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Abstract

Let X be a complex projective toric manifold. We associated to X, a positive and closed (1, 1)-
current called the canonical toric Kéhler current of X denoted by wx,can, and a new invariant called
the canonical spectrum of X. This spectrum is obtained as the set of the eigenvalues of a singular
Laplacian defined by wx cqen and which is described uniquely by the combinatorial structure of X.
The construction of this Laplacian and the study of its spectral properties are the consequence of a
generalized spectral theory of Laplacians on compact K&hler manifolds that we develop in this article.
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It is known that several properties and quantities of toric varieties can be translated into the language
of convex geometry. For example, the degree of a toric variety wrt an equivariant line bundle is given as
the volume of a convex polytope associated to the line bundle. Toric varieties are often used as simple test
cases for difficult geometric problem. The proof of the Grothendieck-Riemann-Roch theorem is easier in
the context of toric varieties. The combinatorial structure of toric manifolds gives rise to an interesting
class of metrics on equivariant line bundles introduced first by Batyrev and Tschinkel in this setting and
called canonical metrics (see [I]). These metrics are irregular but can be approximated uniformly by a
sequence of positive and smooth metrics, we say that the canonical metrics are admissible. The notion
of admissible metrics plays an important role in the generalization of the Arakelov geometry in [12], see
also [8]. Ome of the motivations of this article is to give a satisfactory notion of admissible metrics on
holomorphic vector bundles of higher rank.

Our first result is the following theorem:

Theorem 0.1 (Theorem . Let X be a compact Kihler manifold of dimension n and wg is a Kdihler
form on X. Let F be a continuous function on X such that fx ef'wl = 1. Then there exists ¢ € CL1(X)
which is a solution to the following singular Monge-Ampére equation:

(wo + ddcgo)" =ef'up. (1)
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Our main result can be stated as follows: Given (X,wp) a compact Kéhler manifold of dimension n
and let (Fy)ren be a sequence of smooth functions on X converging uniformly to a function F such that

1. For any k € N, we assume that dd“Fj > —Cwy for a positive constant C'.
2. fX ef*wl = 1 and we denote by wy, = wy + dd®p}, the solution of the Monge-Ampére equation

wp = ey,

Then the sequence (wy,)ren converges wrt the L2-norm to a closed and positive (1,1)-current ws, which
is solution to the singular Monge-Ampére equation

wl = ef'wy, (2)

see Theorem and Corollary The current we, will be called a singular Kahler current on X (see
Definition This notion should be seen as a generalization of the notion of Kéhler forms on compact
Ké&hler manifolds. We associate to any singular Kéhler current a singular Laplacian A, which generalizes
the notion of Laplacian on compact Kéhler manifolds and we prove that A, possesses a infinite, discrete
and non-negative spectrum (see Theorem [1.19).

In Section [2] we apply this theory to toric manifolds. Let X be complex toric projective manifold of
dimension n. The holomorphic tangent bundle TX is an equivariant vector bundle and hence det(T'X)
(see Section . The canonical metric || - [|qet(7x),00 Of det(7T'X) induces a canonical continuous volume
form on X, that we normalize and we denote by ftx cqn. For example, in the case of P" the complex
projective space of dimension n , we have on a standard affine open subset of P,

) )n H?:l dz; \dz;
217 (n+ 1) max(1,|z1],...,|z,[)2n+D)"

3)

Wpn can = (

The first Chern class of X has a particular representative given by

TX,can = Cl((det(TX)a ” ' Hdet(TX),oo))

which is a closed (1,1)-current and canonically associated to X. We define the canonical toric Kihler
current of X denoted by wx cqn as the solution to the following singular Monge-Ampére equation,

w?(,can = HX,can~ (4)

Wx, oo exists and unique by Theorem @ An equivalent definition for the notion of canonical toric Kahler
current can be given as follows: wx cqn is the unique solution to 7x,can = Ricc(wx can) (the Ricci current
of wx can). From this equation and by Theorem it is natural to consider the spectrum of the singular
Laplacian defined by wx cqrn and to call it the canonical spectrum of the toric manifold X, we denote it
by Specy (see Definition . Examples of computation of the canonical spectrum are given in Example
Some properties of this spectrum in dimension 1 are studied in [4].

One ofthe fundamental problems in spectral geometry is to ask to what extent the eigenvalues de-
termine the geometry of a given manifold. A natural question arises from the theory developed in this
article. In this setting, to what extent the canonical spectrum determine the geometry of the toric mani-
fold? Given two toric projectives manifolds X and X’ and having the same canonical spectrum, is it true
that X and X' are isometric?



The main tools of this article are the famous result of Yau, [11] and a theorem of Eyssidieux-Guedj-
Zeriahi-Berman-Boucksom [10]. This theorem will allows us to generalize the result of Yau. First let us
recall the main theorem of Yau in [II]. Let (X,wq) be a Kéhler compact manifold with wy is a Kéhler
form on X. For a positive function F which belongs to C¥(X) with k > 3, there exists ¢ € C¥1(X)
with 0 < a < 1 which is a solution for the following Monge-Ampére equation

(wo + ddp)" = eFwi. (5)

We consider a sequence (F)ren as above. Using a result of [I0] (see Appendix [3), we establish that
there exists a constant A such that
|Aopr| <A VEkEN,

where A is the Laplacian associated to wy and acting on C>°(X), (see Theorem [1.3). Using this result,
we can prove a generalization of Yau’s result (see Theorem [1.6]).

1 Toward spectral properties of toric manifolds

Let X be a compact Kéhler manifold of dimension n and wy a Kéhler form on X. Let F' be a continuous
function on X. We assume that [, efwif = [, wf.

Let (Fk)ren be a sequence of smooth functions on X converging uniformly to F' such that ddFj >
—Cuwy for any k € N where C' is a positive constant and fX efewp = fX w(y for any k € N. We suppose
moreover that Fy = 0. By [II], we know that there exists a unique smooth function ¢; on X with
Jx erwi = 0 such that

(wo + ddpr)" = efrwi  Vk e N. (6)

We set wy, := wp + dd°pr and we denote by hj the associated metric to wy for any k € N.

1.1 A singular Monge-Ampére equation

By [6], we know that there exists a unique continuous function ¢ on X with [  pw( = 0 such that ¢ is
a solution for the following singular Monge-Ampére equation

(wo + ddcgo)n =efup. (7)

The main tool for the proof of the existence uses the notion of capacity.

In this paragraph, we give a new proof for this result by generalising the proof of [11]. We denote by
|- lz2k (vesp. || - ||z2) the inner product on C*°(X) (the space of smooth functions on X) induced by
w (vesp. ef'wl) and by Ho(X) the completion of the space C*°(X) wrt || - ||z2. Let Vi be the covariant
derivative associated to wy. We denote by Ay the Laplacian acting on C*°(X) associated to wy, for any
ke N.

Theorem 1.1. The sequence (g )ken @ bounded wrt the sup-norm.
The proof of this theorem will be a special case of the following result

Proposition 1.2. Let (Gi)ken be a sequence of smooth functions on X. We assume that ||Gk|lsup s
bounded from above by a positive constant C' for any k € N. Suppose that fX eCrwl = fX wy for any
k € N. We denote by ¢ the solution of the Monge-Ampere equation

(wo + ddcgok)n ="} (8)

with fX orwy = 0. Then (o )ken @8 bounded wrt the sup-norm.



Proof. From [I1], (2.27)], we can see that there exists a constant C’ which depends only on (X,wp) such
that

Applying the Sobolev inequality, we can find two constants C; and Cs depending only on (X, wq) such
that for any p > 2

1

([ 1abrag)® <€ [ s+ Ca [ [Va(-vn)8Pug i eN,
X X X

From [11], p.353 (2.32)] we get
[ 190wt g < psup 1 - O] [ Jueia,
X zeX X

Since 1, < —1 we obtain the following inequality

([ o) < (€ +pswp - eC@cy) [ ot
X zeX X
That is,
[l e < (Cy+psup |1 — e¥@|Cy) |wwl2 VEk€N.
" reX
As in [I1], this inequality gives an upper bound for ||¢y ||sup in terms of Cy,Co and ||1 — €*||syp. Then

(Il |lsup)ken is a bounded sequence. O

Theorem 1.3. We keep the same hypothesis as before. There exists a constant K depending only on
(X, wo) such that
|Aopr| < K, VkeN.

Proof. This will follows from Proposition (3.2) which is a slight generalization of a result in [I0]. O
Corollary 1.4. The metrics hy are uniformly equivalent for any k € N.

Proof. Recall that hy is the metric on T'X defined by wy. This result follows automatically from Theorem
L3l O

Proposition 1.5. There exists a constant C' such that

sup |Vopr| < C Vk e N.
X

Proof. Let k € N. We let fr, = Agpg. Then by Theorem (1.3)), —K < fi < K. We can deduce as in [I1]
pp 355-356], that there exists a constant C' which depends only on (M, wp) and K such that

Sl)lfp|VOSDk|SC(K+/ loklwg) VEeN.
X

But the sequence ([ \(pk\wg)keN is bounded as an easy application of [I1} p.352 (2.28)]. This concludes
the proof of the proposition. O

Theorem 1.6. The equation admits a solution ¢ € CH1(X).

Proof. By Theorem [I.I] and Proposition [I.5| we can apply the Ascoli’s theorem to deduce the existence
of a subsequence of (pg)ren converging uniformly to a continuous function . It is clear that ¢ is a
solution of Equation . Since Agpy is uniformly bounded, then by the same argument we deduce that
p eCH(X). O



Definition 1.7. Let w be a positive and closed (1,1)-current on X. We say that w is a singular Kdhler
current on X if the current W™ is continuous.

By Theorem we know that for any normalized and continuous volume form Vol on X there exists
a singular Kdhler metric on X such that w™ = Vol.
1.2 The Spectral theory of singular Kahler metrics

Proposition 1.8. Let U be a relatively compact open local chart of X, and {z1,...,2zn} a system of

local coordinates over U. Let k € N. We set o, oBy = 82%3% for any a, B,y € {1,...,n}. Then the
; o ~

tyn 21T f_)
((277) /ka’aﬁ' jl;[ldz]/\dz] keN’

following sequence

s bounded.
Proof. The proof is a combination of [I1, Equation 3.3, p.360] and Corollary (1.4). O

Lemma 1.9. We set o = @ — @1 for any k,1 € N. There exists a constant K' which depends only on
(X,wp) such that we have

/ Vipn*wi < K'Ca(Fjr), kl€N, 9)
X
where Ca(Fy,1) = supx |1 — exp(F; — Fy)| and V, is the covariant derivative w.r.t wg.

Proof. Let k,l € N. Obviously, ¢ — [  puwy is the unique smooth function solution to the following
Monge-Ampére equation

n P
Wi = (w +dd°pr)" = efi=Feyn

which satisfies [y (¢r — [ Q) )wjr = 0.
From [11], p.353 (2.32)], we have for any k and j in N, the following inequality

/ |V or1|2wp §202(Fj,k)/ |90j,k—/ Lyt |wi
X X X

Recall that ([ [or|wf)ren is bounded, and (Fy)ren converges uniformly to F. We can deduce that there
exists a constant K’ which depends only on (X, wp) such that

/ \Vipm|*wl < K'Co(Fjr) Vk,1€N. (10)
X

O

Proposition 1.10. There exists a constant K" which depends only on (X,wq) such that we have
/ [Vopr*wy < K"Co(Fj ) Vk,l€N.
X

Proof. The proof is a consequence of Corollary and Lemma [1.9 O

Proposition 1.11. There exist m and M two positive constants such that
ml A7y < 1AREIIT2 x < MIAKZ:,,

for any k,l € N and any § € C*(X).



Proof. Let k € N. Let £ € C*°(X). We have

¢ 9%
N B S e e (1)
X G Ao 02;0%; 0z 0Zy
({z;}; are local holomorphic coordinates.) Let h; hf be the Kronecker product of A, " and ?
Obviously, we have
N 82€ an o 82§ 62E
hit®ht = hi hy? — 12
< ® k 82*32* 82*82* Z k 7k 82¢8§j 8zj/82i/ ( )

(4,9),(@.3")

Recall that if A and B are two n x n complex matrices, then the eigenvalues of A ® B ( the Kronecker
product of A and B) is a product of eigenvalues of A and B. Then using Corollay (1.4)), we can find two
positive constants 0 < m < M depending only on (X, wy) such that

ml| ATz, < |1AREN72 ) < M| AN, VK, € N,VE € C®(X).

O
Theorem 1.12. For any § € C*°(X), the following sequence
(Akg)keN
converges to a limit in Ho(X) wrt || - ||12,0. Moreover, this limit does not depend on the choice of the

sequence (Fy)pen-
Proof. Let k,l € N. For any 1 < 4,5 < n, the difference hj/ — h;’ of the minors A}/ and h)’ of h;*
and h_ respectively, can be written as the sum of terms where each one is a product of elements of
h; and h, and of (az 555 “)i<a,p<n. Hence, for 4,7 = 1,...,n we can find a function S;; such that
Y 02
|ARE — A = (A€ — D) - (ARE = Ai6) = 3, 32%’;; Sij-
Let (Uy)aeq be a finite open covering of X such that w{ = v, H?:l dza,i N\ dZa,; on U, with v, is a

smooth function on U, and {z,,;}; is a system of local coordinates on U, for any « € . Let (pq)acq be
a partition of unity subordinate to (Uy)acq. We have

0% W
v - el =3 [ 55 5

B Z Z / o d . Sszava) H dza,; N dZa,; by the Stokes theorem.

0z,
ij a€Q aj @ i=1

(13)

Observe that for any 1 < 4,5 < n, the term % (Sz]pava) contains a derivative of order 3 of some py; or

©kil, Or 6 Ye and the other coefficients depend only on h; and (W)lga’ﬁgn'

By Theorem ﬂ and Proposition we can find a constant C' which depends only on the L?-norms
of £ and its derivatives of order less than 3 and on (X,wp) such that

| Aké — Alinz,O < C(/X\Vowkz\%gy Vk,l € N. (14)

“Here <,> is the standard scalar product on (C"z.



Now by Proposition [1.10} we conclude that there exists K a constant depending only on &, its derivatives
and on (X,wp) such that

2 1
[AKE = A[1a o < KCa(Fjr)? Vi1 €N.
This ends the proof of the theorem. O

Definition 1.13. Let wo, be the singular Kdhler current solution to the Monge-Ampere equation [} For
any £ € C(X), we denote by A& the limit of the sequence in Theorem . The following operator
denoted by A

COO(X)_>HO(X)7 fHAoo&

18 clearly linear. We call it the Laplacian associated to the singular Kdhler current wee.

Proposition 1.14. There exist two positive constants m' and M’ such that
(| Akl i < [[Asckllzz,c0 < M| AkEllL2n  VE € N,VE € C(X).
Proof. The proof follows from Proposition [[.11] and Theorem [T.12] O

Let ¢ be a smooth function on X. For any k € N, we denote by ||¢|| g, » the j-norm of Sobolev given
as follows

J
!
el = S IVl
=0

with fo)go := V- Vip such that Vi, appears [ time. We denote by Hs(X) the Sobolev space endowed
with || - [z
Proposition 1.15. There exists a constant K which depends only on (X,wp) such that
I ill oo e < KCo(Fj )T Vk,l€N.
Proof. By the elliptic estimate (see for instance [7, Appendix A]), we have for any k,l € N

1€ll,.6 < CrllAjE N2 + Calllle VE € CF(X), Vi, k €N, (15)

where C; and C5 two constants which do not depend on j by Theorem In fact, it is known that C
and C5 depend on the eigenvalues of the Kéhler metric. In particular, we have

lerill s < CillAoprillo + CallnllL2- (16)
As in the proof of , we can use Theorem and Proposition to show the following inequality

2 1
[Aopnl[2 0 < K'Cy(Fj )2 Vk,1€N, (17)
where K’ depends only on (X,wp). By [16[and we deduce the following
il o e < K'Co(Fj )1 V1 €N,

O

Corollary 1.16. We keep the same notations as above. The sequence (wi)xen converges to weo wrt the
L?-norm.

Proof. This is an easy application of O



Corollary 1.17. Let £ € C*°(X), we have
HAk‘é._AlEHLz’O SK”C2(Fj7k)i(||Al€”L2,0+ ||§||L2,O) Vkal 6N7 (18)

where K" is constant which depends only on (X, wo).

Proof. We can show that there exists a constant C' such that

[ AK€ = At 2 o < Cllonallrr rllEllrrz ik

If we combine [[5]and Proposition [I.15 with the previous inequality, we conclude the proof of the corollary.
O

Theorem 1.18. The operator A, admits a mazimal, positive and selfadjoint extension to Ha(X).
Proof. From Theorem [I.12] we obtain easily the following
(Aol L200 = (§ Ao 12,00, ¥, € C7(X). (19)
Let (Ao )max be the maximal extension of Ay, : C*°(X) — Ho(X). By definition,
Dom((Asc)max) = {5 € Ho(X)|Axs € Ho(X)}.

(see for instance [T, Appendix D]) Then it is the Hilbert space adjoint of Ay, 80 (Aso)max is closed. Let
us prove that (Ac)max is self-adjoint, and Dom((As)max) = Ha(X). Clearly, H2(X) C Dom((Aso)max)-
Let s € Dom((Aco)max). By Proposition there exists k£ € N such that

||Ak5”L2,k < 00.

Then by the elliptic estimate ([7, A.3.2]) we get s € Ho(X). From we obtain that (A)max 18
selfadjoint.
O

Theorem 1.19. The operator Ay + I : Hao(X) — Ho(X) is invertible and A has an infinite, non-

negative and discrete spectrum and it admits a heat kernel, we denote its heat kernel by e t2> for any
t>0.
Proof. Let s € C*(X). As (Axs,5)12,00 > 0, we get
(I + Aco)sllz> = sl 2
Then, for any s € Hy
(I + Aco)sllzz = 5]l 2 (20)

Thus I + Ay : Ha(X) — Ho(X) is bijective, and (I + Ax)™! : Ho — Ha is well-defined as a linear
operator. Fix k € N, we know that there exists a constant C; such that ||Ass|/z2 00 < C1]|Ascs| 25 for
any s € Ha(X). Thus

IT + Ae)sllzz oo < Crllsllans Vs € Ha(X).

Let s € Ho(X), by the elliptic estimate, we can find a constant Cy independent on s such that
1+ Be) sl < Ca (10T + AR + A sllzz g+ (T + Acc) " slln)

< G (AR + D) sllza s + 20T + Acc) sz )



From Corollary which we apply to & := (I + Ay) s, we get the following

AT + Aso) sz < K'lls] 22,00

for some constant K’ which depends only on (X,wg). We conclude that there exists a constant C' such
that
10+ D) sl < Cllsllzes Vs € Ho(X). (21)

From the previous inequalities and the Rellich’s theorem (cf. for example [7, Theorem A.3.1]), we
know that (I + Ax)™' : (Ho(X), | - [|22,00) = (Ho(X), |l - [|22,00) is a compact operator, and it is self-
adjoint. Therefore, A, has an infinite discrete and positive spectrum, and it admits a heat kernel denoted
by (e_tAOO)t>0. O

Corollary 1.20. There exist two positive constants m” and M'" such that

M Ao < Moo < M"A; Yk €NVje Ny, (22)
where A\ j is the j-th eigenvalue of Ay, for k € NU {oo}.
Proof. This follows from Proposition Theorem [1.19] and the monotonicity principle. O

Theorem 1.21. The sequence ((I+ Ay)™")
and hence wrt || - || g2 5 for any k € N.

wen converges to (I+As)™! with respect to the norm || - || 12

Proof. Note that for any k,[l € N,
(T+A) P = (T +Ap) " =T +A) (A — AN+ A,

and we use Corollary [[.I7] to deduce the existence of a constant K such that

[(T+A)7" = (I +2p) 7Y o < KCo(Fiy)® Vk,l€N. (23)
This ends the proof of the theorem. O
Theorem 1.22. For any t > 0, the sequence (e‘mk)keN converges to e~tA> wrt the norm || - || 2.

Proof. We fix t > 0. Let v be the curve in C given by: +0co+i — —1+4i — —1 — i — +00 — i, then for
any k € N, we have

1
e Ak = 5 / e M= Ap) A (24)
Y

Observe that we can obtain a similar estimation to (23) for (A — Ag)™! with X is a non-zero complex

number. By , we get
le™t8% — e | o < KCo(Fiy)i V1€ N (25)
Ao wrt the L2-norm. O

with K is a constant. It follows that (e~***)en converges to e™*

To the operator A, we associate the following function {a_ given as follows

= 1
Can(s) = Z v
J=1"°%J

for s € C. When A is the Laplacian operator associated to a smooth Kéahler metric, the function (a is
called the zeta function of A which known to be holomorphic on {s € C|R(s) > dim¢(X)} and admits a
meromorphic continuation to the whole complex plane with poles at s = 1,2,...,dim¢(X). We have the
following result




Theorem 1.23. For any R(s) > n, (a_(s) converges absolutely and (a_, is holomorphic on {s €
C|R(s) > n} with a pole at s = n.

Proof. Let k € N. Since (a, is finite on {s € C|R(s) > n}, it follows from Corollary that ¢a__(s)
converges absolutely on {s € C|R(s) > n}. A result of Hormander (see [5]) asserts that the Nj(\), the
counting function of the eigenvalues of a Laplacian Ay, has the following asymptotic expansion

Ne(A)=CA% +O(A7) VA> 1.
Thus,
J=CON+ON 7).

Then A j ~ j” for any j > 1. By Corollary it follows that {a__ is holomorphic on {s € C|R(s) > n}
and s = n is a pole. O

Definition 1.24. We call {a_, the zeta function associated to Ao

1.3 An example

In the sequel of this paragraph, we present an exemple of this theory. Let P! be the complex projective
space of dimension 1. We consider the following hermitian continuous metric || - ||cqn on the line bundle
O(1) defined as follows

[s(2)]?

max(1,]|z[)?

|| ||(’an( )*

where s is a local holomorphic section of O(1) and k(z) = § min(|z|?, E ‘2) for any z € C.

exp(—k(z)), z¢€C,

Let (PY)™ be the product of n copies of P1. We con31der the following continuous volume form on
(PY)", given on C" as follows

RAT ) T
Vean ‘= (47T> 31;[1 maX(L ‘Zj|)4.

One checks easily that f (p1yn Vean = 1. By Theorem there exists a positive and closed (1, 1)-current
Wh.oo on (P1)™ such that

n —
wn,oo = Vecan-

Proposition 1.25. The current ¢1(O(1), || - ||can) on P! is positive and

Wn,oo = ijcl ||can)

where p; : (PY)™ — P! is the j-th projection.
Proof. This proposition follows from [4, Proposition 3.4] O

We denote by A,, « the Laplacian associated to the singular Kahler metric wy, . By Theorem
A, « has a non-negative, infinite and discrete spectrum. The following theorem describes explicitly the
spectrum.

Theorem 1.26. We denote by Spec(A,, ) the spectrum of A, oo. We have
Spec(A {Z ] | forj =1,....n, Ju(X;)Jp(A;) = O for somek € Z},

where Ji is the k-th Bessel function of order k.

10



Proof. We can generalize easily [2, Proposition A.IL.3] to the case of the product of compact Kéhler
manifolds endowed with singular Kéhler metrics. Then, the theorem is a consequence of |3, Theorem
1.4]. Note that the volume form in [3, Theorem 1.4] is not normalized. O

2 Projective toric manifolds

Toric varieties are often used as simple test cases for difficult geometric problems, and many interesting
quantities and theorems are easy to express and to prove on toric varieties. A toric variety is defined in
terms of a Z-module N and a fan ¥ on Ng := N ®z R. Several algebraic and geometric properties and
quantities can be expressed in terms of the combinatorics of N.

Let N be a free Z-module of rank n, M its dual Z-module and Ng := N ®z R. A subset o of Ny is
called a strongly convex rational polyhedral cone if there exist a finite number of elements ny,no, ..., ng
in N such that

o= Rzonl + ...+ Rzons,

and o0 N (—o) = {0}. A subset 7 of ¢ is called a face if
T =00 {mo}" := {y € o] (mo,y) = 0},

for an my € 0¥ = {x € Mg| (z,y) > 0Vy € o}. A fan in N is a nonempty collection 3 of strongly
convex rational polyhedral cones in Ny satisfying the following conditions:

(i) Every face of any o € ¥ is contained in X.
(ii) For any 0,0’ € X, the intersection o N o’ is a face of both ¢ and o’.

The union |X[ := ) __y, 0 is called the support of X.

Let ¥ be a fan on N. For o € ¥, we let .7, := M No". We can show that ., is a finitely generated
subsemigroup of M, and ., defines an irreductible normal algebraic subset U, of some CP (see [9]
Propositions 1.1, 1.2, pp 3-4]). The properties of ¥ allow us to glue naturally {U,|c € X} together to
obtain an irreductible and normal complex analytic space of dimension n = rank(N). We denote this
complex analytic space by Xy (2) or simply X and we call it a toric variety associated to (N, X). After
Batyrev and Tschinkel, there exists a canonical covering of X into compact subsets (C,)sex,.., Where
each C, is diffeomorphic to a product of unit balls and unit circles (see for instance [ §3.3]).

It is known that X is a toric variety of dimension n, if and only if X is an irreductible normal algebraic
variety which contains an open subset isomorphic to the algebraic torus 7' := (C*)", such that T acts
algebraically on X (see [9 Theorem 1.5, p.10]).

Recall that a holomorphic vector bundle p : F — X is a T-equivariant bundle on X if it has an action
of the torus T on E which is linear on the fibers and makes the following diagram commutes

E-—'sF

Pk

t

X —X

for any ¢t € T. When L is a T-equivariant line bundle, one can associate, in a canonical way, to L a
continuous hermitian metric || - ||1,0 called the canonical metric of L. This metric is given in terms of
the combinatorial structure of X (see [I] or [§]) and we can show that || - ||,00 is a solution to the first
Calabi problem for the singular volume form &g, A du}; (see |8, Remark 6.3.6]). More precisely, we have

(L, ||+ lz,00)™ = deg(er(L)")dsy A dpy- (26)

11



We assume that X is a non-singular projective toric variety over C and we consider a Kahler form w
on X. The holomorphic tangent bundle TX is clearly a T-equivariant vector bundle, and so is det(7TX).
The first Chern class of X has a particular representative given by 7x can = c1((det(TX), || - [|det(7x),00))
which is a (1, 1)-current closed and canonically associated to X. The canonical metric of det(7'X) induces
a canonical continuous volume form on X, that we normalize and we denote it by px can-

Example 2.1. Let P" be the complex projective space of dimension n. On a standard affine open subset
of P, we have

i)n H?:l dz; N\ dz; .
27’ (n+ 1) max(1, |21],...,|zn])2( D

(27)

Wpn can = (

In view of the theory developed in this article, we introduce the following definitions,

Definition 2.2. Let X be a projective toric complexr manifold of dimension n. We call a canonical toric
Kahler current of X and we denote it by wean, a positive and closed (1,1)-current which is solution to
the following singular Monge-Ampére equation,

w?(,can = KX, can (28)

By Theorem [[.6] we know that wx cqn exists and unique. An equivalent definition for the notion
of canonical toric Kéhler current might be given as follows wx can is the unique solution to 7x can =
Ricc(wx can) (the Ricci current of wx can)-

Remark 2.3. Let X be a projective toric complex manifold of dimension n. We have the following

Li, T

e canq, = m(ﬁ"gdyk A dgi, (29)
where C; = {z € C"||zi/z;| < 1,]1/2;| < 1,k =1,...,n} for j > 1 and Cy = {z € C"||z| < 1,k =
1,...,n} and {yx}tr=1,..n are the canonical coordinates on C; which define a diffeomorphism from C;
into Cy. In fact, the C; correspond to the Cy for 0 € Ypax. More generally, given X a projective toric
manifold over C of dimension n, we can show that for any o € Xnax the following local form WX can|,_;
has a similar expression as in[29 More precisely, for any o € Zyax, there exists a system of local

coordinates {y1,...,yn} in Int(C,) and a constant ¢, such that
n
wX,C(LTL‘Ca = Co H dyk A dyk- (30)
k=1

We use Theorem [[.19] to associate to any projective toric complex manifold a new combinatorial
invariant, by introducing the following definition

Definition 2.4. Let X be a projective toric complex manifold of dimensionn. Let Ax cqn be the Laplacian
associated to the canonical toric Kdhler current ween. We consider Specy = Spec(Ax cqn) and we call
it the canonical spectrum of the toric variety X.

From , we can see that the canonical spectrum Specy depends only on the combinatorial structure
of X.

Example 2.5. Let n € N>i. We consider the following toric variety (P*)". We have,

n

22
Spec(pryn = {Z 7] |forj =1,...,n, Jy(A\)Jp(\;) = 0 for somek € Z}, (31)

Jj=1

This equality follows from Theorem [1.26,
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3 Appendix

Let (X,w) be a compact Kéhler manifold of dimension n, A the Laplacian operator acting on smooth
functions on X defined by w, and § > 0 is a semi-positive closed (1, 1)-form such that [, 6™ > 0. We let
Amp(0) denote the ample locus of the cohomology class of 6.

Theorem 3.1. Let p be a positive measure on X of the form pu = e YT AV with Y quasi-psh and
e~V € LP for some p > 1. Assume that ¢ is a bounded 6-psh function such that (0 + dd°@)™ = . Then

we have Ap = O(e™¥") locally on Amp(6).
More precisely, assume given a constant C > 0 such that

1. ddy™ > —Cw and supx ™ < C.
2. ddp~ > —Cw and ||e ¥ |» < C.

Let also U @ Amp(0) be a relatively compact open subset. Then there exists A > 0 only depending on
0,p,C and U such that
0<0+ddp < Ae ™ w

onU.
Proof. See [10, Theorem 10.1]. O
Proposition 3.2. We keep the same hypothesis as in Theorem (3.1), and we assume that § = w.

1. Then, there exists a constant A which depends only C and w such that
|Ap| < Ae™¥,
on X.

2. Suppose that v+ = F, with F is a continuous function on X and ¥~ = 0 and let (Fi)ren be a
sequence of smooth functions converging uniformly to F on X such that dd°Fy, > —Cw for any
k € N, where C is a positive constanﬂ. Then, there exists A > 0 only depending on C, w and X
such that
|Apk| <A VkeN,

on X.

Proof. 1. The proof of the first part of the theorem is a special case of the proof of Theorem (3.1)
which we recall here. Our goal is to analyse the constant A. We keep the same notations as in the
proof of [I0, Theorem 10.1]. Since # = w then Amp(#) = X and we have

w=w, ¥Y=0.
We can take 6 = 1. For 0 < e <1, w. =0 + ew = (1 4+ €)w > w, so that
tr,, () < try (o), (32)

for every positive (1,1)-form .

Assume ¢+ and 1~ are smooth functions satisfying (1) and (2) of Theorem (3.1)), and assume given
a smooth normalized 6.-psh function ¢, such that

(0 + ew + dd°p.)" = ¥ ¥ qV. (33)

YFor example, we consider (O, ef’) and we decompose it into two admissible line bundles (L1, h1) and (La, h2) ...

13



Since we < (e + 1)w on X, it will be enough to prove that
W= 0+ ew + ddp (= (1 4 )w + dd°p.)

satisfies tr,,_(w!) < Ae™¥ on X.

Following [I0, p. 45|, there exists B a constant which depends only on a lower bound for the
holomorphic bisectional curvature of w. such that

tr, i !
A, logtr,, (w!) > _ b, (Ricwe)) Btry, (we). (34)
‘ ‘ tro, (wl) ‘
Applying dd¢log to (w!)™ = e~ %" ¥ w", yields
— Ric(w!) = —Ric(w) + dd°yt — dd°y~ > Ayw — ddy~, (35)
where A; is constant which depends only on w and C.
Using tr,,. (w) < n and the trivial inequality
n < try,, (W) try (we) (36)
we infer from ,
nAy + A, Y~ Ay p~
Ay logtr,, (w;) > @) Btr,, (we) > T @) (A1 + B)trys (we).  (37)
That is Al o
A, logtr,, (W) > 7tr:€(wé) — Aptry (we). (38)

where As := A; + B, which depends only on w, C'.

By the assumption (2) of Theorem (B.1]), we have Asw, + dd¢)~ > 0, where Az = C(1 +¢)~ L.
Applying tr,, to the trivial inequality

0 < Agwe + dd“9p™ < troy (Aswe + ddy ™ !,
yields

0 < Agn+ Ay, ™ < (Astry, (we) + Aur 7 )ty (w))
Plugging this into and using again we obtain

Ay ™
Ay logtry, (wy) > _trw:(zié) — Astry (we)
A, 1/)_ + Asn
e T (Ag + Ag)try (we
e et Adaled
> —Astry (we) — Dwrp™ — (Az + As)tre (we).
That is
Awé (lOg trwe (Wé) + w_) > _A4trwé (We)v (39)
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where Ay := 2A5 + As.

Following the notations of [0, p. 45], and under our assumptions,

Pe = Pe
(since ¢ = 0). We then have n = try, (we) + Ay pe, and we finally deduce from

Ay (log try, (wl) +17) > —(Ag — Dtrey (we) + oy (we)
=—(As—1)(n— Aw;pe) + tryy (we)

Thus,

Awé (log trwe (wé) + 1/)7 - A5pe) Z trwé (we) - Aﬁa (40)
where A5 := Ay — 1, Ag := (44 — D)n.
The function

H :=logtr,, (w;) + 1~ — Aspe

on X is bounded. We apply the maximum principle, H achieves its maximum at a point zy and
yields tre (we)(zo) < Ag. On other hand, trivial eigenvalue considerations show that

trr, (72) < (75 /7] )tre, (m)"

for any two Kéhler forms 7, 75, whence

n

log tr,, (W) < ¢t —ap™ + log(w—n) + (n —1)logtr,, (we) +logn
w

€

by Equation (8.1). Since w < we(= (1 + €)w) it follows that
H <yt — Aspe —nlog(1+€) + (n — 1) log try, (we) < (n — 1) logtry (we) + A7 — Aspe
where A7 := C —nlog(l + ¢).
We obtain
Sl)l(pH = H(zo) < (n—1)e 6 4 A, — A igl(fp6 < (n—1)e A+ A; — A i%f e,

That is
sup H = H(xp) < Ag — A5 igl(f e (41)
X

where Ag := (n — 1)e=4¢ + A7. By a result of Kolodziej, see [6], or by Lemma (T.2) in the case
when ¥™ — 1)~ is continuous, there exists a constant Ag < 0 depending only on X, w and the norm
LP (resp. on the sup-norm) of e¥" =¥~ such that |p.| < —Ag.

Then,
log try, (W.) + 9~ — Aspe = H < Ag — A5 Ao,

We infer that -
tr,, (W) < Ajge™ (42)

where Ay := exp(As — 2A45A49) which depends only on w,C' and the norm LP of eV v,

When ¢ and v~ are not smooth we proceed as in [I0] by using Demailly’s regularization. We
conclude there exists Aj; a constant which depend only on C' and w and the LP-norm (resp. the

sup norm in the continuous case) of ¥ =¥~ such that

|AL/J| S Ane_wi.
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2. Let (Fy)ren be a sequence satisfying assumptions of 2. From the discussion in 1. One can see that
there exists a positive constant A such that

|Agy| <A, VkeN.

Let F' be a continuous function on X. Clearly, there exists a constant C' > 0 such that dd°F > —Cw
and supy F' < C. We set on X

Yyt =F, ¢ :=0.
then 9T and v~ satisfy condition of Theorem (3.1]). Thus
[Ap| < Ap
on X.
O
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