
Max-Planck-Institut für Mathematik
Bonn

On the spectrum of projective toric manifolds

by

Mounir Hajli

Max-Planck-Institut für Mathematik
Preprint Series 2017 (34)





On the spectrum of projective toric manifolds

Mounir Hajli

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

School of Mathematical Sciences
Shanghai Jiao Tong University
China

MPIM 17-34





On the spectrum of projective toric manifolds

Mounir Hajli∗

Wednesday 31st May, 2017, 16:00

Abstract

Let X be a complex projective toric manifold. We associated to X, a positive and closed (1, 1)-
current called the canonical toric Kähler current of X denoted by ωX,can, and a new invariant called
the canonical spectrum of X. This spectrum is obtained as the set of the eigenvalues of a singular
Laplacian defined by ωX,can and which is described uniquely by the combinatorial structure of X.
The construction of this Laplacian and the study of its spectral properties are the consequence of a
generalized spectral theory of Laplacians on compact Kähler manifolds that we develop in this article.
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It is known that several properties and quantities of toric varieties can be translated into the language

of convex geometry. For example, the degree of a toric variety wrt an equivariant line bundle is given as
the volume of a convex polytope associated to the line bundle. Toric varieties are often used as simple test
cases for difficult geometric problem. The proof of the Grothendieck-Riemann-Roch theorem is easier in
the context of toric varieties. The combinatorial structure of toric manifolds gives rise to an interesting
class of metrics on equivariant line bundles introduced first by Batyrev and Tschinkel in this setting and
called canonical metrics (see [1]). These metrics are irregular but can be approximated uniformly by a
sequence of positive and smooth metrics, we say that the canonical metrics are admissible. The notion
of admissible metrics plays an important role in the generalization of the Arakelov geometry in [12], see
also [8]. One of the motivations of this article is to give a satisfactory notion of admissible metrics on
holomorphic vector bundles of higher rank.

Our first result is the following theorem:

Theorem 0.1 (Theorem 1.6). Let X be a compact Kähler manifold of dimension n and ω0 is a Kähler
form on X. Let F be a continuous function on X such that

∫
X
eFωn0 = 1. Then there exists ϕ ∈ C1,1(X)

which is a solution to the following singular Monge-Ampère equation:(
ω0 + ddcϕ

)n
= eFωn0 . (1)
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Our main result can be stated as follows: Given (X,ω0) a compact Kähler manifold of dimension n
and let (Fk)k∈N be a sequence of smooth functions on X converging uniformly to a function F such that

1. For any k ∈ N, we assume that ddcFk ≥ −Cω0 for a positive constant C.

2.
∫
X
eFkωn0 = 1 and we denote by ωk = ω0 + ddcϕk the solution of the Monge-Ampère equation

ωnk = eFkωn0 .

Then the sequence (ωk)k∈N converges wrt the L2-norm to a closed and positive (1, 1)-current ω∞ which
is solution to the singular Monge-Ampère equation

ωn∞ = eFωn0 , (2)

see Theorem 1.6 and Corollary 1.16. The current ω∞ will be called a singular Kähler current on X (see
Definition 1.7). This notion should be seen as a generalization of the notion of Kähler forms on compact
Kähler manifolds. We associate to any singular Kähler current a singular Laplacian ∆∞ which generalizes
the notion of Laplacian on compact Kähler manifolds and we prove that ∆∞ possesses a infinite, discrete
and non-negative spectrum (see Theorem 1.19).

In Section 2, we apply this theory to toric manifolds. Let X be complex toric projective manifold of
dimension n. The holomorphic tangent bundle TX is an equivariant vector bundle and hence det(TX)
(see Section 2). The canonical metric ‖ · ‖det(TX),∞ of det(TX) induces a canonical continuous volume
form on X, that we normalize and we denote by µX,can. For example, in the case of Pn the complex
projective space of dimension n , we have on a standard affine open subset of Pn,

ωPn,can = (
i

2π
)n

∏n
i=1 dzi ∧ dzi

(n+ 1) max(1, |z1|, . . . , |zn|)2(n+1)
. (3)

The first Chern class of X has a particular representative given by

τX,can := c1((det(TX), ‖ · ‖det(TX),∞))

which is a closed (1, 1)-current and canonically associated to X. We define the canonical toric Kähler
current of X denoted by ωX,can as the solution to the following singular Monge-Ampère equation,

ωnX,can = µX,can. (4)

ωX,∞ exists and unique by Theorem 1.6. An equivalent definition for the notion of canonical toric Kähler
current can be given as follows: ωX,can is the unique solution to τX,can = Ricc(ωX,can) (the Ricci current
of ωX,can). From this equation and by Theorem 1.19, it is natural to consider the spectrum of the singular
Laplacian defined by ωX,can and to call it the canonical spectrum of the toric manifold X, we denote it
by SpecX (see Definition 2.4). Examples of computation of the canonical spectrum are given in Example
2.5. Some properties of this spectrum in dimension 1 are studied in [4].

One ofthe fundamental problems in spectral geometry is to ask to what extent the eigenvalues de-
termine the geometry of a given manifold. A natural question arises from the theory developed in this
article. In this setting, to what extent the canonical spectrum determine the geometry of the toric mani-
fold? Given two toric projectives manifolds X and X ′ and having the same canonical spectrum, is it true
that X and X ′ are isometric?
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The main tools of this article are the famous result of Yau, [11] and a theorem of Eyssidieux-Guedj-
Zeriahi-Berman-Boucksom [10]. This theorem will allows us to generalize the result of Yau. First let us
recall the main theorem of Yau in [11]. Let (X,ω0) be a Kähler compact manifold with ω0 is a Kähler
form on X. For a positive function F which belongs to Ck(X) with k ≥ 3, there exists ϕ ∈ Ck+1,α(X)
with 0 ≤ α ≤ 1 which is a solution for the following Monge-Ampère equation(

ω0 + ddcϕ
)n

= eFωn0 . (5)

We consider a sequence (Fk)k∈N as above. Using a result of [10] (see Appendix 3), we establish that
there exists a constant A such that

|∆0ϕk| ≤ A ∀k ∈ N,

where ∆0 is the Laplacian associated to ω0 and acting on C∞(X), (see Theorem 1.3). Using this result,
we can prove a generalization of Yau’s result (see Theorem 1.6).

1 Toward spectral properties of toric manifolds
Let X be a compact Kähler manifold of dimension n and ω0 a Kähler form on X. Let F be a continuous
function on X. We assume that

∫
X
eFωn0 =

∫
X
ωn0 .

Let (Fk)k∈N be a sequence of smooth functions on X converging uniformly to F such that ddcFk ≥
−Cω0 for any k ∈ N where C is a positive constant and

∫
X
eFkωn0 =

∫
X
ωn0 for any k ∈ N. We suppose

moreover that F0 = 0. By [11], we know that there exists a unique smooth function ϕk on X with∫
X
ϕkω

n
0 = 0 such that (

ω0 + ddcϕk
)n

= eFkωn0 ∀k ∈ N. (6)

We set ωk := ω0 + ddcϕk and we denote by hk the associated metric to ωk for any k ∈ N.

1.1 A singular Monge-Ampère equation
By [6], we know that there exists a unique continuous function ϕ on X with

∫
X
ϕωn0 = 0 such that ϕ is

a solution for the following singular Monge-Ampère equation(
ω0 + ddcϕ

)n
= eFωn0 . (7)

The main tool for the proof of the existence uses the notion of capacity.

In this paragraph, we give a new proof for this result by generalising the proof of [11]. We denote by
‖ · ‖L2,k (resp. ‖ · ‖L2) the inner product on C∞(X) (the space of smooth functions on X) induced by
ωnk (resp. eFωn0 ) and by H0(X) the completion of the space C∞(X) wrt ‖ · ‖L2 . Let ∇k be the covariant
derivative associated to ωk. We denote by ∆k the Laplacian acting on C∞(X) associated to ωk for any
k ∈ N.

Theorem 1.1. The sequence (ϕk)k∈N is bounded wrt the sup-norm.

The proof of this theorem will be a special case of the following result

Proposition 1.2. Let (Gk)k∈N be a sequence of smooth functions on X. We assume that ‖Gk‖sup is
bounded from above by a positive constant C for any k ∈ N. Suppose that

∫
X
eGkωn0 =

∫
X
ωn0 for any

k ∈ N. We denote by ϕk the solution of the Monge-Ampere equation(
ω0 + ddcϕk

)n
= eGkωn0 , (8)

with
∫
X
ϕkω

n
0 = 0. Then (ϕk)k∈N is bounded wrt the sup-norm.
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Proof. From [11, (2.27)], we can see that there exists a constant C ′ which depends only on (X,ω0) such
that

ψk := ϕk − C ′ − 1 ≤ −1 ∀k ∈ N,

Applying the Sobolev inequality, we can find two constants C1 and C2 depending only on (X,ω0) such
that for any p ≥ 2(∫

X

|ψk|2pωn0
) 1

2 ≤ C1

∫
X

|ψk|pωn0 + C2

∫
X

|∇0(−ψk)
p
2 |2ωn0 ∀k ∈ N.

From [11, p.353 (2.32)] we get∫
X

|∇0(−ψk)
p
2 |2ωn0 ≤ p sup

x∈X
|1− eGk(x)|

∫
X

|ψk|p−1ωn0 .

Since ψk ≤ −1 we obtain the following inequality(∫
X

|ψk|2pωn0
) 1

2 ≤
(
C1 + p sup

x∈X
|1− eG(x)|C2

) ∫
X

|ψk|pωn0 .

That is,
‖ψk‖ppn

n−1
≤
(
C1 + p sup

x∈X
|1− eGk(x)|C2

)
‖ψk‖pp ∀k ∈ N.

As in [11], this inequality gives an upper bound for ‖ψk‖sup in terms of C1, C2 and ‖1 − eGk‖sup. Then
(‖ϕk‖sup)k∈N is a bounded sequence.

Theorem 1.3. We keep the same hypothesis as before. There exists a constant K depending only on
(X,ω0) such that

|∆0ϕk| ≤ K, ∀k ∈ N.

Proof. This will follows from Proposition (3.2) which is a slight generalization of a result in [10].

Corollary 1.4. The metrics hk are uniformly equivalent for any k ∈ N.

Proof. Recall that hk is the metric on TX defined by ωk. This result follows automatically from Theorem
1.3.

Proposition 1.5. There exists a constant C such that

sup
X
|∇0ϕk| ≤ C ∀k ∈ N.

Proof. Let k ∈ N. We let fk = ∆0ϕk. Then by Theorem (1.3), −K ≤ fk ≤ K. We can deduce as in [11,
pp 355-356], that there exists a constant C which depends only on (M,ω0) and K such that

sup
X
|∇0ϕk| ≤ C

(
K +

∫
X

|ϕk|ωn0
)
∀k ∈ N.

But the sequence
(∫
X
|ϕk|ωn0

)
k∈N is bounded as an easy application of [11, p.352 (2.28)]. This concludes

the proof of the proposition.

Theorem 1.6. The equation (7) admits a solution ϕ ∈ C1,1(X).

Proof. By Theorem 1.1 and Proposition 1.5, we can apply the Ascoli’s theorem to deduce the existence
of a subsequence of (ϕk)k∈N converging uniformly to a continuous function ϕ. It is clear that ϕ is a
solution of Equation (7). Since ∆0ϕk is uniformly bounded, then by the same argument we deduce that
ϕ ∈ C1,1(X).
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Definition 1.7. Let ω be a positive and closed (1, 1)-current on X. We say that ω is a singular Kähler
current on X if the current ωn is continuous.

By Theorem 1.3, we know that for any normalized and continuous volume form Vol on X there exists
a singular Kähler metric on X such that ωn = Vol.

1.2 The Spectral theory of singular Kähler metrics
Proposition 1.8. Let U be a relatively compact open local chart of X, and {z1, . . . , zn} a system of
local coordinates over U . Let k ∈ N. We set ϕk,αβγ := ∂3ϕk

∂zα∂zβ∂zγ
for any α, β, γ ∈ {1, . . . , n}. Then the

following sequence (( i
2π

)n ∫
U

|ϕk,αβγ |
2

n∏
j=1

dzj ∧ dzj
)
k∈N

,

is bounded.

Proof. The proof is a combination of [11, Equation 3.3, p.360] and Corollary (1.4).

Lemma 1.9. We set ϕkl = ϕk − ϕl for any k, l ∈ N. There exists a constant K ′ which depends only on
(X,ω0) such that we have ∫

X

|∇kϕkl|2ωnk ≤ K ′C2(Fj,k), k, l ∈ N, (9)

where C2(Fk,l) := supX
∣∣1− exp(Fl − Fk)

∣∣ and ∇k is the covariant derivative w.r.t ωk.

Proof. Let k, l ∈ N. Obviously, ϕkl −
∫
X
ϕlω

n
k is the unique smooth function solution to the following

Monge-Ampère equation
ωnj =

(
ωk + ddcϕkl

)n
= eFj−Fkωnk ,

which satisfies
∫
X

(ϕkl −
∫
X
ϕlω

n
k )ωnk = 0.

From [11, p.353 (2.32)], we have for any k and j in N, the following inequality∫
X

|∇kϕk,l|2ωnk ≤ 2C2(Fj,k)

∫
X

∣∣ϕj,k − ∫
X

ϕlω
n
k

∣∣ωnk .
Recall that (

∫
X
|ϕk|ωn0 )k∈N is bounded, and (Fk)k∈N converges uniformly to F . We can deduce that there

exists a constant K ′ which depends only on (X,ω0) such that∫
X

|∇kϕkl|2ωn0 ≤ K ′C2(Fj,k) ∀k, l ∈ N. (10)

Proposition 1.10. There exists a constant K ′′ which depends only on (X,ω0) such that we have∫
X

|∇0ϕkl|2ωn0 ≤ K ′′C2(Fj,k) ∀k, l ∈ N.

Proof. The proof is a consequence of Corollary 1.4 and Lemma 1.9.

Proposition 1.11. There exist m and M two positive constants such that

m‖∆lξ‖2L2,l ≤ ‖∆kξ‖2L2,k ≤M‖∆lξ‖2L2,l,

for any k, l ∈ N and any ξ ∈ C∞(X).
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Proof. Let k ∈ N. Let ξ ∈ C∞(X). We have

‖∆kξ‖2L2,0 =

∫
X

∑
(i,j),(i′,j′)

hijk h
i′j′

k

∂2ξ

∂zi∂zj

∂2ξ

∂zj′∂zi′
ωn0 (11)

({zi}i are local holomorphic coordinates.) Let h−1
k ⊗ h

−1
k be the Kronecker product of h−1

k and h−1
k .

Obviously, we have

〈
h−1
k ⊗ h

−1
k

∂2ξ

∂z∗∂z∗
,

∂2ξ

∂z∗∂z∗

〉
a =

∑
(i,j),(i′,j′)

hijk h
i′j′

k

∂2ξ

∂zi∂zj

∂2ξ

∂zj′∂zi′
. (12)

Recall that if A and B are two n × n complex matrices, then the eigenvalues of A ⊗ B ( the Kronecker
product of A and B) is a product of eigenvalues of A and B. Then using Corollay (1.4), we can find two
positive constants 0 < m < M depending only on (X,ω0) such that

m‖∆lξ‖2L2,l ≤ ‖∆kξ‖2L2,k ≤M ′‖∆lξ‖2L2,l ∀k, l ∈ N,∀ξ ∈ C∞(X).

Theorem 1.12. For any ξ ∈ C∞(X), the following sequence(
∆kξ

)
k∈N

converges to a limit in H0(X) wrt ‖ · ‖L2,0. Moreover, this limit does not depend on the choice of the
sequence (Fk)k∈N.

Proof. Let k, l ∈ N. For any 1 ≤ i, j ≤ n, the difference hijk − hijl of the minors hijk and hijl of h−1
k

and h−1
l respectively, can be written as the sum of terms where each one is a product of elements of

hl and hk and of (
∂2ϕk,l
∂zα∂zβ

)1≤α,β≤n. Hence, for i, j = 1, . . . , n we can find a function Sij such that

|∆kξ −∆lξ|2 = (∆kξ −∆lξ) · (∆kξ −∆lξ) =
∑
ij
∂2ϕk,l
∂zi∂zj

Sij .
Let (Uα)α∈Ω be a finite open covering of X such that ωn0 = vα

∏n
i=1 dzα,i ∧ dzα,i on Uα with vα is a

smooth function on Uα and {zα,i}i is a system of local coordinates on Uα for any α ∈ Ω. Let (ρα)α∈Ω be
a partition of unity subordinate to (Uα)α∈Ω. We have

∥∥∆kξ −∆lξ
∥∥2

L2,0
=
∑
ij

∫
X

∂2ϕk,l
∂zi∂zj

Sij ω
n
0

=
∑
ij

∑
α∈Ω

∫
Uα

∂ϕkl
∂zα,j

d

dzα,i

(
Sijραvα)

n∏
i=1

dzα,i ∧ dzα,i by the Stokes theorem.
(13)

Observe that for any 1 ≤ i, j ≤ n, the term d
dzi

(
Sijραvα) contains a derivative of order 3 of some ϕkl or

ϕkl, or ∂vα
∂zi

and the other coefficients depend only on hl and ( ∂ϕkl
∂zα∂zβ

)1≤α,β≤n.
By Theorem 1.3 and Proposition 1.8, we can find a constant C which depends only on the L2-norms

of ξ and its derivatives of order less than 3 and on (X,ω0) such that

∥∥∆kξ −∆lξ
∥∥2

L2,0
≤ C

(∫
X

∣∣∇0ϕkl|2ωn0
) 1

2 ∀k, l ∈ N. (14)

aHere
〈
,
〉

is the standard scalar product on Cn2
.
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Now by Proposition 1.10, we conclude that there exists K a constant depending only on ξ, its derivatives
and on (X,ω0) such that ∥∥∆kξ −∆lξ

∥∥2

L2,0
≤ KC2(Fj,k)

1
2 ∀k, l ∈ N.

This ends the proof of the theorem.

Definition 1.13. Let ω∞ be the singular Kähler current solution to the Monge-Ampère equation 7. For
any ξ ∈ C∞(X), we denote by ∆∞ξ the limit of the sequence in Theorem 1.12. The following operator
denoted by ∆∞

C∞(X)→ H0(X), ξ 7→ ∆∞ξ,

is clearly linear. We call it the Laplacian associated to the singular Kähler current ω∞.

Proposition 1.14. There exist two positive constants m′ and M ′ such that

m′‖∆kξ‖L2,k ≤ ‖∆∞ξ‖L2,∞ ≤M ′‖∆kξ‖L2,k ∀k ∈ N,∀ξ ∈ C∞(X).

Proof. The proof follows from Proposition 1.11 and Theorem 1.12.

Let ϕ be a smooth function on X. For any k ∈ N, we denote by ‖ϕ‖Hj ,k the j-norm of Sobolev given
as follows

‖ϕ‖2Hj,k =

j∑
l=0

‖∇(l)
k ϕ‖

2
L2

with ∇(l)
k ϕ := ∇k · · · ∇kϕ such that ∇k appears l time. We denote by H2(X) the Sobolev space endowed

with ‖ · ‖H2,k.

Proposition 1.15. There exists a constant K which depends only on (X,ω0) such that

‖ϕkl‖H2,k ≤ KC2(Fj,k)
1
4 ∀k, l ∈ N.

Proof. By the elliptic estimate (see for instance [7, Appendix A]), we have for any k, l ∈ N

‖ξ‖H2,k ≤ C1‖∆jξ‖L2 + C2‖ξ‖L2 ∀ξ ∈ C∞(X), ∀j, k ∈ N, (15)

where C1 and C2 two constants which do not depend on j by Theorem 1.3. In fact, it is known that C1

and C2 depend on the eigenvalues of the Kähler metric. In particular, we have

‖ϕkl‖H2
≤ C1‖∆0ϕkl‖0 + C2‖ϕkl‖L2 . (16)

As in the proof of (13), we can use Theorem 1.3 and Proposition 1.8 to show the following inequality∥∥∆0ϕkl
∥∥2

L2,0
≤ K ′C2(Fj,k)

1
2 ∀k, l ∈ N, (17)

where K ′ depends only on (X,ω0). By 16 and 17, we deduce the following

‖ϕkl‖H2,k ≤ K ′C2(Fj,k)
1
4 ∀k, l ∈ N.

Corollary 1.16. We keep the same notations as above. The sequence (ωk)k∈N converges to ω∞ wrt the
L2-norm.

Proof. This is an easy application of 17.
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Corollary 1.17. Let ξ ∈ C∞(X), we have∥∥∆kξ −∆lξ
∥∥
L2,0
≤ K ′′C2(Fj,k)

1
4

(
‖∆lξ‖L2,0 + ‖ξ‖L2,0

)
∀k, l ∈ N, (18)

where K ′′ is constant which depends only on (X,ω0).

Proof. We can show that there exists a constant C such that∥∥∆kξ −∆lξ
∥∥
L2,0
≤ C‖ϕkl‖H2,k‖ξ‖H2,k

If we combine 15 and Proposition 1.15 with the previous inequality, we conclude the proof of the corollary.

Theorem 1.18. The operator ∆∞ admits a maximal, positive and selfadjoint extension to H2(X).

Proof. From Theorem 1.12 we obtain easily the following

(∆∞ξ, η)L2,∞ = (ξ,∆∞η)L2,∞, ∀ξ, η ∈ C∞(X). (19)

Let (∆∞)max be the maximal extension of ∆∞ : C∞(X)→ H0(X). By definition,

Dom((∆∞)max) =
{
s ∈ H0(X)

∣∣∆∞s ∈ H0(X)
}
.

(see for instance [7, Appendix D]) Then it is the Hilbert space adjoint of ∆∞, so (∆∞)max is closed. Let
us prove that (∆∞)max is self-adjoint, and Dom((∆∞)max) = H2(X). Clearly, H2(X) ⊂ Dom((∆∞)max).
Let s ∈ Dom((∆∞)max). By Proposition 1.14, there exists k ∈ N such that

‖∆ks‖L2,k <∞.

Then by the elliptic estimate ([7, A.3.2]) we get s ∈ H2(X). From 19, we obtain that (∆∞)max is
selfadjoint.

Theorem 1.19. The operator ∆∞ + I : H2(X) → H0(X) is invertible and ∆∞ has an infinite, non-
negative and discrete spectrum and it admits a heat kernel, we denote its heat kernel by e−t∆∞ , for any
t > 0.

Proof. Let s ∈ C∞(X). As (∆∞s, s)L2,∞ ≥ 0, we get

‖(I + ∆∞)s‖L2 ≥ ‖s‖L2 .

Then, for any s ∈ H2

‖(I + ∆∞)s‖L2 ≥ ‖s‖L2 . (20)

Thus I + ∆∞ : H2(X) → H0(X) is bijective, and (I + ∆∞)−1 : H0 → H2 is well-defined as a linear
operator. Fix k ∈ N, we know that there exists a constant C1 such that ‖∆∞s‖L2,∞ ≤ C1‖∆∞s‖L2,k for
any s ∈ H2(X). Thus

‖(I + ∆∞)s‖L2,∞ ≤ C1‖s‖H2,k ∀s ∈ H2(X).

Let s ∈ H0(X), by the elliptic estimate, we can find a constant C2 independent on s such that

‖(I + ∆∞)−1s‖H2,k ≤ C2

(
‖(I + ∆k)(I + ∆∞)−1s‖L2,k + ‖(I + ∆∞)−1s‖L2,k

)
≤ C2

(
‖∆k(I + ∆∞)−1s‖L2,k + 2‖(I + ∆∞)−1s‖L2,k

)
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From Corollary 1.17 which we apply to ξ := (I + ∆∞)−1s, we get the following

‖∆k(I + ∆∞)−1s‖L2,k ≤ K ′‖s‖L2,∞

for some constant K ′ which depends only on (X,ω0). We conclude that there exists a constant C such
that

‖(I + ∆∞)−1s‖H2,k ≤ C‖s‖L2,k ∀s ∈ H0(X). (21)

From the previous inequalities and the Rellich’s theorem (cf. for example [7, Theorem A.3.1]), we
know that (I + ∆∞)−1 : (H0(X), ‖ · ‖L2,∞) → (H0(X), ‖ · ‖L2,∞) is a compact operator, and it is self-
adjoint. Therefore, ∆∞ has an infinite discrete and positive spectrum, and it admits a heat kernel denoted
by (e−t∆∞)t>0.

Corollary 1.20. There exist two positive constants m′′ and M ′′ such that

m′′λk,j ≤ λ∞,j ≤M ′′λk,j ∀k ∈ N ∀j ∈ N≥1, (22)

where λk,j is the j-th eigenvalue of ∆k for k ∈ N ∪ {∞}.

Proof. This follows from Proposition 1.14, Theorem 1.19, and the monotonicity principle.

Theorem 1.21. The sequence
(
(I+∆k)−1

)
k∈N converges to (I+∆∞)−1 with respect to the norm ‖ · ‖L2

and hence wrt ‖ · ‖L2,k for any k ∈ N.

Proof. Note that for any k, l ∈ N,

(I + ∆l)
−1 − (I + ∆k)−1 = (I + ∆l)

−1(∆k −∆l)(I + ∆k)−1,

and we use Corollary 1.17, to deduce the existence of a constant K such that∥∥(I + ∆l)
−1 − (I + ∆k)−1

∥∥
L2 ≤ KC2(Fk,l)

1
4 ∀k, l ∈ N. (23)

This ends the proof of the theorem.

Theorem 1.22. For any t > 0, the sequence
(
e−t∆k

)
k∈N converges to e−t∆∞ wrt the norm ‖ · ‖L2 .

Proof. We fix t > 0. Let γ be the curve in C given by: +∞+ i→ −1 + i→ −1− i→ +∞− i, then for
any k ∈ N, we have

e−t∆k =
1

2πi

∫
γ

e−tλ(λ−∆k)−1dλ. (24)

Observe that we can obtain a similar estimation to (23) for (λ − ∆k)−1 with λ is a non-zero complex
number. By (24), we get

‖e−t∆k − e−t∆l‖L2,∞ ≤ KC2(Fk,l)
1
4 ∀k, l ∈ N. (25)

with K is a constant. It follows that (e−t∆k)k∈N converges to e−t∆∞ wrt the L2-norm.

To the operator ∆∞ we associate the following function ζ∆∞ given as follows

ζ∆∞(s) =

∞∑
j=1

1

λs∞,j

for s ∈ C. When ∆ is the Laplacian operator associated to a smooth Kähler metric, the function ζ∆ is
called the zeta function of ∆ which known to be holomorphic on {s ∈ C|<(s) > dimC(X)} and admits a
meromorphic continuation to the whole complex plane with poles at s = 1, 2, . . . ,dimC(X). We have the
following result
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Theorem 1.23. For any <(s) > n, ζ∆∞(s) converges absolutely and ζ∆∞ is holomorphic on {s ∈
C|<(s) > n} with a pole at s = n.

Proof. Let k ∈ N. Since ζ∆k
is finite on {s ∈ C| <(s) > n}, it follows from Corollary 1.20, that ζ∆∞(s)

converges absolutely on {s ∈ C| <(s) > n}. A result of Hörmander (see [5]) asserts that the Nk(λ), the
counting function of the eigenvalues of a Laplacian ∆k, has the following asymptotic expansion

Nk(λ) = Cλ
n
2 +O(λ

n−1
2 ) ∀λ� 1.

Thus,
j = Cλ

n
2

k,j +O(λ
n−1
2

j ).

Then λk,j ∼ jn for any j � 1. By Corollary 1.20, it follows that ζ∆∞ is holomorphic on {s ∈ C|<(s) > n}
and s = n is a pole.

Definition 1.24. We call ζ∆∞ the zeta function associated to ∆∞.

1.3 An example
In the sequel of this paragraph, we present an exemple of this theory. Let P1 be the complex projective
space of dimension 1. We consider the following hermitian continuous metric ‖ · ‖can on the line bundle
O(1) defined as follows

‖s‖2can(z) :=
|s(z)|2

max(1, |z|)2
exp(−k(z)), z ∈ C,

where s is a local holomorphic section of O(1) and k(z) = 1
2 min(|z|2, 1

|z|2 ), for any z ∈ C.
Let (P1)n be the product of n copies of P1. We consider the following continuous volume form on

(P1)n, given on Cn as follows

νcan :=
( i

4π

)n n∏
j=1

dzj ∧ dzj
max(1, |zj |)4

.

One checks easily that
∫

(P1)n
νcan = 1. By Theorem 1.6, there exists a positive and closed (1, 1)-current

ωn,∞ on (P1)n such that
ωnn,∞ = νcan.

Proposition 1.25. The current c1(O(1), ‖ · ‖can) on P1 is positive and

ωn,∞ =

n∑
j=1

p∗jc1(O(1), ‖ · ‖can),

where pj : (P1)n → P1 is the j-th projection.

Proof. This proposition follows from [4, Proposition 3.4]

We denote by ∆n,∞ the Laplacian associated to the singular Kähler metric ωn,∞. By Theorem 1.19,
∆n,∞ has a non-negative, infinite and discrete spectrum. The following theorem describes explicitly the
spectrum.

Theorem 1.26. We denote by Spec(∆n,∞) the spectrum of ∆n,∞. We have

Spec(∆n,∞) =
{ n∑
j=1

λ2
j

2

∣∣ for j = 1, . . . , n, Jk(λj)J
′
k(λj) = 0 for some k ∈ Z

}
,

where Jk is the k-th Bessel function of order k.
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Proof. We can generalize easily [2, Proposition A.II.3] to the case of the product of compact Kähler
manifolds endowed with singular Kähler metrics. Then, the theorem is a consequence of [3, Theorem
1.4]. Note that the volume form in [3, Theorem 1.4] is not normalized.

2 Projective toric manifolds
Toric varieties are often used as simple test cases for difficult geometric problems, and many interesting
quantities and theorems are easy to express and to prove on toric varieties. A toric variety is defined in
terms of a Z-module N and a fan Σ on NR := N ⊗Z R. Several algebraic and geometric properties and
quantities can be expressed in terms of the combinatorics of N .

Let N be a free Z-module of rank n, M its dual Z-module and NR := N ⊗Z R. A subset σ of NR is
called a strongly convex rational polyhedral cone if there exist a finite number of elements n1, n2, . . . , ns
in N such that

σ = R≥0n1 + . . .+ R≥0ns,

and σ ∩ (−σ) = {0}. A subset τ of σ is called a face if

τ = σ ∩ {m0}⊥ := {y ∈ σ| 〈m0, y〉 = 0},

for an m0 ∈ σ∨ := {x ∈ MR| 〈x, y〉 ≥ 0 ∀y ∈ σ}. A fan in N is a nonempty collection Σ of strongly
convex rational polyhedral cones in NR satisfying the following conditions:

(i) Every face of any σ ∈ Σ is contained in Σ.

(ii) For any σ, σ′ ∈ Σ, the intersection σ ∩ σ′ is a face of both σ and σ′.

The union |Σ| :=
∑
σ∈Σ σ is called the support of Σ.

Let Σ be a fan on N . For σ ∈ Σ, we let Sσ := M ∩ σ∨. We can show that Sσ is a finitely generated
subsemigroup of M , and Sσ defines an irreductible normal algebraic subset Uσ of some Cp (see [9,
Propositions 1.1, 1.2, pp 3-4]). The properties of Σ allow us to glue naturally {Uσ|σ ∈ Σ} together to
obtain an irreductible and normal complex analytic space of dimension n = rank(N). We denote this
complex analytic space by XN (Σ) or simply X and we call it a toric variety associated to (N,Σ). After
Batyrev and Tschinkel, there exists a canonical covering of X into compact subsets (Cσ)σ∈Σmax

where
each Cσ is diffeomorphic to a product of unit balls and unit circles (see for instance [8, §3.3]).

It is known that X is a toric variety of dimension n, if and only if X is an irreductible normal algebraic
variety which contains an open subset isomorphic to the algebraic torus T := (C∗)n, such that T acts
algebraically on X (see [9, Theorem 1.5, p.10]).

Recall that a holomorphic vector bundle p : E → X is a T -equivariant bundle on X if it has an action
of the torus T on E which is linear on the fibers and makes the following diagram commutes

E
t //

p

��

E

p

��
X

t // X

for any t ∈ T. When L is a T -equivariant line bundle, one can associate, in a canonical way, to L a
continuous hermitian metric ‖ · ‖L,∞ called the canonical metric of L. This metric is given in terms of
the combinatorial structure of X (see [1] or [8]) and we can show that ‖ · ‖L,∞ is a solution to the first
Calabi problem for the singular volume form δSN ∧ dµ+

N (see [8, Remark 6.3.6]). More precisely, we have

c1(L, ‖ · ‖L,∞)n = deg(c1(L)n)δSN ∧ dµ+
N . (26)
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We assume that X is a non-singular projective toric variety over C and we consider a Kähler form ω
on X. The holomorphic tangent bundle TX is clearly a T -equivariant vector bundle, and so is det(TX).
The first Chern class of X has a particular representative given by τX,can := c1((det(TX), ‖ ·‖det(TX),∞))
which is a (1, 1)-current closed and canonically associated to X. The canonical metric of det(TX) induces
a canonical continuous volume form on X, that we normalize and we denote it by µX,can.

Example 2.1. Let Pn be the complex projective space of dimension n. On a standard affine open subset
of Pn, we have

ωPn,can = (
i

2π
)n

∏n
i=1 dzi ∧ dzi

(n+ 1) max(1, |z1|, . . . , |zn|)2(n+1)
. (27)

In view of the theory developed in this article, we introduce the following definitions,

Definition 2.2. Let X be a projective toric complex manifold of dimension n. We call a canonical toric
Kähler current of X and we denote it by ωcan, a positive and closed (1, 1)-current which is solution to
the following singular Monge-Ampère equation,

ωnX,can = µX,can (28)

By Theorem 1.6, we know that ωX,can exists and unique. An equivalent definition for the notion
of canonical toric Kähler current might be given as follows ωX,can is the unique solution to τX,can =
Ricc(ωX,can) (the Ricci current of ωX,can).

Remark 2.3. Let X be a projective toric complex manifold of dimension n. We have the following

ωPn,can|Cj
=

1

n+ 1
(
i

2π
)n

n∏
k=1

dyk ∧ dyk, (29)

where Cj = {z ∈ Cn||zk/zj | ≤ 1, |1/zj | ≤ 1, k = 1, . . . , n} for j ≥ 1 and C0 = {z ∈ Cn||zk| ≤ 1, k =
1, . . . , n} and {yk}k=1,...,n are the canonical coordinates on Cj which define a diffeomorphism from Cj
into C0. In fact, the Cj correspond to the Cσ for σ ∈ Σmax. More generally, given X a projective toric
manifold over C of dimension n, we can show that for any σ ∈ Σmax the following local form ωX,can|Cσ

,
has a similar expression as in 29. More precisely, for any σ ∈ Σmax, there exists a system of local
coordinates {y1, . . . , yn} in Int(Cσ) and a constant cσ such that

ωX,can|Cσ
= cσ

n∏
k=1

dyk ∧ dyk. (30)

We use Theorem 1.19 to associate to any projective toric complex manifold a new combinatorial
invariant, by introducing the following definition

Definition 2.4. Let X be a projective toric complex manifold of dimension n. Let ∆X,can be the Laplacian
associated to the canonical toric Kähler current ωcan. We consider SpecX := Spec(∆X,can) and we call
it the canonical spectrum of the toric variety X.

From (28), we can see that the canonical spectrum SpecX depends only on the combinatorial structure
of X.

Example 2.5. Let n ∈ N≥1. We consider the following toric variety (P1)n. We have,

Spec(P1)n =
{ n∑
j=1

λ2
j

2

∣∣ for j = 1, . . . , n, Jk(λj)J
′
k(λj) = 0 for some k ∈ Z

}
, (31)

This equality follows from Theorem 1.26.
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3 Appendix
Let (X,ω) be a compact Kähler manifold of dimension n, ∆ the Laplacian operator acting on smooth
functions on X defined by ω, and θ ≥ 0 is a semi-positive closed (1, 1)-form such that

∫
X
θn > 0. We let

Amp(θ) denote the ample locus of the cohomology class of θ.

Theorem 3.1. Let µ be a positive measure on X of the form µ = eψ
+−ψ−dV with ψ± quasi-psh and

e−ψ
− ∈ Lp for some p > 1. Assume that ϕ is a bounded θ-psh function such that (θ+ ddcϕ)n = µ. Then

we have ∆ϕ = O(e−ψ
−

) locally on Amp(θ).
More precisely, assume given a constant C > 0 such that

1. ddcψ+ ≥ −Cω and supX ψ
+ ≤ C.

2. ddcψ− ≥ −Cω and ‖e−ψ−‖Lp ≤ C.

Let also U b Amp(θ) be a relatively compact open subset. Then there exists A > 0 only depending on
θ, p, C and U such that

0 ≤ θ + ddcϕ ≤ Ae−ψ
−
ω

on U .

Proof. See [10, Theorem 10.1].

Proposition 3.2. We keep the same hypothesis as in Theorem (3.1), and we assume that θ = ω.

1. Then, there exists a constant A which depends only C and ω such that

|∆ϕ| ≤ Ae−ψ
−
,

on X.

2. Suppose that ψ+ = F , with F is a continuous function on X and ψ− = 0 and let (Fk)k∈N be a
sequence of smooth functions converging uniformly to F on X such that ddcFk ≥ −Cω for any
k ∈ N, where C is a positive constantb. Then, there exists A > 0 only depending on C, ω and X
such that

|∆ϕk| ≤ A ∀k ∈ N,

on X.

Proof. 1. The proof of the first part of the theorem is a special case of the proof of Theorem (3.1)
which we recall here. Our goal is to analyse the constant A. We keep the same notations as in the
proof of [10, Theorem 10.1]. Since θ = ω then Amp(θ) = X and we have

ω̃ = ω, ψ = 0.

We can take δ = 1. For 0 < ε ≤ 1, ωε = ω̃ + εω = (1 + ε)ω ≥ ω, so that

trωε(α) ≤ trω(α), (32)

for every positive (1, 1)-form α.
Assume ψ+ and ψ− are smooth functions satisfying (1) and (2) of Theorem (3.1), and assume given
a smooth normalized θε-psh function ϕε such that

(θ + εω + ddcϕε)
n = eψ

+−ψ−dV. (33)
bFor example, we consider (O, eF ) and we decompose it into two admissible line bundles (L1, h1) and (L2, h2) ...
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Since ωε ≤ (ε+ 1)ω on X, it will be enough to prove that

ω′ε := θ + εω + ddcϕε(= (1 + ε)ω + ddcϕε)

satisfies trωε(ω
′
ε) ≤ Ae−ψ

−
on X.

Following [10, p. 45], there exists B a constant which depends only on a lower bound for the
holomorphic bisectional curvature of ωε such that

∆ω′ε
log trωε(ω

′
ε) ≥ −

trωε(Ric(ω′ε))

trωε(ω
′
ε)

−Btrω′ε(ωε). (34)

Applying ddc log to (ω′ε)
n = e−ψ

+−ψ−ωn, yields

− Ric(ω′ε) = −Ric(ω) + ddcψ+ − ddcψ− ≥ A1ω − ddcψ−, (35)

where A1 is constant which depends only on ω and C.

Using trωε(ω) ≤ n and the trivial inequality

n ≤ trωε(ω
′
ε)trω′ε(ωε) (36)

we infer from (34),

∆ω′ε
log trωε(ω

′
ε) ≥ −

nA1 + ∆ωεψ
−

trωε(ω
′
ε)

−Btrω′ε(ωε) ≥ −
∆ωεψ

−

trωε(ω
′
ε)
− (A1 +B)trω′ε(ωε). (37)

That is

∆ω′ε log trωε(ω
′
ε) ≥ −

∆ωεψ
−

trωε(ω
′
ε)
−A2trω′ε(ωε). (38)

where A2 := A1 +B, which depends only on ω,C.

By the assumption (2) of Theorem (3.1), we have A3ωε + ddcψ− ≥ 0, where A3 = C(1 + ε)−1.
Applying trωε to the trivial inequality

0 ≤ A3ωε + ddcψ− ≤ trω′ε(A3ωε + ddcψ−)ω′ε

yields

0 ≤ A3n+ ∆ωεψ
− ≤ (A3trωε(ωε) + ∆ω′ε

ψ−)trωε(ω
′
ε)

Plugging this into (38) and using again (36) we obtain

∆ω′ε log trωε(ω
′
ε) ≥ −

∆ωεψ
−

trωε(ω
′
ε)
−A2trω′ε(ωε)

≥ −∆ωεψ
− +A3n

trωε(ω
′
ε)

− (A2 +A3)trω′ε(ωε)

≥ −A3trω′ε(ωε)−∆ω′ε
ψ− − (A2 +A3)trω′ε(ωε).

That is
∆ω′ε

(
log trωε(ω

′
ε) + ψ−

)
≥ −A4trω′ε(ωε), (39)
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where A4 := 2A2 +A3.

Following the notations of [10, p. 45], and under our assumptions,

ρε := ϕε

(since ψ = 0). We then have n = trω′ε(ωε) + ∆ω′ε
ρε, and we finally deduce from (39)

∆ω′ε

(
log trωε(ω

′
ε) + ψ−

)
≥ −(A4 − 1)trω′ε(ωε) + trω′ε(ωε)

= −(A4 − 1)(n−∆ω′ε
ρε) + trω′ε(ωε)

Thus,
∆ω′ε

(
log trωε(ω

′
ε) + ψ− −A5ρε

)
≥ trω′ε(ωε)−A6, (40)

where A5 := A4 − 1, A6 := (A4 − 1)n.
The function

H := log trωε(ω
′
ε) + ψ− −A5ρε

on X is bounded. We apply the maximum principle, H achieves its maximum at a point x0 and
(40) yields trω′ε(ωε)(x0) ≤ A6. On other hand, trivial eigenvalue considerations show that

trτ1(τ2) ≤ n(τn2 /τ
n
1 )trτ2(τ1)n−1

for any two Kähler forms τ1, τ2, whence

log trωε(ω
′
ε) ≤ ψ+ − ψ− + log

(ωn
ωnε

)
+ (n− 1) log trω′ε(ωε) + log n

by Equation (3.1). Since ω ≤ ωε(= (1 + ε)ω) it follows that

H ≤ ψ+ −A5ρε − n log(1 + ε) + (n− 1) log trω′ε(ωε) ≤ (n− 1) log trω′ε(ωε) +A7 −A5ρε

where A7 := C − n log(1 + ε).
We obtain

sup
X
H = H(x0) ≤ (n− 1)e−A6 +A7 −A5 inf

X
ρε ≤ (n− 1)e−A6 +A7 −A5 inf

X
ϕε,

That is
sup
X
H = H(x0) ≤ A8 −A5 inf

X
ϕε (41)

where A8 := (n − 1)e−A6 + A7. By a result of Kolodziej, see [6], or by Lemma (1.2) in the case
when ψ+−ψ− is continuous, there exists a constant A9 < 0 depending only on X, ω and the norm
Lp (resp. on the sup-norm) of eψ

+−ψ−, such that |ϕε| ≤ −A9.
Then,

log trωε(ω
′
ε) + ψ− −A5ρε = H ≤ A8 −A5A9,

We infer that
trωε(ω

′
ε) ≤ A10e

−ψ− (42)

where A10 := exp(A8 − 2A5A9) which depends only on ω,C and the norm Lp of eψ
+−ψ−.

When ψ+ and ψ− are not smooth we proceed as in [10] by using Demailly’s regularization. We
conclude there exists A11 a constant which depend only on C and ω and the Lp-norm (resp. the
sup norm in the continuous case) of eψ

+−ψ− such that

|∆ϕ| ≤ A11e
−ψ− .
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2. Let (Fk)k∈N be a sequence satisfying assumptions of 2. From the discussion in 1. One can see that
there exists a positive constant A such that

|∆ϕk| ≤ A, ∀k ∈ N.

Let F be a continuous function on X. Clearly, there exists a constant C > 0 such that ddcF ≥ −Cω
and supX F ≤ C. We set on X

ψ+ := F, ψ− := 0.

then ψ+ and ψ− satisfy condition of Theorem (3.1). Thus

|∆ϕ| ≤ A11

on X.
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