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COHOMOLOGY REPRESENTATIONS OF EXTERNAL AND SYMMETRIC
PRODUCTS OF VARIETIES

LAURENŢIU MAXIM AND JÖRG SCHÜRMANN

Abstract. We prove refined generating series formulae for characters of (virtual) cohomol-
ogy representations of external products of suitable coefficients on (possibly singular) complex
quasi-projective varieties, e.g., (complexes of) constructible or coherent sheaves, or (complexes
of) mixed Hodge modules. These formulae generalize our previous results for symmetric and
alternating powers of such coefficients, and apply also to other Schur functors. The proofs of
these results are reduced via an equivariant Künneth formula to a more general generating series
identity for abstract characters of tensor powers V⊗n of an element V in a suitable symmetric
monoidal category. This abstract approach applies directly also in the equivariant context for
varieties with additional symmetries (e.g., finite group actions, finite order automorphisms, resp.,
endomorphisms).
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1. Introduction

All spaces in this paper are assumed to be complex quasi-projective varieties, though many
constructions also apply to other categories of spaces (e.g., compact complex analytic manifolds
or varieties over any base field of characteristic zero). In fact in Section 2 we explain our results
from an abstract axiomatic viewpoint of the equivariant Künneth formula, which also covers cases
like Zeta functions of constructible sheaves for the Frobenius endomorphism of varieties over finite
fields (as in [28][Thm. on p.464] and [9][Thm.4.4 on p.174]).
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1.1. Generating series formulae. In this paper, we obtain refined generating series formulae for
characters of (virtual) cohomology representations of external products of suitable coefficients on
(possibly singular) complex quasi-projective varieties, e.g., (complexes of) constructible or coherent
sheaves, or (complexes of) mixed Hodge modules. These formulae generalize our previous results
for symmetric products and configuration spaces from [20].

In more detail, we let A(X) denote any of the following three categories of coefficients on a
complex quasi-projective variety X:

(a) Db
c(X), the bounded derived category of (algebraically) constructible sheaf complexes of

C-vector spaces. Here constructibility also includes the assumption that all stalks are finite
dimensional.

(b) Db
coh(X), the bounded derived category of complexes of OX -modules with coherent coho-

mology. In this case, we also assume that X is projective.
(c) DbMHM(X), the bounded derived category of algebraic mixed Hodge modules on X.

All these categories of coefficients will be treated at once (in which case cohomology groups of
such coefficients are regarded as finite dimensional C-vector spaces), with the note that the case
A(X) = DbMHM(X) yields more refined results due to the additional mixed Hodge structures on
the cohomology of X with mixed Hodge module coefficients. These more refined results will be
stated separately.

For a fixed object M ∈ A(X), we consider the n-th self-external product M�n of M on the
product Xn of n copies of X, with its induced Σn-action of the symmetric group Σn on n-
elements. Then there is a Σn-equivariant Künneth isomorphism of finite dimensional vector spaces
(resp. mixed Hodge structures if A(X) = DbMHM(X)), see [20] and the references therein, as
well as [19] for the mixed Hodge module context:

(1) H∗(c)(X
n,M�n) ' H∗(c)(X,M)⊗n.

So, in particular, the (compactly supported) cohomology H∗(c)(X
n,M�n) is a Σn-representation.

Let RepC(Σn) be the Grothendieck group of (finite dimensional) complex representations of Σn. By
associating to a representation its character, we get a group monomorphism (with finite cokernel):

trΣn : RepC(Σn) ↪→ C(Σn),

with C(Σn) the free abelian group of Z-valued class functions on Σn (recall that characters of a
symmetric group are integer valued). Consider the generating Poincaré polynomial for the characters
of the above Σn-representations, namely:

trΣn(H∗(c)(X
n,M�n)) :=

∑
k

trΣn(Hk
(c)(X

n,M�n)) · (−z)k ∈ C(Σn)⊗ Z[z±1].

Aditionally, in the case when A(X) = DbMHM(X), the cohomology groups H∗(c)(X
n,M�n) carry

mixed Hodge structures, and the associated graded vector spaces

Hp,q,k
(c) (Xn,M�n) := GrpFGr

W
p+qH

k
(c)(X

n,M�n)

of the Hodge and resp. weight filtrations are also Σn-representations. So in this case we can also
consider the following more refined generating mixed Hodge polynomial for the characters of the
Σn-representations of these associated graded vector spaces, namely:

trΣn(H∗(c)(X
n,M�n)) :=

∑
p,q,k

trΣn(Hp,q,k
(c) (Xn,M�n)) · ypxq(−z)k ∈ C(Σn)⊗ Z[y±1, x±1, z±1].
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While we use the same notation for the two types of generating polynomials (Poincaré and, resp.,
mixed Hodge), the reader should be able to distinguish their respective meaning from the context.
Note that by forgetting the grading with respect to the mixed Hodge structure (i.e., by letting
y = x = 1), the mixed Hodge polynomial (defined for mixed Hodge module coefficients) specializes
to the Poincaré polynomial for the underlying constructible sheaf complex.

To simplify the notations and statements even further, we let L denote any of the two Laurent
polynomial rings Z[z±1] and, respectively, Z[y±1, x±1, z±1]. Once again, its meaning in the results
below should be clear from the context.

In this paper, we aim to calculate the generating series:∑
n≥0

trΣn(H∗(c)(X
n,M�n)) · tn ∈

⊕
n

C(Σn)⊗ L[[t]]

in terms of the corresponding Poincaré polynomial

P(c)(X,M)(z) :=
∑
k

bk(c)(X,M) · (−z)k ∈ L := Z[z±1],

and, respectively, mixed Hodge polynomial

h(c)(X,M)(y, x, z) :=
∑
p,q,k

hp,q,k(c) (X,M) · ypxq(−z)k ∈ L := Z[y±1, x±1, z±1]

of M in the mixed Hodge module setting. Here,

bk(c)(X,M) := dimCH
k
(c)(X,M)

and
hp,q,k(c) (X,M) := hp,q(Hk

(c)(X,M)) := dimCGr
p
FGr

W
p+qH

k
(c)(X,M)

denote the Betti and, respectively, mixed Hodge numbers of the (compactly supported) cohomology
H∗(c)(X,M) of M.

After composing with the Frobenius character homomorphism [17][Ch.1,Sect.7]:

chF : C(Σ)⊗Q :=
⊕
n

C(Σn)⊗Q '→ Λ⊗Z Q = Q[pi, i ≥ 1],

the generating series ∑
n≥0

trΣn(H∗(c)(X
n,M�n)) · tn

can be regarded as an element in the Q-algebra L ⊗ Q[pi, i ≥ 1][[t]]. Here, Λ is the graded ring
of Z-valued symmetric functions in infinitely many variables xm (m ∈ N), with pi =

∑
m x

i
m the

i-th power sum function.

The first main result of this note is the following:

Theorem 1.1. For any object M ∈ A(X), the following generating series identity for the Poincaré
polynomials of characters of external products of M holds in the Q-algebra Q[pi, i ≥ 1, z±1][[t]]:

(2)
∑
n≥0

trΣn(H∗(c)(X
n,M�n)) · tn = exp

∑
r≥1

pr · P(c)(X,M)(zr) · t
r

r

 .
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Moreover, in the case when A(X) = DbMHM(X), the following refined generating series identity
for the mixed Hodge polynomials of characters of external products of M holds in the Q-algebra
Q[pi, i ≥ 1, y±1, x±1, z±1][[t]]:

(3)
∑
n≥0

trΣn(H∗(c)(X
n,M�n)) · tn = exp

∑
r≥1

pr · h(c)(X,M)(yr, xr, zr) · t
r

r

 .

The results of Theorem 1.1 can be specialized in several different ways, e.g., (i) for specific
values of the parameters x, y, z; (ii) for special choices of the coefficients M; and (iii) for special
values of the Frobenius parameters pr. All of these special cases will be discussed below.

(i) By letting z = 1 in (2) we obtain a generating series identity for the characters of the virtual
cohomology representations

[H∗(c)(X
n,M�n)] :=

∑
k

(−1)k[Hk
(c)(X

n,M�n)] ∈ RepC(Σn),

with P(c) on the right-hand side of (2) being replaced by the corresponding (compactly supported)
Euler characteristic

χ(c)(X,M) :=
∑
k

(−1)k · bk(c)(X,M) ∈ Z.

Similarly, by letting z = 1 in (3), we get a generating series formula for the characters of graded
parts (with respect to both filtrations) of the virtual cohomology representations∑

k,p,q

(−1)k · [GrpFGr
W
p+qH

k
(c)(X

n,M�n)]ypxq ∈ RepC(Σn)[y±1, x±1],

where h(c) on the right-hand side of (3) gets replaced by its specialization to the E-polynomial
E(c). In this case we recast Getzler’s generating series for the E-polynomial [10][Prop.5.4]. Finally,
by letting x = z = 1 in (3), we get a generating series formula for the characters of graded parts
(with respect to the Hodge filtration) of the virtual cohomology representations∑

k,p

(−1)k · [GrpFH
k
(c)(X

n,M�n)]yp ∈ RepC(Σn)[y±1],

where h(c) on the right-hand side of (3) gets replaced by its specialization to the Hodge polynomial

(or Hirzebruch characteristic) χ(c)
−y.

Remark 1.2. If X is projective, some of these special cases of Euler characteristic-type generating
series have been derived in [21][Eqn.(7),(8)] by taking degrees of suitable equivariant characteristic
class formulae. Note that in the mixed Hodge context, these characteristic class formulae only
take into account the Hodge filtration, so the E-polynomial version discussed above, as well as
Theorem 1.1 cannot be deduced as degree formulae. Moreover, if X is a projective manifold, the
specialization χy mentioned above becomes the classical Hirzebruch χy-genus. This is also the
reason why we choose y to be the parameter corresponding to the Hodge filtration (hence the
unusual ordering y, x, z of parameters in the definition of mixed Hodge polynomial).

(ii) For the convenience of the reader, let us now specialize Theorem 1.1 to important concrete
examples of coefficients M ∈ A(X), e.g., the constant sheaf CX for A(X) = Db

c(X), the structure
4



sheaf OX for A(X) = Db
coh(X) and, respectively, the constant Hodge module (complex) QH

X for
A(X) = DbMHM(X).

Corollary 1.3. Let X be a complex quasi-projective variety, which is moreover assumed to be
projective in the coherent context. Then the following generating series identities hold:

(4)
∑
n≥0

trΣn(H∗(c)(X
n,C)) · tn = exp

∑
r≥1

pr · P(c)(X,C)(zr) · t
r

r

 ,

(5)
∑
n≥0

trΣn(H∗(Xn,O)) · tn = exp

∑
r≥1

pr · P (X,O)(zr) · t
r

r

 ,

(6)
∑
n≥0

trΣn(H∗(c)(X
n,QH)) · tn = exp

∑
r≥1

pr · h(c)(X,QH)(yr, xr, zr) · t
r

r

 .

Note that in formula (6), the mixed Hodge structures on the (compactly supported) cohomol-
ogy H∗(c)(X,Q

H) coincides with Deligne’s mixed Hodge structure on the rational vector spaces
H∗(c)(X,Q).

Another distinguished choice of coefficients on a pure-dimensional variety X is the (shifted)
intersection cohomology Hodge module

IC ′
H
X := ICHX [−dim(X)] ∈ DbMHM(X),

with underlying constructible sheaf complex IC ′X := ICX [−dim(X)] ∈ Db
c(X). The (compactly

supported) cohomology groups H∗(c)(X, IC
′H
X) endow the (compactly supported) intersection co-

homology groups of X, that is,

IH∗(c)(X) := H∗(c)(X, IC
′
X),

with mixed Hodge structures. Thus, as a special case of (3) we get a generating series formula
for the characters of graded parts (with respect to both filtrations) of intersection cohomology
representations of cartesian products of X, namely:

(7)
∑
n≥0

trΣn(IH∗(c)(X
n)) · tn = exp

∑
r≥1

pr · h(c)(X, IC
′H
X)(yr, xr, zr) · t

r

r

 .

By letting y = x = 1 in (7), we obtain a generating series for the corresponding Poincaré-type
polynomials of characters of intersection cohomology representations of cartesian products of X.

(iii) For suitable values of the Frobenius parameters pr in Theorem 1.1, formulae (2) and (3) also
generalize several generating series identities from [20] for the Betti numbers (respectively, mixed
Hodge numbers) of symmetric powers M(n) and alternating powers M{n} of elements M ∈ A(X)

(respectively, M ∈ DbMHM(X)) on symmetric products X(n) := Xn/Σn of a quasi-projective
variety X. (See [20] or Section 2.3 for a precise definition of symmetric and alternating powers of
coefficients.)
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By making pr = 1 for all r, we recover from (2) the generating series for the Poincaré polynomials
and Betti numbers of symmetric powers M(n) of M ∈ A(X), namely:

(8)
∑
n≥0

P(c)(X
(n),M(n))(z) · tn = exp

∑
r≥1

P(c)(X,M)(zr) · t
r

r

 .

If, moreover, M ∈ DbMHM(X), then we recast from (3) the following generating series for the
mixed Hodge numbers hp,q,k(c) (X(n),M(n)) of the symmetric powers of M, i.e.,

(9)
∑
n≥0

h(c)(X
(n),M(n))(y, x, z) · tn = exp

∑
r≥1

h(c)(X,M)(yr, xr, zr) · t
r

r

 .

Let us recall here from [19] that for M = QH
X ∈ DbMHM(X), the corresponding symmetric powers

are computed by the formula

(10) (QH
X)(n) = QH

X(n) ,

so in this case (9) specializes to Cheah’s generating series formula [6] for the mixed Hodge numbers
of symmetric products of X. Similarly, (8) specializes for the choice of the constant sheaf coef-
ficients CX ∈ Db

c(X) to Macdonald’s generating series formula [18] for the Poincaré polynomials
and Betti numbers of the symmetric products of X (see also formula (65) at the end of this paper).
Furthermore, if X is projective and we let M = OX ∈ Db

coh(X), then (8) yields the Poincaré poly-
nomial generalization of Moonen’s generating series formula [23][Cor.2.7,p.161] for the arithmetic
genus of symmetric products of a projective variety. For M = IC ′HX ∈ DbMHM(X), it is shown in
[19] that the corresponding symmetric powers yield the (shifted) intersection cohomology modules
on the symmetric products of X, i.e.,

(11) (IC ′
H
X)(n) = IC ′

H
X(n) ,

so (8) and (9) reduce in this case to generating series identities for the (compactly supported)
intersection cohomology Betti numbers and mixed Hodge numbers, respectively. For more applica-
tions and special cases of formulae (8) and (9), the reader is advised to consult our previous work
[20].

By making pr = (−1)r−1 for all r, we obtain a generating series formula for the Betti numbers
bk(c)(X

(n),M{n}) and, respectively, mixed Hodge numbers hp,q,k(c) (X(n),M{n}) if M ∈ DbMHM(X),
of the alternating powers of M. If, moreover, the underlying constructible complex of M is just
a sheaf (placed in degree zero), then the alternating powers M{n} of M are supported on the
configuration space X{n} ⊂ X(n) of n-tuples of distinct unordered points on X (see [20]), so we
recover in this case the generating series formula for the Poincaré polynomial of Betti numbers
bkc (X

{n},M{n}):

(12)
∑
n≥0

Pc(X
{n},M{n})(z) · tn = exp

∑
r≥1

−Pc(X,M)(zr) · (−t)r

r

 .
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and, respectively, mixed Hodge numbers hp,q,kc (X{n},M{n}) if M ∈ DbMHM(X):

(13)
∑
n≥0

hc(X
{n},M{n})(y, x, z) · tn = exp

∑
r≥1

−hc(X,M)(yr, xr, zr) · (−t)r

r

 .

For concrete examples and special cases of these formulae (e.g., for M = CX ∈ Db
c(X) and resp.

M = QH
X ∈ DbMHM(X)), see [20] and also [10].

The specialization p1 7→ 1 and pr 7→ 0 if r ≥ 2 corresponds to forgetting the Σn-action, up to
the Frobenius-type factor 1

n! . So, as a consequence of Theorem 1.1, we get the following:

Corollary 1.4. For a complex quasi-projective variety X and a fixed coefficient M ∈ A(X) the
following generating series holds in Q[z±1][[t]]:

(14)
∑
n≥0

P(c)(X
n,M�n)(z) · t

n

n!
= exp

(
P(c)(X,M)(z) · t

)
.

Moreover, in the case when M ∈ DbMHM(X), the following refined generating series identity holds
in the Q-algebra Q[y±1, x±1, z±1][[t]]:

(15)
∑
n≥0

h(c)(X
n,M�n)(y, x, z) · t

n

n!
= exp

(
h(c)(X,M)(y, x, z) · t

)
.

Formulae (14) and (15) can also be obtained directly from the Künneth isomorphism (1).

1.2. Twisting by symmetric group representations. Additionally, for a fixed n, one can con-
sider the coefficient of tn in the generating series for the characters of cohomology representations
H∗(c)(X

n,M�n) of all exterior powers M�n. Moreover, in this case, one can twist the coeffi-
cients M�n by a rational Σn-representation V (see Remark 2.12), to get a Σn-equivariant object
V ⊗M�n in A(Xn), and compute the corresponding characters for the twisted cohomology Σn-
representations H∗(c)(X

n, V ⊗M�n) via the equivariant Künneth formula

(16) H∗(c)(X
n, V ⊗M�n) ' V ⊗H∗(c)(X

n,M�n) ' V ⊗H∗(c)(X,M)⊗n.

Here, in the Hodge context, we regard V as a pure Hodge structure of type (0, 0). By the
multiplicativity of characters, we then have:

(17) trΣn(H∗(c)(X
n, V ⊗M�n)) = trΣn(V ) · trΣn(H∗(c)(X

n,M�n)) .

Expanding the exponential series of Theorem 1.1, together with the above multiplicativity, we have
the following identity in Q[pi, i ≥ 1, z±1]:

(18) trΣn(H∗(c)(X
n, V ⊗M�n)) =

∑
λ=(k1,k2,··· )a n

pλ
zλ
χλ(V ) ·

∏
r≥1

(
P(c)(H

∗(X;M)(zr)
)kr ,

and, for A(X) = DbMHM(X), the following refined formula holds in Q[pi, i ≥ 1, y±1, x±1, z±1]:

(19) trΣn(H∗(c)(X
n, V ⊗M�n)) =

∑
λ=(k1,k2,··· )a n

pλ
zλ
χλ(V ) ·

∏
r≥1

(
h(c)(H

∗(X;M)(yr, xr, zr)
)kr .

Here, for a partition λ = (k1, k2, · · · ) of n (i.e.,
∑

r≥1 r · kr = n) corresponding to a conjugacy
class of an element σ ∈ Σn, we denote by zλ :=

∏
r≥1 r

kr · kr! the order of the stabilizer of σ, by
χλ(V ) = traceσ(V ) the corresponding trace, and we set pλ :=

∏
r≥1 p

kr
r .
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Interesting new specializations (besides those already discussed above) arise for different choices
of the representation V . For example, by choosing V = IndΣn

K (triv), the representation induced
from the trivial representation of a subgroup K of Σn, and for M = CX ∈ Db

c(X) the constant
sheaf, formulae (18) and (19) specialize for pr = 1 (for all r) to Macdonald’s Poincaré polynomial
formula [18][p.567] for the quotient Xn/K, i.e.,

(20) P(c)(X
n/K,C)(z) =

∑
λ=(k1,k2,··· )a n

1

zλ
χλ(IndΣn

K (triv)) ·
∏
r≥1

(
P(c)(H

∗(X;C)(zr)
)kr ,

resp., to the corresponding formula for the mixed Hodge polynomial h(c)(X
n/K,QH)(y, x, z), see

(58). If X is projective, similar identities hold for the Poincaré polynomial of the coherent structure
sheaf OX .

Similarly, for V = Vµ ' V ∗µ the (self-dual) irreducible representation of Σn corresponding to a
partition µ of n, (18) and (19) specialize for pr = 1 (for all r) to formulae for the Poincaré resp.
mixed Hodge polynomials of the corresponding Schur-type objects Sµ(M) ∈ A(X(n)) associated
to M ∈ A(X) (see Section 2.4 for a definition):

(21) P(c)(X
(n), Sµ(M))(z) =

∑
λ=(k1,k2,··· )a n

1

zλ
χλ(Vµ) ·

∏
r≥1

(
P(c)(H

∗(X;M)(zr)
)kr ,

and for M ∈ DbMHM(X):

(22) h(c)(X
(n), Sµ(M))(y, x, z) =

∑
λ=(k1,k2,··· )a n

1

zλ
χλ(Vµ) ·

∏
r≥1

(
h(c)(H

∗(X;M)(yr, xr, zr)
)kr .

Note that at the cohomology level, we have the isomorphisms:

(23) H∗(c)(X
(n), Sµ(M)) ∼=

(
Vµ ⊗H∗(c)(X

n,M�)
)Σn

,

and similarly for the graded pieces with respect to the Hodge and weight filtrations in the Hodge
context. These Schur-type objects Sµ(M) generalize the symmetric and alternating powers of M,
which correspond to the trivial and resp. sign representation. Moreover, they can be used to get an
alternative description of the characters of cohomology representations H∗(c)(X

n,M�n) in terms of
the Schur functions sµ := chF (Vµ) ∈ Λ ⊂ Q[pi, i ≥ 1], see [17][Ch.1, Sect.3 and Sect.7], namely
we have for any M ∈ A(X):

(24) trΣn(H∗(c)(X
n,M�n)) =

∑
µa n

sµ · P(c)(X
(n), Sµ(M))(z),

with P(c)(X
(n), Sµ(M))(z) computed as in (21). A similar formula holds for M ∈ DbMHM(X) by

using instead the Hodge polynomials.
As a concrete example, for X pure dimensional with M = IC ′HX ∈ DbMHM(X), the corre-

sponding Schur-type object Sµ(IC ′HX) is given by the (shifted) twisted intersection cohomology
Hodge module IC ′HX(n)(Vµ), with twisted coefficients corresponding to the local system on the
configuration space X{n} ⊂ X(n) of unordered n-tuples of distinct points in X, induced from
Vµ by the group homomorphism π1(X{n}) → Σn (compare [20][p.293] and [22][Prop.3.5]). So,

8



formula (22) reduces in this case to the calculation of Hodge polynomials of twisted intersection
cohomology

IH∗(c)(X
(n), Vµ) := H∗(c)(X

(n); IC ′
H
X(n)(Vµ)),

namely,
(25)

h(c)(X
(n), IC ′

H
X(n)(Vµ))(y, x, z) =

∑
λ=(k1,k2,··· )a n

1

zλ
χλ(Vµ) ·

∏
r≥1

(
h(c)(X; IC ′

H
X)(yr, xr, zr)

)kr
.

A special case of this formula, for the χ−y-polynomial, has been recently obtained by the authors
in [21][Eqn.(21)], by taking degrees of a certain characteristic class identity.

1.3. Abstract generating series formulae and applications. Theorem 1.1 is a direct application
of a generating series formula for abstract characters cln of tensor powers V⊗n of an element V in
a suitable symmetric monoidal category (A,⊗), which in our case will be

V = H∗(c)(X,M), resp., V = Gr∗FGr
W
∗ H

∗
(c)(X,M),

as an element in the abelian tensor category of finite dimensional (multi-)graded vector spaces. Note
that the functor Gr∗FGr

W
∗ is an exact tensor functor on the category of mixed Hodge structures,

so it is compatible with the Künneth isomorphism (1).
In more detail, let A be a pseudo-abelian (or Karoubian) Q-linear additive category which is

also symmetric monoidal, with tensor product ⊗ Q-linear additive in both variables. Then the
corresponding Grothendieck ring K0(A) is a pre-lambda ring with a pre-lambda structure defined
by (see [13]):

(26) σt : K0(A)→ K0(A)[[t]] , [V] 7→ 1 +
∑
n≥1

[(V⊗n)Σn ] · tn ,

for (−)Σn the functor defined by taking the Σn-invariant part. Recall that a pre-lambda structure
on a commutative ring R with unit 1 is a group homomorphism

σt : (R,+)→ (R[[t]], ·) ; r 7→ 1 +
∑
n≥1

σn(r) · tn

with σ1 = idR, where “·” on the target side denotes the multiplication of formal power series.
Let AΣn be the additive category of the Σn-equivariant objects in A, as in [20][Sect.4], with

corresponding Grothendieck group K0(AΣn). Then one has the following decomposition (e.g., see
[20][Eqn.(45)] and Section 2.1):

(27) K0(AΣn) ' K0(A)⊗Z RepQ(Σn),

with RepQ(Σn) the ring of rational representations of Σn. We next denote by cln the composition:

cln : K0(AΣn) ' K0(A)⊗Z RepQ(Σn)
id⊗trΣn−−−−−→ K0(A)⊗Z C(Σn).

Fix now an object V ∈ A, and consider the generating series:∑
n≥0

cln([V⊗n]) · tn ∈ K0(A)⊗ C(Σ)[[t]].

After composing (in the second tensor factor) with the Frobenius character homomorphism

(28) chF : C(Σ)⊗Q =
⊕
n

C(Σn)⊗Q '−→ Q[pi, i ≥ 1],

9



the generating series
∑

n≥0 chF (cln([V⊗n])) · tn is an element in the formal power series ring of
the Q-algebra K0(A)⊗Q[pi, i ≥ 1].

In the above notations, the main abstract formula of this note can now be stated as follows:

Theorem 1.5. For any V ∈ A, the following generating series identity holds in the Q-algebra
(K0(A)⊗Q[pi, i ≥ 1]) [[t]] = (Q[pi, i ≥ 1]⊗K0(A)) [[t]]:

(29)
∑
n≥0

chF
(
cln([V⊗n])

)
· tn = exp

∑
r≥1

ψr([V])⊗ pr ·
tr

r

 ,

with ψr the r-th Adams operation of the pre-lambda ring K0(A).

Note that by setting pr = 1 for all r, formula (29) specializes to the well-known pre-lambda ring
identity (e.g., see [16] or [17][Ch.1,Rem.2.15]):

(30) σt ([V]) = 1 +
∑
n≥1

[(V⊗n)Σn ] · tn = exp

∑
r≥1

ψr([V]) · t
r

r

 ∈ K0(A)⊗Z Q[[t]] ,

relating the pre-lambda structure to the corresponding Adams operations. Formula (30) was the
main tool used for proving our results in [20] (and see also [10]). In this paper, we use a more
general equivariant approach, which does not rely on the theory of pre-lambda rings.

Similarly, formulae (18) and (19) for twisted coefficients can be derived from the following
abstract twisting formula (see Theorem 2.4 of Sect.2.1):

Theorem 1.6. For V a rational representation of Σn and V ∈ A, the following identity holds in
Q[pi, i ≥ 1]⊗K0(A):

(31) chF
(
cln(V ⊗ V⊗n)

)
=

∑
λ=(k1,k2,··· )a n

pλ
zλ
χλ(V )⊗

∏
r≥1

(ψr([V]))kr ,

where χλ(V ) = traceσ(V ), for σ ∈ Σn of cycle-type corresponding to the partition λ of n.

In Section 3, we indicate further applications of the above abstract setup to suitable equivariant
versions of (characters of) Poincaré and mixed Hodge polynomials of equivariant coefficients. For
simplicity, we illustrate here such equivariant formulae just for the constant coefficients M = QH

in the Hodge context, and for Macdonald-type generating series of symmetric products (i.e., with
all Frobenius variables pr set to 1).

Let (a) G be a finite group acting algebraically on X, (b) g be an algebraic automorphism of
X of finite order, or (c) g : X → X be a (proper) algebraic endomorphism. Due the algebraic
nature of the action, the (compactly supported) cohomology H∗(c)(X;Q) gets an induced pullback
action of G, of the cyclic group 〈g〉, or, resp., of g, compatible with the mixed Hodge structures
(with the assumption that g is proper if Hc(−) is considered). It follows that the graded pieces
Hp,q,k

(c) (X;C) carry a similar action. So we can define a corresponding equivariant mixed Hodge

polynomial hG(c)(X;Q), h〈g〉(c)(X;Q), and resp. hg(c)(X;Q) in this equivariant context as follows:

(a) If G is a finite group,

hG(c)(X,Q
H)(y, x, z) :=

∑
p,q,k

trG(Hp,q,k
(c) (X,C)) · ypxq(−z)k ∈ C(G)⊗ C[y, x, z],
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with C(G)⊗C the complex valued class-functions of G, and trG the usual character map.
(b) If g is an algebraic automorphism of X of finite order, we let

χp,q,k〈g〉 (X) :=
∑
λ∈µ̂

dimC(Hp,q,k
(c) (X,C)λ) · (λ) ∈ Z[µ̂],

with Z[µ̂] the group ring of the abelian group µ̂ of roots of unity in C (with respect to
multiplication), and Hp,q,k

(c) (X,C)λ denoting the corresponding λ-eigenspace of g. Then
we set

h
〈g〉
(c)(X,QH)(y, x, z) :=

∑
p,q,k

χp,q,k〈g〉 (X) · ypxq(−z)k ∈ Z[µ̂]⊗ C[y, x, z],

(c) If g : X → X is a (proper) algebraic endomorphism, then we set

hg(c)(X,Q
H)(y, x, z) :=

∑
p,q,k

traceg(H
p,q,k
(c) (X;C)) · ypxq(−z)k ∈ C[y, x, z].

The external products Xn get an induced diagonal action of G, 〈g〉 or resp. g, commuting with
the symmetric group action. Therefore, the symmetric products X(n) inherit a similar action of G,
〈g〉 or resp. g, so the corresponding invariants as above are also defined for each X(n).

We can now formulate the following Macdonald-type generating series result (for more general
statements, see Theorem 3.3):

Theorem 1.7. (a) If G is a finite group acting algebraically on X, then:

(32)
∑
n≥0

hG(c)(X
(n),QH) · tn = exp

∑
r≥1

ψr(h
G
(c)(X,Q

H)) · t
r

r

 ∈ C(G)⊗ C[y, x, z][[t]],

with ψr(hG(c)(X,Q
H)(y, x, z))(g) := hG(c)(X,Q

H)(yr, xr, zr)(gr), for all g ∈ G.
(b) If g is an algebraic automorphism of X of finite order, then:

(33)
∑
n≥0

h
〈g〉
(c)(X(n),QH) · tn = exp

∑
r≥1

ψr(h
〈g〉
(c)(X,QH)) · t

r

r

 ∈ Z[µ̂]⊗ C[y, x, z][[t]],

with ψr((λ) · h(y, x, z)) := (λr) · h(yr, xr, zr), for λ ∈ µ̂ and h(y, x, z) ∈ C[y, x, z].
(c) If g : X → X is a (proper) algebraic endomorphism of X, then

(34)
∑
n≥0

hg(c)(X
(n),QH)(y, x, z) · tn = exp

∑
r≥1

hg
r

(c)(X,Q
H)(yr, xr, zr) · t

r

r

 ∈ C[y, x, z][[t]].

Let us finally compare special cases of Theorem 1.7 with other results available in the literature.
(a) By specializing to z = 1, our invariant hG(c) becomes the corresponding equivariant E- (or

Hodge-Deligne) polynomial EG(c). By further specializing also y and x to the value 1, this
reduces to the more classical equivariant Euler characteristic χG(c) ∈ C(G)⊗C. Then (32)
becomes a variant of [11][Lemma 1], which is formulated in terms of the Burnside ring
A(G) of G, instead of class functions.

11



(b) By specializing to z = 1, our invariant h〈g〉(c) becomes the corresponding equivariant E- (or

Hodge-Deligne) polynomial E〈g〉(c) . Then formula (33) reduces in case of compact supports
to [8][Theorem 1], which is formulated in terms of the power structure on the pre-lambda
ring Z[µ̂]⊗C[y, x]. By further specializing to x = 1, this equivariant E-polynomial reduces
to the well-studied Hodge spectrum of a finite order automorphism.

(c) The right-hand side of formula (34) is a Hodge version of the classical Lefschetz Zeta
function, to which it reduces by specializing the variables y, x, z to the value 1. Similarly,
as gr = idX for all r in case g = idX , the graded (resp. Hodge) version of the classical
Lefschetz Zeta function specializes in this case to (Cheah’s Hodge version [6] of) Macdon-
ald’s generating series formula [18] for the Poincaré polynomials and Betti numbers of the
symmetric products of X (see formula (65) and also Theorem 3.4 for the corresponding
graded version of the Lefschetz Zeta function).

Remark 1.8. The interested reader should compare our results also with [15][Prop.15.5] and resp.
[4][Thm.3.12], for an abstract analog of (34) and resp. (32) in the context of an automorphism resp.
of a finite group action for a dualizable object in a suitable tensor category, with a corresponding
notion of a trace.

The specialization at z = 1 of Theorem 1.7 (a) resp. (b) above can also be reformulated
(compare also with [8, 11]) by saying that

(35) EGc : KG
0 (var/C)→ C(G)⊗ C[y, x] resp. E〈g〉c : K

〈g〉
0 (var/C)→ Z[µ̂]⊗ C[y, x]

is a morphism of pre-lambda rings, with the pre-lambda structure of the corresponding equivariant
Grothendieck group of complex algebraic varieties (with respect to the scissor relation) defined via
the Kapranov Zeta function

[X] 7→ [pt] +
∑
n≥1

[X(n)] · tn .

Similar considerations apply for the variant

(36) hG(c) : K̄G
0 (var/C)→ C(G)⊗ C[y, x, z] resp. h

〈g〉
(c) : K̄

〈g〉
0 (var/C)→ Z[µ̂]⊗ C[y, x, z]

on the corresponding equivariant Grothendieck group of complex algebraic varieties (with respect
to disjoint unions) as studied in [20][Sec.2.2] in the non-equivariant context.

In future works, the equivariant context for a finite group action will be extended to wreath
products, needed, e.g., in the abstract framework for the study of the plethysm action on the
lambda ring K0(A)⊗Q[pi, i ≥ 1] and the composition of Schur- resp. polynomial functors (as e.g.
in [17][I, App. A]), as well as for orbifold versions of our results, and in the study of configuration
spaces and their Fulton-MacPherson compactifications (as considered for example in [10]; compare
also with [14] in the context of algebraic varieties over finite fields).

Acknowledgements. L. Maxim was partially supported by grants from NSF, NSA, by a grant
of the Ministry of National Education, CNCS-UEFISCDI project number PN-II-ID-PCE-2012-4-
0156, and by a fellowship from the Max-Planck-Institut für Mathematik, Bonn. J. Schürmann was
supported by the SFB 878 “groups, geometry and actions".
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2. Abstract generating series identities and Applications

In this section, we derive Theorem 1.1 from the Introduction as a consequence of a more general
generating series for abstract characters of tensor powers V⊗n of an element V in a suitable
symmetric monoidal category.

2.1. Symmetric monoidal categories. Let A be a pseudo-abelian (or Karoubian) Q-linear ad-
ditive category which is also symmetric monoidal, with the tensor product ⊗ Q-linear additive in
both variables. Let K0(A) denote the corresponding Grothendieck ring. Similarly, let AΣn be
the additive category of the Σn-equivariant objects in A, as in [20][Sect.4], with corresponding
Grothendieck group KΣn

0 (A) := K0(AΣn). Then one has the following decomposition (e.g., see
[20][Eqn.(45)]):

(37) KΣn
0 (A) ' K0(A)⊗Z RepQ(Σn) ' RepQ(Σn)⊗Z K0(A),

with RepQ(Σn) the ring of rational representations of Σn. In fact, this follows directly from the
corresponding decomposition of Y ∈ AΣn by Schur functors Sµ : AΣn → A, Y 7→ (Vµ ⊗ Y)Σn

(e.g., see [7, 13]):

(38) Y '
∑
µ`n

Vµ ⊗ Sµ(Y) ,

with Vµ ' V ∗µ the (self-dual) irreducible Q-representation of Σn corresponding to the partition µ
of n. Here, the Karoubian Q-linear additive structure of A is used to defined the Σn-invariant part
functor by the projector

(−)Σn :=
1

n!

∑
σ∈Σn

σ∗,

with σ∗ denoting the action of σ ∈ Σn.
As in the classical representation theory, the rings KΣn

0 (A) have product, induction and re-
striction functors compatible with (37), induced from the corresponding functors on AΣn , see
[7][Sect.1], [13][Sect.4.1]:

(a) the product:
⊗ : KΣn

0 (A)⊗KΣm
0 (A)→ KΣn×Σm

0 (A)

induced from
⊗ : AΣn ⊗AΣm → AΣn×Σm .

(b) induction functor:

Ind
Σn+m

Σn×Σm
: KΣn×Σm

0 (A)→ K
Σn+m

0 (A)

induced from the additive functor

Ind
Σn+m

Σn×Σm
: AΣn×Σm → AΣn+m , Y 7→ (Q[Σn+m]⊗ Y)Σn×Σm .

(c) the restriction functor

Res
Σn+m

Σn×Σm
: K

Σn+m

0 (A)→ KΣn×Σm
0 (A)

induced from the obvious restriction functor: Res
Σn+m

Σn×Σm
: AΣn+m → AΣn×Σm .
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We next denote by cln the composition:

cln : KΣn
0 (A) ' K0(A)⊗Z RepQ(Σn)

id⊗trΣn−−−−−→ K0(A)⊗Z C(Σn).

By the above considerations, cln is compatible with the product, induction and restriction functors,
with the corresponding classical notions for the character group. Therefore, we get an induced
graded ring homomorphism (which becomes an isomorphism after tensoring with Q)

cl :=
∑
n

cln :
⊕
n

KΣn
0 (A)−→K0(A)⊗Z

(⊕
n

C(Σn)

)
= K0(A)⊗Z C(Σ).

Here the commutative induction product on both sides is given by:

� := Ind
Σn+m

Σn×Σm
(· ⊗ ·).

Fix now an object V ∈ A, and consider the generating series:∑
n≥0

cln([V⊗n]) · tn ∈ K0(A)⊗ C(Σ)[[t]].

Remark 2.1. Note that the total power maps

V 7→
∑
n≥0

[V⊗n] · tn 7→
∑
n≥0

cln([V⊗n]) · tn

only depend on the Grothendieck class [V] ∈ K0(A), see [20][Prop.3.2].

After composing with the Frobenius character homomorphism

(39) chF : C(Σ)⊗Q =
⊕
n

C(Σn)⊗Q '−→ Q[pi, i ≥ 1],

the generating series
∑

n≥0 chF (cln([V⊗n])) · tn is an element in the formal power series ring of
the Q-algebra K0(A)⊗Q[pi, i ≥ 1]. Note that the homomorphisms

K0(A)⊗

(⊕
n

RepQ(Σn)

)
[[t]]→ K0(A)⊗ C(Σ)[[t]]→ K0(A)⊗ C(Σ)⊗Q[[t]]

are injective if K0(A) is Z-torsion-free, so no information is lost in this case after tensoring with Q,
or after applying the Frobenius character homomorphism. For example, this is the case if A is the
tensor category of finite dimensional multi-graded vector spaces, or the category of (polarizable)
mixed Hodge structures.

We can now state our main abstract generating series formula:

Theorem 2.2. For any V ∈ A, the following generating series identity holds in the Q-algebra
(K0(A)⊗Q[pi, i ≥ 1]) [[t]] = (Q[pi, i ≥ 1]⊗K0(A)) [[t]]:

(40)
∑
n≥0

chF
(
cln([V⊗n])

)
· tn = exp

∑
r≥1

ψr([V])⊗ pr ·
tr

r

 ,

with ψr the r-th Adams operation of the pre-lamda ring K0(A).
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Proof. This formula can be seen as a special case of Theorem 3.1 from our previous work [21].
However, here we give a direct proof based on the calculus of symmetric functions, adapted to the
context of this section.

For σ ∈ Σn, we denote by
cln([V⊗n])(σ) ∈ K0(A)

the element obtained from cln([V⊗n]) by evaluating the character at σ. Then, if σ ∈ Σn has cycle-
type (k1, k2, · · · ), by using the fact that cln commutes with the restriction and product functors it
follows that the following multiplicativity property holds:

(41) cln([V⊗n])(σ) = ⊗r
(
clr([V

⊗r])(σr)
)kr ,

where σr ∈ Σr is a cycle of length r. For any r ≥ 1, let us now set

br := clr([V
⊗r])(σr) ∈ K0(A).

By the definition of the Frobenius character [17][Ch.1, Sect.7], we have:

(42) chF
(
cln([V⊗n])

)
=

1

n!

∑
σ∈Σn

cln([V⊗n])(σ)⊗ ψ(σ) ∈ K0(A)⊗Q[pi, i ≥ 1],

where
ψ(σ) =

∏
r

pkrr = pλ

for σ ∈ Σn in the conjugacy class corresponding to the partition λ := (k1, k2, · · · ) of n (i.e.,∑
r rkr = n). Then by (41), formula (42) can be re-written as:

(43) chF
(
cln([V⊗n])

)
=
∑
λa n

pλ
zλ
⊗
∏
r

bkrr ∈ K0(A)⊗Q[pi, i ≥ 1],

with zλ :=
∏
r r

kr · kr! the order of the stabilizer in Σn of an element of cycle-type λ. So, we have
as in [17][p.25] (see also [15][p.554]):

exp

∑
r≥1

br ⊗ pr ·
tr

r

 =
∏
r≥1

exp

(
br ⊗ pr ·

tr

r

)

=
∏
r≥1

∞∑
kr=0

(br ⊗ pr)kr
rkr · kr!

· trkr

=
∑
n

(∑
λa n

pλ
zλ
⊗
∏
r

bkrr

)
· tn

(43)
=
∑
n

chF
(
cln([V⊗n])

)
· tn.

(44)

To conclude the proof of the theorem, recall from [20][Sect.3] that the r-th Adams operation on
K0(A) can be given as

ψr([V]) = cln([V⊗r])(σr) =: br,

for σr a cycle of length r in Σr (as originally introduced by Atiyah in the context of topological
K-theory [2]). �
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Remark 2.3. Formula (42) also explains that the specialization p1 7→ 1 and pr 7→ 0 if r ≥ 2 used
in Corollary 1.4 corresponds to forgetting the Σn-action, up to the Frobenius-type factor 1

n! .

We next explain in this abstract setting the twisting construction used in the Introduction (see
Section 1.2). Let VectQ(Σn) be the category of finite dimensional rational Σn-representations. We
define a pairing

(45) VectQ(Σn)×AΣn
⊗−→ AΣn ; (V,Y) 7→ V ⊗ Y

by the composition
VectQ(Σn)×AΣn

⊗−→ AΣn×Σn
Res−→ AΣn ,

with the underlying tensor product ⊗ defined via the Q-linear additive structure of A (as in [7])
together with its induced Σn-action on each factor, and Res denoting the restriction functor for
the diagonal subgroup Σn ↪→ Σn × Σn. This induces a pairing

(46) RepQ(Σn)×KΣn
0 (A)

⊗−→ KΣn
0 (A)

on the corresponding Grothendieck groups such that

(47) cln([V ⊗ Y]) = trΣn(V ) · cln([Y]) ∈ K0(A)⊗Z C(Σn) ' C(Σn)⊗Z K0(A),

for V a rational Σn-representation and Y ∈ AΣn , with multiplication · induced by the usual
multiplication of class functions.

By using formula (43), together with the above multiplicativity (47), we obtain (after composing
with the Frobenius character homomorphism chF ) the following:

Theorem 2.4. In the above notations, the following identity holds in Q[pi, i ≥ 1]⊗K0(A):

(48) chF
(
cln(V ⊗ V⊗n)

)
=

∑
λ=(k1,k2,··· )a n

pλ
zλ
χλ(V )⊗

∏
r≥1

(ψr([V]))kr ,

where χλ(V ) = traceσ(V ), for σ ∈ Σn of cycle-type corresponding to the partition λ of n, and
ψr the r-th Adams operation on K0(A) as before.

We next make the following

Definition 2.5. Let V be a finite dimensional rational Σn-representation. The associated Schur
(or homogeneous polynomial) functor SV : A→ A is defined by

SV (V) := (V ⊗ V⊗n)Σn .

If V = Vµ ' V ∗µ is the (self-dual) irreducible representation of Σn corresponding to a partition µ
of n, we denote by Sµ := SVµ the corresponding Schur functor.

Remark 2.6. The Schur functor SV associated to V induces a corresponding pairing (Q-linear
and additive only in the first factor)

RepQ(Σn)×K0(A) −→ K0(A)

on Grothendieck groups, defined via the composition:

RepQ(Σn)×K0(A)
id×(−)⊗n−→ RepQ(Σn)×KΣn

0 (A)
⊗−→ KΣn

0 (A)
(−)Σn

−→ K0(A),

where the n-th power map

(−)⊗n : K0(A)→ KΣn
0 (A); [V] 7→ [V⊗n]
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is well-defined by [20][Prop.3.2], ⊗ is the pairing defined above, and KΣn
0 (A)

(−)Σn

−→ K0(A) is
induced from the corresponding additive projection functor.

By specializing (48) to pr = 1 for all r (which, by the Schur functor decomposition (38), cor-
responds to taking the Σn-invariant part), we obtain a computation of the Grothendieck class
[SV (V)] = SV ([V]) of the Schur (or polynomial) functor associate to V in terms of Adams opera-
tions. More precisely,

Corollary 2.7. In the above notations, we have:

(49) SV ([V]) =
∑

λ=(k1,k2,··· )a n

1

zλ
χλ(V )⊗

∏
r≥1

(ψr([V]))kr ∈ K0(A)⊗Q.

Finally, the Schur functor decomposition (38) yields (after composing with the Frobenius char-
acter homomorphism chF ), the following identity for any V ∈ A:

(50) chF
(
cln([V⊗n])

)
=
∑
µa n

sµ ⊗ Sµ([V]) ∈ Λ⊗K0(A),

with sµ := chF (Vµ) ∈ Λ ⊂ Q[pi, i ≥ 1] the corresponding Schur functions, see [17][Ch.1, Sect.3
and Sect.7]. Note that the Frobenius character chF induces an isomorphism of graded rings

chF : RepQ(Σ) :=
⊕
n

RepQ(Σn)
'−→ Λ ⊂ Q[pi, i ≥ 1].

Remark 2.8. The non-degenerate pairing RepQ(Σn) × RepQ(Σn) −→ Z, given by (V,W ) 7→
dimQ(V ⊗W )Σn induces a duality isomorphism

D : RepQ(Σn) ' HomZ(RepQ(Σn),Z) =: RepQ(Σn)∗

identifying the Schur functor SV : K0(A) → K0(A) with the corresponding operation on K0(A)
defined by D(V ), as in [20][Sect.3] (where we followed Atiyah’s approach to K-theory operations).
Summing over all n, we get isomorphisms of commutative graded rings

Λ
chF←−−−−
∼

RepQ(Σ)
D−−−−→
∼

RepQ(Σ)∗

identifying their respective operations on K0(A) (see also [4][Lem.2.6] and [29][Cor.5.2]). Here,
(1) Λ acts as a universal lambda ring on K0(A), as in [10].
(2) RepQ(Σ) acts via direct sums of Schur functors (also called polynomial functors), as con-

sidered in the present paper.
(3) RepQ(Σ)∗ acts via operations as in [20][Sect.3].

2.2. From abstract to concrete identities. Let us now explain how to derive our Theorem 1.1,
as well as formula (17) from the Introduction from the above abstract generating series formula.
We start with the proof of formula (3) in the mixed Hodge context.

For an additive tensor category (Ab,⊗), let Gr−(Ab) denote the additive tensor category of
bounded graded objects in Ab, i.e., functors G : Z→ Ab, with Gn := G(n) = 0 except for finitely
many n ∈ Z. Here,

(G⊗G′)n := ⊕i+j=nGi ⊗Gj ,
with the Koszul symmetry isomorphism (indicated by the − sign in Gr−):

(−1)i·js(Gi, Gj) : Gi ⊗Gj ' Gj ⊗Gi .
17



If (Ab,⊗) is a Q-linear Karoubian (or abelian) symmetric monoidal category, then the same is true
for Gr−(Ab). This applies for example to the category mHs of mixed Hodge structures. Note that
in the Künneth formula (1), we have to view H∗(c)(X,M) as an element in the Gr−(mHs) with
tensor product ⊗ defined via the above Koszul rule.

Let Gr∗FGr
W
∗ : mHs → Gr2(vectf (C)) be the functor of taking the associated bigraded finite

dimensional C-vector space:

V 7→ ⊕p,q GrpFGr
W
p+q(V ⊗Q C) ∈ Gr2(vectf (C)) .

This is an exact tensor functor of such abelian tensor categories, if we use the induced symmetry
isomorphism without any sign changes for the abelian category Gr2(vectf (C)) of bigraded finite
dimensional complex vector spaces. The transformation Gr∗FGr

W
∗ is compatible with the Künneth

isomorphism (1). Similarly, Gr∗FGr
W
∗ is compatible with the abstract pairing (46), as well as taking

invariant subobjects. Moreover, for A = Gr−(mHs), the abstract pairing gets identified with the
tensor product on A, as used in (16), after regarding a rational representation as a pure Hodge
structure of type (0, 0) placed in degree zero.

Recall next that the ring homomorphism

h : K0(Gr−(Gr2(vectf (C))))→ Z[y±1, x±1, z±1]

given by
[⊕(V p,q)k] 7→

∑
p,q,k

dim((V p,q)k) · ypxq(−z)k ,

with k the degree with respect to the grading in Gr− is an isomorphism of pre-lambda rings,
see [20][Prop.2.4]. The pre-lambda structure on K0(Gr−(Gr2(vectf (C)))) is defined as in (26),
whereas the pre-lambda structure on the Laurent polynomial ring Z[y±1, x±1, z±1] corresponds to
the Adams operations

ψr(p(y, x, z)) = p(yr, xr, zr).

The sign choice of numbering by (−z)k in the definition of h is needed for the compatibility with
these pre-lambda structures.

Finally, we have an equality

(h⊗ id) ◦ cln = trΣn : KΣn
0 (Gr−Gr2(vectf (C)))→ Z[y±1, x±1, z±1]⊗ C(Σn),

as can be easily checked on generators given by a Σn-representation placed in a single multi-degree.
Formula (3) follows now by applying the ring homomorphism

(h ◦Gr∗FGrW∗ )⊗ id : K0(Gr−(mHs))⊗Q[pi, i ≥ 1]→ Z[y±1, x±1, z±1]⊗Q[pi, i ≥ 1]

to formula (40) of Theorem 2.2, with V := H∗(c)(X,M) ∈ A := Gr−(mHs). Similarly, formula
(17) follows by applying this ring homomorphism to the identity (47).

For the proof of the generating series (2) and the multiplicativity (17) for the Poincaré-type
polynomials, we consider similarly the isomorphism of pre-lambda rings

P : K0(Gr−(vectf (C)))→ Z[z±1]

defined by taking the dimension counting Laurent polynomial

[⊕V k] 7→
∑
k

dim(V k) · (−z)k ,
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with k the degree with respect to the grading in Gr−. Here, vectf (C) is the abelian tensor
category of finite dimensional complex vector spaces, and the Adams operation on Z[z±1] is given
by ψr(p(z)) = p(zr). Similarly, we have an equality

(P ⊗ id) ◦ cln = trΣn : KΣn
0 (Gr−(vectf (C)))→ Z[z±1]⊗ C(Σn).

Then formula (2) follows by applying the ring homomorphism

P ⊗ id : K0(Gr−(vectf (C)))⊗Q[pi, i ≥ 1]→ Z[z±1]⊗Q[pi, i ≥ 1]

to formula (29), with V := H∗(c)(X,M) ∈ A := Gr−(vectf (C)). Similarly, formula (17) follows by
applying this ring homomorphism to the identity (47).

2.3. Pseudo-functors. In this section we explain the connection of Theorem 1.1 with our previous
results from [20] about generating series of symmetric and alternating powers of suitable coefficients,
e.g., (complexes of) constructible or coherent sheaves, or (complexes of) mixed Hodge modules.
In fact, all of this can be discussed in the abstract setting of suitable pseudo-functors, as in [20],
which we now recall.

Let (−)∗ be a (covariant) pseudo-functor on the category of complex quasi-projective varieties
(with proper morphisms), taking values in a pseudo-abelian (or Karoubian) Q-linear additive cate-
gory A(−), e.g., see [20][Sect.4.1]. In fact, our abstract axiomatic approach would also work for
a suitable (small) category of spaces with finite products and a terminal object pt (corresponding
to the empty product, see [20][Appendix] for more details). Assume, moreover, that the following
properties are satisfied:

(i) For any quasi-projective variety X and all n there is a multiple external product

�n : ×n A(X)→ A(Xn),

equivariant with respect to a permutation action of the symmetric group Σn, i.e., M�n ∈
A(Xn) is a Σn-equivariant object, for all M ∈ A(X).

(ii) A(pt) is endowed with a Q-linear tensor structure ⊗, which makes it into a symmetric
monoidal category.

(iii) For any quasi-projective variety X, M ∈ A(X) and all n, there is a Σn-equivariant iso-
morphism

k∗(M
�n) ' (k∗M)⊗n,

with k the constant morphism to a point pt. Here, the Σn-action on the left-hand side is
induced from (i), whereas the one on the right-hand side comes from (ii).

For example, the above properties are fullfilled for A(X) = DbMHM(X), the bounded derived
category of algebraic mixed Hodge modules on X, viewed as a pseudo-functor with respect to
either of the push-forwards (−)∗ or (−)!, as well as for the derived categories Db

c(X) and Db
coh(X)

of bounded complexes with constructible and resp. coherent cohomology, see [20] for more details.
In the coherent setting, we restrict to projective varieties X, so that in this context (−)∗ = (−)!.

Remark 2.9. Property (iii) is the abstract analogue of the Künneth isomorphism (1).

Let πn : Xn → X(n) be the natural projection onto the n-th symmetric productX(n) := Xn/Σn.
By property (i), for anyM ∈ A(X) the exterior productM�n is a Σn-equivariant object in A(Xn),
i.e., it is an element of AΣn(Xn), e.g., see [20][Sect.4.2]. Then the push down πn∗M�n to the
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n-th symmetric product is a Σn-equivariant object on X(n). Since Σn acts trivially on X(n), the
Σn-action on πn∗M�n corresponds to a group homomorphism

Ψ : Σn → AutA(X(n))(πn∗M
�n).

Moreover, since A(X(n)) is a Q-linear additive category, we can define the symmetric projector

(−)Σn :=
1

n!

∑
σ∈Σn

Ψσ

onto the Σn-invariant part, and, respectively, the alternating projector

(−)sign−Σn :=
1

n!

∑
σ∈Σn

sign(σ)Ψσ,

for sign : Σn → {±1} the sign character, and Ψσ denoting the σ-action Ψ(σ). Using the Karoubian
structure, we can then associate to an object M ∈ A(X) its n-th symmetric power

M (n) :=
(
πn∗M

�n)Σn
and, respectively, its n-th alternating power

M{n} :=
(
πn∗M

�n)sign−Σn
,

as objects in A(X(n)). As in [20][Sect.2], we then have the identities (with k denoting in this paper
the constant map from any space to a point):

(51) k∗(M
(n)) '

(
(k∗M)⊗n

)Σn and k∗(M
{n}) '

(
(k∗M)⊗n

)sign−Σn .

which allow the calculation of invariants of k∗M (n) and k∗M{n}, respectively, only in terms of
those for k∗M ∈ A(pt) and the symmetric monoidal structure ⊗, see [20] for more details. Here
we are interested in representation-theoretic refinements of such formulae from [20] expressed in
terms of abstract generating series identities for the Σn-equivariant objects (n ≥ 0):

k∗M
�n ' (k∗M)⊗n ∈ AΣn(pt) .

In this section A(pt) =: A plays the role of the underlying symmetric monoidal category used in
Section 2.1.

Let K̄0(−) denote the Grothendieck group of an additive category viewed as an exact category by
the split exact sequences corresponding to direct sums ⊕, i.e., the Grothendieck group associated
to the abelian monoid of isomorphism classes of objects with the direct sum. Here we do not use
the notation K0(−) as before, because if A is a triangulated category (e.g., DbMHM(pt), Db

c(pt)
or Db

coh(pt)), then K0(−) usually denotes the Grothendieck group of this triangulated category. Of
course, the two notions coincide for the abelian tensor category of multi-graded finite dimensional
vector spaces. As in Section 2.1, K̄0(A(pt)) becomes a pre-lambda ring.

By Theorem 2.2, applied to
V := k∗M ∈ A(pt),

with M ∈ A(X), we obtain by property (iii) of the pseudo-functor (−)∗ the following equivariant
generalization of [20][Thm.1.7]:
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Theorem 2.10. For anyM ∈ A(X), the following generating series identity holds in the Q-algebra(
K̄0(A(pt))⊗Q[pi, i ≥ 1]

)
[[t]] =

(
Q[pi, i ≥ 1]⊗ K̄0(A(pt))

)
[[t]]:

(52)
∑
n≥0

chF
(
cln([k∗M

�n])
)
· tn = exp

∑
r≥1

pr ⊗ ψr([k∗M ]) · t
r

r

 ,

with ψr the corresponding r-th Adams operation of the pre-lambda ring K̄0(A(pt)).

Specializing to pr = 1 for all r corresponds via the composed homomorphism chF ◦ cln to the
functor induced on Grothendieck groups by taking the Σn-invariant part

(−)Σn =
1

n!

∑
σ∈Σn

Ψσ : AΣn(pt) −→ A(pt).

Indeed, this reduces via the decomposition

K̄Σn
0 (A(pt)) ' K̄0(A(pt))⊗RepQ(Σn)

to the corresponding classical formula for the represention ring RepQ(Σn). So, by letting pr = 1
for all r in Theorem 2.10, one obtains by the isomorphism

k∗(M
(n)) '

(
(k∗M)⊗n

)Σn
the following generating series from [20][Thm.1.7]:

(53) 1 +
∑
n≥1

[k∗M
(n)] · tn = exp

∑
r≥1

ψr([k∗M ]) · t
r

r

 ∈ K̄0(A(pt))⊗Z Q[[t]] .

Similarly, by specializing to pr = (−1)r−1 = sign(σr) for all r (with σr denoting as before an
r-cycle in Σr) corresponds via the composed homomorphism chF ◦ cln to the functor induced on
Grothendieck groups by taking the projector onto the alternating part of the Σn-action:

(−)sign−Σn =
1

n!

∑
σ∈Σn

sign(σ)Ψσ : AΣn(pt) −→ A(pt).

So, by letting pr = (−1)r−1 for all r in Theorem 2.10, one obtains by the isomorphism

k∗(M
{n}) '

(
(k∗M)⊗n

)sign−Σn

the following generating series from [20][Thm.1.7]:

(54) 1 +
∑
n≥1

[k∗M
{n}] · tn = exp

−∑
r≥1

ψr([k∗M ]) · (−t)r

r

 ∈ K̄0(A(pt))⊗Z Q[[t]] .

We conclude by showing how to derive our concrete formulae of Theorem 1.1 from the Introduc-
tion by usingTheorem 2.10 of this section. The virtue of this second proof is that it also explains the
connection of Theorem 1.1 with our previous results from [20] about generating series of symmetric
and alternating powers of suitable coefficients.

Consider the homomorphism of pre-lambda rings

h : K̄0(DbMHM(pt))→ Z[y±1, x±1, z±1]

defined via the commutative diagram as in [20][p.301]:
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(55)

K̄0(DbMHM(pt))
H∗
−−−−→ K̄0(Gr−(MHM(pt)))

∼−−−−→ K̄0(Gr−(mHsp))

h

y y yforget

Z[y±1, x±1, z±1] ←−−−−
h

K̄0(Gr−(Gr2(vectf (C))))
Gr∗FGr

W
∗←−−−−−− K̄0(Gr−(mHs)) .

The bottom row was already explained in the previous section. Additionally, the following notations
are used:

(a) H∗ : DbMHM(pt) → Gr−(MHM(pt)) is the total cohomology functor V 7→ ⊕nHn(V).
Note that this is a functor of additive tensor categories (i.e., it commutes with direct
sums ⊕ and tensor products ⊗), if we choose the Koszul symmetry isomorphism on
Gr−(MHM(pt)). In fact, DbMHM(pt) is a triangulated category with bounded t-structure
satisfying [3][Def.4.2], so that the claim follows from [3][Thm.4.1, Cor.4.4].

(b) The isomorphism MHM(pt) ' mHsp is Saito’s identification of the abelian tensor category
of mixed Hodge modules over a point space with Deligne’s abelian tensor category of
polarizable mixed Hodge structures.

(c) forget : mHsp → mHs is the functor of forgetting that the corresponding Q-mixed Hodge
structure is graded polarizable.

Remark 2.11. The fact that the total cohomology functor H∗ : DbMHM(pt)→ Gr−(MHM(pt))
is a tensor functor corresponds to the Künneth formula

H∗(V⊗n) ' (H∗(V))⊗n , for V ∈ DbMHM(pt).

For V = k∗M , this implies by Property (iii) the important Künneth isomorphism (1) from the
Introduction. For a more direct approach to Künneth formulae, see [27][eq.(1.17), Cor.2.0.4]
and [19][Sect.3.8] for the constructible context, [5][Thm.2.1.2] for the coherent context and resp.
[19][Thm.1] for the mixed Hodge module context.

Formula (3) follows now by applying the ring homomorphism

h⊗ id : K̄0(DbMHM(pt))⊗Q[pi, i ≥ 1] −→ Z[y±1, x±1, z±1]⊗Q[pi, i ≥ 1]

to formula (52) of Theorem 2.10.

By exactly the same method one also gets the following homomorphism of pre-lambda rings:

P : K̄0(Db
c(pt))

H∗
−−−−→ K̄0(Gr−(vectf (C)))

P−−−−→ Z[z±1]

and, resp.,
P : K̄0(Db

coh(pt))
H∗
−−−−→ K̄0(Gr−(vectf (C)))

P−−−−→ Z[z±1] ,

with P : K̄0(Gr−(vectf (C))) → Z[z±1] the Poincaré polynomial homomorphism given by taking
the dimension counting Laurent polynomial

[⊕V k] 7→
∑
k

dim(V k) · (−z)k ,

for k the degree with respect to the grading in Gr−. Then formula (2) follows by applying

P ⊗ id : K̄0(A(pt))⊗Q[pi, i ≥ 1]→ Z[z±1]⊗Q[pi, i ≥ 1]

to formula (52), where A(pt) is either Db
c(pt) or Db

coh(pt).
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2.4. Pseudo-functors and twisting. In the context of twisting by representations, we need to
require the pseudo-functor (−)∗ with values in the category A(−) to satisfy an additional property:

(iv) For any quasi-projective variety X, there exists a pairing

⊗ : A(pt)×A(X) −→ A(X),

which is additive, Q-linear and functorial in each variable, as well as functorial with respect
to (−)∗. Moreover, if X = pt is a point, this pairing coincides with the tensor structure
on A(pt) of property (ii).

The pairing of (iv) induces similar ones on the corresponding equivariant categories, as well as on
the (equivariant) Grothendieck groups. These pairings are bilinear and functorial with respect to
the pseudo-functor (−)∗. Note that this additional property is fullfilled for all examples of pseudo-
functors considered in this paper, i.e.., A(X) = DbMHM(X), Db

c(X) or Db
coh(X), where it is

given as a special case of the exterior product �, with

⊗ := k∗(−�−) : A(pt)×A(pt)→ A(pt)

for k : pt× pt ' pt. As before, in the coherent setting we restrict to projective varieties X.

Remark 2.12. In the context of our Examples, the category VectQ(Σn) is a tensor subcategory
of AΣn(pt), where in the Hodge context we regard a representation as a pure Hodge structure of
type (0, 0) placed in degree zero, together with Saito’s identification MHM(pt) ' mHsp. Property
(iv) yields now the pairing mentioned in Sect.1.2:

⊗ : VectQ(Σn)×AΣn(X)→ AΣn(X),

which is induced from the composition:

AΣn(pt)×AΣn(X)
⊗−→ AΣn×Σn(X)

Res−→ AΣn(X),

with Res the restriction functor for the diagonal subgroup Σn ⊂ Σn×Σn. Moreover, if X = pt is a
point space, this pairing coincides with the abstract pairing (45) defined via the Q-linear structure.

Remark 2.13. By the functoriality of the above pairing, we have the following projection formula
for a morphism f : X → X ′, V ∈ VectQ(Σn) and M ∈ AΣn(X):

(56) f∗(V ⊗M) = V ⊗ f∗(M),

using the identification idpt × f = f . Applying this formula for f the constant map k : Xn → pt,
together with the tensor property of the total cohomology functor H∗ as in Remark 2.11, we get
the first isomorphism of the equivariant Künneth formula (16).

Definition 2.14. For V ∈ VectQ(Σn) a rational Σn-representation, the Schur-type object SV (M) ∈
A(X(n)) associated to M ∈ A(X) is defined by

(57) SV (M) :=
(
V ⊗ πn∗(M�n)

)Σn
.

If V = Vµ ' V ∗µ is the (self-dual) irreducible representation of Σn corresponding to a partition µ
of n, we denote the corresponding Schur functor by Sµ := SVµ .

Note that for V the trivial (resp. sign) representation of Σn, the corresponding Schur functor
coincides with the symmetric (resp. alternating) n-th power ofM. Moreover, by using the projection
formula for the constant map k to a point, we have that

k∗SV (M) := k∗
(
V ⊗ πn∗(M�n)

)Σn ' (V ⊗ k∗(M�n)
)Σn ' SV (k∗M),
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with the last identification following from Property (iii) of the pseudo-functor (−)∗. Together with
the tensor property of the total cohomology functor H∗ as in Remark 2.11, this yields formula (23)
from the Introduction.

Another important example of a Schur functor SV is obtained by choosing V = IndΣn
K (triv),

the representation induced from the trivial representation of a subgroup K of Σn. Then, if π :
Xn −→ Xn/K and π′ : Xn/K → X(n) are the projections factoring πn, we have:

(πn∗(V ⊗M�n))Σn ' (IndΣn
K (triv)⊗ πn∗(M�n))Σn ' (πn∗(M

�n))K ' π′∗
(
(π∗(M

�n))K
)
,

for M ∈ A(X). As an example, if M = QH
X ∈ DbMHM(X) is the constant Hodge module on X,

we get
(58)

h(c)(X
n/K,QH)(y, x, z) =

∑
λ=(k1,k2,··· )a n

1

zλ
χλ(IndΣn

K (triv))·
∏
r≥1

(
h(c)(H

∗(X;C)(yr, xr, zr)
)kr ,

and similarly for the Poincaré polynomials as in (20).

3. Further applications

In this last section, we indicate further applications of the abstract setup of the previous sec-
tions to suitable equivariant versions of (characters of) Poincaré and mixed Hodge polynomials of
equivariant coefficients. More precisely, we consider the following situations (with A(X) any of
our three main examples of coefficients: DbMHM(X), Db

c(X) and Db
coh(X), and with all spaces

projective in the coherent context):
(a) G is a fixed finite group acting algebraically on X, with M ∈ AG(X) a G-equivariant

object in A(X) (as in [20][Appendix]).
(b) g is a finite order algebraic automorphism acting onX, withM ∈ A〈g〉(X) a 〈g〉-equivariant

object (in particular, M ∈ A(X) is endowed with an isomorphism Ψg : M → g∗M in
A(X)). Here the order of the cyclic group 〈g〉 can depend on M (i.e., this order could
exceed that of the action on X).

(c) (g,Ψg) is an endomorphism in the category of pairs (X,M), with M ∈ A(X) (i.e.,
(X,M) ∈ Aop/space(X) in the sense of [20][Appendix]). This means that g : X → X is
an algebraic morphism, together with a morphism Ψg : M→ g∗(!)M in A(X). Here, we use
g∗ (resp. g!) when considering (compactly supported) cohomology H∗(c)(X;M) with the
endomorphism induced from Ψg. Note that g! = g∗ if g is proper, e.g., an automorphism.

Any of the above situations can be viewed in the context of a (semi-)group action of G, with
G := Z for (b) and g = 1 ∈ Z acting with finite order, and resp. G := N0 for (c). Examples
of such G-equivariant coefficients on a G-space X include the constant (Hodge) sheaf and the
structure sheaf in the coherent context, where in case (c) g is required to be proper if compactly
supported cohomology is considered. Here Ψg is induced by the adjunction map id −→ g∗g

∗

corresponding to the usual pullback in cohomology (as used in Theorem 1.7). Similarly, in cases
(a) and (b) one can use the intersection cohomology (Hodge) sheaf if X is pure dimensional.

For a G-equivariant object M ∈ A(X) as above, the external products M�n ∈ A(Xn) and their
pushforwards πn∗(M�n) ∈ A(X(n)) get an induced diagonal G-action commuting with the action
of the symmetric group Σn as before, so that for V a Σn-representation (with trivial G-action),
the (twisted) cohomology H∗(c)(X

n;V ⊗M�n) has an induced action of G × Σn. Moreover, the
24



Schur objects SV (M) and their cohomology H∗(c)(X
(n);SV (M)) get an induced G-action.

All our concrete results from Sections 1.1 and 1.2 can be now formulated in this equivariant
context, once we redefine the Poincaré and resp. mixed Hodge polynomials, and the corresponding
characters trΣn , as follows:

• G-Poincaré polynomials:

PG(c)(X,M)(z) :=
∑
k

[Hk
(c)(X,M)] · (−z)k ∈ RepC(G)[z±1],

• G-mixed Hodge polynomials:

hG(c)(X,M)(y, x, z) :=
∑
p,q,k

[Hp,q,k
(c) (X,M)] · ypxq(−z)k ∈ RepC(G)[y±1, x±1, z±1]

• G-equivariant characters:

trGΣn(H∗(c)(X
n,M�n)) :=

∑
k

trGΣn(Hk
(c)(X

n,M�n)) · (−z)k ∈ C(Σn)⊗RepC(G)⊗ L,

with L = Z[z±1], and resp., L = Z[y±1, x±1, z±1] in the Hodge context.
Here RepC(G) := K0(AG) denotes the Grothendieck ring of the following C-linear Karoubian
(even abelian) tensor categories AG, corresponding to each of our situations above:

(a) VectC(G), the category of finite-dimensional complex G-representations.
(b) VectfC(G), the category of finite-dimensional complex G-representations, with g = 1 ∈

G := Z acting with finite order.
(c) EndC the category of endomorphisms of finite-dimensional C-vector spaces.

The tensor structure on AG is induced from the tensor product of the underlying complex vector
spaces with induced diagonal action. Then a G×Σn-action on a finitely dimensional vector space
V is the same a Σn-action on V regarded as an object in AG. By the Schur functor decomposition
(38) applied to AG, we get the isomorphism

KΣn
0 (AG) ' RepQ(Σn)⊗K0(AG) = RepQ(Σn)⊗RepC(G).

Then the G-equivariant characters trGΣn : KΣn
0 (AG) → C(Σn) ⊗ RepC(G) above are defined by

taking the Σn-character in the first tensor factor.

Remark 3.1. If G is the trivial group, then AG = VectC is the category of finite-dimensional
C-vector spaces, and dim : RepC(G) ' Z, so the above G-equivariant Poincaré and mixed Hodge
polynomials, resp. G-characters reduce in this case to the classical notions from Sections 1.1 and
1.2 of the Introduction.

Analogues results to those presented in Sections 1.1 and 1.2 can now be formulated for these
modified notions of invariants in the G-equivariant context, with the corresponding Adams opera-
tions

ψr : RepC(G)⊗ L→ RepC(G)⊗ L
defined as the tensor product of the Adams operations on the tensor factors (with RepC(G) a
pre-lambda ring by [13]). Moreover, their proofs follow as before from the Theorems 1.5 and
1.6 in the abstract context, but using the category AG in place of A as the underlying Q-linear
Karoubian tensor category, provided that the derived Künneth formula of Property (iii) holds G-
equivariantly as in the Remark below, as it is the case in the three main situations considered here
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(see [20][Appendix] for the constructible and coherent context, and [19][Sect.1.12] for the Hodge
context). Here, the required compability follows from the equivariance of the multiple Künneth
formula:

(k×n)∗(�
n
i=1(−)) = �n

i=1(k∗(−)) : A(X)×n → A(pt×n) ,

together with
⊗ni=1(−) = k∗(�

n
i=1(−)) : A(pt)×n → A(pt) .

The corresponding G-equivariance in the twisting defined via Property (iv) follows already from the
required functorialities.

Remark 3.2. In the abstract context of a pseudo-functor, this G-equivariance of the derived
Künneth formula can be formulated as the following property of the pseudo-functor (−)∗ with
values in the category A(−):

(v) For g : X → X an algebraic (iso)morphism and M ∈ A(X) with a(n) (iso)morphism
Ψg : M −→ g∗M given by the G-action, we have an isomorphism

(59) (g×n)∗(M
�n) ' (g∗M)�n

such that the (iso)morphism

k∗Ψ
�n
g : k∗M

�n → k∗M
�n

induced by pushing down to a point (via k∗) the (iso)morphism

Ψ�n
g : M�n −→ (g∗M)�n ' (g×n)∗(M

�n)

agrees under the identification k∗M�n ' (k∗M)⊗n of Property (iii) with the endomorphism

(k∗Ψg)
⊗n : (k∗M)⊗n −→ (k∗M)⊗n.

In the case (a) of a finite group action, we ask this compability for all g ∈ G (in such a
way that the corresponding G-actions via k∗Ψ�n

g and (k∗Ψg)
⊗n are identified under (iii)).

Let us illustrate such formulae analogous to (2) and (18) in the G-equivariant context for the
case of Poincaré polynomial invariants. Similar results for the mixed Hodge context, as well as
various specializations of the variables are left to the reader. For the special case of symmetric
products (i.e., by setting all pr equal to 1) and constant coefficients in the Hodge context, see
Theorem 1.7 from the Introduction.

Theorem 3.3. Let M ∈ AG(X) be a G-equivariant object in A(X). Then:

(60)
∑
n≥0

trGΣn(H∗(c)(X
n,M�n)) · tn = exp

∑
r≥1

pr ⊗ ψr(PG(c)(X,M)(z)) · t
r

r


holds in the graded Q-algebra RepC(G)⊗Q[pi, i ≥ 1, z±1][[t]], and, respectively,

(61) trGΣn(H∗(c)(X
n, V ⊗M�n)) =

∑
λ=(k1,k2,··· )a n

pλ
zλ
χλ(V )⊗

∏
r≥1

(
ψr(P

G
(c)(X,M)(z))

)kr
,

holds in RepC(G)⊗Q[pi, i ≥ 1, z±1] for a given V ∈ RepQ(Σn).
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The concrete formulae of Sections 1.1 and 1.2 of the Introduction can be recovered from their
above G-equivariant versions by applying the ring homomorphism dim : RepC(G) −→ Z, which
corresponds to forgetting the G-symmetry. Similarly, Theorem 1.7 can be recovered from the
Hodge version of (60) for the constant coefficients M = QH

X , by specializing all pr’s to 1, and
by applying suitable ring homomorphisms sp : RepC(G) → R to a commutative ring R. More
concretely, in the three situations (a)-(c) considered at the beginning of this section (resp., at the
end of Introduction), examples of such specializations sp : RepC(G)→ R are given as follows:

(a) for a finite group G, we take the complex characters of G-representations, i.e., apply the
pre-lambda ring homomorphism

trG : RepC(G) −→ C(G)⊗ C,

with Adams operations ψr on C(G)⊗ C given by ψr(α(g)) := α(gr), for g ∈ G.
(b) for G = Z, with g = 1 ∈ Z acting with finite order, we have a pre-lambda ring isomorphism

sp : RepC(G) ' Z[µ̂],

with µ̂ the abelian group of roots of unity in C (with respect to multiplication), given
by [χλ] 7→ (λ), where χλ is the one-dimensional representation with 1 ∈ Z acting by
multiplication with λ. The r-th Adams operations ψr on Z[µ̂] is defined by (λ) 7→ (λr), for
all λ ∈ µ̂ (i.e., it is induced from the group homomorphism µ̂→ µ̂;λ 7→ λr of the abelian
group of roots of unity (µ̂, ·)).

(c) for the endomorphism category EndC, consider the usual ring homomorphism

trace : K0(EndC) −→ C

defined by taking the trace of the endomorphism, with

(62) trace (ψr(g : V → V )) = trace(gr : V → V ).

The identity (62) can be obtained as follows: we first factor trace through the projection
from K0(EndC) to the usual Grothendieck group of the abelian tensor category EndC,
which is a pre-lambda ring homomorphism (cf. [20][Lemma 2.1]), then reduce via short
exact sequences to the case of one-dimensional representations (given by eigenspaces).
Note that trace is not a pre-lambda ring homomorphism. Pre-lambda ring homomorphisms
relevant to this situation are: the characteristic polynomial:

λt : K0(EndC) −→Wrat(C) := {P (t)/Q(t) | P (t), Q(t) ∈ 1 + tC[t]} ⊂ C(t),

[V, g] 7→ λt(V, g) := det(1 + tg) =
∑
i≥0

traceΛig(Λ
iV ) · ti

given by the traces of the induced endomorphisms of the alternating powers of V , and
respectively, the L-function:

[V, g] 7→ L(V, g)(t) := det(1− tg)−1 =
∑
i≥0

traceSymig(Sym
iV ) · ti

given by the traces of the induced endomorphisms of the symmetric powers of V . Here,
Wrat(C) is the subring of rational elements (as in [24][Prop.6]) in the big Witt ring
W (C) := (1 + tC[[t]], ·), with a suitable ring structure as in [1, 12, 25], and whose
underlying additive structure is the multiplication of rational functions resp. normalized
formal powers series.
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As a final example, let us formulate the graded version of the classical Lefschetz Zeta function,
i.e., the specialization of formula (34) from the end of Introduction to y = x = 1, corresponding to
the Poincaré polynomial version (and corresponding to the use of the trace homomorphism in the
context (c) as above, for the constant constructible sheaf, with all Fobenius parameters pr = 1):

Theorem 3.4. If g : X → X is a (proper) algebraic endomorphism of X, then the following
equalities hold in C[z][[t]]:∑

n≥0

P g(c)(X
(n),C)(z) · tn = exp

∑
r≥1

P g
r

(c)(X,C)(zr) · t
r

r


= exp

∑
k≥0

(−1)k

∑
r≥1

tracegr(H
k
(c)(X,C)) · (zkt)r

r


=
∏
k≥0

∑
i≥0

traceSymig(Sym
i(Hk

(c)(X,C))) · (zkt)i
(−1)k

=
∏
k≥0

(
L(Hk

(c)(X,C), g)(zkt)
)(−1)k

(63)

Note that this formula (63) specializes for z = 1 to the usual Lefschetz Zeta function of the
(proper) endomorphism g : X → X:

(64)
∑
n≥0

χg(c)(X
(n),C)(z) · tn =

∏
k≥0

(
L(Hk

(c)(X,C), g)(t)
)(−1)k

.

On the other hand, for g = idX the identity of X, formula (63) reduces to Macdonald’s generating
series formula [18] for the Poincaré polynomials and Betti numbers of the symmetric products of
X:

(65)
∑
n≥0

P(c)(X
(n),C)(z) · tn = exp

∑
r≥1

P(c)(X,C)(zr) · t
r

r

 =
∏
k≥0

(
1

1− zkt

)(−1)k·bk
(c)

(X)

,

with bk(c)(X) := dimCH
k
(c)(X,C), which for z = 1 specializes (also as the particular case of (64)

for g = idX) to:

(66)
∑
n≥0

χ(c)(X
(n),C) · tn = (1− t)−χ(c)(X,C) .

Remark 3.5. For the counterpart of (64) in the context of the Zeta function of a constructible
sheaf for the Frobenius endomorphism of varieties over finite fields, see also [28][Thm. on p.464]
and [9][Thm.4.4 on p.174]. For a similar counterpart of (63) taking a weight filtration into account,
see [24][Prop.8(i)].

Finally, the product ∗ on the big Witt ring W (C) (or its subring Wrat(C)) corresponds under
the ring homomorphisms λt, L(t) : EndC → Wrat(C) ⊂ W (C) to the tensor product of endo-
morphisms. By the specialization above of the (graded version of the) Lefschetz Zeta function
to Macdonald’s generating series formula for the Poincaré polynomials and Betti numbers of the
symmetric products of X, it should not come as a surprise that the Witt multiplication ∗ naturally
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arises if one attempts to express these generating functions for a product space X×X ′ in terms of
the corresponding generating functions of the factors X and X ′ (as further discussed in [25, 26]).
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