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Introduction

A Frechet algebra A is called submuItiplicative, if there is a defining system for the
topology of A, say {qk : k E N}, such that

(1)

Property (1) has attracted our attention in connection with recent results in the theory
of Frechet algebras, Gramsch [10], particularly on non-commutative cohomology and Oka
principle; for applications see Gramsch & Kaballo [13].
Already in 1991, C. Phillips stressed the importance of submultiplicativity for the con­
struction of a K -theory for Frechet algebras.
For the Frechet algebra A of operators of order and type zero in Boutet de Monvel's
calculus it has been shown in Schrohe [30], cf. [34], that the group of invertible elements
is open; A even is a W·-algebra in the sense of Gramsch [9]. This made Boutet de
Monvel's algebra accessible to the resuIts on perturbation theory by Gramsch [9] and
Gramsch & Kaballo [12], on Jordan operators [25], on J.L. Taylor's multidimensional
functional calculus [24] and on nonlinear functional analysis [22]. In seve:z;al contributions
of Ali Mehmeti, [1], [2], [3], the interaction operator on nets and ramified spaces with
transmission provides classes of \11. -algebras. This can be seen by applying the methods
of [15].
Spectral invariance and \11. -algebras also play an interesting role in the articles of Bony
& Chemin [4], Sjöstrand [40], and Helffer [19]. Some aspects of differential geometry, e.g.
periodic geodesics, in special Frechet manifolds [14] depend on the notion of a 'If·-algebra,
and there is a functional analytic approach to the propagation of singularities using special
Frechet operator algebras [11]. For further work on \11. - algebras see the introd uction of
[15].
Recently, Gramsch, Ueberberg, 'and Wagner [15] showed that the algebras \l1~.6' 0 ::; fJ :::;
p :::; 1, fJ < 1 of zero order pseudodifferenti al operators on Rn wi th symbols in the
Hörmander classes S~,6 are submultiplicative. Their argument relies on Beals' theorem
on the characterization of pseudodifferential operators by the mapping properties of their
iterated commutators with multipliers and vector fields on Sobolev spaces:

Theorem: A continuous operator A : S(Rn) -t S'(Rn) belongs to \l1~.6 if and only if for
all multi-indices a, ß and all s E R there is a bounded extension

In fact, they showed that one can construct a submuItiplicative system of semi-norms for
every algebra that is defined in terms of the behavior of its elements under the application
of derivations and order shifts.
Our proof of the submultiplicativity of Boutet de Monvel's algebra on R+ is based on two
similar results.
The first is a characterization of the zero order pseudodifferential operators satisfying the
(uniform two-sided) transmission condition, Schrohe [33]. Extending a result by Grubb
and Hörmander [18], it was shown that the transmission condition in Boutet de Monvel's
sense [6] can be described in terms of the behavior of the commutators with multipliers
and vector fields tangential to the boundary on the wedge Sobolev spaces introduced by
Schulze, cf. [36], section 3.1.
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More specifically, an operator A E W?o satisfies the transmission condition if, for all
multi-indices 0', ß and all s, U, T E R, it has a bounded extension

adcr(-ix')adß(D:r;/)A: W$(Rn
-

1
, H{o}(R+)) ~ w"+lal(Rn

-
1

, H{~lal,'r(R+)),'

and the same extension holds for the L2-adjoint A".
Here, Bfo} de~otes the usual weighted Sobolev space Bu;r for U ~ 0, and the space H;;r
for U < o. In both cases, the weight is (x n ) T.

Similarly, the singular Green operators of order -1 and type zero have a characterization
via the behavior of their iterated commutators with tangential vector fields and multipliers
on wedge Sobolev spaces, Schrohe [32]. This theorem was motiviated by a result of Schulze
of 1992, identifying the singular Green operators of type zero witb elements of certain
operator-valued symbol classes, cf. theorem 3.1 in [38].
Technically, we concentrate on the upper left corner in Boutet Monvel's algebra. We may
write it as a non-direct sum of two Frechet spaces, namely the pseudodifferential operators
of type zero and tbe singular Green operators of order -1 and type zero. To eacb part we
now apply the construction of Gramsch, Ueberberg, and Wagner. For the 'mixed' terms
in the products we use a simple functional analytic argument.
In the case of a compact manifold witb baundary, the praof is similar. However, we now
use a more subtle decompositian of Bautet de Manvel's algebra iota a non-direct sum of
four Frechet spaces:

(1) tbe zero order pseudadifferential operators with the transmission property acting
elose to the boundary,

(2) the singular Green operators of order -1 and type zero acting elose to the boundary,
(3) tbe pseudodifferential operators of order zero acting in the interior, and
(4) the regularizing operators.

Ta the first three algebras we may apply tbe construction of [15]; the fourth is easily
seen to be submultiplicative. Decamposing the product of two elements correspondingly
produces 21 terms. Treating the 'mixed' products is essentially similar to the method
above. It does, however, require a little more attention; for example one has to make sure
tbe semi-norms for (1) and (3) are compatible.
It seems to be an open problem, cL [15], whetber every W"-algebra is submultiplica­
tive. A W"-algebra trivially has an open group of invertible elements. Very recently,
Zelazko [44] constructed an example of a (non-commutative) Frechet algebra which is not
submultiplicative, but has an open group of invertible elements.
On the other hand, Turpin has shown that every commutative Frechet algebra with· an
open group of invertible elements is submultiplicative, cf. [42], p.123.

Acknowledgment: The authors thank B.-W. Schulze for helpful discussions on the
subject.
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1 Pseudodifferential Operators, the Transmission Prop­
erty, Singular Green Operators, and Wedge Sobolev
Spaces

1.1 Definition. (a) For m E R, S~o = Si7o(Rk
X Rn) denotes the set of all smooth

funetions p on R k X Rn, k, n E N, satisfying the estimates

IDeD~p(x, ~)I ::; Goß (~}m-Iol (1)

for all x E Rk,~ ERn. Here, (~) = (1 + 1~12)L The choiee of best constants in (1) gives
the Frechet topology for Sro'
In general, the symbols will take values in matrices over C, but for the purposes here it
will be sufficient to deal with scalar functions.
(b) A symbol p E Sr:o defines a pseudodifferential operator Op p by

(2)

where u is a rapidly decreasing funetion and the hat denotes the Fourier transform.
(c) For s E R, H"(Rn) denotes the usual Sobolev space on Rn, cf. [23), eh. 3, definition
2.1. For s, t E R, let

H",t(Rn) = {(x) -t u : u E H"(R:)}.

H",t(Rn, E), E a Hilbert spaee, denotes the veetor-valued analog.

1.2 Notation on the half-space. We will write R~ = {(Xl" .. , Xn) : X n > O} and X =
(X',Xn),~ = (e,~n) with X' = (Xl, ... ,Xn-d,e = (6,·· ',~n-d·
(a) For a function or distribution f on Rn let r+ f denote its restriction to R~; for a

. function 9 on R+. denote by e+g its extension to Rn by zero. Similarly define r- and e-.
(b) Let S(R~) = {r+ f : f E S(Rn)}, and H",t(R+.) = {r+ f : f E H",t(Rn)}, s, t E R.
H~,t(R+) is the closure of C~(R+) in the topology of H",t(Rn).
It will be very eonvenient to use the following (nonstandard ) notation:

For i = 0 we shall simply omit the superseript i.

(c) Let H = H+ E9 Bö E9 H' , where

= H~;r(R+) for a < O. .(1 )

and H' denotes the space of all polynomials. For d E No denote by Hd the subspaee of
H consisting of all functions f( t) that are O( (t}d-l).

There are several notions of the transmission property in the literature. Not all are
equivalent. A detailed discussion was gi,ven in [33]. We will. be using the following.
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1.3 Definition. A symbol p E Sl"o(Rn x Rn) has the transmission property if for every,
k E No,

a;nP(X', Xn, (', (() ~n)l:Cn=o E S~O(R;;l x Re,-l )01rHd,~n'

where d = maxientier(m) + 1,O}, cf. [28].

1.4 Definition. Let Jl E R. The dass B~'o consists of all smooth functions 9 on
R;;-l x Re,-l x R+:~n x R.tSln (symbol kerneis ) sati sfying the estimates

(1)

for every fixed choice of k, k', m, m', 0', ß, with constants independent of x'.
Such a symbol kernel ginduces the singular Green operator Op G 9 by

[OPGg(f)](x) = (21r) 9- 1100

eiX'e'g(x',(',Xn,Yn)(F;cI_{,!H(,Yn)dynd(', (2)

fES (R+ ); 9 is called the symbol kernel of Op G g.
Op G 9 then is called a singular Green operator of order Jl + 1 (!) and type zero.

1.5 Definition. An operator of order and type zero in Boutet de Monvel's calculus on
R~ is an operator of the form

C~(R+.)
Ei)

cgo(Rn-l)

COO(R~)

EB
COO(Rn-l)

where P is a pseudodifferential operator with the transmission property of order zero,
P+ = r+ Pe+, G is a singular Green operator of order and type zero, !( is a potential
(ar Poisson) operator, T a trace operator, and S is a pseudodifferential operator with a
symbol in S?o(Rn-l x Rn-I).

The most interesting part within this setting is the algebra

of the elements in the upper left corner, and we shall from now on focus on it. Details
about Poisson and trace operators may be found in [6], [16], or [28].

1.6 The ad-notation. For multi-indices 0', ß E N~ and an operator T acting on func­
tions or distributions on Rn, let

Here, adO( -iXj)T = T, and adk
( -iXj)T = [-iXj, ad k

-
1

( -iXj)T], k = 1,2, ... ; the iterated
commutators adßi (Drj)T are defined correspondingly. We are assuming for the moment
that aB compositions involved make sense.
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Wedge Sobolev spaces were introduced by B.-W. Schulze, cf. [36], section 3.1.

1.7 Definition. Let E be a Banach space and suppose that {K.\ : A E R+} is a strongly
continuous group of operators on E, i.e. A ...-+ K.\ E C(R+, LqCE)), and K>.K p = K.\p.

The wedge Sobolev space modelled on E, W"(Rq, E), s E R, q E No, is defined as the
completion of S(Rq, E) = S(Rq)~1I"E with respect to the norm

Ilullw'(R.,E) = (j ('1)2'1I"(")-1,ry_"u('1)II}d'l) t .

Here, :Fy_,.,u denotes the Fourier transform of the E-valued function or distribution u,

:Fl/-,.,u(1]) = (211")-q{2 Je-iYT1 u(y)dy.

In general, the wedge Sobolev space will depend on the choice of the group action on
E. Here, however, we will only deal with the usual weighted Sobolev spaces on R+, cf.
1.2(b), and we will always use th~ group defined by

(K>.f)(t) = >J f(At).

Let {Ek : k E N} be a sequence of Banach spaces with E k+1 '-t E k , E = proj-lim Ek , and
suppose that the group action coincides on all spaces. Then

W"(Rq, E) = proj-lim W"(Rq, Ek ).

Vice versa, if E k '-t Ek+1 , E = ind-lim Ek , and the group action is the same for all spaces,
then

W"(Rq, E) = ind-lim W"(Rq, Ek ).

We will use this last notation particularly in connection with the projective and inductive
limits S(R+) and S'(R+).

1.8 Remark. The following identities are useful:
(a) S(R+) - proj-lim ",t_ooH",t(R+).
(b) S'(R+) - ind-lim ",t_ooH;$,-t(R+).
(c) W$(Rq, H"(R+)) - H"(R~+l), S ~ 0,
(d) W"(Rq,H~(R+)) - H~(R~+l),S::; O.

(e) (W"(Rq, H{o}(R+)))' - W-"(Rq, H~},-1"(R+))
For (c) and (d), cL [36], section 3.1.1, (17) and (18), for (e) [36], section 3.1.2, proposition
10. The duality is ba.sed on an extension of the usual L2(Ri.) duality.

The singular Green operators in Bautet de MonveI's calculus can be characterized in terms
of the behavior of their iterated commutators. The following theorem was motivated by
a result of B.-W. Schulze, [38] theorem 3.1.

1.9 Theorem. (Schrohe [32]) Let G : S(Rf.) ----? S'(Rf.) be a continuous linear operator.
Then the following are equivalent:
(i) G = Op GY for some 9 E 8- 1,°.
(ii) For all multi· indices 0', ß E N~-I, all s E R, the op.erator ad er

( -ix')adß(Drl)G has a
continuous extension
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Also the pseudodifferential operators with the transmission property fit into the concept
of wedge Sobolev spaces:

1.10 Theorem. (Schrohe [33]) Let P : S(Rn) ~ S'(Rni be a continuous operator.
Then the following assertions are equivalent ..

(i) P = Op p for some p E Sr,o(Rn x Rn) wilh the transmission property of 1.3.

(ii) P has the following properties

(0') forall multi-indices O',ß E Nn and all sE R,adO(-ix)adß(Dr)P has a bounded
extension

, ß'(ß) for all multi-indices Q/, ß' E Nn-l, all s, (7, i E R, ado (-ix')ad (DXI )P+ has
a bounded extension

C-r) The properties in (ß) also hold for the formal L2 adJoint P+ '" = p.+ 01 P.

2 Submultiplicativity of Boutet de Monvel's Algebra
on the Half-Space

We will now show that the algebra of Green operators of order and type zero in Boutet
de Monvel's calculus on the half-space R+ is submultiplicative. The proof of theorem
2.3, below, relies on a construction of submultiplicative norms for algebras of operators
characterized by commutators and order shifts given by Gramsch, Ueberberg, and Wagner
in [15]. They showed the submultiplicativity of the algebra of zero order pseudodifferentiaJ
operators with symbols in S~.5(Rn x Rn), 0::; 8 ~ p::; 1,8< 1, cf. [15].

2.1 Definition. Let A be a Frechet algebra. We shall say that A is submultiplicative,
if there is a defining system {ak : k = 1,2, ... } of semi-norms for the topology of A such
that

(1)

for all A, B E A, k = 1,2, ....
A is c.alled essentially submultiplicative if there is a defining system {ä k : k = 1,2, ... } of
semi-norms and constants Ck ~ 0 with

(2)

Occasionally, we shall also say that the corresponding semi-norm is submultiplicative or
essentially submultiplicative.
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2.2 Remark. (a) An essentially submultiplicative Frechet algebra with unit is submul­
tiplicative: Define

It is easily checked that ak is equivalent to ak and submultiplicative.
(b) If A is a Frechet algebra with unit e and we are given a countable defining system
{ak} of submu1tiplicative semi-norms satisfying ak (e) = 1 for all k, we may define PI.. (x) =
max{ al (x), ... , ak(x)}, and will obtain an equivalent submultiplicative system with PI.. = 1
for all k.

The rest of this seetion is devoted to the proof of the theorem, below.

2.3 Theorem. The algebra

A = {P+ + G : P E Op 51,o,tr(Rn x Rn), G E Op aB-l,O}

01 Green operators of order and type zero on R+ is a submuItiplicative. Frechet algebra
with unit e = I d.

2.4 Remark. Here we consider A as the topological subalgebra of .c(L2 (R+)) endowed
with the topology induced from the respective symbol topologies on sr,o,tr(Rn x Rn) and
ß-l,o, respectively, modulo the quotient of symbols inducing the same operators. For
details cf. [3D], [34].
The topology on sr,O,tr(Rn x Rn) is given by the best constants in the estimates in
definition 1.1(1) plus the semi-norms induced from the fact that the symbol has the
transmission property, cf. 1.3.
The topology of B-1,0 is defined by taking the best constants in 1.4{1).

2.5 Definition. Write P = {Op p P E sr,O,tr(Rn x Rn)}, P+ = {P+ : PEP},
Q = Op G 8-1,0. In this notation,

An important step towards the proof of 2.3 is the lemma, below.

2.6 Lemma. In order to proue theorem 2.3 it is enough to show the following:
There. are defining systems 01 semi-norms

PI ::; P2 ::; . .. for P

and
gl ::; g2 ::; ... for 9 .

with the lollowing properties
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(i) (P, {Pk}) is essentially submultiplicative.

(ii) (9, {gk}) is essentially submultiplicative.

(iii) There is an increasing function 1 : N -+ N and constants Ck such that

gk ( P+G) < Ck PJ(k) ( P) 9k ( G),

9k(GP+) < CkPJ(k)(P) gk(G), and

9k(L(P, Q)) < CkPJ(k)(P) PJ(k)(Q).

(1)
(2)
(3)

Here, L(P, Q) denotes the singular Green left-over term L(P, Q) = P+Q+ - (PQ)+.

Proof. By replacing {Pk} by {PJ(k)} we mayassume that I( k) = k. Without loss of
generality let Ck also be the constants for the essential submultiplicativity of the semi~

norms for P and 9.
On Adefine the semi-norm system {ak : k == 1, 2, ...} by

Now show
ak(AB) ~ 2Ck ak(A) ak(B).

As we know from 2.2, this implies the submultiplicativity since A is unital.
Given f> 0, we may find P,Q E P,G,H E 9 with A = P+ +G,B = Q+ + H, and

ak(A) > Pk(P) + 9k(G) - f,

ak(B) > pk(Q) + 9k(H) - f.

Then

ak(AB) < Pk(PQ) +9k(L(P, Q)) +9k(P+H) +9k(GQ+) +9k(GH)

< 2Ck[Pk(P) + 9k(G)][Pk(Q) + 9k(H)]

< 2Ck(ak(A) + f)(ak(B) +f)

Since f was arbitrary, (4) is established.

The following two lemmas are obvious.

(4)

2.7 Lemma. Let F be an algebra, p a semi-norm on F. Suppose F has an involution
'*', i.e. (ab)'" = b"'a"', (a + b)'" = a'" + b"', (..\a)'" = 'xa"', a"'''' = a. Then

q(a) := p(a"') (1)

defines a semi·norm on F. I1 P is (essentially) submultiplicative, then so is q. I1 {Pk} is
an increasing system, then the system {qk} defined by (1) also is increasin9.
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p~l](p) _

p~2](p) _

2.8 Lemma. Let {PI.}, {qk} be two semi-norm systems on the algebra:F. Then {rk =
max {pk, qk}} is a semi-nonn system which is increasing or (essentially) submultiplicative
whenenver the others are.

2.9 Proposition. On P define three systems of semi-norms:

max 101+1"1:511: Ilaao(-ix )adß( D;r )PII C(H'(Rn),H'+lo l(Rn))
-k5';5It-lol

max Ilaao (-ix')adß
( D;rl )P+ 11 C(W'(Rn-l,H{O) (R.t )),w.+lol(Rn-l ,H{oi1ol.T (R.r)))'

where the maximum is taken over all multi-indices a, ß, and integers s, U, T

such that lai + IßI ::; k, -k ~ s, (j ~ k - laI, -k ::; T ::; k.

= p~2](p.).

Then

(a) Each of these systems is essentially submultiplicative.

(b) Together, these three semi-norm systems define the topology 01 P.

(c) Letting

Pk(P) = max {p~1],pl2],p~3]}

we obtain an increasing system 01 semi-norms which defines the topology and is
essentially submultiplicative.

ProoL (a) For plI], this is shown in [15], proposition 3.5. For p{2] the situation is analogous.
For p[3], use 2.7.
(b) This is a consequence of the closed graph theorem: P is known to be a Frechet space.
By theorem 1.10, it coincides with the set of all operators in .c(S(Rn), S'(Rn)) such that
all these norms are finite. This space obviously is also Frechet. Moreover, the symbol
topology is stronger than the topology induced by these norms, so both topologies agree.
(c) now follows from 2.8.

2.10 Proposition. For every k E No define the norm gk on 9 by

Then

(a) The system {gk : k E N} is increasing and essentially submultiplicative.

(b) It is defining for the topology 019.

ProoL (a) is again the result of [15], theorem 3.5.
(b) Follows as in 2.9(ii) from the closed graph theorem, the fact that 9 is Frechet and
theorem 1.9.
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2.11 Proposition. Endow l' and Q with the systems 0/ norms in 2.9 and 2.10, re­
spectively. Then (1', Pk), (9, 9k) have the properties (i), (ii), and (iii) required in lemma
2.6.

Proof. Properties 2.6(i) and 2.6(ii) were already checked in 2.9 and 2.10, respectively. Let
us check relations (1), (2), and (3) in 2.6(iii). '
ad (1): For fix,ed k, multi-indices 0', ß with lai + IßI :5 k, and -k :5 s :5 k'- 10'1 we have
to estimate

11 acF (-ix')ad
ß(D;rl )(P+G) Il qw' (Rn-l.H~~,-k(R.+ ».W'+lol(Rn-l.H;o~ (R.+»)

in terms of 9k(G) and P/(k)(P).
By Leibniz' rule

acF( -ix')adß(D;r1 )(P+G) = E cOIO'JßIß2acFl (-ix')adß1 (D;r', )(P+)acF'J (-ix')adß2 (D;r1 HG).
01 +02- 0
fJI +ß2-t'

Now 1011 + la21 = lai::; k. So for all s with -k ::; s ::; k - 10'1, we have

-k ::; s ::; k - 1021 and

This implies that

and

This shows the assertion.
ad (2): The proof is the same with the order reversed.
ad (3): This is a simple functional analytic argument. Let {Pk : k E N}, {9ki k E N} be
increasing sets of norms for the symbol topology of l' and 9, respectively. The systems
{Pk} and {ßk} are equivalent by proposition 2.9(c), and so are {9k} and {9k} by proposition
2.10(c).
Moreover, we know that the mapping

L(·,·):1'xP~Q, (P, Q) ~ L(P, Q),

is continuous with respect to the symbol topology. Hence there are constants Cik, ßk,',k
and i~creasing functions /1, /2, /3 such that

9k(L(P, Q)) < ak9/dk)(L(P, Q))

< Okßk Ph!I(k)(P) Phft(k)(Q)

< Okßk'"Yk Phf2ft(k)(P) Phf2ft(k)(Q).

For / = /3/2/1 we obtain the assertion.
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3 Boutet de Monvel's Algebra on a Compact Mani­
fold

Let X be a compact n-dimensional manifold with boundary Y, embedded in its 'double'
f2. Let Adenote the algebra of operators of order and type zero in Boutet de Monvel's
calculus for the manifold X - a concise definition will be given below. Again, we shall
concentrate on the "upper left corner" and scalar-valued operators.
We consider A as a subalgebra of .L:(L2 (X)), and we shall prove the following theorem.

3.1 Theorem. A is a submultiplicative Frechet algebra.

3.2 The set-ur- In order to describe the algebra, first identify a neighborhood of Y
in f2 with Y x ~-~,~). Then cover f2 by finitely many coordinate charts f2 j such that

either f2 j does not intersect Y x [-~, t] ("interior charts") or f2 j = Oj x [-1,1] with an
open subset Oj of Y ("boundary charts"). A cover {Xj } of X is then obtained by letting
X j = Oj nx.

Now choose a partition of unity {<pj} subordinate to the cover Oj, and choose cut-off
functions {,pi} supported in Oj with <pjt/Jj = <Pj.

3.3 Definition. A linear operator A: COO(X) --.. V'(X) is an operator of order and type
zero in Bautet de Monvel's calculus for the manifold X, if it has the following properties.
Writing

(1)

(i) R is a regularizing operator, Le. it has a continuous extension

for all 8, t E R+. Equivalently, R : V'(X) --t COO(X) is continuous, or R is an
integral operator with a smooth kernel density.

(i i) Ir nj is a boundary chart, then the operator (<p jA t/Jj). - defined on R+. from <PjA t/Jj

via the transport by coordinate charts - is an operator of order and type zero in
Boutet de Monvel's calculus on R+..

(iii) Ir Oj is an interior chart, then (<pj At/Jj). is a pseudo-differential operator of order
zero.

Similarly, A : COO(O) --t V'(O) is a pseudodifferential operator (... with the transmission
property) of order zero on 0, if the terms in (ii) and (iii) are pseudodifferential operators
(... with the transmission property) of order zero on Rn.
A : COO(X) ~ V'(X) is a singular Green operator of order and type zero in Bautet de
Monvel's calculus on X if the terms in (ii) are singular Green operators of order and type
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zero on Rf. and the terms in (iii) are regularizing operators on Rf.. In particular, an
operator A of order and type zero in Boutet de Monvel's calculus on X can be written

A = P+ + G,

where P+ = r+ Pe+; e+ denotes extension by zero from X to 0, r+ restriction to X, P
is a pseudodifferential operator with the transmission property on 0, and G is a singular
Green operator of order and type zero on X.
The composition and mapping results for Boutet de Monvel's calculus on R~ imply that
the algebra A of elements of order and type zero on X is indeed an algebra and a sub­
algebra of .c (L2 (X)). Moreover, it can be given the Frechet topology induced from the
algebra on tbe half-space.

3.4 Proposition. For s, u E R, the wedge Sobolev space .W"(Y, Hfo}(R+)) is weIl­
dejined in a neighborhood 0/ Y in X.

More precisely, suppose u E V'(X) is a distribution supported in the open set identified
with Y x (0, 1). Then we may multiply by the functions in the partition c:>f unity, CPj, and
transfer the product to R~ using the coordinate charts. Denoting this by (cpju)., let

where the summation is over all boundary charts. Up to equivalence, the norm is inde­
pendent of the choice of the partition of the unity in view of the lemma, below.

3.5 Lemma. Let u E W·(Rn-l, Hfo} (R+)), and let K : R~ -+ Rf. be a dijJeomorphism.

Suppose K and K- 1 have bounded derivatives 0/ all order. Then the operator TI'( : U 1---+ UOK,

first defined as a mapping /rom S(R~) to S(R+.L extends to a bounded map

TI<: W~(Rn-l, H{o}(R+)) -? W~(Rn-l,Hfo} (R+))

Proof. The adjoint of TI< with respect to the usual L2 (R+.) inner product IS glven as
Idet D,,-11 TI<-l, which is essentially of the same kind. In view of the duality

W~(Rn-1 H U ('0 -))' - W-"(R"-l H-U(R )), {o} ~~ - , {o} +

and Hirschmann's interpolation results (20], theorem 6.4, it is sufficient to show that TI'(
is bounded on Ws (Rn-1, H~ (R+)) and on WO (Rn-1, H~ (R+)), 5 E No.
Now W~ (Rn-1, Hs (R+)) = H~ (R+') , and in this case the result is well-known. On

the other hand, U E Wo (Rn-1, H~ (R+)) if and only if a~nu E H-j (Rn-1, L2(R+))
for j = 0, ... , s; the corresponding topologies coincide, cf. [33]. It follows from the
differentiation rules that a:n(UOK) belongs to H-j (Rn-1, L2(R+)), j = 0, ... ,5, provided
the same is true for a:

n
u.

3.6 Definition. We shall say that an operator T : COO(X) -+ V'(X) is supported by a
set K, jf

T = cpT = Tc.p

for every smooth function cp on X with c.p =1 on !(.

14



3.7 Lemma. Fix funetions w, w', W" E COO(X) such that

w =1on Y x (0, ~], suppw ~ Y x (0,1),

w' =1on Y x (0 2]'3 '
W" =1on Y x (0 1]'3 '

so that in particular ww' = w'. Then

(a) Each A E A can be written

suppw' ~ Y x (o,D,
11 (1)suppw ~ Y x 0, 2 '

A = P+ + G + Q+ R,

where

• P+ = r+ Pe+, and P is a pseudodiJJerential operator 01 order zero with the
transmission property on .0 J supported by Y x [-1, 1J,

• G is a singular Green operator 0/ order and type zero on X, supported by
Y x [0,1],

• Q is a zero order pseudodifferential operator on .0, supported by X\ {Yx(O, !)} ,
and

• R is a regularizing operator.

(h) We may express the produet in A correspondingly. Write, as in (a) for A' E A

A'=P~+G'+Q'+R'.

Then

AA' - (PPJ+ + [(PQ')bJ+ + [(QP')bJ+

+L(P, P') + P+G' + GP~ +GG'

+(PQ')i + (QP')i + QQ'

+(PQ')r+ + (QP')r+ + GQ' + QG' +P+J( + RP~

+QR' +RQ' +GR' +RG' + RE

(1)

= P~ + G" + Q" + Ir',

where P~, G", Q" and R" are the operators in lines 1,2, 3 and 4/ 0/ (I). We have
used the abbreviations

(PQ')b - (1 - w")PQ'w

(PQ')i = (I-w')PQ'(I-w)

(PQ')r - w'PQ'(I - w) +W" PQ'W

(QP')b - wQP'(I - W")
(QP')i = (1 - w)QP'(I - W')

(QP')r =: (1 - w)QP'w' +wQP'w".

15



Praof. (a) is obvious, cf. the decompasition in 3.3(1).
(b) The decomposition (1) is straightforward. Let us check that 'all terms have the asserted
form. In view of the fact that the symbol of Q' vanishes near Y, extension by zero
is a trivial operation on its range. So PQ'w is a pseudodifferential operator with the
transmission property of order zero and supported by Y x [-1, 1]. (1 - w')PQ' (1 - w) is
a pseudodifferential operator of order zero supported by X \ {Y x (0, 1/2)}. The operator
w'PQ'(1 - w) is regularizing, since w'( 1 - w) = O. Similarly, w"PQ' is regularizing,
since Q' = Q''{J for a function '{J, '{J =1 on X\ {Y x (0, 1/2)} and vanishing on supp w".
The analysis of QP' is almost the same. Finally note that GQ' = G(1 - w")Q' and
QG' = Q(1 - w")G' are regularizing: the calculus implies that G(1 - w") and (r - w")G
are both regularizing singular Green operators of type zero and therefore regularizing.

3.8 Definition. Let P be the set of all pseudodifferential operators with the transmission
property of order zero on 0, supported by Y x [-1,1];
P+ = {r+Pe+ : PEP} ;
Q is the set of all singular Green operators of order and type zero on X, supported by
Y x (0, 1];
Q is the set of all pseudodifferential operators of order zero on 0, supported by X\ {Y x
(0, ~)};
'R is the set of all regularizing operators on X.

In this notation
A = P+ + Q+ Q + 'R.,

also topologically, as a (non-direct) sum of Frechet spaces:
If {PI. : k E N}, {gI. : k E N}, {qk : k E N}, and {rk : k E N} are defining systems of
semi-norms for the topologies of P, Q, Q and 'R., respectively, then a semi-norm system
for the topology of A is given by

ak(A) = inf{Pk(P) +9k(G) +qk(Q) + rk(R) :

PEP, GE Q, Q E Q, RE 'R, A = P+ +G +Q + R}

Moreover, multiplication in A - understood according to 3. 7( 1) - respects this decompo-
sition. '

3.9 Proposition.. In order to establish the submuItiplicativity of the algebra A, it is
suffieient to show the following:
There are inereasing semi·norm systems {Pk : k E N} for the topology of P, {gI. : k E N}
for that of Q, {qk : k E N} JOT that oJ Q, and {rk : k E N} JOT that oJ 'R., there are
constants CI. 2: 0, k E N, and there is an inereasing Junetion f : N ~ N such that

(i)
(iii)
(v)
(vii)
(ix)
(xi)
(xiii)

Pk(PP') ~ CI. Pk(P)Pk(P')
PI. ((QP')b) ~ CI. qk(Q)Pk(P')
gk (P+G') ~ CI. Pf (I.) (P)gk (G')
9k(GG') ~ CI. 9k(G)gk(G')
qk((QP')i) ~ CkPk(P')qk(Q)
Tk ((PQ')r) ~ CkPf(k) (P)qf(k)( Q')
rk(GQ') ~ Ckgf(k)(G}qf(k)(Q'}

(ii)
(iv)
(vi)
(viii)
(x)
(xii)
(xiv)
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PI. ((PQ'h) ~ CkPk(P)qk(Q')
91. (L(P, P')) ~ CI. Pf(k)(P)Pf(k)(P')
9k(GP~) ~ CkPf(k)(P'}9k(G)
qk ((PQ')d ::; CI. Pk(P)qk(Q')
qk (QQ') :::; Ckqk(Q)qk(Q')
Tk((QP')r) ~ CkPf(k)(P')qf(k)(Q)
Tk(QG') ~ Ckgf(k)(G')qf(k)(Q)



(xv) rk (P+H!) ::; Ck PJ(k)(P)rk(R') (xvi) rk (RP~) ::; qk PJ(k)(P')rk(R)
(xvii) rk (QR') ::; CkqJ(k)(Q)rk(R') (xviii) rk (RQ') ::; CkqJ(k)(Q')rk(R)
(xix) rk (GR') ::; Ck9J(k)(G)rk(R') (xx) rk (RG') ::; Ck9J(k}(G')rk(R)
(xxi) rk (RH!) ::; Ck rk(R)rk(R').

Proof. By playing with the semi-norm system and operations like replacing the systems
{·k : k E N} by {-J(k) : k E N} one finally obtains (i) through (xxi) with f(k) = k. Given

c > 0, and A, A' E A, we can then find P, P', G, G', Q, Q', R, R! such that

A=P++G+Q+R, A'=P~+G'+Q'+R',

and

ak(A) > Pk(P) + 9k(G) +qk(Q) + rk(R) - c,
ak(A') > Pk(P') +9k(G') + qk(Q) + rk(R') - e.

Then

ak(AA') < Pk(PP') +Pk ((PQ'h) +Pk ((QP'h) +
+ 9k (L(P, P'h) +9k (P+G') + 9k (GP~) + 9k (GG')

+qk ((PQ')d +9k ((QP')d +qk (QQ')
+ rk ((PQ')r) + rk ((QP')r) + rk (GQ')
+rk(QG') + rk(P+f() + rk(RP~)

+rk(QR') + rk(RQ') + rk(Gf()
+ rk(RG') + rk(RR')

< 3 Ck (pk(P) +9k(G) + qk(Q) + rk(R))

(Pk( P') +9k(G') + qk(Q') + rk(R'»)
< 3 Ck (ak{A) +e) (ak(A') + e)

which gives the assertion, since A is unital.

The following theorem is proven in Coifman & Meyer [7], Theoreme 15:

3.10 Theorem. Let Q : COO(O) -? 'V'(O) be a continuous operator. Then the Jollowing
is equivalent

(i) Q is a pseudodifferential operator 0/ order zero.

(ii) Given s E Rand k smooth vector jields VI, . .. ,Vk on 0, the iterated commutator
ad VI ... ad Vk(Q) has a bounded extension

ad VI ••• ad Vk(Q) : H"(O) -? H"(O). (1)

It is sufficient to check the canditions in (ii) far finitely many vector fields supported in
finitely many coordinate patches. We na longer need the canditions on the commutators
with multipliers; they are implicitely contained in those with vector fields.

Together with 1.10,3.10 gives the follawing characterizatian
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3.11 Theorem. Let P : CCO(n) --+ V'(n) be a eontinuous operator supported by Y x
[-1, 1]. Then the lollowing are equivalent .

(i) P is a pseudodifferential operator 01 order zero with the transmission property

(ii) P has the lollowing properties

(ii.a) Given s E Rand k smooth vector fields Vb" ., Vk on n, the iterated eommutator
ad VI ... ad Vk( P) has a bounded extension

(1)

(ii.b) Given s, (j E Rand a k+ m-tuple (V}, ... , Vk+m) eonsisting 01 k smooth vector

fields and m smooth lunetions on Y, all extended to Y x (- ~, ~), the iterated

commutator ad VI ... ad Vk+m(P+) has a bounded extension

(ii.c) The conditions in (ii.b) also hold for the formal adjoint p+.. = p*+ of P+.

The extension is simply obtained by choosing r.p E Gö([O, 1/3)) with c.p =1 near zero and
letting Vjext(y,s) = c.p(s)Vj(y).
Similarly, we may rewrite theorem 1.9 in the following way.

3.12 Theorem. Let G : COO(X) --+ V'(X) be a continuous operator supported by Y x
[-1, 1J. Then the lollowing are equivalent

(i) G is a singular Green operator 01 order and type zero.

(ii) Given s E Rand a k + rn-tuple (VI, ... ,Vk+m ) eonsisting 0/ k smooth vector fields

and m smooth lunetions on Y, all extended to Y x (-~, ~), the iterated commutator

ad VI ... ad Vk+m (G) has a bounded extension

(1)

3.13 Remark. Condition 3.11(ii.a) guarantees that P is a pseudodifferential operator,
while (ii.b) and (ii.c) imply the transmission property, cL 3.10. A regularizing operator
always has the transmission property, and so does an operator whose symbol vanishes
near the boundary.
Given two smooth functions, 'P, t/;, supported in an arbitrarily small neighborhood of the
boundary and equal to one near the boundary, the operator P will have the transmission
property iff c.ppt/; has it. .

3.14 Remark. We al ready know from definition 3.3 that an operator "R i8 regularizing
on X if and only if, for every choice of s, t E R it has a bounded extension
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3.15 Corollary. Theorems 3.11,3.12,3.10 and remark 3.14 allow us to introduce par­
ticular defining semi-norms for the topology of P, Q, Q, and 'R.
For all the commutators we may restriet ourselves to finite sets of functions and vec­
tor fields and to 8,(7 E Z. Choose one such set for 3.11(ii.a) and 3.10(ii), and one for
3.11(ii.b, c) and 3.12(ii). Denote the finitely many vector fields for 3.11(iLa) and 3.10(ii)
by vt, ... , vN, respectively, the functions and vector fields for 3.11 (i i.b), (iLc) and 3.12(ii)
by /1,"" /N and v~, ... ,vN' Let

v = (vt, ... , VN) , v' = (v~, . .. ,v~) , / = (/t, ... , /N)

Then fix 4>, 'l/J, () E C~ (Y x (- ~, ~)) such that 4>, 'l/J and () are identically 1 in a (smalI)
neighborhood of the boundary Y and ifn/J = 4>, if>() = (). Define, similarly as in proposition
2.9,

p~J(P) = Wi~~ {IIadß
(v)(P)IIC(H'(Il)) ' Iladß(v)(P*>IIc(H'(Il))}'

-.Ir$'$k

pl2] (P) la~I~~k Ilado (f)aci
ß
(v')( P+) 11.c(w'(Y,H"o (R+ )),W.+ 1al (Y,H"o+la l(!4 ))) ,

-k$""$k-Ial { ) { )

pl3](p) _ p~](P*).

Since the commutators will in general not commute, adO(·)adß(.) stands for an application
in any order; the maximum is taken over all permutations.
From pli), pl2] , and pl3J we shall now construet a submultiplieative norm. For arbitrary
P1,P2 E P we have

pl2]( 4> PI P2 'l/J) < p~]( cf> PI tP4>P2tP) + p~]( if>pt{ 1 - ())( 1 - cf> )P21/;)

< Ck p~] (tPPl 1/J) p~]( 4>P2 1/J) +Ck pl2](cf>P1 (1 - 0)) p~]( (1 - cf> )P2tP).

For fixed 4>, 1j;, and () we may consider the Fnkhet space :F of all operators F with symbol
in Sr0' such that 'PI FCP2 = 0 for all smooth funetions 'Pt, "1'2 supported in a fixed neigh­
borh~od of the boundary Y. On:F, the system {p~l] : v E N} of norms defined on the
'double' n of X induees the same complete topology as the system {p~l], p~] : v E N},
sinee the operators in :F obviously have the transmission property.
Therefore, pl2](cf> Pl(1 - ())) can be estimated by dkP~lk)(Pd for a suitable constant dk
and JL( k) E N. The same argument applies to pl2](( 1 - ifJ) P2'l/J) and the terms induced by
eonsidering pl3](4)P1P2 tP); we may use the same J-L(k) in all eases. Letting

Pk{P) = max {p~](ifJP1/;), p~](cPP"tP), P~lk)(P)} (1)

we get Pk(P1P2 ) :::; CkPk(Pdpk(P2 ).

For g use

gk(G) = max IladO(!)adß(v')(G)11 .
laHltll$k .c(W.(y,H~~(R+ )),w'+lal(Y,HtO) (R+)))

-k$'$k-Ia]

For Q use the norms
qk(Q) = P~lk)(Q)

with the funetion p( k) in (1); for 'R use

rk( R) = IIRII.c(Ho-k(X),Hk(X))'

19



3.16 Conclusion. By construetion, cf. proposition 2.9 and 2.10, the above semi-norms
will have properties (i), (vii), (x), and (xxi) of proposition 3.9. We obtain relations (iv),
(xi), (xii), (xiii) and (xiv) by the final argument in proposition 2.11.
Now for relation (ii). The operator (PQ'h is supported by Y x [~, 1), and so is its
adjoint. Sinee the funetions tP and ljJ have their support in Y X [-~, ~], all semi-norms

for pl2l«PQ'h) and p~]«PQ'h) will vanish. Relation (iii) is obtained in the same way.
The compatibility of the norms qk and Pk together with Leibniz' rule shows that relations
(viii) and (ix) hold; Leibniz' rule moreover yields (v) and (vi).
For (xv) through (xx) use the identities in 1.8 (e), (d). By proposition 3.9, this concludes
the proof of theorem 3.1.

4 Some Remarks on the Case of the Full Algebra

We have now considered the case where the algebra consists of the terms that usually
form the upper left corner in the matrices of Boutet de Monvels calculus. In general, we
will have to deal with matrices

A = [ p+; G ~] (2)

acting on the Hilbert spaee H = L'l(X, E) EB H-t(y, F). As before, X is a manifold with
boundary ax = Yj X is either compact or R+.. E and F are snl00th vector bundles.
T here is a traee operator of order and type zero, !( is a potential operator of order -1
and S is a pseudodifferential operator with symbol in Sr,Q'

There are now two ways to proceed. The first and rather straightforward way is to argue
by analogy. One starts with the case X = R+. and characterizations of the potential and
trace operators by commutators:

4.1 Theorem. Let!( : S(Rn-l) ~ S'(R+) and T : S(Rf.) ~ S'(Rn-l) be continuous
operators. Then!( is a potential operator 01 order -1 and T is a trace operator 01 order
and type zero, if and only il for all 7nulti-indices 0:, ß E Nn-l and all s E Z there are
continuous extensions

and

This is proven in the same way as theorem 1.9. One then employs a similar construction
as before, relying on the decomposition of the algebra and the construction in [15].

The second and more elegant way uses the following theorem.

4.2 Theorem. There is an operator A of order and type zero in Boutet de Monvel's
calculus such that (i) A : L'l(X, E) ~ L2(X, E) EB H-t(y, F) is an isomorphism.
(ii) A-1 : L'l(X, E) EB H-t(y, F) ~ L2(X, E) also is an operator 01 order and type zero
in Boutet de Monvel's calculus.
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For a proof cf. Rempel&Schulze [28], [29], Grubb [17].
Suppose now we are given a submultiplicative system of semi-norms {ak : k E N} for the
topology of the 'upper left corner' algebra. We then define

bk(A) = ak(A -1 AA), k E N.

Clearly, {bk: k E N} is a submultiplicative system of semi-norms on the full algebra A.
It also is defining for the topology of A :
Suppose {Pt: l E N} is any defining system of semi-norms in A. Then the continuity of
A implies that bk(A) ~ CkPl(A) for a suitable semi-norm Pi, l = l(k), Ck ~ O. Vice versa,
Pl(B) = Pi(A(A -1 BA)A -1) ~ Gtak(A -1 BA) = Gibk(B), where k = k(l).
Therefore the systems {bk: k E N} and {Pi: eE N} are equivalent, and we obtain the
assertion.
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