vertexes of the rectangle leads us to six more

admissible cuts which are also straight lines emanated from these vertexes under the

angles ±1r/4 (see Figure 10). The constructed set of admissible cuts determines two

open rectangles CI and C2 with hanged vertexes at those of the rectangle. However,

these two cuts do not determine a univalued branch of the potential V. One has to

include into consideration the admissible cuts corresponding to the loop [' encircling

the two left (or the two right, which leads a posterior to the same result) yertexes of

the reetangle. The computation of the variation along this loop gives

Varl' [V] = b (y -D
and, hence, the admissible cut corresponding to this loop is the straight line y = b/2.
Adding the segment of this straight line connecting the two angular points of the open

rectangles CI and C2, we arrive at the system of cuts (shown on Figure 10 by thick lines)

which determines a univalued brauch of the potential V. We leave to the reader the

verification of the fact that this system consists of positive cuts, so that the mother
body 0/ the rectangle occupied by the uniform mass distribution has the form shown on
the above mentioned figure.

To conclude the paper, we present Zidarov's example of the heavy body for which

the corresponding mother body is not uniquely defined. Consider the heavy body

supported in the square in the plane with deleted quarter in the left upper corner

(see Figure 11) with constant mass density. Then, one can construct a corresponding
mother body in the following way. First, one can divide the considered body into

two rectangles, and, second, construct the mother body for each rectangl~ as it was

deccribed above. Then the union of the two constructed mother body will be the

mother body corresponding to the body in question. However, one eau divide the

above described domain into two reetangles by two different ways, and, therefore,

to construet two different mother bodies (they are drawn on Figures 11 a) and b),

respectively).
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a) b)

Figure 11: Non-uniqueness of a mother body.
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