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Introduction

A Fréchet algebra A is called submultiplicative, if there is a defining system for the
topology of A, say {gx : ¥ € N}, such that

gr(ab) < qi(a)qe(b). (1)

Property (1) has attracted our attention in connection with recent results in the theory
of Fréchet algebras, Gramsch [10], particularly on non-commutative cohomology and Oka
principle; for applications see Gramsch & Kaballo [13].

Already in 1991, C. Phillips stressed the importance of submultiplicativity for the con-
struction of a K —theory for Fréchet algebras.

For the Fréchet algebra A of operators of order and type zero in Boutet de Monvel’s
calculus it has been shown in Schrohe [30], cf. [34], that the group of invertible elements
is open; A even is a W*—algebra in the sense of Gramsch [9]. This made Boutet de
Monvel’s algebra accessible to the results on perturbation theory by Gramsch [9] and
Gramsch & Kaballo [12], on Jordan operators [25], on J.L. Taylor’s multidimensional
functional calculus [24] and on nonlinear functional analysis [22]. In several contributions
of Ali Mehmeti, [1], [2], [3], the interaction operator on nets and ramified spaces with
transmission provides classes of W*—algebras. This can be seen by applying the methods
of [15].

Spectral invariance and ¥*—algebras also play an interesting role in the articles of Bony
& Chemin [4], Sjostrand [40], and Helffer [19]. Some aspects of differential geometry, e.g.
periodic geodesics, in special Fréchet manifolds [14] depend on the notion of a ¥*—algebra,
and there is a functional analytic approach to the propagation of singularities using special
Fréchet operator algebras [11]. For further work on ¥*—algebras see the introduction of
[15].

Recently, Gramsch, Ueberberg, and Wagner [15] showed that the algebras ¥9,,0 < § <
p < 1,6 < 1 of zero order pseudodifferential operators on R™ with symbols in the
Hormander classes S35 are submultiplicative. Their argument relies on Beals’ theorem
on the characterization of pseudodifferential operators by the mapping properties of their
iterated commutators with multipliers and vector fields on Sobolev spaces:

Theorem: A continuous operator A: S(R") — §'(R™) belongs to WO ; if and only if for
all multi-indices o, and all s € R there is a bounded extension

ad®(—iz)ad®(D;)A : H*(R") — HHAel-80(R™),

In fact, they showed that one can construct a submultiplicative system of semi-norms for
every algebra that is defined in terms of the behavior of its elements under the application
of derivations and order shifts.

Our proof of the submultiplicativity of Boutet de Monvel’s algebra on R is based on two
similar results.

The first is a characterization of the zero order pseudodifferential operators satisfying the
(uniform two-sided) transmission condition, Schrohe [33]. Extending a result by Grubb
and Hormander (18], it was shown that the transmission condition in Boutet de Monvel’s
sense [6] can be described in terms of the behavior of the commutators with multipliers
and vector fields tangential to the boundary on the wedge Sobolev spaces introduced by
Schulze, cf. [36], section 3.1.



More specifically, an operator A € ¥, satisfies the transmission condition if, for all
multi-indices e, 8 and all s,0,7 € R, it has a bounded extension

ad®(—iz')ad?( D) A : W (R, Hig(Ry)) — WHHEI(R™Y, HIARIT(R ),

and the same extension holds for the L?—adjoint A*.

Here, H?&; denotes the usual weighted Sobolev space H*” for ¢ > 0, and the space Hy"”"
for ¢ < 0. In both cases, the weight is (z,)".

Similarly, the singular Green operators of order —~1 and type zero have a characterization
via the behavior of their iterated commutators with tangential vector fields and multipliers
on wedge Sobolev spaces, Schrohe [32]. This theorem was motiviated by a result of Schulze
of 1992, identifying the singular Green operators of type zero with elements of certain
operator-valued symbol classes, cf. theorem 3.1 in [38].

Technically, we concentrate on the upper left corner in Boutet Monvel’s algebra. We may
write it as a non-direct sum of two Fréchet spaces, namely the pseudodifferential operators
of type zero and the singular Green operators of order —1 and type zero. To each part we
now apply the construction of Gramsch, Ueberberg, and Wagner. For the 'mixed’ terms
in the products we use a simple functional analytic argument.

In the case of a compact manifold with boundary, the proof is similar. However, we now
use a more subtle decomposition of Boutet de Monvel’s algebra into a non-direct sum of
four Fréchet spaces:

(1) the zero order pseudodifferential operators with the transmission property acting
close to the boundary,

(2) the singular Green operators of order —1 and type zero acting close to the boundary,

(3) the pseudodifferential operators of order zero acting in the interior, and

(4) the regularizing operators.

To the first three algebras we may apply the construction of [15]; the fourth is easily
seen to be submultiplicative. Decomposing the product of two elements correspondingly
produces 21 terms. Treating the 'mixed’ products is essentially similar to the method
above. It does, however, require a little more attention; for example one has to make sure
the semi-norms for (1) and (3) are compatible.

It seems to be an open problem, cf. [15], whether every ¥*—algebra is submultiplica-
tive. A W*—algebra trivially has an open group of invertible elements. Very recently,
Zelazko [44] constructed an example of a (non-commutative) Fréchet algebra which is not
submultiplicative, but has an open group of invertible elements.

On the other hand, Turpin has shown that every commutative Fréchet algebra with an
open group of invertible elements is submultiplicative, cf. [42], p.123.

Acknowledgment: The authors thank B.-W. Schulze for helpful discussions on the
subject.



1 Pseudodifferential Operators, the Transmission Prop-
erty, Singular Green Operators, and Wedge Sobolev
Spaces

1.1 Definition. (a) For m € R, ST, = S7(R* x R") denotes the set of all smooth
functions p on R¥ x R", k,n € N, satisfying the estimates :

|Dg DZp(z,€)| < Cap (6)™ 1! (1)

for all z € R* ¢ € R”. Here, (£) = (1 + |€]*)7. The choice of best constants in (1) gives
the Fréchet topology for ST%.

In general, the symbols will take values in matrices over C, but for the purposes here it
will be sufficient to deal with scalar functions.

(b) A symbol p € ST defines a pseudodifferential operator Op p by

[Oppul(z) = (27)™" [ e=p(z, )i(€)d, (2)

where u is a rapidly decreasing function and the hat denotes the Fourier transform.
(c) For s € R, H*(R") denotes the usual Sobolev space on R", cf. [23], ch. 3, definition
2.1. For s,t € R, let

H*(R") = {{z)"u:u € H(R")}.

H**(R", F), E a Hilbert space, denotes the vector-valued analog.

1.2 Notation on the half-space. We will write R} = {(z1,...,Zn) 2o >0} and z =
(z',2,),€ = (€,€) with 2’ = (z1,...,2421),§ = (€1, .., €nz1).

(a) For a function or distribution f on R™ let r*f denote its restriction to RY; for a

* function g on R} denote by e*g its extension to R" by zero. Similarly define r~ and e™.
(b) Let S(R}) = {r*f: f € S(R")}, and H*'(R}) = {rtf : f € H**(R")},s,t € R.

Hy*(R%) is the closure of C$°(RY ) in the topology of H*!(R"). -

It will be very convenient to use the following (nonstandard) notation:

H{j(Ry) = H"(R4) foro 20, = Hy"(Ry) foro <. (1)

For v = 0 we shall simply omit the superscript 7.
(c) Let H=Ht @ Hy ® H', where

F={(etf): FeSRY)),  Hy ={(e7f): f € SR},

and H' denotes the space of all polynomials. For d € Ny denote by Hy the subspace of
H consisting of all functions f(t) that are O((t)*™").

There are several notions of the transmission property in the literature. Not all are
equivalent. A detailed discussion was given in [33]. We will be using the following.



1.3 Definition. A symbol p € STo(R" x R") has the transmission property if for every
k € NO)
0% p(2', Ty €, {€) €n)lzamo € STO(RL™ x RE™ )@ Haos

where d = max{entier(m) + 1,0}, cf. [28].

1.4 Definition. Let u € R. The class B*° consists of all smooth functions g on
RX! x R?,_] x Ry, xRy, (symbol kernels) satisfying the estimates

”mﬁD:J Dm foD (J:’,f,,xn, yn)”L?(R-s:,,XRn,.) = O((&I)u+l—k+k —m+m'—|0|) (1)

for every fixed choice of k,k',m,m’, o, B, with constants independent of z'.
Such a symbol kernel ¢ induces the singular Green operator Op ¢ ¢ by

[Opcg(Hl(z) = 27r)l’3_lf/ (2" € Ty Yn ) (Frmg SIE yn)dyade’, (2)

f € S(RY); g is called the symbol kernel of Op g g. _
Op ¢ g then is called a singular Green operator of order u + 1 (!) and type zero.

1.5 Definition. An operator of order and type zero in Boutet de Monvel’s calculus on
R% is an operator of the form

[ Ptc K], CFED C=(Ry)
=l 't s 2 - D
Cgo(Rn—l) Ooo(Rn—I)

where P is a pseudodifferential operator with the transmission property of order zero,
P, = rtPe*, G is a singular Green operator of order and type zero, K is a potential
(or Poisson) operator, T a trace operator, and S is a pseudodifferential operator with a
symbol in S57(R™™! x R*™1).

The most interesting part within this setting is the algebra
A={A: A=P, +G}
of the elements in the upper left corner, and we shall from now on focus on it. Details

about Poisson and trace operators may be found in [6], [16], or [28].

1.6 The ad—notation. For multi-indices , 8 € N} and an operator T acting on func-
tions or distributions on R", let

ad®(—iz)ad?(D,)T = ad®!(—iz,) - - - ad®*(—iz,)ad? (D,,) - - - ad®* (D, )T.

Here, ad®(—iz;)T = T, and ad*(—iz;)T = [—iz;,ad* " (~iz;)T], k = 1,2,...; the iterated
commutators adﬁf(D,j)T are defined correspondingly. We are assuming for the moment
that all compositions involved make sense.



Wedge Sobolev spaces were introduced by B.-W. Schulze, cf. [36], section 3.1.

1.7 Definition. Let E be a Banach space and suppose that {) : A € R,} is a strongly
continuous group of operators on E, i.e. A &y € C(Ry, L,(F)), and xx&, = £),.

The wedge Sobolev space modelled on E, W?*(R9, F),s € R,q € Ny, is defined as the
completion of S(R?, E) = S(R")@D,E with respect to the norm .

. b
lellwecaszy = ([ 1) 1y Fymemum)lizdn

Here, F,_,u denotes the Fourier transform of the F-valued function or distribution u,

Fymnil) = @)1 [ mu(y)ay.

In general, the wedge Sobolev space will depend on the choice of the group action on
E. Here, however, we will only deal with the usual weighted Sobolev spaces on R, cf.
1.2(b), and we will always use the group defined by

(kaf)(t) = A f(At).

Let {Ey : k € N} be a sequence of Banach spaces with Ey,; «— Ej, E = proj-lim Ej, and
suppose that the group action coincides on all spaces. Then

W?*(RY, E) = proj-lim W?*(RY, Ey).

Vice versa, if B, «— FEi,,, F = ind-lim Fy, and the group action is the same for all spaces,
then
W’(RY, E) = ind-lim W*(R, Ey).

We will use this last notation particularly in connection with the projective and inductive

limits S(R4) and S'(Ry).

1.8 Remark. The following identities are useful:

(a) S(R}) = proj-lim,,_  H**(R}).
(b) S'(R:) = ind-lim ,oHg "' (RL).
(c) W (R, H(Ry)) = H'(RT),s>0,

(d) W2(RY, HY(Ry)) = H3(RE),s <0.

() (W(R,HG(RL)) = WRYLHG T (RL))
For (c) and (d), cf. [36], section 3.1.1, (17) and (18), for (e) [36], section 3.1.2, proposition
10. The duality is based on an extension of the usual L*(R7) duality.

The singular Green operators in Boutet de Monvel’s calculus can be characterized in terms
of the behavior of their iterated commutators. The following theorem was motivated by
a result of B.-W. Schulze, [38] theorem 3.1.

1.9 Theorem. (Schrohe [32]) Let G : S(RL) — S'(R}) be a continuous linear operator.
Then the following are equivalent:

(i) G = Op gg for some g € B~19,

(i) For all multi-indices o, B € Nz7', all s € R, the operator ad®(—iz')ad’(D..)G has a
continuous extension '

ad®(—iz')ad?(D,)G : W (R™, §'(Ry)) — WHlIR S(R,)). (1)



Also the pseudodifferential operators with the transmission property fit into the concept
of wedge Sobolev spaces:

1.10 Theorem. (Schrohe [33]) Let P : S(R*) — S'(R™) be a continuous operator.
Then the following assertions are equivalent.

(i) P = Opp for some p € S7o(R"™ x R™) with the transmission property of 1.3.
(ii) P has the following properties
(@) for all multi-indices a, B € N* and all s € R, ad®(—iz)ad?(D.)P has a bounded

extension
ad®(—iz)ad’(D;)P : H'(R") — H*Hl(R™).
(B) for all multi-indices o, ' € N*!, all s,0,7 € R, ad® (—iz')ad® (D) P, has

a bounded extension
ad®'(—iz')ad” (Do) Py : WH(R™, HE(Ry)) — WHI(R HH(RL)).

The properties in {8) also hold for the formal L? adjoint P,” = P*, of P.
~

2 Submultiplicativity of Boutet de Monvel’s Algebra
on the Half-Space

We will now show that the algebra of Green operators of order and type zero in Boutet
de Monvel’s calculus on the half-space R} is submultiplicative. The proof of theorem
2.3, below, relies on a construction of submultiplicative norms for algebras of operators
characterized by commutators and order shifts given by Gramsch, Ueberberg, and Wagner
in [15). They showed the submultiplicativity of the algebra of zero order pseudodifferential
operators with symbols in SY (R xR"),0<6<p < 1,6 < 1, cf. [15].

2.1 Definition. Let A be a Fréchet algebra. We shall say that A is submultiplicative,

if there is a defining system {ay : k = 1,2,...} of semi-norms for the topology of A such

that ‘ '
ax(AB) < ar(A)ar(B) (1)

forall A,Be A,k=1,2,....
A is called essentially submultiplicative if there is a defining system {ax: k =1,2,...} of
semi-norms and constants Cj > 0 with

ax(AB) < Ciax(A)a(B). (2)

Occasionally, we shall also say that the corresponding semi-norm is submultiplicative or
essentially submultiplicative.



2.2 Remark. (a) An essentially submultiplicative Fréchet algebra with unit is submul-
tiplicative: Define

ax(A) = sup{ar(AC)/ax(C) : C € A,a(C) # 0}.

It is easily checked that a; is equivalent to &, and submultiplicative.

(b) If A is a Fréchet algebra with unit e and we are given a countable defining system
{ax} of submultiplicative semi-norms satisfying ax(e) = 1 for all k, we may define p;(z) =
max{a,(z),...,ar(z)}, and will obtain an equivalent submultiplicative system with p; =1
for all k.

The rest of this section is devoted to the proof of the theorem, below.

2.3 Theorem. The algebra
A={P,+G:PeOp S, (R"xR"),G € OpcB~"°}

of Green operators of order and type zero on R} is a submultiplicative Fréchet algebra
with unit e = Id.

2.4 Remark. Here we consider A as the topological subalgebra of L(L*(R")) endowed
with the topology induced from the respective symbol topologies on 57, .. (R™ x R™) and

B, respectively, modulo the quotient of symbols inducing the same operators. For
details cf. [30], [34].

The topology on S7,,(R"™ x R™") is given by the best constants in the estimates in
definition 1.1(1) plus the semi-norms induced from the fact that the symbol has the
transmission property, cf. 1.3.

The topology of B~1? is defined by taking the best constants in 1.4(1).

2.5 Definition. Write P = {Opp : p € 504, (R" x R")}, Py = {P, : P € P},
G = Op ¢ B~1°. In this notation,

A=P, +GC LIL*RD)).

An important step towards the proof of 2.3 is the lemma, below.

2.6 Lemma. In order to prove theorem 2.3 it is enough to show the following:
There_are defining systems of semi-norms

n<p<... for P

and
n<g<... forG

with the following properties



(i) (P,{px}) is essentially submultiplicative.
(i) (G, {gx}) is essentially submultiplicative.

(iti) There is an increasing function f : N — N and constants Cy such that

g (PrG) < Crppn(P)gk(G), (1)
9(GPy) < Crpsm(P)gx(G), and (2)
a(L(P,Q)) £ Cipriy(P)psr(Q). (3)

Here, L(P,Q) denotes the singular Green left-over term L(P,Q) = PrQ+ — (PQ),.

Proof. By replacing {pi} by {psu)} we may assume that f(k) = k. Without loss of
generality let Ci also be the constants for the essential submultiplicativity of the semi-
norms for P and §.

On A define the semi-norm system {ax : k = 1,2,...} by

ar(A) =inf {px(P)+ gx(G): PEP,G€ G, P, + G = A}.

Now show

ak(AB) S QC;, ak(A) ak(B). (4)
As we know from 2.2, this implies the submultiplicativity since A is unital.
Given € > 0, we may find P,Q € P,G,H € G with A=P, +G,B=Q, + H, and
ar(A) 2 pe(P)+g:(G) — ¢,
ax(B) Z pe(Q)+gi(H) —e.

Then

ar(AB) pe(PQ) + 9e(L(P,Q)) + 9x( Py H) + 9:(GQ+) + 9:(GH)
2Ck[pe(P) + 9+ (G))[px(Q) + g1 (H))]

2Ck(a;,(A) + e)(ak(B) + 6)

IN A A

Since € was arbitrary, (4) is established.

The following two lemmas are obvious.

2.7 Lemma. Let F be an algebra, p a semi-norm on F. Suppose F has an involution
*7 te. (ab)* = b'a",(a+b)* =a* 4+ b*,(Xa)* = Aa*,a* = a. Then

q(a) := p(a”) (1)

defines a semi-norm on F. If p is (essentially) submultiplicative, then so is q. If {pi} is
an increasing system, then the system {q;} defined by (1) also is increasing.
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2.8 Lemma. Let {p:},{q:} be two semi-norm systems on the algebra F. Then {r; =
max {pk, gk} } is a semi-norm system which is increasing or (essentially) submultiplicative
whenenver the others are.

2.9 Proposition. On P define three systems of semi-norms:

PI(P) = max s [lad®(~iz)ad’ (D) Pllcgncan) ool o)

PLQ](P) = max ||ad®(—iz')ad’(D.)P,

where the mazimum is taken over all multi-indices o, 3, and integers s,0,7
such that |a] + || < k,—k < s,0 <k —|a],—k <7 < k.

p) = pAp.

Then

leowsma-s.mzs oy wesiel o1, Hodb (R )

(a) Each of these systems is essentially submultiplicative.
(b) Together, these three semi-norm systems define the topology of P.

(c) Letting

pr(P) = max {p{!l, pl", p{" }

we obtain an increasing system of semi-norms which defines the topology and is
essentially submultiplicative.

Proof. (a) For pl'l, this is shown in [15}, proposition 3.5. For pl? the situation is analogous.
For pBl use 2.7.

(b) This is a consequence of the closed graph theorem: P is known to be a Fréchet space.
By theorem 1.10, it coincides with the set of all operators in L{S(R"),S'(R")) such that
all these norms are finite. This space obviously is also Fréchet. Moreover, the symbol
topology is stronger than the topology induced by these norms, so both topologies agree.
(c) now follows from 2.8.

2.10 Proposition. For every k € No define the norm g, on G by

9x(G) = max jemipisk Ilad"(—il")adﬁwx’)G“c(w'(nn-l.H'*""(m)).w-+|°1(nn—1'Hfé'f(lm))'

~kSr<k=lal (©)
Then
(a) The system {gx : k € N} is increasing and essentially submultiplicative.
(b) It is defining for the topology of G.

Proof. (a) is again the result of [15}, theorem 3.5.
(b) Follows as in 2.9(ii) from the closed graph theorem, the fact that G is Fréchet and
theorem 1.9.

11



2.11 Proposition. Endow P and G with the systems of norms in 2.9 and 2.10, re-
spectively. Then (P,pi), (G, gx) have the properties (i), (ii), and (iii) required in lemma
2.6. :

Proof. Properties 2.6(i) and 2.6(ii) were already checked in 2.9 and 2.10, respectively. Let
us check relations (1), (2), and (3) in 2.6(iii). '

ad (1): For fixed k, multi-indices «, 8 with |a| + |8] < k, and —k < s < k'— |a| we have
to estimate :

“ada(_zz’)adﬁ(Dx')(P"'G)”C(W'(R"“l.H('O';""(m)),W‘+|°‘|(R."-‘,H:°";(R.|.)))

in terms of gx(G) and psx)(P).
By Leibniz’ rule

0 (—iz)adP (D) (PrG) = Y Coranpigsad® (—iz')ad? (D) (Py)ad™(~iz')ad®(Dor)(G).
PR
Now |ay| + |az2| = |a} < k. So for all s with —k < s < k — |a|, we have
—k<s<k-|ag] and

—k<s+|og| k=)
This implies that

“adﬁa(—ix')adﬁ?(D::')(G)Hc(wa(nn-l'H{-o‘;’—"(n_‘.))‘wcﬂogI(Rn—l'H("(;'}‘(R+))) S gk(G)

and
“adal(_ix')adﬁl(Dr')(P+)|I[,(wn+laal(nn—l.H&;’;(m))_waﬂal(nn—l.Hﬁ;‘}'(m))) S Pk(P)-

This shows the assertion.

ad (2): The proof is the same with the order reversed.

ad (3): This is a simple functional analytic argument. Let {px : k € N}, {gs; k € N} be
increasing sets of norms for the symbol topology of P and G, respectively. The systems
{px} and {px} are equivalent by proposition 2.9(c), and so are {gi} and {gx} by proposition
2.10(c).

Moreover, we know that the mapping

L(','):'PX'P—DQ, (PaQ)HL(PaQ)7

is continuous with respect to the symbol topology. Hence there are constants ay, Bk, V&
and increasing functions fy, f2, f3 such that

a(L(P,Q)) < aké!x(k)(L(P’Q))
< akﬂk ﬁfzfl(k)(P) ﬁfzh(k)(Q)
< B Prfann(t)(P) Prann(@)-

For f = f3fyf1 we obtain the assertion.
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3 Boutet de Monvel’s Algebra on a Compact Mani-
fold

Let X be a compact n—dimensional manifold with boundary Y, embedded in its "double’
Q. Let A denote the algebra of operators of order and type zero in Boutet de Monvel’s
calculus for the manifold X — a concise definition will be given below. Again, we shall
concentrate on the "upper left corner” and scalar-valued operators.

We consider A as a subalgebra of £(L?(X)), and we shall prove the following theorem.

3.1 Theorem. A is a submultiplicative Fréchet algebra.

3.2 The set-uzn. In order to describe the algebra, first identify a neighborhood of Y

in Q with Y x %, %) Then cover () by finitely many coordinate charts 2; such that
either 2; does not intersect Y x [—%, %] ("interior charts”) or Q; = Q) x [-1,1] with an

open subset 2} of Y ("boundary charts”). A cover {X;} of X is then obtained by letting

Now choose a partition of unity {¢;} subordinate to the cover ;, and choose cut-off
functions {1} supported in ; with ¢;v; = ¢;.

3.3 Definition. A linear operator A: C*®(X) — D'(X) is an operator of order and type
zero in Boutet de Monvel’s calculus for the manifold X, if it has the following properties.
Writing

A=) A%+ R, (1)
(i) R is a regularizing operator, i.e. it has a continuous extension
R: Hy*(X) = HY(X)

for all s,¢ € Ry. Equivalently, R : D/(X) — C>(X) is continuous, or R is an _
integral operator with a smooth kernel density.

(ii) If Q; is a boundary chart, then the operator (¢;Ay;), - defined on R} from ; At;
via the transport by coordinate charts - is an operator of order and type zero in
Boutet de Monvel’s calculus on R}.

(iii) If ©; is an interior chart, then (¢;Av;), is a pseudo-differential operator of order
zero.

Similarly, A : C*(Q1) — D’'(Q) is a pseudodifferential operator (...with the transmission
property) of order zero on {2, if the terms in (ii) and (iii) are pseudodifferential operators
(...with the transmission property) of order zero on R".

A : C=(X) — D'(X) is a singular Green operator of order and type zero in Boutet de
Monvel’s calculus on X if the terms in (ii) are singular Green operators of order and type
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zero on RY} and the terms in (iii) are regularizing operators on R}. In particular, an
operator A of order and type zero in Boutet de Monvel’s calculus on X can be written

A=P++G,

where P, = rtPet; e* denotes extension by zero from X to €, r¥ restriction to X, P
is a pseudodifferential operator with the transmission property on €, and G is a singular
Green operator of order and type zero on X.

The composition and mapping results for Boutet de Monvel s calculus on R imply that
the algebra A of elements of order and type zero on X is indeed an algebra. and a sub-
algebra of £ (L?(X)). Moreover, it can be given the Fréchet topology induced from the
algebra on the half-space.

3.4 Proposition. For s, € R, the wedge Sobolev space W*(Y, H{y,(Ry)) is well-
defined in a neighborhood of Y in X.

More precisely, suppose u € T’'(X) is a distribution supported in the open set identified
with Y x (0,1). Then we may muitiply by the functions in the partition of unity, ¢;, and
transfer the product to R% using the coordinate charts. Denoting this by (@;u)., let

1/2
HIwe (R B ,(R+))) ’

[ —— (Z [(eiu)

where the summation is over all boundary charts. Up to equivalence, the norm is inde-
pendent of the choice of the partition of the unity in view of the lemma, below.

3.5 Lemma. Let u € W‘(R"_I,Hfo}(R+)), and let £ : R} — R} be a diffeomorphism.
Suppose k and k~! have bounded derivatives of all order. Then the operator T, : u — uox,
first defined as a mapping from S(RY) to S(R}), ertends to a bounded map

Te: W(R™, Higy(Ry)) — W(R™, Higy(Ry))

Proof. The adjoint of T, with respect to the usual L?(R7) inner product is given as
|det Dx=!| T,-1, which is essentially of the same kind. In view of the duality

W' (R, Hip(Ry)) = W (R™! , Higl (Ry))

and Hirschmann’s interpolation results [20], theorem 6.4, it is sufficient to show that T,
is bounded on W* (R™"!, H* (R,)) and on W° (R""!, H*(R.,)), s € No. .
Now W?*(R* ', H*(R,)) = H* (R“), and in this case the result i1s well-known. On
the other hand, v € W°(R"!,H*(R,)) if and only if & u € H~/ (R"!, L2 (Ry))
for j = 0,...,s; the corresponding topologies coincide, cf. [33]. It follows from the
differentiation rules that &/ (uox) belongs to H=7 (R*"!,L?(R4)),j =0,...,s, provided
the same is true for 97 u

3.6 Definition. We shall say that an operator T : C®°(X) — T’(X) is supported by a
set K, if
T=pTl=Ty

for every smooth function ¢ on X with ¢ =1 on K.
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3.7 Lemma. Fiz functions w,w’,w"” € C®(X) such that
w=lonY x (0,%] , suppw CY x(0,1),
3

w=lonY x (0,%], suppw’ C Y x (O’Z)’

Ww'=1lonY x (0,-}3-] , suppw’ CY x (O, %) ,
so that in particular ww' =w'. Then
(a) Each A € A can be written
A=P,+G+Q+R,
where

o P, = r*Pe*, and P is a pseudodifferential operator of order zero with the
transmission property on ), supported by Y x [—1,1],

o ( is a singular Green operator of order and lype zero on X, supported by
Y x [0,1],

o () is a zero order pseudodifferential operator on , supported by X\ {YX(O, %)} ,
and

e R is a reqularizing operator.
(b) We may express the product in A correspondingly. Write, as in (a) for A’ € A
A=P +G+Q+FR.
Then
AA" =[PPy +[(PQ )]+ + [(QP)sl+
+L(P,P')+ P,G' + GP, + GG
+H(PQ)i +(QP): + QQ’ (1)
+(PQ'),, +(QP),, +GQ'+ QG' + PLR + RP,
+QR + RQ'+ GR + RG' + RR’
— P.f-i-G”-f'Q”'*‘R’,
where P!,G",Q" and R" are the operators in lines 1,2,3 and 4f of (1). We have
used the abbreviations
. PQ’)L — (1 _ wlI)PQIw
= (1-W)PQ(I - w)
= Ww'PQ'(1 -w)+uw'PQw
= wQP(1-uw")
(1-w)QP'(1 -
P, = (1-w)QP'W +wQP'W"

—_—
w
88
~ & 3
| | I

©88 S
&l
!

15



Proof. (a) is obvious, cf. the decomposition in 3.3(1).

(b) The decomposition (1) is straightforward. Let us check that all terms have the asserted
form. In view of the fact that the symbol of @' vanishes near Y, extension by zero
is a trivial operation on its range. So PQ'w is a pseudodifferential operator with the
transmission property of order zero and supported by ¥ x [~1,1]. (1 —w)PQ'(1 —w) is
a pseudodifferential operator of order zero supported by X\{Y x (0,1/2)}. The operator
w'PQ'(1 — w) is regularizing, since w'(1 — w) = 0. Similarly, w"PQ’ is regularizing,
since @' = Q'p for a function v, =1 on X\{Y x (0,1/2)} and vanishing on supp w”.
The analysis of QP’ is almost the same. Finally note that GQ' = G(1 — w")Q’ and
QG = Q(1 — w")G" are regularizing: the calculus implies that G(1 — w”) and (1 — w")G
are both regularizing singular Green operators of type zero and therefore regularizing.

3.8 Definition. Let P be the set of all pseudodifferential operators with the transmission
property of order zero on 2, supported by Y x [—1,1];

Py = {rtPet : PP} ;

G is the set of all singular Green operators of order and type zero on X, supported by
Y x (Oa 1];

Q is the set of all pseudodifferential operators of order zero on 2, supported by X\{Y x
0, )}

R is the set of all regularizing operators on X.

In this notation
A=P,+G+Q+R,

also topologically, as a (non-direct) sum of Fréchet spaces:

If {pr : k € N}, {gx : k € N}, {qx : k € N}, and {rr : k¥ € N} are defining systems of
semi-norms for the topologies of P, G, @ and R, respectively, then a semi-norm system
for the topology of A is given by

ar(A) = inf{p(P)+ gx(G) + q(Q) + r:(R) :
PeEP,GeEG,QeQ, RER, A=P, +G+Q+ R}

Moreover, multlpllcatlon in A - understood according to 3.7(1) — respects this decompo-
sition.

3.9 Proposition. [In order to establish the submultiplicativity of the algebra A, it is
sufficient to show the following:

There are increasing semi-norm systems {p; : k € N} for the topology of P, {gx : kK € N}
for that of G, {qx : k € N} for that of Q, and {rr : k € N} for that of R, there are
constants Cx 2 0, k € N, and there is an increasing function f : N — N such that

i) P ((PQ")s) < Crpe(P)qi(Q")
g5 (L(P, P")) < Ci psiy(P)psgiy (P

i) pe(PP') < Cipr(P)pi(P)
i) pe ((Q P’)b) < Cr qi(Q)px(P')

v)  g(PyG") < Ci pyay(P)gx )( )

(

(

( (Py PL) < Cepyy(P)gi(G)
Evii) gk(GG') < Ci gu(G)gn (G’

(

(

(G

(P Q))<Ckpk( )ar(Q")
(QQ )<Ck¢1k( )ax(Q")
(((

k

< <
=
e

Q@

ix) g ((QP’) ) < Cepr(P)qr(Q)
% ((PQ')r) < Crpyiy(P)asn)(Q")
xili) r(GQ') < Cr gy (G)asy(Q")

i k
X) &
i k

»
=
)

P).) < Cepyny(P)as)(Q)
G") < Cr 95y (GNas)(Q)

)(iV) T‘k



(xv) (P R’)<ckpf(k)(P)rk(R') (xvi) i (RPL) < Chpyn(Pre(R)
(xvii) 7 (QR) < Crqp(@)r(R)  (xviii) 1% (RQ') < Ci gy1)(Q")ri(R)
(xix) 7T (GR) L Cegpny(G)ri(R)  (xx) 1 (RG') £ Chgyny(G)ri(R)
(xxi) T (RR’) < Cy Tk(R)rk(R'). '

Proof. By playing with the semi-norm system and operations like replacing the systems
{-x: k € N} by {'f(k) k€ N} one finally obtains (i) through (xxi) with f(k) = k. Given
e>0,and A, A’ € A, wecan then find P, P, G, G, Q, Q', R, R’ such that

A=Pi+G+Q+R, A=P +G+Q +R,

and

ar(A) 2 pe(P) + gr(G) + (@) + re(R) — ¢,
ar(A) 2 p(P)+a(G) + (Q) + ri(R) — e

Then

ax(AA) < p(PP)+pi (PQ)) + px ((QP)) +

+9x (L(P, P')y) + g (PrG") + g (GP) + g (GG')
+q (PQ):) + g+ ((QP):) + 0 (QQ)
+7% ((PQ):) + rx (QP),) + 1 (GQ')
+1r(QG") + ri(Py R)) + re(RP,)
+r{QR) + r(RQ) + r(GR)
+re(RG') + re( RR')

< 3Ck (pe(P) + 9&(G) + a(Q) + 7e(R))

(p(P") + gx(G') + q(Q") + r:(R))
< 3C: (ak(A) + E) (ak(A') + E)

which gives the assertion, since A is unital.

The following theorem is proven in Coifman & Meyer [7], Théoréme 15:

3.10 Theorem. Let Q : C®(Q) — D'(Q) be a continuous operator. Then the following
is equivalent

(i) @ is a pseudodifferential operator of order zero.

(i1) Given s € R and k smooth vector fields vy,...,vr on §Q, the iterated commutator
ad vy ...ad vi(Q) has a bounded ertension
advy...ad v (Q) : H(Q) —» H* (). (1)

It is sufficient to check the conditions in (ii) for finitely many vector fields supported in
finitely many coordinate patches. We no longer need the conditions on the commutators
with multipliers; they are implicitely contained in those with vector fields.

Together with 1.10, 3.10 gives the following characterization
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3.11 Theorem. Let P : C®(Q) — D'(Q) be a continuous operator supported by Y x
[—1,1]. Then the following are equivalent

(1) P is a pseudodifferential operator of order zero with the transmission property
(i1) P has the following properties

(ii.a) Given s € R and k smooth vector fields vy, ..., vi on Q, the iterated commutator
adv;...ad vi(P) has a bounded extension

advy...advk(P) : H*(Q}) = H*(). : (1)

(ii.b) Given s,0 € R and a k+m—tuple (Vy,...,Viym) consisting of k smooth vector
fields and m smooth functions on Y, all extended to Y x (—%, %), the iterated
commutator ad V; ... ad Viym(Py) has a bounded eztension

ad Vi...ad Vigm(Py) : W(Y, H{y(R)) — W (Y, H?Ji»m(R+))- (2)
(ii.c) The conditions in (ii.b) also hold for the formal adjoint P,™ = P*, of P,.

The extension is simply obtained by choosing € C§°([0,1/3)) with ¢ =1 near zero and

letting V™' (y, s) = ¢(s)V;(y).
Similarly, we may rewrite theorem 1.9 in the following way.

3.12 Theorem. Let G : C®(X) — D/(X) be a continuous operator supported by Y x
[—=1,1]. Then the following are equivalent

(i) G is a singular Green operator of order and type zero.

(i1) Given s € R and a k+ m—tuple (V1,..., Viym) consisting of k smooth vector fields
and m smooth functions on Y, all extended to Y x (—%,g—
ad Vi ...ad Viym (G) has a bounded exztension

ad Vi ...ad Vigm(G) : WH(Y, S'(Ry)) — WH™(Y, S(R.)). (1)

), the iterated commutator

3.13 Remark. Condition 3.11(ii.a) guarantees that P is a pseudodifferential operator,
while (ii.b) and (ii.c) imply the transmission property, cf. 3.10. A regularizing operator
always has the transmission property, and so does an operator whose symbol vanishes
near the boundary.

Given two smooth functions, ¢, 1, supported in an arbitrarily small neighborhood of the
boundary and equal to one near the boundary, the operator P will have the transmission
property iff @ Py has it. '

3.14 Remark. We already know from definition 3.3 that an operator R is regularizing
on X if and only if, for every choice of s,t € R it has a bounded extension

R: H(X) — HYX).
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3.15 Corollary. Theorems 3.11, 3.12, 3.10 and remark 3.14 allow us to introduce par-
ticular defining semi-norms for the topology of P, G, @, and R.

For all the commutators we may restrict ourselves to finite sets of functions and vec-
tor fields and to s,o € Z. Choose one such set for 3.11(ii.a) and 3.10(ii), and one for
3.11(ii.b, ¢) and 3.12(i1). Denote the finitely many vector fields for 3.11(ii.a) and 3.10(ii)
by v1,...,vn, respectively, the functions and vector fields for 3.11(ii.b), (ii.c) and 3.12(ii)
by fi,...,fnv and vy,...,vy. Let

v=(v1,...,on), v =(v},...,vx), f=(f,.---,N)
Then fix ¢,%,0 € CP(Y x (—3,3)) such that ¢, and 0 are identically 1 in a (small)
neighborhood of the boundary Y and ¢y = ¢, $80 = 0. Define, similarly as in proposition

2.9,

(1] - 4 A *

p(P) = _I‘:‘}L%Ek {“ad (v)(P)”L(H'(ﬂ))’ Iad (v)(P7) C(H'(ﬂ))} ’

(2] _ a By

p(P) = max, Jad*(1)ad? ()P ")"c(w-(vH{o,(n+)).w'+lal(v.nf:,""(n+)))’
—k<s,0<k—|al

Ap) = pl(P).

Since the commutators will in general not commute, ad®(-)ad®(-) stands for an application
in any order; the maximum is taken over all permutations.

From le,pE], and p[] we shall now construct a submultiplicative norm. For arbitrary

P, P, € P we have

(6P Pp) < pPNSP1Pb) + PRSP (1 — 6)(1 = ¢) Pot))
< o pA(SPY) PR(SPY) + ci PG PL(1 - 0)) PB((1 = 6)Pysp).

For fixed ¢,, and # we may consider the Fréchet space F of all operators F with symbol
in 57,, such that ¢, Fp, = 0 for all smooth functions 1, ; supported in a fixed neigh-
borhood of the boundary Y. On F, the system {pll : v € N} of norms defined on the
'double’  of X induces the same complete topology as the system {pl!}, pl& : v € N},
since the opera.tors in F obviously have the t.ra.nsmlssmn property.

Therefore, pk](¢P1(1 — 8)) can be estimated by dy p! (k)(Pl) for a suitable constant di

and p(k) € N The same argument applies to pj ]((1 — ¢)Pyy) and the terms induced by
considering pl (¢P1 Py); we may use the same u(k) in all cases. Letting

pi(P) = max {Pm (6PY), P (8P™), PE}(]k)(P)} (1)
we get pe( P P2) < Crpr(Pr)pe(P2).
For G use
_ o flad® (v’
(@)= max  [ad®(f)ad’(v )(G)||qw-(m{-;;m+n WeHal(V,HE (R4))

—k<s<k=|al

For @ use the norms

(@) = Pu(k)(Q)
with the function u(k) in (1); for R use

m(R) = [|Bll geprx ) mr(x))-
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3.16 Conclusion. By construction, cf. proposition 2.9 and 2.10, the above semi-norms
will have properties (i), (vii), (x), and (xxi) of proposition 3.9. We obtain relations (iv),
(xi), (xi), (xiii) and (xiv) by the final argument in proposition 2.11.

Now for relation (ii). The operator (PQ’), is supported by Y x [3,1), and so is its
adjoint. Since the functions ¢ and 3 have their support in Y x [—i, i—], all semi-norms
for p2((PQ")s) and p((PQ"),) will vanish. Relation (iii) is obtained in the same way.
The compatibility of the norms ¢, and p; together with Leibniz’ rule shows that relations
(viil) and (ix) hold; Leibniz’ rule moreover yields (v) and (vi).

For (xv) through (xx) use the identities in 1.8 (¢}, (d). By proposition 3.9, this concludes
the proof of theorem 3.1.

4 Some Remarks on the Case of the Full Algebra

We have now considered the case where the algebra consists of the terms that usually
form the upper left corner in the matrices of Boutet de Monvels calculus. In general, we
will have to deal with matrices

| P4+ +G K
A= l TS } )
acting on the Hilbert space H = L*(X,E) @ H-%(Y, F). As before, X is a manifold with
boundary dX =Y; X is either compact or R}. E and F are smooth vector bundles.

T here is a trace operator of order and type zero, K is a potential operator of order —1
and S is a pseudodifferential operator with symbol in S?,.

There are now two ways to proceed. The first and rather straightforward way is to argue
by analogy. One starts with the case X = R} and characterizations of the potential and
trace operators by commutators:

4.1 Theorem. Let K : S(R*') — §'(RY}) and T : S(R}) — S'(R™!') be continuous
operators. Then K is a potential operator of order —1 and T is a trace operator of order
and type zero, if and only if for all multi-indices a,8 € N™! and all s € Z there are
continuous extensions

ad®(—iz")ad?(D.)K : H* HR™') — W (R™, S(Ry))

and

ad®(—iz")ad®(D,)T : W(R™, 8'(R,)) —» H 3(R™™Y)
This is proven in the same way as theorem 1.9. One then employs a similar construction
as before, relying on the decomposition of the algebra and the construction in [15].

The second and more elegant way uses the following theorem.

4.2 Theorem. There is an operator A of order and type zero in Boutet de Monvel’s
calculus such that (i) A : L*(X,E) — L*(X,E) @ H-3(Y, F) is an isomorphism.

(i) A7 : L¥(X,E) @ H~%(Y, F) — L} X, E) also is an operator of order and type zero
in Boutet de Monvel’s calculus.
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For a proof cf. Rempel&Schulze [28], [29], Grubb [17].
Suppose now we are given a submultiplicative system of semi-norms {a; : £ € N} for the
topology of the 'upper left corner’ algebra. We then define

be(A) = ax(A™'AA), ke N.

Clearly, {b; : k € N} is a submultiplicative system of semi-norms on the full algebra A.
It also is defining for the topology of A :

Suppose {p; : £ € N} is any defining system of semi-norms in .A. Then the continuity of
A implies that bx(A) < Cipe(A) for a suitable semi-norm p;, £ = £(k), Ci > 0. Vice versa,
pe(B) = p(A(AT'BA)A™Y) € Crar(A~'BA) = Cibi(B), where k = k(£).

Therefore the systems {b; : k € N} and {p, : £ € N} are equivalent, and we obtain the
assertion.
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