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BARTH MAP OF THE MODULI SPACE OF STABLE RANK-2
VECTOR BUNDLES ON P?

ALEXANDER S. TIKHOMIROV

INTRODUCTION

Let M, := Mp2(2,0,n) be the moduli space of rank-2 stable vector bundles on P? with
Ci=0,c=mn,dimM, =4n -3, n > 2, M, := Mp2(2,0,n) its Gieseker-Maruyama
compactification, i.e. the space of (S—equlvalence classas of) semistable rank-2 sheaves
on P2 with¢; =0, ¢y = n, M 3 the subset of stable sheaves in M,, M, = M, \ M,
{[€] € M,|€ is not locally free ie. ET#E, e l( 7/€ > 1} the subset of non-locally free
sheaves, where codimy; OM, = 1, and let M,, := {[€] € M,|I(£/E) < 1} be the "good”
part of M, (this is a dense open subset in M, for n > 3).

Remark 0.1. M,, C M? for n > 3.

Next, let D := M, N M, = {[£] € My|l(£/€) = 1} be the "good” part of OM,, so
that codimpy, D = 1, codimyg, (M, \ M,) = 2, codimyyy, (OM, \ D) =1 for n > 3. We
will mostly deal Wlth M, and D. Next, for [£] € D denote z = z(£) := Supp(E£~7/E); we
have

0—E—E™ S k(z)—0. (1)

Next, the projection 7, : D—>M,_; x P2 : [E}—([€7], z(£)) is a P'-fibration: in fact,
for any pair ([£), ) € M,-1 X P? we have by (1)

7.1 ([€o), ) = P(Hom(&, k(z))) ~ P(&slz) =~ P (2)

Next, for any [£] € M, there is defined a curve C,(€) = {l € P?| £|l # 20p1} in
P? of jumping lines of £. This curve has a natural structure of a divisor of degree n
in P? [B], [Bl] Hence we consider C,(€) as a point of the projective space PV :=
|Opa(n)l, Nu=n(n+3)/2.

Remark 0.2. If [€] € D, then from (1) it clearly follows that

Ca(€) = Car(EN) U E(E), (3)
where # := {l € P?|z € 1} is a line in P? dual to the point z € P2.
In this paper we consider the map f, : M,—P" : [€]——C,(E), called the Barth map
after W.Barth [B]. This map is well known to be a morphism - see, e.g., [M2, Part II,

Prop. 1.9], which is generically finite by [B]. Denote C,, = fa( M,). The following results
are due to J.Le Potier [L],[L*],[L1],[L2],[L3]:

Theorem 0.3. (Le Potier [L2]):  fu|M, is a quasifinite map onto its image, n > 2.
Hence dimC,, = dim M,, = 4n - 3.

1991 Mathematics Subject Classification. 14J30.
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THeorem 0.4. (Le Potier [L},[L*],[L1],[L3]): fi : My—>C4 is a birational map ! and
degpu C4 = b4. 2

Remark 0.5. 1t is well known (see, e.g., [ELS]) that degpwy Cp, = qun—3/ deg fn, Where gsn_3
are the Donaldson invariants of CP?, gan_3 = [z fa(c1(Opna(1))*"~2. By now the values
of g4n_3 are known at least for n < 10: g5 = 1 since f; is birational onto |0p2(2)| (see
[B]), go = 3 (Maruyama [M1]), g13 = 54 (Le Potier [L},[L1], Tyurin and Tikhomirov [T}, Li
and Qin [LQ)), g17 = 2540 and ¢2; = 233208 (Ellingsrud, Le Potier and Strgmme [ELS)),
g2s = 35225553, gqo9 = 8365418914, ¢33 = 2780195996868, ¢37 = 1253555847090600
(Gottsche, using the method of Ellingsrud and Géttsche [EG]).

The aim of this paper is to prove the following

Theorem 0.6. f, : M,—C, is birational for any n > 4.

From this theorem and remark 0.5 follows
Corollary 0.7.
deg P20 Cs = 2540,
where Cs is the variety of Darbouz quintics in P® (see [B, Prop.5], [D]),

degpar Cs = 233208, degpss C7 = 35225553, degpu Cs = 8365418914,
degpsi Cy = 2780195996868, degpes C1o = 1253555847090600.

1. OUTLINE OF THE PROOF OF MAIN RESULT

Our proof is inductive, beginning from n = 4 (due to theorem 0.4 of Le Potier), and
is based on three geometric observations concerning the behaviour of the sets M,, and
D = M, N 38M,, under f,. Denote Z, := f,(D).

First observation (Maruyama, Hulek, Strgmme 1983; see, e.g., [M3, Question 0.2]), a
direct corollary of (3):

the map f,|D factors through the map =, in the diagram
€] € D 4)

|

([£7%2(8)) « Mn_le2

I

Cro1(E U E(E)

Fa1([ENUVE(E) € Zn

!Note here that though f4|M, is quasifinite and birational, it is not bijective: e.g., over the Humbert
desmic quartics its fiber consists of at least 6 points - see [B, remark after Prop.6] and [Ba, p.367].
2The number degpi« C4 = 54 interpreted as the degree of the hypersurface W of Liiroth duartics in
= |Op2(4)| was already known to F.Morley [Mo], whose result actually states that the degree of W
is a factor of 54.
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Hence, since 7y, is a P'-fibration, codime, Z, < 2. In fact, as it is easily seen, codim¢, Z, =
2, n 2> 3. For our further purposes it will be enough to see that

codime, Z, =2, n>5. (5)

For this, remark that C; = {C, € C,|C;, is smooth} is a dense open subset in C,, n > 2,
- see [B, 5.4], so that M;; = f;1(C;) is also dense open in M,; respectively, Z: =
Pn(Mj_, x P2) is a dense open subset of Z,,, n > 3. Now by theorem 0.4 and the induction
step fa-; is birational for n > 5. Hence, clearly in view of diagram (4) ,|M;_, x P2:
M;_, x P2~ Z; is a birational morphism, i.e. there exists a dense open subset Z** in
Z} such that ¥|¥;1(Z**) is an isomorphism:

Y 95 (Z37) > Z3; (6)
whence (5) follows.

Second observation. There exists a dense open subset Z], in Z3* (hence in Z,)

28z, (7)
such that

VAR el VA ®)

In other words, there are no locally free sheaves in M,, mapping by f, to a general point
of Z,. In fact, consider the set L, = {[€] € M,|C,(€) contains a line}. As it is shown by
S.A.Strgmme [S, Theorem 3.7(viii)], codimyy, L, > n—1 (we recall the proof in appeddix
B below), hence

codimpy, L, > 3, n > 4. 9)
Now remark that
Cul€) ¢ Z, [El€edM,~D. “ (10)
Hence f;1(Z2) ~ 7271 22) = f,;1(Z2) N M, C Ly, so that (8) follows from (5) and (9).
To show (10), take [£] € OM, \ D, so that by definition I := I(£"/€) > 2, i.e. £/E =
él.A,-, Supp(A;) = z;, 1 =1, ..., k, where z1, ..., 7; are distinct points and

=3 1) 5 2 (12)

=1
Consider the graph of incidence 'y, C P? x P? with natural projections P? & I'y; 3 P2,
Then by [B] the curve C,(£) as a divisor in P? is given by the ideal sheaf Z () 52 =

Fitt°(R'q.q}£(—1)). Thus applying the functor R'ga.q] to the exact triple 0 — £ —

E > .ellcal.A.- —+ 0, we obtain Cy(€) = Cori(€7) + o5, 1(A:)E; in Div(P?), where %; are
1=

the lines in P? dual to the points z; € P2. Hence in view of (11) the curve Cy,(£) doesn’t

contain a smooth component of degree n — 1, wherefrom (10) follows.

It follows now from (7) and (8) that we can explore the map f, over Z, (and eventually
show that f, is birational) only via studying f, around D. For this, we use
Third observation: Let y = ([£o),z) € Ma_y x P? and P} := n;'(y). Then

Om.(D)lp =~ Op:(-2) (12)
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(here D is understood as a smooth Cartier divisor in M,). To see this, take a point
z =[] € P} considered as a triple of data z = ([&), z, & 5 k(z)), where & = £ so that
z defines a triple (1):

0—E—E = k(z)—0. (13)

Then one has natural maps TigM,, = Ext!(€, £) 2 Ext?(k(z), £) <2 Ext!(k(z), k(z)).
Lemma 1.1. The tangent space to the divisor D at any point [E] € D is given by
formula TiggD = @7'(im ;). Hence the normal space NpMy|g is isomorphic to
ker(e' : Ext?(k(z), &) — Ext®(k(z), k(z)), where ¥ is induced by the map & —» k(z).

This lemma is a matter of standard diagram chasing. We give its proof in the appendix A.
Now relativize the triple (13) over Pj =~ P': 0—E—& X Op; —k(z) ® Op; (1)—0.
Applying to this triple the relative é,'.'ctf,2 (k(z)® Op; (1), -)-functor, where p; : P2 x
P!}—)Py1 is the projection, and using the above lemma and the base-change, we obtain
the following formula for the restriction of the normal bundle ApM,, onto P;:

NpMn|Py = ker(e! : £xt] (k(z) R Op; (1), £0R Opy) — Ext, (k(z) R Op3 (1), k(z) B Op; (1),

Here one easily checks that £zt (k(z)ROpi(1),ERO0p;) =~ 20p(-1) and
Extl, (k(z) R Op; (1), k(z) R Op; (1)) =~ Op;. Hence (12) follows.

Now remark that f,|M,; : M; — C:, n > 2, is clearly an unramified quasifinite morphism
(see, e.g., [L1, theorem 4.10]). Also, denoting D* := n;}(M;:_, x P%), we have by (4) that
fa|D* = vy - T, where m, : D* — M}_, x P? is a P'-fibration and v,|(M;;_; x P? ~
(fa=1|M;:_y) x 1p2, m > 3, is an unramified quasifinite morphism. Hence, if we consider
the Stein factorization of the map f,:

oM, 56 B,

where f, is birational with connected fibers and v, is quasifinite, then f,,ID* = 7, and
we obtain a commutative diagram:

D*( Mn (14)

4

M;  xP (G |

a/«.l v,.l

Z;C~———> Cn

so that ¢, = v,|M:_; x P2 Since f. is birational, to prove the birationality of f,
it is enough to show that v, is birational. In view of (6), (7) and (8) for any point
y € ¥;1(ZL) = v;Y(Z)) the fiber v (v, (y)) set-theoretically consists of this point y.
Now theorem 0.6 will follow if we find a point y € v7!(Z.) such that 3 v, is unramified
at y, i.e.

ker(dvy)y : T,Cn—Ty,5)Cn) = 0. (15)

3Here and below for a given scheme X and any point £ € X we denote by T, X the Zariski tangent
space to XA at .
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(In fact, the condition (15) means that the sheaf of relative differentials Qs Jc, Vanishes
at this point y, hence, since C,, is irreducible, Qs [Cn vanishes at a general point of C. (i-e.
it is a torsion O -sheaf); thus v, is generically an immersion along v;!(Z,) and, by the
above, a bijective map at a point y € v;*(Z.); hence it is birational.)

To prove the equality (15) we first remark that the third observation above together with
a standard argument from birational geometry (see the proof of lemma 3.6 below, in
particular, the equality 100) shows that, at this point y, the variety C,, has an ordinary
quadratic cDV singularity, namely, a rational singularity which is analytically isomorphic
to a direct product A*~5 x S of an affine (4n — 5)-space and of a surface S with a Du Val
singularity of type A;. (In other words, @y’én =~ C[[z1, ..., Tan-s]] ® C[[z, y, 2]}/ (zy — 2°).)
On the other hand, specifying the point y in such a way that y = ([£7],z(£)), where £~
is a special Hulsbergen bundle, we obtain an effective description of the tangent space
of C, at the point w = w,(y). This is done in the foregoing sections 2 and 3. Our
method consists of constructing (by means of the above Hulsbergen bundle) a smooth
quasiprojective surface S in M, intersecting D transversally along the fibre 7 (y) and
mapping via f, onto a surface which, roughly speaking, stands (locally in analytic sense
around the point w ) for the image under v, of the fibre {0} x S of the above direct
product A*"~5 x S. Finally, comparing the obtained descriptions of the tangent spaces
T,C, and T,,C, leads to the proof of (15) (see subsection 3.6).

2. CONSTRUCTION OF A SMOOTH QUASIPROJECTIVE SURFACE S IN M,, WITH
SPECIAL PROPERTIES WITH RESPECT TO D

In this section we construct a quasiprojective smooth surface S such that:

(i) S contains a projective line 1 such that

Os(D)[1 =~ O\(-2); (16)
(ii) there exists a morphism j : S — M,, such that j is an embedding around 1 such that
‘ i(S~\1) C M, (17)
and,
(iii) moreover,
i(S)ND=jl)=F, (18)

is a transversal intersection of D and j(S) along a certain fiber P, of the projection
Tn : D = My_; x P? over a point y = ([£], 2) € M1 x P2, where [£] € M,,_, is a (class
of a) certain Hulsbergen bundle (see (19) below).

For this we need to introduce some preliminary constructions and notation. Let Q be a
fixed smooth conic in P2, zy € P2\ @ a fixed point, G = G(1, S*Q) the Grassmannian of
lines in the projective space S™Q ~ P™, so that any point g € G is naturally understood
as a 1-dimensional linear series g = g} of degree n on Q. Equivalently, we will interpret g
as a two-dimensional subspace (which we denote below by V;) in the (n + 1)-dimensional
vector space H%(Oq(Z)), where Z is any divisor ofthe linear series g, (Z) = n. The
space V, thus defines the composition

®0
e(g):V,® Op — V,® Og = H(Og(Z)) ® Oq = 0g(2),
and the surjectivity of e(g) is equivalent to saying that g has no fixed points.
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Remark 2.1. Clearly, G* = {g € G | g has no fixed points} is a dense open subset of G,
and for any g € G* the sheaf

Eo(g) := kere(g) ® Opa(1). (19)

is a stable vectorbundle with ¢; = n — 1, i.e. [€p(g)] € My—;; this vector bundle &(g) is
called a Hulsbergen bundle (see [B, §5]). We thus have a well-defined morphism p : G* —
Mn_i : g+ [Eo(9)]-

Besides, one has a natural identification
HE(g)(1) = V, =V,

Thus, denoting P} = P(V;), we get a canonical map can : Op; — H°(&(g)(1)) ® Op; (1),
hence a composition:

s : Op2xp: "B HY(£0(9)(1)) © Op2 ® Op:(1) = L(g)1)® Op; (1).
Let Qo = (s)o, so that cokers = Ty, x(2,2), where we use standard notation

Op2x pi (m,n) = Opz2(m) ® Op: (n), m,n € Z. Next, let Iy = {zo} x Pgl, with usual
notation @y, (k), k € Z, for invertible sheaves on Iy, and Q = @, U I a disjoint union
(remark that zp ¢ @). Then the exact triples

0 = T, paxpa(2: 2) = Lgo,paxpy (2,2) — O(2) =0,

0 = Opaxpy — £0(9)(1) B Op3 (1) - Tgq p2xcpy(2,2) = 0 (20)
fit in the diagram:

0 0
2 i

0— Op2xpgl — £(1,1) — IQ,P’ngl(zv 2) —0

I \J J

0— OszP; _s) 50(9)(1) X OP,’(I) i) IQo,P’ngl(Qv 2) —0 (21)

le-g IS
05, (2) = 04, (2)

{ {
0 0

Remark 2.2. Note that:

a) from this diagram it follows that the sheaf & = ker(e - 8) ® Op2y p}(—l, —1) satisfies
the conditions

EIP*x {z}] € D, zeP}, (22)

Sing(E|P? x {z}) =3y, z€ Py; (23)

b) since Q is the zero-scheme of the section A2(ev) : Op2 =~ A%V, ® Opz = A2(&o(g)(1)) =
Op2(2) and z4 € Q, it follows that the map

V, = HO(Eo(9)(1)) “ 25 £0(9)(1) ® k(o) : 5+ 5(o) (29)

is an isomorphism. Thus, denoting
y= ([80(9)]1$O)a (25)
6



we get a natural identification:
Py = P(V;) = P(£s(9)(1) ® k(z0)) = P(Eslg)(1)z0) = 7' (y) =: P; C D;  (26)
c) one quickly checks that
Ext (Tqo,p2xp} (2 2), Opxpy) = Et*(Ogy(2, 2), Opaxpy) = Oqy, (27)

hence there is an isomorphism

Ezt' (Zq,,p2xr}(2,2), Opaxp;) ~ HExt*(0g,(2,2), Oprxpy) ~ H'Og,, (28)
under which the unit 1 € HOp; corresponds to the element
§ € Ext'(Zg,,p2xr1 (2,2), Op2xps) (29)
defining the extension (20).
Now we proceed to the construction of the surface S with the prescribed properties (i)-
(iii). First, similar to (27) one has:
Ext! (Zgouto,p2xpP3 (2, 2), Op2xpy) = E2t*(0gy(2,2), Opaxpt) = Ogy ® Oy (—2).  (30)
Next, by construction the curve Q) is a divisor of type (n,1) in @ x P, (under the
identification @ ~ P'), hence it satisfies the triple 0 = Ogxp:(—n,—1) = Ogxp —

Og, — 0. Applying to this triple the functor R'p,,, where p, : P2 x P} — P} is the
projection, we obtain 0 = Op; — pa.Og, — (n — 1)Op3(—1) = 0, i.e.

pz.OQo ~ Op; D (n - I)OPgl (—'1) (31)

Besides, since po|lp : lp — Pg1 is an isomorphism, it follows that ps.Oy, =~ Opz (—2). Hence
by (30) and (31) we bave

PaExt! (Tgquio, p2xp} (2, 2), Opaxpy) = Opy ® Op (—2) @ (n — 1)Op3(-1), (32)

and " also Ext'(Tguip,P2x p1(2,2),0pxpy) = 0, i # 1, respectively,
Ripa.Ext! (Tguuie, Pax P} (2,2), Opay pyl) =0, 1 # 1. Hence the spectral sequence of
local-to-relative £xt—sheaves implies:

F .= gxt:,z(IQoU[o,pzxp’I(2, 2), Opzxpgl) = Opgl D Opgl(-2) ®(n-— I)OP’I(—I). (33)

Consider the variety P(F ) := Proj(Symo_, F') with its natural projection p : P(F’) —
9

P! and let p : P2 x P(F) = P? x P} and p3 : P2 x P(F7) = P(¥") be the induced

projections. Similar to (32) one sees that gl't:n(IQoulo’pﬁxpyl (2,2), Opay pgl) =0, 1#L

Hence the spectral sequence of global-to-relative £xt’- together with the base change gives:

H'(p*F ® Op(r4(1)) = Ho(gxt:,,(p'zqouto,szP,l (2,2),0p2 ® Op(r4(1))) =
Ext' (p*Igquto.p2x P} (2, 2), Op2 B Op(r 9(1)). (34)

Thus the canonical (evaluation) morphism evr : Op(r 9 — p*F ® Op(r (1) considered as
the element

evr € Extl(p‘zqoulo,pzxpnl (2, 2), Opz E Op(j.‘ 7(1)) (35)
defines the extension:
0 = Op: ® Op(x9(1) = E(1) = p"Tgoui,pixp3 (2,2) = 0. (36)
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Now according to (32) we have a surjection 7 : F~— Op @ Op:(2) which implies an
embedding

5 :=P(Op; ® Op(2)) = P(F). (37)

Let t := 1xt: P?xS§ < P?x P(F), respectively, r :=p-t: S - Pl and r :=
p-t: P>x S8 — P?x P} be the induced projections. The natural (evaluation) morphism
evs : O = r*(Op; @ Op(—2)) ® Og/p; (1) clearly fits in the diagram:

r*r ®id

r*(Op; ® Op1(-2)) ® Og/p2(1) ~ < 1m"F @ Og/p(1)
1 evs I (38)
Os F r(F e Opiy(D)
Now similar to (35) the morphism evg can be considered as an element
evs € Ext' (r*Tgou,paxp (2, 2), Op2 B Og/p1(1)) (39)
defining the extension
0> 0p:X OS'/Pgl (1) — Eg(l) - r*Iqoulo,pzxp’,l(2, 2) —0 (40)

which is obtained from (36) by applying the functor t*.
Now let s1: Og = Og/p1(1) ® r*Op1(—2)) be the canonical morphism such that

l1:= (31)0 —2") Pgl (41)

is a unique (—2)-curve on S. Next, fix a general section s € H’(Og/pi(1)) such that

(s)o is a smooth section of the projection r : S — P} disjoint to s;. Then the evaluation
morphism evg can be written as

evs : 7' (Op; ® Opy(2) “” O3/ (1). (42)
Now let

S :=8~(s)o, - (43)

By the above, 1 C S is a (—2)-curve on S, i.e. it satisfies (16) (the condition (i) from
the beginning of this section). We are going to show that S is a desired surface, i.e. it
satisfies the rest two conditions (ii) and (iii) above.

For this, fix any point yo € P; U := P} \yo ~ A and let
S*=r7{U)NS = S\(r" (yo) U (s)o). (44)
Clearly
S*~ A2 (45)

with affine coordinates (z,t) in A2, where z is a standard coordinate in U ~ A?! and ¢ is
defined as the image of 1 under the map of sections H°(O3) — H%(Og.) defined by the
morphism

~

. J(2r-1 » *y—1
05 7 05 “HV 05 Q)15 "5 Oy (IS 3 Ose (46)
In these coordinates clearly

I':=1nS* = {t=0}. (47)
8



Now restricting the extension (40) onto S* and denoting rp := 7|S* : $* = U, rp =
1xry, Q :=QNU, I' :=1l,NU, we get the Op2, g--extension:

0-—- Opzxsn -— Eso(l) - rO‘IQoUlo,ngP,I (2, 2) -0 (48)

given by the element £ € Ext'(ro*Zgqui,,r2xpi (2, 2), Opaxs-) which in view of (29) and
the definition of ¢ corresponds to the element

(1,t) € H(Os.) ® H*(Os.) (49)
under the isomorphism

Ext' (ro*Tgouio,px P} (2, 2), Opaxse) = Ext’ (ro"Iqo,p2xp} (2,2), Op2xs-)®

EBExtl(ro*l}o’pzxpyx(Z, 2), Opzxst) o~ HO(TGOQ-) (3] HO(TSOI- (—2)) >~ HO(OSO) & HO(OS.)

(50)
Now (47), (48) and (49) clearly imply that
a) [Eg.|P? x {(z,t)}] € M,, for any (z,t) € S*, i.e. we obtain a morphism
318" = My (2,t) = [Es-|P? x {(2,1)}]; (51)
b) by construction, this map extends to the morphism
j:S—-M, (52)

satisfying (17) and (18),

c) the restriction of (48) onto P? x I* ~ P2 x U C P? x P} coincides with the restriction
of the triple (20) onto P2 x U.

We have only to show the transversality of the intersection of j(S) with D along 1. For
this, take any point z € U C P} (i.e., equivalently, the point (2,0) € 1* (we use here (47)
and the identification (41)) and denote

h, :==r31(2) = {(2,t)|t € A}
Then an easy computation (using (49)) of the differential d(j)h.) at the point (z,0) shows
that this differential is nondegenerate and its image V/, is transversal to the space T, gD,

so that j(h,) intersects D transversally at (z,0). This together with a)-c) above shows
that S satisfies the above conditions (ii) and (iii). Besides, we have in the above notations:

T.M,=T,D®V, z€P. (53)

Convention on notations: since our surface S (respectively, its affine open part S*) de-
pends on the choice of a pair (g,zo) € G(1,5"Q) x (P? \ C), we will below specify

sometimes its notation as Sz, (respectively, S; ).

3. DESCRIPTION OF THE MAP f,: S = C,

In this section we study the image of the surface S = S, , under the Barth map f,. For
this introduce some more notations. Let # be a line in P? corresponding to an arbitrary
point z € P2, with a picked equation {L, = 0}, L, € H°Op.(1); 31, zi(2) € Div Q
a divisor of degree n on @ corresponding to a given point z € g, where a linear series
g € G(1,5Q) is understood here as a line in S*Q; respectively, D*(2) = UL,%i(2) €
|©@p2(n)| a reducible curve with the equation

¥ = HLZ.'(Z) =0, ¥} € H(Op(n)), (54)
i=1

9



corresponding to the above point z € g;

E(g) = {Dn(2) € |Op2(n)| | 2 € g} (55)

an irreducible conic in the projective space |Op:(n)| corresponding to a given point g €
G(1, S"Q); {Ls, = 0} fixed equation of the line %, in P2.

Now for any point (z,t) € S, understood via the map j from (51) as (a class of) a sheaf
from M,, consider the corresponding curve of jumping lines C*(z,t) = f,(z,t). Repeating
now the argument from the proof of theorem 4 of [B] — see theorem 6.2 from appendix C
below, we obtain the following equation of the curve C"(z,t) in P2:

Cn(Z, t) = {COL:zl(z) v Lz,.(z) + on(z CiLzl(z) T -Ez.-(z) tet Lz,.(z) = 0}’ G € k. (56)

=1

Next, consider the so called Poncelet curve

Ponc™(9) = {D_ tiLase)** Lasia) "+ Lants) = 0} € [Oma(n = 1) (57)

=1

According to Barth [B, Theorem 4] (see theorem 6.2 below) the curve Ponc®(g) doesn’t
depend on the choice of the point z € U and

Ponc™ ' (g) = fa-1([Ea(9)]), (58)

where £y(g) = kere(g) ® Opz(1) (see the definition (19)). Moreover, for any fixed 2 € U
the precise statement of theorem 4 of [B] (see the assertion i) of theorem 6.2 below)
together with (48)— (49) shows that the coefficient cg in (57) equals

co = A, (59)

where A, # 0 depends on the choice of scalar factors in the forms L;,;), i =1,..,n. In
particular, for ¢ = 0 we obtain:

w := C™(z,0) = & U Ponc"(g). (60)

Remark 3.1. Let PN := {C € PM|C is smooth}. By [B, sec. 5],Ponc*"!(g) € PN»-1*
for general g € G(1,5™Q). In other words,

G** := {g € G*|Ponc*1(g) € PN¥-1*}
is a dense open subset of G(1, S™Q) such that
(px D)(G™ x (P°\Q)) C M,_, x P, (61)

where p is the morphism defined in remark 2.1.

Now fixing for Ponc™~'(g) any equation, say, {®3~! =0}, ®3~! € H*(Op(n — 1)), and
choosing appropriately the scalar factor of the form ¥? from (54), in view of (59) we can
rewrite the equation (56) of the curve C*(z,t) in the form

C"(2,t) = {t¥] + L, 8 =0}, (2,t) € S;,,. (62)

This shows that f,(h,) = {C™(2,t)|t € A} (recall that h, = {(z,t)|t € A'}). Hence we
see that
R = Ry, := fn(Sg,z0)
is an open part of the quadric cone in |Op.(n)| ruled by lines joining w to the points of
the conic E(g). By construction these lines are images under f, of lines h,, z € P,}, of
the ruling of S. Thus in view of (16) and (18) we obtain
10



Lemma 3.2. For a general point (g,z0) € G(1,5°Q) x (P2 \ Q)

i) the surface Ry s, = fn(Syz,) i3 an open subset of a quadric cone in the projective space
|Op2(n)|, and the morphism f, : Sg,0 — Ry, is a contraction of a (-2)-curve P} ~1on
Sg.z0» where y = ([Eo(g)], Zo)-

i1) Moreover, for w = v,(y),

TwRgz = Span(zg”(df,.lz)(Vz)) ~k® whereV,=T,h, z€ P;. (63)

Now return to diagram (14) and remark that by construction we have a diagram

M:_, x P? Pl (64)

Yn
fn—lxll Ip

Ci_1 X P2, pNu_1r i p2

Since 7, : D* — Z; is a P'-fibration, it follows that for any y € M?_, x P?
Span( | J (@ma|:)(T;D")) = T, (M;_, x P?).

2€P}

Hence from the diagrams (14) and (96), since 9, = v,|M;_; x P? and u|P¥=-1* x P? and
fn—1 X 1|M:_, x P? are unramified, we have

(dfnlNT. D)) = (d(va - 7a) ) (T:D*)) = Span( U (dvaly)(dma|:) (T2 D)) =

= (dvnly) (T, (M;_ x P?)) = (d(va| M5y x P?) ) (T (M5 _y X P?)) = (duly) (T (M5, x P?)) =
(dpslwo) (d(fa1 X D) (Ty(M;_y x P?)) = Ty (M;_y x P?) = k*"°. (65)
Next, returning to (60)-(62) we get *:
' PT,R, 2, = Span(w, E(g)) = Span(R, ,) ~ P3. (66)

Since E(g)is a conic, Span(w, E(g)) is a projective 3-subspace in P¥ = |H%(Op.(n))| for
any linear series g € G(1, S"Q).

Consider the morphism
p: PVt x P2~ |Opa(n—1)| X |Opa(1)] = P¥: (C,z) » CUE

and let B, := im(u), respectively, B}, := u(PN»-1*x P?). Evidently, p : PN=-1*x P2 — B?
is an isomorphism (hence u : PM-1 x P2 — B, is birational). Moreover, from the
definition of p it follows that for any w = u(C, z) € B}, we have

Twl‘(PNn_l X {:L'}) n Twl‘({o} X Pz) = {0}, (67)
hence
T, B, = Tuu(PV*! x {z}) ® Tuu({C} x P?) = k*+n+2)/2 (68)
respectively,
P(C,z) := PTuB;, = Span(u(P™ x {z}), u({C} x P?)). (69)

4Here and everywhere below for a given subscheme X of a projective space PN := |H%(Opa(n))| and
a closed point z € X we denote by PT. X the projective subspace of PN passing through z and uniquely
determined by the condition that T, PT, X = T X, where T X is the Zariski tangent space to X’ at z.
11



Next, let
U :={(C,z) € P™* x P? | Tycaqyu(P¥* x {2}) N Ty mu({C} x P?) = {0} }.
(70)
Since by (67) P¥»-1* x P2 C U,, it follows that U, is a dense open subset in PN¥»-1* x P2,
(Openness of U, follows from the openness of the condition Tyczu(P¥* x {z}) N
Tucyp({C} x P?) = {0} (provided that the spaces under intersection have fixed dimen-

sions: in fact, dim Ty p(PM1 x {z}) = Np_y = (n? +n — 2)/2, dimTyc)p({C} x
PY)=2)

Besides, since clearly for any (C, ) € PN¥»-1 x P?
im(dp|(C, z) : Tycm(PM ! X P?) = Tycz)Ba) =

= Span (T (P! x {z}), Tucau({C} x P?)), (71)
we can extend the definition of P(C, z) in (69) to Uy,:
P(C,z) := Span(u(P"* x {z}),u({C} x P?), (C,z) € Up. (72)

Thus
im(dul(C,3)) = TyenP(C,3) = KE+wI/2 ker(dp|(C,2)) =0, (C,2) € Un. (73)
Note that since U, is open in P¥»-1 x P2, the set

Va = {(9,20) € G(1,5"Q) x (P \ Q)|Ponc™*(g) € Uy
is an open subset in G(1, S"Q) x (P?\ Q).

Lemma 3.3. V, is a dense open subset in G(1, S"Q) x (P?2\ Q) and for a general point
(g7 xO) € v‘n

Span(w, E(g)) N P(Ponc"~*(g), z0) = {w}, (74)
where w = pu(Ponc*1(g), Zo).

Proof. Since V), is open in G(1, S"Q) x (P? \ @), we need only to pick a point (g, Zo) € V.
For this, fix a point z; € P2~ Q, z1 # Zo. Then one has a pair of distinct points
{a1,8,} = # N Q on Q, where @ C P? is the conic dual to Q. This pair {ai, a2}
defines uniquely the involution 7 : #; — &, of which a; and a; are the fixed points. Now
for any line v € Z; denote {u;(v),u2(v)} = vNQ, {us(v),us(v)} = i(v) N Q. Then
93(z1) == {T, ui(v)|v € ,} is clearly a linear series of degree 4 on @ without fixed
points, hence fixing n—4 points z, ..., Zn—3 € Q we get a linear series g = g (:t:1)+2:,__2 T;
as a point of G(1,.5*Q). This together with the definitions (54) and (55) implies that any
curve C € Span(E(g)) contains the union of lines %y, ..., 53, i.€.

C={F"=0}€Span(E(g)) = F'=F'Ly - Ls_, F'€H (Op4). (75)

Besides, the series g defines a Poncelet curve Ponc*~1(g) € |Op2(n — 1)| which is clearly
decomposable and contains the lines &,, £, ..., £,—3 as components:

Ponc” ' (g) =% UZU...UZ,3U ng, (76)
where
= | (@ (v) Utia(v)) N (i3 (v) U tia(v)) (77)

is a smooth conic in P? with an equation, say, @2 = 0. Then

Ponc™(g) = {25 =0}, where @7 =@Uoley- Lony ()
12



Now remark that by the definition (76) all the components of the curve w = Ponc®1(g)U
Io are distinct and reduced, hence clearly

pH(w) = {wo, ..., wa—3} (79)
is a finite set of n — 2 distinct points
pH(w) = {wo, ..oy was}hw; = (C2UJZj,3), i=0,..,n-3, (80)
J#i

such that u is an immersion at each of these points wy;, i.e. the differential du|w; is
injective. This means that 4~ !(w) C U,. In particular, taking i = 0, we have

wg = (Ponc™*(g), xo) € U,. (81)
Now to prove (74) it is clearly enough to prove that
Span(E(g)) N P(Ponc™(g), o) = 0. (82)

Assume the contrary, i.e. that there exists a point C € Span(E(g)) N P(Ponc™1(g), zo),
this point C as a curve of degree n in P? being given by an equation, say, F™ = 0, where
F™ € H%(Op2(n)). Since w = Ponc™1(g) U %o, one clearly has in view of (78):

P(Ponc*(g), xo) = P({L@gL,le e+ Ly, g+ Lgy® ! |

®"! € HY(Op:(n— 1)), L € H(Op2(1))}). (83)

Hence F™ = L®2Ly\ L, - - - Ly, s + Lz, """ for some "' € HYOp:(n — 1)), L €
H°(03,(1)). Now, since C € P(Ponc™(g), xo), it follows from (75) that F* = F4L, -
-+ L,,_, for some F* € HOpg,(4). Hence

F* = L®L,, + L;,®° (84)

for some L € H°Op:(1), ®* € H°Op.(3). Next, remark that the intersection of the
subspaces in P! = |Op.(4):

P({L®2L,,|L € H°Opa(1)} N P({L,,®%|®° € H°Op:(3)} (85)
is clearly a unique point {CL,,®2L,, }, hence
P'(g, zo) := Span(P({L®} L., |L € H°Op:(1)}), P({Ls,®°|2° € H°Op2(3)})) =
= P({L®2L,, + L, ®* |L € H'Op:(1), ®* € HO(3)})) (86)

is a 11-dimensional subspace in P**. Remark that the condition (84) above can be rewrit-
ten now as

C* := {F* = 0} € P (g, z0). (87)
Now pick the points Ty, z; € P2\ Q and choose affine coordinates y, 2 in P2 s0 that
Q={22-9*=0}, H={z-y-1=0}, &1 ={y=0}. (88)

In this coordinates the involution i : #; — &, is given by (2, 0) — (—2,0), hence one easily
computes the equation of the conic C? from (77):

P2 =z-195 (89)
respectively, the condition (76) can be rewritten in terms of the quartic C* from (87) as:
C € Span(E(g)) <= C* € Span(E'(g)), (90)

where E’(g) is a conic in P* described as:
E'(g) = {N(z* +a)® —a(22—¥*)*] | a € CU{o0}, A € C}. (91)
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The condition (87) here precisely means that
P"(g, o) N Span(E'(g)) # 0. (92)
Now consider the (rational) restriction map
r:P¥— — 5 P'= P(H'O;,(4)) : C* = C*N

By (99) we may consider y as an affine coordinate on the line Z,. Now takinga =0, 1, oo
in (91) and putting there z = y + 1, we obtain 3 linearly independent polynomials

A=@+1, o=v*+1’ fi=1 € HO:(4). (93)
This means that r|Span(E’(g)) is an embedding such that

r(Span(E'(9)) = Span(}" auflos € ©).

i=1

Respectively, (86)), (99)) and (89)) imply that r(P(g, zo)) is a projective line in P*:

5
P(g, o) := r(P"(g,z0)) = Span(z o fila; € C)

spanned by the polynomials
fai=y¥’ -y -y, fi=y'-2y-1. (94)

Now since r|Span(E'(g)) is an embedding, (92) implies that r(Span(E’(g))) N P(g, zo) #
@. On the other hand, one checks immediately that the polynomials fi, ..., fs in (93) and
(94) are linearly independent. Hence, a contradiction. O

Now remark that in view of (66) the condition (74) can be rewritten as:
PTng,IO N ?(C7 xo) = {’LU}, w= l“"(Ci z:0)1 C= POﬂ.C _l(g)’ (.97 $0) € v‘m
or, equivalently, as

PTwRyz, Nim(dp|(C, z0)) = {0}, w = u(C,x0), C = Ponc" *(g), (9, 0) € Va.
Thus in view of (73) lemma 3.3 implies
Corollary 3.4.
V; = {(9, o) € Vn | TwRy,z, Nim(dp|(C, 20)) = ker(dul(C, zo)) = {0},
w = p(C, 1), C =Ponc™ }(g), (9,T0) € Vu} =
= {(9,%0) € Va | TwRy,z, + im(du|(C, o)) = Ty Ry,z, ® im(dp|(C, z0)), (95)

ker(du|(C,20)) = {0}, w = u(C,%0), C =Ponc""'(g), (9,%0) € Va}
is a dense open subset of V,,. Hence also in view of remark 3.1

Vit =V:N(G* x (P’°\Q))
is dense open in V.
Now return to diagram (14) and remark that by construction we have a diagram
M;_, X P ——— M (96)
fn—-l’dl Iu
Ci_y X P25 pNn1* P2
14




Here p|PM-2* x P? and f,_; x 1|M;,_; x P? are unramified, hence 1, = v,|M?’_, x P?
is unramified as well.

Since 7, : D* =+ Z7 is a P-fibration, it follows that for any y € M*_, x P?
Span( | (dmal:)(T.D")) = Ty (M;_; x P?).

z€P}
Hence from the diagrams (14) and (96), since v, is unramified, we have

Span( U (dfx|:)(T>D*)) = Span( U (d(vn-mn)|.)(T,D*)) = Span( U (dvnly)(dmal (T, D*))

z€P} 2€P} 2€P}
= (dvny)(Ty(My_y x P?)) = (d(va| My, x P)|,)(Ty(My_, x P?)) =
(defnly)(Ty(My_y x P?)) = T,(M;_; x P?) =~ k*»~5, (97)

Thus taking y = (p x 1)(g, o) € M,;_, x P?® for (g, z,) € V:* and using (53) and lemma
3.2, we get:

Span( | (dfal:)(T: Mn)) = Span( | J (dfal=)(T.D*)) + Span( | (dfal.)(V2)) =

z€P} z€P} z€P}
= (d4nly)(Ty(M,_; x P?)) + TwRy sz, (98)
where w = 9,(y). Since by the above (din|,)(Ty(M:_, x P?)) C im(du|wo) for wy =
(fa—1 x 1)(y), (95), (98) and lemma 3.2 imply

Corollary 3.5. For (g9,z0) € V;*, y = (p x 1)(9,%0) € M:_, X P? and w = 9, (y) we
have:

Span( | (dfal)(T:Mn)) = (difnly) (T (M5, X P?)) @ TyRyz, ~ k*"° @ K = k42,
2€P}

Now prove the following

Lemma 3.6. In conditions of the above corollary,
i) dimT,C, = 4n — 2;
i) T,Co = Span( U (dfal:)(T:Ms,))-

zEy

Proof. Consider the diagram (14) and denote shortly Z := f,,(D‘) = M;_, x
P2, codime, Z = 2, so that y € Z. By the choice of the point y we have:

P} :=f'(y) = P', Om,(D)|P} ~Op(-2),

hence w Mn |P} ~ Op1. Hence, since C, is normal, by theorem of Grauert-Riemenschneider
[GR] RifneOm, =0, i>1,ie. yisarational (and also canonical) singularity of Cn, 50
that, by [KKMS, chap.1,§3], the local ring O;_,, is Cohen-Macaulay. Now let C, — PM
be any projective embedding and Hy, ... H4,._5 be general hyperplanes in PM through
the point y, such that, by Bertini’s theorem, there exists a neighbourhood U C C,, of the
point y with the following properties:

1) S = LN U is an irreducible surface, smooth outside y, where L := H; N ... N Hy,_s,
and the local ring Og, is also Cohen-Macaulay; hence S is normal by Serre criterion;

5Recall that p is defined in remark 2.1; see also remark 3.1.
15



2) L intersects Z transversally at y, i.e. SN Z = y is scheme-theoretically a reduced
point (here and below we consider Z as a reduced irreducible variety; recall that it is
birationally isomorphic to M,_; x P?); in particular,

T,ZNT,S = {0}. (99)

Now prove that S = f;1(S) is a smooth surface. Since P} C S and by construction
Fal(S ~ P!): S\ P} — S\ y is an isomorphism, it follows that S \ P} is smooth. Now
show that S is smooth along P}, hence it is smooth. In fact, if there exists a point z € P}
such that z € Sing S, then since D is smooth at z, we have dimT,(S N D) > 2. Hence
there exists a vector 0 # 7 € T,(S N D) such that 7 ¢ T, F}; hence 7" = df,(7) # 0.
Considering 7' as a scheme Spec k[t]/(t?), we see that 7' € f(D)N f(S)=2ZNS =y,
where by the property 2) above y is a reduced point, a contradiction. _

Now as S is smooth, S normal and f,,|5' : § — S is a contraction of P; to the point
y, where O5(PL)|P} = Opm,(D)|P} ~ Op1(—2), i.e. P! is a (-2)-curve on S, we obtain
by [A, Cor.6] that y is a Du Val singularity of the type A; on S. Hence, since DuVal
singularities have no moduli, a standard argument shows

(see, e.g.,[R, Cor.1.14]) ® that C,, is analytically, around y, isomorphic to S x Z, i.e., more
precisely,

@y,én ~ Cl[z1, --s Tan—s]] ® Cl[z, v, 2]/ (zy — 22). (100)

Hence, in particular, T,C, = 7,2 @ T,S = T,Sing C, ® T,S ~ k**~2, i.e. we obtain the
statement i) of lemma. Whence by (100) the statement ii) follows. O

3.7. Proof of (15). Using lemma 3.6 and corollaries 3.5 and 3.4 we have
(dvnly)(TyCrn) = (dvnly)(Span( U (dfal:)(T:Ma)) = Span( U (dvnly)(dfnl:)(T2Mn)) =

1 1
2€P; IEP,

Span( U (df,|.)(T:M,)) = k**~2 ~ T,C,. Hence ker(dv,|y) = 0, q.e.d.

U
z€P}
4. APPENDIX A: PROOF OF LEMMA 1.1

First, for any point [£] € D, where £ satisfies (13), and any tangent vector 7 €
TiegMn, 7 = Spec(k(t]/(t?)), we get a Opay,-sheaf E such that E|P? x [£] ~ €. Now
the condition that 7 € Tig)D precisely means that E fits into the Op2y,-triples

0—E—E—E—0, 0—E—Ey—»x—0, (101)

where Ej is a locally free rank-2 Op2,,-sheaf and s is an artinian Op2«,-sheaf of length
2, and these triples fit in the diagram:

0 0 0
t t 1)
y: 0— k(z) — » — k(zr) —0
) t 1)
B: 0— & — Ey — & —0 (102)
t T t
a: 0— & — FEF — & —00
t T t
0 0 0

®In [R] the case of dimension 3 is treated, and the case of any dimension is taken similarly.
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where the left and the right columns coincide with (13). We may consider (102) as a
Opz-diagram via applying to it the functor p,., where p; : P2 x 7—3P? is the projection.

Thus the horizontal extensions a, B and + of this diagram can be treated as elements of
the groups Extpz(€,€), Extp:(£,&) and Extl:(k(z), k(z)) respectively. Now by (101)
these groups satisfy the diagram:

0

T

0 — Ext!(k(z),k(z)) 2 Ext’(k(z),£) — Ext(k(z),&)
1o t

Ext}(£,€) B  Ext)(,&) (103)
1 ¢4

Ext! (&, &)
T
0

(for simplicity here and below we omit the subscript p2 in notations of Ext-groups ). In
terms of this diagram the condition that the triple (13) and the first triple (101) extend
to the diagram (102) (i.e. that 7 € Ti5D) can be written as: p3(a) € im @,. Now the
diagram (103) shows that this condition is eqivalent to the condition (@) € im ¢,
which gives the first statement of lemma. Now the last statement of lemma immediately
follows from the diagram outcoming from (103):

0 0
t t
0 — Ext'(k(z),k(z)) 2 Ext®(k(z),£) — Ext?(k(z),&) - Ext?(k(z), k(z)
t K T
00— T(g]D — Extl(g,lg) — NDMnI[g] — 0
. t t t
Extl(&;, 8) = Extl (go, g) 0
t t
0 0

(104)
Remark 4.1. Alternative proof of the last diagram is given in [T, Prop. 1.5.1].

5. APPENDIX B: PROOF OF (9)

In this section for convenience of the reader we recall the proof of the following result of
S.A.Strgmme leading to (9):

codimy, L, > n—1, (105)

where L, = {[€] € M,|C,(€) contains a line}. We quote [S, section 3, in particular,
theorem 3.7(viii)] here. Fix a closed point y of P? and let p : F — P? be the blowing up
of P? at y, with natural projection g : F — P!. Let § € Pic(P!) be the pos1t1ve generator
and 7 = p*(c1(Op2(1))), so that the class of the exceptional divisor R = p~(y) is 7 — 4.
For any bundle £ € M,, put € =p*E. Then & |R =~ 20pg. It is well known that conversely,

if D is a 2-bundle on F' such that D|R =~ 20k, then £ = p,D is a bundle and the natural
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map £ >+ Disan isomorphism. So we are reduced to the classification of rank-2 bundles
£ on F such that (i) £|R ~20pg, (ii) () =0, c2(€) = n7?, (ii) A°(£) = 0.

First put k = rank(Rq,(£(~7)); then the restriction of E to a general fiber of ¢ is

of the form O(k) & O(—k). Next, clearly L, = |J Ln(y), where L,(y) = {[€] €
yeP?

M,|C(€) contains a line § in P? dual to the point y € P2}, and the condition £ € L.(y)
clearly means that k£ > 0.

Now evidently g,(£(—kT)) ~ Op1(—i8) for some i > 0, and we call the pair (i, k) the type
of £, respectively denote Lix)(y) = {€ € La(y)|€ has the type (i,k)}. Now one quickly
sees that i > k. (In fact, if i < k, then £(i6 — k1) C £(k(6 — 1)) C €, contradicting to the
fact that h(€) = 0.) Any non-zero section of £(i6 — k7) induces a short exact sequence

0— Okt —i6) = & = Ty (i6 — k1) = 0,

where Y is a finite subscheme of F of length c,(£(i6 — kT) = n — k(2i — k) > 0. Hence
this number is non-negative. Conversely, let (3, k) be given, satisfying the conditions

k>0, i—-k>0, n—k(2i—k)>0, (%)

and let Y C F be a group of n — k(2¢ — k) general points, we construct Easa general
extension as above. It is easily veryfied that E = p,€ is a bundle of type (3, k). Note that
the association £ +— Y induces a dominating morphism L; x)(y) — H;x), where Hi;
is the open part of the Hilbert scheme of F parametrizing locally complete intersection
subschemes of the finite length n — k(2 — k). Hence dim Hyxy = 2n — 2k(2i — k).
Furthermore, all the fibers of of this morphism are open subsets of a projective space
of constant dimension, say, d, and, in fact, there is a locally free sheaf £zt of rank
rank(Ext) = n—k(2i — k) + (2k+1)(2i — 1 — k) on H; 4 (so that d = rank(€zt) —1) and
an open embedding L; x)(y) — P(Ext) over H(;x). Hence dim L x)(y) = dim H(jx) +d =
3n — 3k(2i — k) + (2k +1)(2i — k — 1) — 1 and codimpg, L k) (y) = n + (26 — k)(k — 1) +
2k — 1 > n + 1; moreover, codimag, L k)(y) = n+2 if k > 2 (we use (*)). Since clearly
Lo= U La®) = U ( U Len()), (105) follows.

yeP? yeP? i>k>0

6. APPENDIX C: BARTH’S RESULTS ON HULSBERGEN BUNDLES

Here we recall the results of Barth on Hulsbergen bundles from (B, 5.1-3].

Consider an N-tuple of distinct points z1, ...,y € P2. The (’; ) pairs z;,z; among these
points determine lines L;; C P? not necessary all different. Denote by v;; the number of
points zx on L;;. The dual configuration in P? consists of a complete N-side with sides
X; dual to z; and vertices /;; dual to L;;. In each vertex l;; there intersect v;; sides X.

Lemma 6.1. Let T C Op: be the ideal sheaf of functions vanishing at each vertice l;; at
least of order v;j — 1. Then

R (Z(N - 1)) = N. (106)

Proof. Take a line X C P2 not through any lij, then Z|X ~ Op1, and there is the exact
sequence

0 = T(Z(N - 2)) = T(Z(N — 1)) = DTN — 1)|X) = T(Op: (N — 1)).

Every g € I'(Z(N —2)) vanishes on every line X; at least of order N — 1, hence identically.
So h®(Z(N — 2)) = 0 and the exact sequence shows h®(Z(N — 1)) < N.
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Let vy,...,uy € I'(Op2(1)) be the equations for Xi,...,Xy and put fx := .'#u €
i

[(Op:(N — 1)). These f; are sections in I'(Z(N — 1)) and they are linearly independent:
if Y e fx =0, ¢ € C, then restricting to X; one obtains ¢; = 0. So h°(Z(N -1)) > N
too, and fy, ..., fx form a basis of this space. ]

Now following W.Hulsbergen, W.Barth considers vector bundles £ € M,, such that £(1)
admits a a section s with N ordinary zeroes precisely at zj,...,zy. Every such £ is
obtained by an extension

0— Opz =»E(1) 2 I(2) =0, (107)

with Z C Op2 the ideal sheaf of z;,...,zy. Conversely, such extensions are classified by
elements in the vector space

Ext},ﬂ (Z(2),0p2) ~ ?O,,.(l) (108)
of dimension N. Such an extension defines a locally free sheaf £(1) iff all its components
in the direct sum decomposition (108) are nonzero.

Let L C P be a line through some zero z; of s, then it is easily seen that

EIL~0,(v-1)O,(1-v)

with » > 1 the number of points z; on L. From [B1, Theorem 2 i) and ii)] it follows
immediately that the curve of jumping lines C,(£) C P? belongs to the linear system
described by equations in I'(Z(N — 1)). In other words, C,(€) is circumscribed about the

complete N-side in P? with sides Xj, ..., Xny. Hulsbergen’s main result is a converse of
this statement:

Theorem 6.2. There is an isomorphism
o : Exty_,(Z(2), Op2) = T(I(N — 1)) (109)
with these twoproperties:

i) if £ is a locally free sheaf defined by an extension €, then o(g) is an equation for the
curve Cp(€);

ii) an extension ¢ defines a sheaf € locally free at z; iff o(€) =) e fi with ¢; #0.
Proof. Let F C P? x P? be the flag manifold, p,q its projections onto P2, P?, and

Or(k,1) = p*'Op2(k) ® ¢*Op:(l). Then ¢,p°T is the ideal sheaf of X; U... U Xy. Pick an
isomorphism A : Opz — ¢.((p*T)(0, N)).

Definition of o : Extp, , (Z(2), Op2) — I(Z(N - 1)). Via canonical isomorphisms
Batly ,(T(2),Ops) 2 Esth, (5" (Z(2)), Or) - Eath, ("T)0,N), Op(~2,N))

to ¢ there corresponds an extension on F'
0 = Or(-2,N) = (p*€)(-1,N) = (p’I)(0,N) = 0 (110)
and an exact sequence

0 — T((»'I)(0,N)) — H'Ofr(-2,N)) — HY((p*€)(-1,N))
tqh T (111)
TOp) 28 [OpNN-1)
defining o.
Proof of i). The direct image sequence of (110) under g is
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0 —» q*p*ﬁ)(N) — R'@(Op(-2,N)) — R'q@((p*€(-1))(N) = (R'q.p*I)(N)
Opr 8 0nW-1).
112)

The support of R'q,p*&(—1) is the curve C,(€). The support of R'q,p*T)(N) is the
discrete set {l;;}. So o(¢) = 0 is an equation for C,(£), even with multiplicities [B1,
Theorem 2].

Proof that o is an isomorphism onto I'(Z(N — 1)): Since C,(€) has its equation in
['(Z(N — 1)) and since

dim['(Z(N - 1)) = N = dim Ezte, ,(Z(2), Op2), (113)

one only has to show that o is injective. To do this, assume that o(¢) vanishes. The
section h in (p*Z)(0, N) then lifts to a section A’ in (p*€)(~1,N). If £ would be locally
free at z;, then £|L ~ 20, for the general line through z;, hence for almost all lines
L C P. One would obtain the contradiction A’ = 0. This shows that the extension ¢
defining £ must be trivial at each z;, i.e., e = 0.

Proof of ii). If € is non-trivial at z;, then o(¢) cannot vanish on X;, because every bundle
E|L, z; € L, would then be a limit of bundles Oy (k) ® Or(—k), k > 0. So the hyperplane
{3 ek fr, i =0} CT(Z(N - 1)) under 0! corresponds to extensions & which are trivial

at z;. 0
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