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Introduction

There are two objectives in this article. Firstly, using techniques recently introduced
by Donaldson we define a differential invariant for those manifolds homeomorphic to
52 x §2 . Then we determine this invariant for the standard model. Secondly we discuss,
and in some cases explicitely describe, the differences between moduli spaces of stable
2-bundles with ¢, =0 o;rer a simply—connected Kahler surface as the Kihler metric .
varies. These two discussions look quite unrelated but are in fact resulted from the conside-
ration of extending the '-invariant and the polynomial invariants to formulate further
differential invariants for smooth 4—manifolds with b} = 1. The precise relation between

these two discussions will become clear in the course of our explanation followed.

To begin with, let X be a smooth compact simply—connected oriented 4—manifold
with b;(x) = 1. For integers k > 0, denote ¢ ;‘( the set of connected components of

the positive conein H2(X;R) after dividing by the system of walls Y We o where
a 1<2<k"

Wy = U {<e>* CE*(XR)|e-e = ~L ;e € BA(X;I)} ,



and write simply ¢y for ¢ ! I § 1 we give a brief review on the definition of the inva-
X X

riant
2
introduced in [D3] using Yang—Mills moduli spaces associated to an SU(2)—bundle

P— X with ¢,(P) =1. Working with ¢co(P) =k > 1, we explain in § 2 it is still
possible to define assignments

k. ok 4k—3 /112
I'y: €x — Sym (HY(X;Z))

in the same spirit. As we shall see however, at present only in the case when k =2 and X
is homeomorphic to 82 x S2 do we have a complete definition of a differential invariant

for X . In this situation the cohomology group
HA(X,R) 2 {a;h, + a,hy |3, 3, € R}

is spanned by two (integral) generators hl,h2 over R while ¢ }2( is a set consisting of

regions

C+={a1>a2>0}, C_={ay>a; >0}

together with —C_, —C_ as elements.



Theorem 1

(a) For any smooth manifold X homeomorphic to 52 x S2 the polynomials I‘)z((C +) ,

I‘)Z{(C_) satisfy a universal relation

rZ(C,) =T(C)) + (b,~hy)° .

(b) For the standard model 52 x §2 , we have

s2sﬂqﬂ—h5 5(b} b,) + 10(h3 h2) and

52 S2(c_) h — 5(h; b3) + 10(h3 b3)

4 b TR TN S
where (h, h ) denotes the symmetrization of h;” hy“ in (H*(X;Z))™™ for posi-

tive integers I;l, 2,2 .

The proof of theorem 1{a) will be postponed to § 6 where we consider the problem in
some more general situation. We show theorem 1(b) in § 3. This is as far our first

discussion goes but the determination of r?
s2xs

s x §% as a smooth quadric surface Q C IP3(¢) and then make use of certain facts on the

9 links it to the second. We realize

moduli spaces M]B{(w) of w—stable 2—bundles E with (cl(E),cz(E)) = (0,k) overa

simply—connected Kahler surface Y . To be more precise, let ﬁY C QY be the Kahler

~ k

coneof Y and ¥, be the set of connected components of ﬁy\ U WE where

1<2<k

Wy = U{<e>* CEX(Y;R)[e-e = ~; e € HUL(Y;D)} .



Theorem 2

(2)

(b)

Supposing w_y, wy are two Kéhler forms on Y lying in a common components

Ce '%’.l]‘{ of the divided Kahler cone ﬁY , we have
Mls‘(w_l) = Mi(wl) :
(In other words, stability condition is yniformly defined on each such component.)

Let {w, |t € [-1,1]} be a path of Kéhler forms on Y meeting only a single wall

<e>1 of the system U Wz . Assuming
1<e<k

w_jre<0=wje<w-e and ece=—k,
we have that

M3(u_,) = M(wy) || PEMLEN(0}) and
ME(w,) = Mi(qy) 11 PEYL A\ {0})

where L denotes the holomorphic line bundle over Y determined by e .

This theorem will be proved in § 4. Due to an observation of Donaldson, the latter

part of theorem 2 can further be understood in terms of Yang—Mills theory by comparing

the moment maps associated to:

(i)  the s!_action on the standard finite dimensional model of the anti—self~dual
(ASD) equation around the reduction L @ Lt , and

(ii)  the gauge group action on the space of connections for Kihler surfaces



modelling the ASD equation.

Following this idea, we explain in § 5 how to obtain an approximation of the ASD equation
around a reduction over a simply—connected Kahler surface. More precisely we show in the
standard finite dimensional model around a reduction A preserving L @ 1! , the ASD
equation is in essence a map

-

¢:H}t——l[R

on a small neighbourhood of Q € Hi which is approximated by a (Morse) function

) nl (12 bl (L72)
%m={ Y o1ze2- Y |W&ﬂ
a=1 =1

in the sense that

#(v) = dy(v) + 0(1v1%)

for v € Hi with |v| small. In the above expression Zf; , We are certain complex

coordinates for HC * 1(L2) o g 1(L-2) o Hi . Using such an approximation we interpret
/j g
A A
theorem 2 from an analytical point of view in § 6. This completes an outline of the paper.

It might worth pointing out that quite unexpectedly the systems of walls appeared in
these two discussions are comparable. As a consequence, any calculation of I‘§ over a
simply—connected Kahler surface Y requires only identical moduli spaces of stable

2—-bundles for each element in "é"]f, . Furthermore, any change of these moduli spaces sig-
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nals the difference of the polynomials I‘{, . As one will see, this phenomenon culminates in

the calculation of I‘22 o in § 3.
S°xS

. . 2 2 . .
I should emphasis the polynomials T c,),T C_) as described in
2,520+ T2, a(C

theorem 1(b) are not Donaldson polynomials and quite on the contrary they reflect the
construction of such polynomials depends upon the metrics as b'g(S2 x Sz) =1.
Moreover, in contrast to a result of [FMM], these two polynomials are not polynomials on

the intersection form and the canonical class of a quadric surface Q realizing S2 x S2 .

Recently other differential invariants for certain smooth 4—manifolds have been ob-
tained in [Kot], [OV] using SO(3)—bundle and our discussion here lies in a different
stream. Other useful information relevant to our work can also be found in [FM1],

[FM2].
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§ 1. A brief review of the T'—invariant

In this section we give a brief review of the '—invariant to facilitate our future dis-
cussions. Assume always X is a smooth compact simply—connected oriented 4—manifold
with b;(x) =1, the rank of the positive part associated to the intersection form on
H2(X;Il) - Recall first the invariant T'y takes the form of a mapping

2
I'y: €#x——H (X;I)

assigning to each "chamber" C, or an element of €y , a cohomology class I'y(C) in
B(X;T) . To describe T'y(C) it requires certain knowledge of 4—dimensional Yang—Mills
theory on X and in this respect we introduce the following preliminary material on more

general ground according to what we need later.

Let P be a SU(2)-bundle over X . Topologically such bundles are classified by
co(P) =k . Let £ be the (affine) space of connections on P . The gauge group
%= Aut P actson £ and we denote the quotient space £/ ¥ by “@X . Let 3;( be
the dense open subset of 2y consisting of equivalence classes of irreducible connections
on P . For a smooth oriented real surface ¥ in X, we define 2y 3; in the obvious

way. Given a Riemannian metric m on X, we write

My(m)={A€ £ |* F(A)=-F(A)} ¥

for the moduli space of anti—self—dual (ASD) connections on P relative to the metric m .
Here F(A) denotes the curvature field associated to a connection A on P . Note that

ASD connection on P exists only if k = ¢,(P) 2 0. In the case when k = 0, the moduli
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space is a single point [ @] carried by the trivial connection § on X.For k2 1, a mo-
*

duli space Mk(m) relative to a generic metric m on X lives inside @y andisa

smooth oriented manifold of even dimension 2d where d = 4k—3 . In general moduli

spaces of this sort need not be compact.

Over a generic moduli space Mk(m) , one can construct certain complex line bundles
which play a crucial role in our approach of defining differential invariants for X . To ob-
tain these bundles, observe first that for a smooth oriented real surface ¥ in X there

defines a line bundle
*
L5 = A" (ker £5) ® AT (coker B5)

over 3; , where ,333 is the Dirac operator coupled to the restricted connection A | -
This line bundle extends over degree zero reductions on ¥ and it is possible to choose
smooth sections on it not to vanish at the point [6’2] in Py carrying the trivial
connection 9): on X . Furthermore, for suitably chosen surfaces ¥, there are transversal
sections of the bundle Zy, (= rg #y) over M;(m) vanishing on codimension 2 submani-
folds Vg N M, (m) of M,(m). Working with d surfaces El"“’zd rather than one, we

obtain transversal intersections Vs, N...N Vy N M, (m) consisting of isolated points in
1 d

Mk(m) . As one can see from the construction, the algebraic sums associated to these inter-

sections do not have any invariant meaning in general but depend upon

(i)  the choice of the metric m on X, and

ii the sections of the bundles %y~ in the case when M, (m) fails to be compact.
¥y k

Overcoming these difficulties leads to definitions of invariants for X and in this spirit the



invariant I‘x was defined.

To obtain Ty , one consider the case that k = 1. As M,(m) is generically a
2—-dimensional manifold, we study intersection numbers associated to Vs, N M, (m) . If
*
M,(m) is compact, so that [M;(m)] carries & homology class in H,( B I) , these

intersection numbers are given by evaluations
<c1(.?E), [Ml(m)] >el .
In this way we obtain an assignment
Y — <c)(Ly), [My(m)]>

which lifts to homology level and defines an element in Hom(H,(X,Z);Z) = H2(X;EZ) .In
the non—compact case however Ml(m) does not carry homology in 3;( but it is still
possible to define a homology class, say, e € H2( 3;;1!) using an argument in algebraic
topology applied to certain finite dimensional model which describes the ends of M,(m)
(cf. [D3]). Now we can assign to X the integer <c,(.y)e > instead and obtain
whereby an element in Hz(X;H) as before. (Note that this pairing does not in general
represent the intersection number of Vy, N M,;(m) any more.) However cohomology
classes 80 obtained depend on the metric m and the orientation of Ml(m) in some ways

that we are going to explain.

As b;f(x) =1, thereis an L2 —normalized self~dual harmonic 2~form wy on X
which is unique up to a sign. A choice of W specifies a standard orientation of Ml(m)
and we write M, (v ) for M,(m) with the assigned orientation. This process gives

M,(-w_ ) the opposite orientation compared with M,(w ). Nowif m_;, m, aretwo
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generic metrics on X which can be joined by a (generic) path {m, [t € [-1,1]} in such

a way that Ml(mm ) contains no reduction for all t, then we can prove by a cobordism
t

argument that

A2 2ol
em“1 = eml € (..?x, )

in a usual way. The associated elements obtained in Hz(x;ﬂ) are therefore identical. By

Hodge theory, this is the case provided the cohomology classes [w ] liein a common
t

chamber C € ¢y of the divided positive cone ly . We have thus an assignment

&
C

—_— H2(X;II)
{[E] — <cq( Jz),em>}

X

choosing [w _] € C and this is the idea of defining I'y(C) . If there is a universal bundle
*
P— @y x X, as is always the case when c,(P) =1, the characteristic class ¢ (Zy)
*
can alternatively be realized by c2([P) /[X] € Hz( By I) and so one can describe more

elegantly
2
I'y(C) = co(P)/e, € HY(XT) ,
the version introduced in [D3].

For two chambers C,,C, € ¢y the difference between I'yx(C,) and T'x(Cy),
caused by reductions, has further been determined in [D3]. This enables us to described
completely the invariant T'y for the manifold X once I'y(C) is determined for just one
single chamber C . Meanwhile, this discloses also the fact that the difference term is
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universal and is not in the nature of the differentiable structure of X . As we shall see in
the next section, the determination of such difference terms is at present the main

difficulty of generalizing the invariant I‘X in our approach.
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§ 2. A differential invari f 52 x g2

Following previous discussion it is conceivable that by using moduli spaces ‘M, (m)
with k > 1 it might still be possible to define some other differential invariants for X . In
fact the case k =1 is in some sense special since apart from which one can always arrange

transversal intersections Vg NN VE n Mk(m) to be compact assuming b;(x) =1
1 d

(cf. [D5] lemma (3.1)). Indeed, this is the case should one work with sufficiently general
metrics m on X so that all moduli spaces M,(m),..,.M; ;(m) in addition to M, (m)
are smooth manifolds of formal dimension containing no U(1)-reduction. For this purpose
one is to assume [wm] lies in some chamber C € 8;2 in order that it does not meet the

system of walls <E< W 2" In such cases, we can define a symmetric multi-linear map
1<£<k

qk,)((wm) PHY(XGT) x ... x Ho(X;T) —— I

L J
"

d times

using assignments

([%;],-.,[£4]) = the algebraic sum of a transversal intersection

v,)31 n..nVg N M, (v ) -

*
Should we write u([X]) for c,(Zy) € H2( & ;1) , these intersection numbers are given
by the natural pairings

<([E1)V . U([Zg]), [My(ay)]>
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and if we consider

4y x(0) = <6, M (u)]>
an element in Symd(H2(X;ll)) this construction gives an assignment

(2.1) r¥: o — symYEA(X1)

C qk ,X( wm)

assuming [wm] € C . This discussion lays out a framework for new differential invariants
for X but in regard to the problem of comparing P;(C_l) , I‘;(CI) for two chambers
C—l’ C1 € ¥ )12 we find only the following particular situation is known for the moment.

(2.2) Lemma. Suppose {w, |t € [-1,1]} isa smooth path of self—dual harmonic forms

on X meeting only a single wall <e>1 of the system U Wﬂ . Assuming
1<2<k

(i) ere=-k and

(i) w ,e<O0=wye<w- efort>0,

we have then
k k kd

where [w_;] €C_; and [¢;] €C;.
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This lemma, to be proved in § 6, does not give comparison formulas for I‘; in the

cases when
(2.3) ece=-1,...,-k+1

and therefore does little help in making I‘)k( a differential invariant of X in general. We
can however avoid this difficulty in the special case when the intersection form of X is

even 8o that (2.3) has no lattice solution if we work with k = 2 ; one never solves

e-e=—1 since e-e=0(mod?2) .

(1] (1)] and so, by

In such situation the intersection form of X is bound to be a copy of [
a theorem of Freedman, X must be homeomorphic to 52 x g2 (cf. [D2]). For such mani-

folds X one finds H2(X;H) is freely generated by some h,,h, and it is easy to check
e= 1142—h1 and —e=h -h,

are the only lattice solutions to the equation e+e = —2 . In this situation the system of

walls

U W, = {<h,—h > C HAXR
1<e<p b {<hy™y (XK}

divides the positive cone

Oy = {a,h; +a,h, € HAX;R) | a2, > 0}
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into four chambers C 4 c,<C 4 —C_ as shown below.

Diagram

. C_ <e>t = {a,=2,}
e = 112—h1 A
B + — h1
g / |

e —e= h;-h

Now we can state a complete definition of a differential invariant I‘i for this kind of

manifolds. More precisely, for manifolds X homeomorphic to 82 x 82 , the assignment
(2.4) r2: ¢2 — . sym’(@8¥X;1))

has the following properties:

. ) 2
(2.5) (i) I'y(—C) = -Tx(C)
) 2 2
() T3(C,) =TH(C) + (b,~hy)°
(iii) If {: X; — X, i8 an orientation preserving diffeomorphism
between two such manifolds, then I‘)zcl(f*(C)) = f*r§2(0) .

Note that (2.5) (ii) is a consequence of lemma (2.2) should one put C, = C +1C4=C_

and e = ho—h; to get the formula
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rZ(C_;) =TE(C,) + (hyh))° .

We shall determine the invariant I‘22 9 for the standard 82 x S2 in the next sec-
S“xS§

tion and postpone the proof of lemma (2.2) to § 6 combining with some other discussion.
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§ 3. The invariant for the gtandard model

In this section we determine the invariant I‘:2 82 for the standard 82 b 82 . For
X

simplicity we write

— 12 _ 2
q, = r52XS2(C+) and q_= I‘Szxsz(C_) .

Clearly, the knowledge of q, and q_ determines rZz
q_ we are to use some arguments in algebraic geometry. It is a well-known fact that

9 completely. To find q + and
xS

S2 x 32 can be realized as a complex quadric surface Q ~ [P1 x IPl in the complex pro-

jective 3—space IP3 and all the ample line bundles Hr L on Q are of the form
12
*

*
O(1y,15) = prldu,l(rl) ® pr, 0“,1(r2) where 1,1, are strictly positive integers and pr,

denotes the projection map from Q P, xP, to the i—th factor for i = 1,2 . For each

ample line bundle Hr , let Mr be the moduli space of Hr r —stable 2—bundles E

172 172 172
over Q with A%E & 0Q and cy(E) = 2. (The definition of stability can be found in § 4.)

The moduli spaces M_ are smooth and if Iy # I, they are naturally identified with

12
Yang—Mills moduli spaces Mz(m) for compatible Kdhler metrics m on Q by a theorem

of Uhlenbeck and Yau. It follows from the general theory to determine q and q_ it

suffices to pick two moduli spaces M_ _ , one for r; > r, and one for 1, <r,.(The

172
case r; =TI, is special.) As we shall see however, the moduli spaces themselves are in fact

divided into three kinds, according to the comparison between r, and r, . This can be

summarized as follws.

(3.1) Proposition. Associated to a quadric surface there are three spaces M,, M o M_
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such that

M+ if > I,

M ={M if r,=r1
I0y A . 1~ 72
M_ if r <r,

In addition, we have

- + _ -
M, =M, [|P}, M_=M, ||F

where P, P, are two (distinct) copies of the complex projective plane parametrizing

respectively non—trivial extensions of the following exact sequences:

0 — 0(1,-1) — E — 0(~1,1) — 0 and
0— 0(-1,1) — E — 0(1,-1) — 0 .

Extending the work of [SC], this proposition was proved in [M] by a direct argu-
ment using explicitely the description that Q ~ IP1 x l’1 . We shall show however in the
next section that this proposition can be obtained on general ground and is in fact a con-
sequence of theorem 2 stated in the introduction. For this reason we omit the proof of (3.1)

here and proceed to determine the polynomials q + and q_.

Remark. Complete descriptions of the spaces M o My M_ has been found in [B] using
monads, giving moreover an example of a non—Hausdorff moduli space of simple bundles
[P'g 1M1l IPE over a quadric surface Q . Compare also [SC]. We shall however not

make any use of these descriptions in the calculations of I‘22 97 despite the determina-
S“xS
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tion of q L is most explicit.

Let L, = pr}l(-) [P, be the fibres of the projection map pr; on Q=P xP, for
i=1,2. Toobtain q + T it suffices to establish the following table of evaluations for

W
(3.2) Table
Number of
5 5
<p",[M,]> <p,[M_]>
Ll—ljnes L2—lines +
0 5 1 0
1 4 -1 0
2 3 1 0
3 2 0 1
4 1 0 -1
5 0 0 1

We shall only check the column for <,u5, [M +] > as the evaluation for < ,u.s, [M_]> is
similar. Note that q + = <,u5, M +] > in Syms(Hz(X;H)) .

Our calculation for q n hinges on the fact that a line L. on the quadric Q isa
copy of IP1 and so one can adapt an argument in [D1] to show that the zero sets

V. nM 4 used to define q 4 can be taken to have the following concrete form:
1

(3.3) {[E] € M, | E|y, is not trivial} .
i
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It is well-known that holomorphic 2—bundles on a projective line [P1 ~ Li always split and

5o we have
1 1 1

for some integer a 2 0 . The condition E|[ is not trivial in (3.3) means a # 0 in the
1

splitting of E|; . In this case we say L; is a jumping line of the bundle E .
i

To see the validity of (3.3) it is no loss to work with L,—lines on Q . Then the deter-

*
minant bundle .#; over &y 18 given by
1 1

*
.L’Ll = (AT (ker Ll) ) ® AT (coker /5;1) .

This line bundle has an alternative interpretation in complex geometry as we are going to
explain. The Dirac operator when coupled with a connection on the restricted bundle

E| L identifies with the twisted Cauchy—Riemann operator on the bundle
1

1/2
@K/ “~E(0,~1)|, :
1 Iy L

E|L

_"E(o,-n 1, . n2(E(0,-1) | L) — 0O (E(0,-1)| L)

Here we write E(0,—1) for E @ ¢(0,~1) and use the fact Ki/ 2w 0y, (-1) for the pro-
1 1
jective line L1 o [P1 . The operator 0E(0 _1)| is an isomorphism if it has no kernel
’ L
1

and cokernel, or equivalently



BO(E(0,-1)] L)= BY(E(0,-1)| L)=0-

This is the case precisely when the bundle E(0,—1) has trivial splitting type over the line

*
L, . In this setting one can regard .¢; the bundle over .2, coming from the
1

1
assignment

E — ATX(EO(E(0,-1)|, ) ® AR2xgL(E(0,-1)

| Iy ) -
L Ly

As this bundle has a holomorphic sections 8 which vanishes precisely when 0E(0 -1)|
’ L
1

is not an isomorphism (cf. [Q]), we conclude V; NM_ can be represented by the zero
1

set {s=0}= Vi]; CM_ containing elements in M
1

+
4 DPrecisely as described in (3.3). Of

J

course one i8 to check the transversality for the zero sets Vi and this will be shown in
1

due course.

Suggested by this discussion, it is natural to investigate the splitting behaviour of
elements [E] €M 4 When restricted to aline L on the quadric Q . We first observe its
splitting type is rather confined.

(3.4) Lemma. For a stable 2-bundle E over Q with ¢,(E) =0, cy(E) =2, we have

cither

El 20, @0, (trivial) or
Bl 2 0p(1)® 0:(-1) (jumping)
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for all lines L on Q.

Proof. The argument is a direct consequence of the Riemann—Roch formular. Associated

to each Ll—-line there is an exact sequence

(3.5) 0 — E(-1,0) —E—E|; —0 .
1

The stability of E gives hO(E) = 0 and therefore the corresponding long exact sequence
of (3.5) reads

0 — HY(E| Ll) — HY(E(-1,0)) — HY(E) — ... .
One checks readily by the Riemann—Roch formula
X(E(ry,19)) = 2(ry+1)(rg+1)-2
that h'(E) =0 and hl(E(-1,0)) = 2. It follows then

hO(EILl) = h°(0L1(a) @0y, (-5) =2

which can possibly happen only when a = 0,1 . The argument for L,—lines is similar and

this proves the lemma.

Now we come to count the number of jumping lines a stable bundle E — Q can

possibly have. We denote for instance H yp the ample line bundle H on Q if
T12T9 T1fo
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r12t2>0.

(3.6) Lemma. An H_, -—stable bundle E can have at most two jumping lines in the
1=°2
line system L, = prIl( *) . Similarly, an H_ . —stable bundle E can have at most two
1-72

jumping lines in the line system L, = prgl( ).

As the moduli space M0 is contained in M n and M_ by Theorem 2, the following

corollary is immediate.

(3.7) Corollary. A bundle E — Q can have at most two jumping lines in each line
systemof Q if [E] €M, .

To prove lemma (3.6), we show first for [E] € M 4 thesplitting type E |y, is
1

generically trivial. Suppose not, one finds by lemma (3.4)
E|l; 20 (1)® 0 (-1)
L= L
holds uniformly for all L and consequently that

E(0-1)|; ~0; ®0; (-2)
L7 7L

on all such lines. Thus (pr;)« E(0,1) defines a line bundle, say, Jp (&) over the base
1

curve [P1 . It follows then

pry (pry)s E(0,-1) = 0(2,0)
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defines a line subbundle of E(0,—1) fitting into an exact sequence
0— 2(2,0) = — E(0,-1) — 0(—L,~2) — 0
via the natural evaluation map ev. As c,(E(0,—1)) = 2, one finds
o(L,0) « O(—2,~2) =20 =2
which gives that £ = —1 . We conclude therefore E comes from an extension
(3.8) 0— 2(-1,1) —E — 0(1,-1) — 0 .

This however contradicts the H_ y_ —stability of E since
1="2
Hr12r2 + O(-1,1) =1,-1y 2 0

(cf. Definition (4.1)). Thus for those [E] € M 4 the restrictions E |1, is generically
1

trivial.

To determine the number of L, —jumping lines an H . -stable bundle can possibly
1="2

have, it is easiest to consider E as a family of holomorphic bundles over a projective line

[P1 ~L,. In this interpretation, the number of Ll—jumping lines for E is exactly the num-

ber of elements in the zero set V{ n L2 where Vg denotes the zero set of the canonical

1

section of the determinant bundle .ZL for this family. As V{ N L, represents the zero
1 1
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set of a (non—trivial) section of %] — L, with
1

() = eyB)/ [Ly] = 20,

(cf. [D2]), we conclude V% N L, contains at most two points and therefore Ef; is
1 1
non—trivial for at most two L;—lines. The argument for H_ . —stable bundle E is similar
1-"2

and this proves the lemma.

One infers easily from this lemma that in table (3.2)
5 4 3.2
(3.9) Q+(L1) = Q+(L1 L2) = q+(L1 L2) =0

associated to three (distinct) lines L,(z;), i=1,2,3.

. J
by using zero sets VLl(zi) on M +

Indeed, in these situations the number of Ll—lines we are working with is no less than three

and so (3.9) foliows if one can show
J J J
\' nv nv nNM, =¢ .
Ly(z,) " VL, (2) " VL () " M4 = ¢

This is however a trivial consequence of lemma (3.6) as no H_ . —stable bundle E can
1=72

"jump" on three distinct Ll—h'nes.

To find remaining evaluations for q 4+ we apply the same argument to three

(distinct) L,—lines. This time we get a non—empty (set) intersection
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" 121 Lo(w) ' 0 1l D Viw) NP2 (by proposition (3.1))

=1 1
2V ( (3.6))

=NV np by lemma (3.6
o1 Lolw) 2 WY

ot

_[P2

Here the final equality follows from the fact that IP;' parametrized non—trivial extensions
of

0— 29(1,-1) — E — 0(-1,1) — 0
and one checks readily

using the fact E|; fits into an exact sequence
2

0— 0Lg1)——bE|L2——+ 0L2(—1) — 0

which always splits as Hl(dL (2)) = 0. We shall see in a moment the intersection (3.10)
2

is transversal in general. Assuming this, we can proceed to determine q + in the remaining

cases by studying the universal bundle & 4 over the product space EP; xQ:
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* * *
(3.11) 0— PP; 0[');(1) ®P0(1,-1) — &, — P O(-1,1) — 0

where P and PQ are the obvious projection maps (cf. [R] lemma 2.3).
P
2

To show q +(L§ Lg) = 1, we congider the intersection between P; and two (more)
zero sets vi], (z,) i = 1,2 . These zero sets on [P; represent the determinant bundle
11

i £ )= ey(8,)/ 1] =h,.

where h + denotes the standard generator of Hz(lP';;Zl) . It follows up to a sign

q+(L% Lg) is given by
<cy(&,)/ [Ly(z)] Uyl [Ly(z5)] ,[P;]> =h, -h, =1.

As the algebraic sum associated to an intersection of five zero sets on M + defined by

holomorphic sections must be non—negative, we conclude IP'; has its usual complex orien-

tation and therefore q +(L% Lg) =1, as stated in (3.2). Similarly, using

e (F1,) = &) [, =y

and one derives
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4 _
q+(L1L2) = h_|_ * (_h+) =-1 ’

q, (L) = (-h,) - (b)) =1
as wished.

3
To show the intersection {i 2 . Viz(wi)} nM Lo [P;' is transversal in general, we
first describe a local defining function f for the zero set V] near a point [E] € M__
2

coming from a non—trivial extension
0— 20(1,-1) — E —s 0(-1,1) — 0 .
Consider the following extension

00— 0L2(—1) —F — 0L2(1) —0 .

It is well-known that an element t € Hl(aL (-2)) ~ € determines a bundle F, in the
2

extension which has non—trivial splitting type precisely when t = 0 . Moreover, this family

of bundles {F,} constitute a versal deformation of the bundle & (1)® gy (-1) over
2 2

Ly ~ P, having the property that every deformation family {Eu} over a parameter space
U of this bundle & (1) ® 01 (1) can be realized as the pullback of {F,} viaa map
2 2

f:U— H1(0L2(—2)) ~C .

If U is asmall neighbourhood of [E] in M, , then by restricting bundles parametrized

+ ¥
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by U to L, we obtain in this way local defining functions { for the jumping divisor

V‘II‘ near [E] €M 4 Regarding E as a deformation family of E|; , one finds the
2 2

differential of this map is given by the restriction map

fL H!(End E) — H((End E)| L)* H1(0L2(—2)) .

Then it follows from the following commutative diagram that this restriction map is surjec-

tive and we conclude therefore zeros sets V‘II‘ nM 4 are always transversal.
2

(3.12) Diagram.

0 —s BY(E(1,-1)) — HYEnd E) ——— H(E(-1,1)) —— 0

lrLz lrL2
0 —— H'((End E)| ) — B (E(-171) |, ) —— 0
2 l 2

;

Here we have used the fact hO(E(l,—l)) = 0 which follows from hO(E(-l,l)) =1 and the
simplicity of E .

Now we are to show the local defining functions f. s0 obtained for the zero sets

J )
Vv constitute a ma
Lo(w;) P

(df,d,,df,) : B'(End B) — €3

of rank 3, or equivalently, the intersection
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- [ker rL2(wi)} C B!(End E)

i=1
i 2—dimensional, provided the points w; € L, are general. Let Hl(End E)~ € be
spanned by vectors (vl,vz;vs,v4,v5) € €® and we assume without loss of generality that
the image of Hl(E(l,—l)) ~ €2 in Hl(End E) is spanned by v,,v, while the vectors

Va,4,Vy are lifted from HI(E(—l,l)) ~ g3 By naturality, the space Kerr; in
2
HI(E(—I,I)) is isomorphic to a lifting of Kerry in Hl(E(—l,l)) while the space
2
{Kerry C HI(E(—l,l))} can be described in the following way. Consider the commuta-
2

tive diagram below in where

ml(o(-2,2)) » B oy, ()@ H1(0L2(-2)) and

B (0(-2,2)| L,)* Hl(aLz(—z)) .

(3.13) Diagram.

0 —— HY(E(-1,1)) —=— H(0(-2,2)) —— 0

T T
L Ly

0 — H(E(-1,1) |L2)_'_".-.Hl(a(-2,2) L) —0

Fix an isomorphism Hl(aL (-2)) 2 € and we may assume
2
Hl(a(—2,2)) il HO( 01 (2)) 2 e is spanned by homogeneous polynomials ag ) 3g8y a.f
1

where [ao, a;] denotes homogeneous coordinates of L, . Now if L, = prgl(w) for some

w = [ay(w), a;(w)] € L, , then the kernel of rL2 in
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BY(E(-1,1)) = {v)a2 + vya58, + vqa2 € H(0y (2))|v; € €C,i=123)
1
is given by

{(vgv:v5) € € [vg(ag(w))® + v4(a,(W))+ (a,(W)) + ve(a, (w))* = 0}

and we conclude the intersection of three such planes is a point in ¢ , provided the points

W1,Wo,Wgq € L1 are in general positions. It follows then the defining functions of the zero

3
J . . . J ]
sets VL2(wi) are of maximal rank and the intersection {‘nl VL2( i)} nM I i8

i=

therefore transversal in general.
Now we wish to explain why q 4o are not polynomials of the intersection form
qQ = h1h2 + h2h1
and the canonical class
kQ = —2h, —2h,
on a quadric surface Q & 2 x §2. Supposing on the contrary q + 1 537, admits such an
expression, the coefficient a, of kg would then be detected by the evaluation g +(L?)
or q +(Lg) as the intersection form is zero in either case. A contradiction is immediate

. 5 . 5 .
since we have a, #0 by q+(L2) =1 while q+(L1) =0 gives a;=0.

Obviously the failure of q e admitting such expressions lies in the fact that the

construction of these polynomials depends upon the choice of metrics on Q . However we
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can get around this dependence just by averaging, or taking the sum of q " and q_ .
Thus, as Q is a complete intersection, we can apply [FMM] theorem 5 to conclude

9, +9_ is a polynomial on qQ and kQ . Indeed, one can find by a direct calculation

q++q_=—:1,rgkg+§(kgqq)—i§(kq q(%)

where the brackets ( ) denote symmetrizations of kQ and aq -

In a future article we shall explain how to obtain certain polynomials on the blow-up
of the complex projective plane at one point but now we move on to discuss how to prove

proposition (3.1) on general ground.
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§ 4. The stability condition on a K&hler surface

Here we give the proof of theorem 2, spelt out in (4.4) and (4.6) below. Suppose al-
ways that Y is a simply—connected Kihler surface and E is a holomorphic 2-bundle on
Y with AE~ @, and c,(E) =k > 0. For a given Kahler form w on Y we define

deg F = l c/(det F)A w

for each holomorphic bundle F —— Y . Note that the degree deg mF of F depends upon

the Kahler form w.

(4.1) Definition. A 2—bundle F — Y is w—stable if for every non—trivial holomorphic
bundle map ¢: ¥ —— F from a holomorphic line bundle .# into F we have

1
deg - < ydeg F .
For simplicity we write w - & in place of degw.z/ if & is aline bundle over Y .
(4.2) Remark. Regarding ¢ an element of HO( e E), we can actually require in the
definition (4.1) that the inequality holds only for those non—zero ¢ € HO( sle E) with

isolated zeros on Y . Indeed, if ¢ € HO( sle E) vanishes along an effective divisor

D > 0, we may find a non—zero bundle map ¢ fitting into an exact sequence

S e

0— 28D Ly E— #1leple1—0
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where @ € HO( yleple E) has isolated zeros defining an ideal sheaf I. Now the

requirement
1
deg (£ ® D) < 5 deg F
for such situations certainly implies the inequality for . in (4.1) as deg D 2 0.

It follows from this remark to test the w—stability of a 2-bundle E— Y with
c,(E) = 0 it suffices to check the inequality w - .# <0 holds for all possible exact
sequences
(4.3) 0— £—E— L1010
induced from non—zero elements ¢ in HO( le E) with isolated zero. This is our main
tool of studying how the moduli space Mi(w) of w—stable 2-bundles E — Y with
¢,(E)=0, cy(E) =k >0 changes as the Kahler form w varies. Compare the following

lemma with [F] remark (2.2).

(44) Lemma. Let w_;, w; be two Kahler forms on Y lying in a common connected

component of the Kihler cone ﬂy C H2(Y;IR) after dividing by the system of walls
L 2 . . lyl .
{<e>" CHY(YR)|-1Le-e{k; e€cH(Y;I)} .
Then we have

Mp(w_y) = My(w)) -
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Proof. Note first the assumption W_q, &) lie in a common connected component of the

divided Kahler cone ﬂY is equivalent to that
(4.5) sign(w, -€) = sign(w_, -€) # 0

for all lattice points e € Hl'l(Y;H) with e-e = —1,...,—k . Now suppose on the contrary
Mi( w_4) # Mi(wl) and so we may assume without loss in such cases there is an element
[E] € Mf:("’—l)\Mls:(“’l) . Then, as E is not w,—stable, we can find an w,—destabilizing

line bundle .# fitting into an exact sequence

0 y & ) —%leI—-}O

asin (4.3) with w; - 2 0. Note that w_; + £ <0 in this situation as E is

w_,—stable. Our aim here is to check that
L X=-1,.,-k .
Granted this one infers from (4.5)
sign(w; + £) =sign(w_;+ £ ) <0

which however contradicts w; - &2 0 and the lemma will then follow.

To check .+ . =-1,...,.—k, one observes first

0<cy(E® £ ) = cy(E) + £+ ¥
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which gives -+ &2 —k as c,(E) =k. To show on the other hand & - £ <0 we
apply the Hodge index theorem to a Kéhler form wp on Y attaining wy &< =0.Such

¥y exists somewhere in the path
{(1—t)o_y +toy | t € [0,1]}
of Kéhler forms as w, - L20> w_y * <. This proves the lemma.

Remark. There might have interest to know using similar argument one can prove the
semi—stability condition and the stability condition are actually equivalent on each
chamber & € %’{‘, . (Following the present context, a 2-bundle E — Y is
w—semi—stable if it satisfies weaker requirements that w - # < 0 in definition (4.1).)
Thus, in some sense, "essential" w—semi—stable bundles can possibly occur only when the
polarization w livesin <e>* for some lattice e € Hl’l(Y;H) with —1<e-e{—k.We
find proposition (3.1) fits well in this discussion. Relative to the ample line bundle 2(1,1)
over a quadric Q there are semi—stable 2—bundles, the non—trivial extensions
parametrized by the two copies of projective plane IP'; , PE . These bundles however

become stable in other polarizations provided only that they are semi—stable.
Now we wish to compare Mi(w_l) with Mi(wl) when w_;, w, liein two diffe-
rent chambers &_1, ﬁl in the divided Kahler cone ﬂY . For convenience, we write

{w, |t € [-1,1]} , or simply {"’t} , to denote the path of Kéhler forms on Y joining

w_y, w; in a usual way. Assume also that {“’t} meets the system of walls
{<e>t C B(YR)|e € BV (Y;T), e-e=-1,..,.—k}

only at t = 0. We consider then the following situation first as it is easiest to describe.
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Denote t_ for an element t € [-1,0) in the following argument. Let L =L, be the line
bundle determined by e € HL(Y;1) .

(4.6) Lemma. Suppose the path {wt} of Kahler form meets only a single wall <>t at

t=0 where L-L=—k. Assuming »_; - L<0=v, - L<w +L,wehave

(47) My(o_y) = My(ap) 11 PEYLA\{0}) and

(4.8) M(w)) = M(wp) || PENLTEN(0})

Proof. We shall only prove (4.7) as the argument for (4.8) is completely similar. It is not
difficult to see that

Mi( wy) C Mls{(w_l) :

Indeed, if on the contrary there is an element [E] € Mi( wo)\Mi(w_l) , then we can find

as before an exact sequence

00— f— 3 E— L 18I —0

having the properties that

(i) w - L20>w, & and

i) -1<2 - 2<%k .

Since w, , w_; liein a common chamber, one inters from (ii) that
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(4.9) sign(w, * £)=sign(w_; Z)

which moreover has to be (strictly) positive a8 w_; + £ > 0 in this situation by (i). It

follows then

(4.10) W+ X>0> 9, L.

Now set t_—— 0 and one sees immediately a contradiction in (4.10) as

wy L — wy & when t_ approaches zero.

To identify Mﬂ(w_l)\M]s{(wo) , one argues similarly that every element
[E] € M, (¢_;)\M(w) can be obtained by an extension

(4.11) 00— #— SE— L1010
with wy + £20>w_; - £ and that -1 < £ - < —k. Again, using (4.9) we have

Wy .2’20>wt -

and from which one infers w, - .¥'=0 by setting t_—— 0. Assuming {wt} meets
only the wall <L>t , we conclude .= L"’:l . Furthermore, the assumption w_y° L<o
determines that =1L as £ - w_ <0 by the w_l—stabﬂjty of E . In the case when
L:-L="+ %=-k,wehave |I| =0 and therefore (4.11) reads

(4.12) 0— s L—E—sL 1 0.
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Now assertion (4.7) follows should one prove that non—trivial extensions of (4.12) define
w_,—stable bundles. To see this is the case, consider the following potential destabilizing

model for E , where #; —— Y is aline bundle with w_; -+ &, 20.

(4.13) Diagram

=
1
=
1
o — l‘4-— o

K
= |

O —

—

We are to prove the map 3 has to be zero if the bundle E does not split.

The case when the composition map aeof is identically zero never causes problem

since then the map B factors through I and from this one infers
wy#Sw L0,

a contradiction to the assumption that w_; + #; 2 0. In the case when aoff =0, we

have either

(i) aof} vanishes somewhere, or

(i)  aof is nowhere vanishing.
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In the former case it is easy to observe
logr=lv_ . . 1
w0~(..¢1' ®L )-wo .i’l_ >0
as wO-L = 0. It follows then
(4.14) vy * £ <08w_; -

and one deduces as before that —1 £ .¢ + # € —k . Thus, as wy and w_; lieina

common chamber, we have

sign(w, - Z;)=sign(v_; - £{)>0

and by setting t_ —— 0 we obtain wj -+ .#; 2 0. This however contradicts (4.14) and
we may then exclude the possibility of (i).

1

Now if aof is nowhere vanishing, one finds .#=1L ~ and so to prove

pE HO(E ® L) is zero in this situation it suffices to check non—trivial extensions

0 ~L —~E :L_l y 0

* —_
give simple bundles, i.e. hO(E° ® E) = 1 . Indeed, as h%(E®L™1) > 0, the simplicity of
E ensures hO(E ®L) =0 and hence that A€ HO(E ® L) is zero.

The simplicity of E follows conveniently from a lemma of Oda which asserts as a
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special case that 2—bundles E —— Y obtained from non—trivial extensions of two line
bundles, say L and L inour situation, are simple if hO(L’hz) =0 (cf. [O] ). This is

*2

certainly the case here as Wy ° L7 =0 and Wy is a Kdhler form on Y . Thus we ex-

clude the possibility of (ii) and complete the proof of this lemma.
(4.15) Remark. By applying these two lemmas (4.4) and (4.6) to a quadric surface Q CP,

discussed in the last section, one deduces readily proposition (3.1) which describes how the

moduli space M;(w) changes as the Kdhler form w on Q varies.

These arguments applies equally well to the cases when L-L = —1,...,—k+1 . In such

gituations, one proves as before
M3 (w,) CME(w ), M3(w)) CM(w,)
k\70 KU1/ kN0 k\71
and that Mi(w_l)\Mi(wO), Mi(wl)\Mi(wO) contain locally free extensions

0—sL—asE——L 18— 0 and
0 A.L—l

— B y LOI - 0

respectively. It is not clear to me though what the description of My (w_,;)\M;(w;) or
M, (@) \M( wo) in general would be.

In the next two sections we shall explain how the two copies of projective space

PELA\{0}) and P(EILI\{0})

in lemma (4.6) can be accounted for in terms of Yang—Mills theory.
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§ 5. ibl i—gelf: nnecti n Kahler

The goal of this section is to derive an approximation of the ASD equation around a
U(1)—reduction on a simply—connected Kahler surface. To serve some other purpose, we
recall first the following general facts about a reducible ASD connection A on a smooth
compact simply—connected oriented 4—manifold X . We work with a fixed metric m, on

X throughout this section.

Suppose A is a reducible ASD connection on an SU(2)-bundle P — X preserving
a splitting L ® L™ for some line bundle L — X , where ¢y(P) =-L-L=k>0.Itis
a well-known fact that a neighbourhood of [A] € M, (m) can be modelled as an
Sl—quotient ¢_1(0) /S1 for some finite dimensional equivariant map

(5.1) $:Hy —H2

defined on a small neighbourhood of Q € H}\ . Here we write H}i\ , 1=0,1,2, for the coho-
mology groups of the Atiyah—Hitchen—Singer deformation complex

+
d d
0 —— 0%(ad P) —A al(ad P) 2 02 (ad P) — 0

associated to the ASD cornection A . More precisely in (5.3) we find a smooth map
1 ~ * 1
vEH, — vEkerd, CA'(ad P)

modelled on suitable Hilbert spaces so that for |v| << 1 themap Vv solves
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#(v) =F_ (A +¥)€H]
and in the same time satisfies the estimate that
(5.2) |¥=v| < const|v|2
(cf. [D2]). It is clear from (5.5) and (5.6) the map ¢ satisfies
#(0)=0, dg(0)=0

and so it is of interest to identify the second order approximation of the map ¢ about

Q€ H}\ . This can be achieved on a simply—connected Kahler surface.

In order to explain this, we pass the above discussion to a simply—connected Kahler
surface Y as was discussed in § 4. So assume the metric m, is Kdhlerand L—Y

denotes a holomorphic line bundle satisfying

L-L=-k, UO°L=0 ,

where ), is the Kahler form on Y associated to m . Note first in this situation the map

¢ takes a particular simple form:

iw, 0
(5.3) $:{veEH, ||v| <1l — . |0 :
0

0 —Hw

The reason for this is as follows. Working over complex manifolds one can associate to the
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connection A a twisted Cauchy—Riemann operator

8, : 0%0(ad P) — n"}(aa P)

and define whereby Dolbeault cohomology groups Hg'i , 1=0,1,2 in a natural way. As
5
Y is Kéhler, there are natural isomorphisms

1,.,40,1

(5.4) By ~BS: ! and
7\

2 00,2 gw0

(5.5) HyxEP0H]
A

relating cohomology groups of these two kinds (cf. [Kob] p. 248). Here in our discussion,

one interprets

iw 0
ngmo 0
0 —iwo

in (5.5). Now, as Y is simply—connected, the reduction [A] presents an isolated singula-

rity in Mk(mO) and consequently each connection in
{Ay+7 | 0<|v] <<1}

determines an wo-etable bundle over Y in a usual way. Since these bundles are holomor-

phic, one finds for |v| <<1
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F{%DA+¥)=0

and hence that

¢(v) = F+(A +V)ER - [i"’o 00] )

0 —Hw
the only part in Hi containing type (1,1) forms by (5.5).

Using the simple description of ¢ we can define a dual map

on {|v] << 1} having the property that

y iw 0 iw 0
#(v) = 757 '[O.JE[R'[O_].
0 —Hw 0 =i,

Clearly then ¢ 1(0)/S! provides an alternative model for a small neighbourhood of
[A] € Mi(mo) . Similar to the map ¢, one finds ¢ gatisfies ;5(0) = d;ﬁ(O) =0 and s0
we study the second order approximation of ¢ about 0 € Hk . Let

. i 0
(5.6) o(v) = —J Tr [0 ] , F+(A + v)] A v,

Y —i
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where vEH}\ with |v| <<1.

(5.7) Lemma. On small neighbourhoods {|v| << 1} of Q€ H‘}‘ , the function ;A# is
approximated by ;50 in the sense that

p p 3
(5.8) #(v) = ¢o(v) + 0(|¥]7) -
Proof. Assuming p = v—v one finds
F (A+¥)=F (A+v)+dfp+(vAp+pAv+pAp),

and hence that
i 0 .
—JYTI 0 —i] Fylh V)] "
i 0 i 0
=—JYT1:[ . —1} (A+v)] Awo J Tr[[o —i] pr] Aw +0(|v| )

as |p| < const|v| 2 by (5.2). Now (5.8) follows should one notice

_JYTI[[; _(:] at ]Awo JTr[dA[; _(:]Ap]Awozo

i 0

= 0 relative to the splitting L & L™ . This completes the proof.

since d
A[o i

Now we identify &O . For this purpose observe first relative to the splitting L @ L1
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the Dolbeault cohomology group ; LR naturally a direct sum of Hermitian vector
A
spaces

;RS (AR X3 LR AW
Oy 9y Op

By taking two sets of unitary basis, say,
{p,11<a <L} and {gl1 <A< AT},

for HQ’I(LZ) and Y1 (L_2) respectively, one finds
97 o5

h! (L% ! (172
Hg’lﬁ{ Y za[o ¢°]+ ) Wﬂ[o 0] |Za,wﬁec}.

Furthermore, via the isomorphism H}\ ~ Hg' 1 , we obtain in turn a (real) basis for H‘i :
7\
0 v 0 iy
a = [ _ °] , Ta, = [ o “] , a=1,.,h}L?) ;
9, 0 —p, 0

0 - 0
o I i P
¢ﬁ 0 igiﬁ 0

In these notations, it is not difficult to check every vector v € Hi can be uniquely as a

combination
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0 =28, o =Wy
et ol ™
—EZv(pa 0 vavﬁ 0

— a a B
= %(Re 2% _+ Im 2% 1a ) + %(Re wfbﬂ+ m Wiy

for some complex scalars Z:, We . Now we can describe the approximation ¢0 explicitely

as follows. Assume vol Y =1.
(5.9) Lemma. For a vector v € H‘i with |v| small, we have

1 (L2) hl ( L—2)

h
¢0(v)=2{2 282- ) |w€|2}.
a=1 B=1

Proof. We show ;0 satisfies the system of differential equations

";’0 e ‘9;’0 a 1,2
E =4R,ezv,-a-ra—a =4ImZv,a=1,...,h(L);
\'4 v
(5.10)
8¢ 8¢
o0 _ 0] 0| _ 8 . 1,02
F% _ARer,m =—4ImW_, B=1,.,h (L) .
v v

Then, as ;SO(O) = 0, it follows easily that

84(¥) =22{[Re z3]2+ [Im zg]z]_zg[[mwe]% [Imw€]2]

a
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2 2
=2 [2 ESEENNA ] ,
a B
as wished. To show (5.10) we check only

64,
[

(5.11) =4ReZ|

v

as the argument for other cases are similar. It is however just a routine matter of showing

this:

_ 1—r]- -
_2JY[ZV+ZV 1:,91A<,91Aw0
_ 1

—4ReZv.

(5.12) Remark. The reason behind this argument as mentioned in the introduction is that
the moment map (cf. [AB])
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4 — nHad P)

for the gauge group action on 6 when restricted to the finite dimensional model

iw 0
$:Hy —R- | 0
0 —in

for a reducible ASD connection A is in essence the one associated to the Sl—action
1,.2 1,1-2
(zl,...,zh (L ); wl,...,wh (L ))

. a1l 2 . . . 1,2
(emﬂzl’...’emﬂzh (L ); e_210w1,...,e_21awl,...,e_zlawh (L ))

1,02y 41,72
on Ch (L5)+h7(L ) . From this point of view, lemma (5.9) is not surprising at all since

the moment map in the latter situation has explicitely been known to be

A+l

— iR

1,.2 1,.,-2
ol mzhl(L2)- 1 whl(I‘—2 , {h (L) b (L)

Ly 2o S |Wﬁ|2].

))n——bz
a=1 B=1

This observation is due to Donaldson.

Now combining (5.8) and (5.9) we obtain the following description
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) n!(L?) ! (172
(5.13) ¢(v)=2{2 2812~ Y iw€|2]+0(|v|3)
a B

which will be useful in the next section to explain theorem 2. Using (5.13) one can also
deduce, in the case when both hl(L2) and hl(L_2) are strictly positive, the link of the
reduction [A] € Mi(mo) is a quotient

[S2h1(L2)—1 § Szhl(L_z)—l] /st

1,12 1,02
where S! acts diagonally on the spheres S2h (L)1 and 52h (L)1 . This point how-

ever i8 not required in the present discussion.
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§ 6. Two effects of changing metrics

We concern ourselves with two problems of similar outset here but for the moment

just focus on the first, the one that is directly related to the discussion of the last section.

We have derived an approximation ¢0 for the finite dimensional model

1 iwo 0
¢:HA—-rIR-[ 0]

0 —Hw

of the ASD equation around a reduction [A] € Mi(mo) on a simply—connected Kihler
surface Y . In order to understand theorem 2(b) we extend this model to a small path of
Kéhler metrics {m, |t € [-1,1]} on Y. With little additional effort we obtain as before

an equivariant map

iw 0
(6.1) &:Hy x [-1,]] —R- | *
0 —iwt

on {|v| <<1;vE H}‘} C H}‘ x [-1,1] which solves

~ iwt 0
$(vt) = F+’mt(A +v,)ER - 0 i
t

~ ~ *
for some v, = v (v,t) €kerd, in nl(ad P) . Now we put

(6.2) B(v,t) = —IyTr[[[i} _‘1’] ,@(v,t)] Aw,
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and assume vol Y =1 for all metrics m, . One finds then

12 iwt 0

0 —iwt

and s0 6"1(0)/31 models ltJ{Mi(wt)lt € [—1,1]] about the reduction class [A] . This

-

time we are interested in an approximation of ¢ in the hope of finding a model for
$_1(0)/ sl up to diffeomorphism. Such an approximation for & can be found if the path
{mt} of Kihler metrics passes through the wall <L> C H2(Y;IR) transversally in the
sense that & &/& #0 at (0,0).

(6.3) Lemma. If & 6/ & #0 at (0,0), then by a small isotopy *i_l(O)/S1 is diffeomor-

phic to the Sl—quotient of
n! (L2 bl (L72) .
2 2_t 09
DERCE L ARES B ¢
a=1 =1

defined on sufficiently small neighbourhoods {(v,t) € H}k x [-1,1] | |v]| + |t] << 1} of
. 1
(Q,O) 1 HA x [—1:1] .

The proof of this lemma, to be omitted here, is a standard argument for the isotopy
theorem in differential topology incorporate with lemma (5.9). Now we determine the sign
of 98 /dt at (0,0) as it is also required in our discussion. The method we use is in

parallel with [D3] proposition (2.12).
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(6.4) Lemma. Assuming L - w<0=L-wy<L-w forsmal t>0,wehave

-

22 0,0)<0 .

Proof. We check the (smooth) function ;I;(Q,t) of t is strictly decreasing at t = 0. Rela-

tive to the splitting L @ L1 preserving by the reduction A , one finds for small ¢
8(0,1) - (4)
¢(0,t =J—Tr , F A)lAw
y [lo-i) P t

=J ~Tr  F(A) [ A o
Y lo =i

([i 0] [—2#ic, (L) 0
=J’ -Tr , 1 Awt
Y (0 —i] 0 2m cl(L)
=—47L - W
>0 if t<0
=1=0 if t=0
<0 if t>0

This shows the lemma.

For simplicity we assume @ i/&t = —2 at (0,0) so that (i»_l(O)/S1 is modelled on

the Sl—quotient of

nl(L?) nl (172
(6.5) Yy 222- Y whl-
a=1 p=1
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Now we are in a position to explain how (6.5) derived from Yang—Mills theory can lead to

a better understanding of the descriptions

1.2
(6.6) M} (w,) = My (w) L[| P(ET(L\{0}) for t<0,
1,02
(6.7) My (w,) = Mp(wg) LI P(ET(LT)\{0} for t>0
stated in theorem 2(b). In the case when t < 0, one deduces readily from (6.5) that
Mi(wt) contains a copy of

n! (12
(6.8) {

1,2
2 1 b (L74) 1
2% ‘==, wi=..=w =0}/S 2P

a=1

which accounts for the projective space IP(HI(Lz)\{O}) in (6.6). Furthermore, as t < 0
increases to zero, this copy of projective space (6‘.8) degenerates into a single point 0 € Hi

corresponding to the reduction [A] in the Yang—Mills moduli space

Mk(mo) = Mi("’g) 11 {TA]} -

As t passes through zero and become positive, there emerges another copy of projective

space
ht (L%
1472
1_ _ b (L% _ . B2 _ 1,
6.9 2, =..=12 =0; WO "=t /S 2P
(6:9) {v v 21 | vl }/ h]‘(L—z)—l
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in Mi(wt) accounting for [P(Hl(L—z)\{O}) in (6.7). Apart from these, one can make use
of (6.5) to find small diffeomorphic deleted neighbourhoods for

PCE' L\ {0}) C M, (m,) * M¥(0,) i t<0,
[A] € Mk(mo) if t=0,and
PE'LA\{0}) C My (m,) = M(w)) if  t>0.

All these fit well in the description of (6.6), (6.7) and this concludes the analytical interpre-

tation of theorem 2(b) that we want to discuss as the first problem of this section.
Now we come to second problem, the proof of

(6.10) I5(C_,) = ¥(Cy) + (-1)ked

in lemma {2.2). Qur argument is analogous to [D3] and so we shall be brief at some

points. Working with manifolds X with b;(x) =1, we can assume in the proof of (6.10)

that the ASD equation about a reduction A reduces to a finite dimensional map

1 iwt 0
$:Hy x [-1,]] —R -
0 —iwt

as in (6.1) for a small path of generic metric {m, |t € [-1,1]} on X. This time {v,}
denotes a smooth path of L,—normalized self—dual harmonic forms on X relative to {m,}

which crosses the wall <e>1 C H2(X;IR) transversally. Define as before a dual map

&:Hj x [-1,]] — R
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for & by (6.2) so that & (0)/S! describes

4=V (M)t € 111}

about the reduction [A] . Using this model we can get rid of the singular point ([A],0)
in 4 by cutting off a small r—neighbourhood

N, = {|v| <r;ver}}stcaoyst

This process introduces a boundary component diffeomorphic to the complex projective

space

{veH,||v| =1}/s' 2P,

*
in By . We write P d with its usual complex orientation inherited from H}\ ~ €d+1

understood. Now the standard cobordism argument applies to compact transversal intersec-

tions

Ve

N..NVe N{A\N
1 5,0 (4 \N)

and enables us to determine (6.10) up to a sign:
(6.11) <dM(w )>—<dM(w)>¢<d[[P]>
: o) k\¥—1 =<4, k\“1 B, d .

Indeed, as the line bundle .5, —— P, identifies with 0[Pd(-—2~e) by lemma (2.28) of

[D2], one infers



— 58 —

(6.12) <4, [P 1> = -t
as d = 4k—3 must be odd. It follows then

k k d
(6.13) I‘X(C_) = PX(C+) e

in Symd(H2(X;H)) by (6.11). The complete determination for (6.13) therefore depends on
the orientation of P, that should be used in the calculation of (6.11).

For this purpose we choose an orthogonal basis

. d+1
0 h 0 ih
-h a 0 —ﬂi; 0 a=1

¢d+! compatible with the complex structure I = [0 _?] and write for a vec-

1,

for HA‘
1

tor VEHA

_ a,_a a, [«
—E[Reyv v +ImyV Iv]»
a

where yi,...,ye*'l are complex scalars. To determine the sign for e in (6.13) it suffices

to consider a particular case that
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d+1

f(vi)= ) lygl®-t.
a=1

In this situation Mk(wl) contains a copy of P; {vE€ H}\ |v| = 1}/S1 in 3;( as an
addition contribution in homology compared with M, (¢_;) . We are going to check for
this particular case the standard orientation of [P { » 88 & component of Mk( wl) , differs
from the usual complex orientation by the sign of (—1)k . Granted this, (6.11) reads parti-
cularly

<HMy(_)> = <uM(o)> - () <, [P 1>

= <pI M (w))> + ()58
by (6.12). Lemma (2.2) will then follow.

The standard orientation of the component P, C M, (w,) is built in the framework

developed in [D4] and can be derived from

(i)  the "comparison formular" (cf. [D4] proposition (3.25)) and
(ii)  the "cancellation rule" (cf. [D4] p. 422).

To see this, we recall first some basic conventions introduced in [D4]. Associated to each

A € £ there defines a differential operator

* + .l 0ma2
Dy =—dy ®dy N (adP) — (2" ®0)(ad P)

and one obtains whereby a bundle A — 2 induced from the assignment
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*
Av—— A" (ker & ,) ® A" (coker )
This bundle is trivial. Using the homology orientation
ax ol ax, 0 2
—1 A w; € ATH(H (X)) @ AM(H'(X) @ H (X))

we can fix a standard orientation of A — @ x which restricts and defines the standard

orientation of M, (w,) . Around the reduction A preserving the splitting
L leL~(cor?)er!
one can apply the comparison formular and infers that the standard orientation of
A~ Aair - Aag 2
over the reduction A is given by
(6.14) (1)) L) fusual orientation of HL } ® {~14 u;} .

Notice that (—L) + (-L) = k in this discussion. Now to deduce the standard orientation of

PqC M, (v) wemake use of the cancellation rule to (6.14) in the following manner.

First we assume for simplicity ?r't = v 8o that for each t € [—1,1] the zero set of

B(v,t) =F A+vt)— [2| |2—t] - [w‘ 0 ]

0 —i wy
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in H}A containg ASD connections relative to the metric m, . In particular, the copy of

Pq in My (w;) is exactly given by the Sl—quotient of
2d+1 1
S ={ve€H,|[v]|]=1} .
Also we assume cohomology groups H}X are identical for different metrics m, . (Remo-
ving this assumption amounts to introduce small error terms wherever necessary in the
discussion but one sees this point is negligible in the argument.) For a vector v € S2d+1 ,
it is easy to see that TVH}& o H}‘ is naturally oriented by

(6.15) v A Iv A {the usual orientation of T [v] Py } .

%
We shall check that for the operator & Aty = —d A4y ® dX 4y e have

i 0
(6.16) D g4V = [[(‘] _i] ,0] ,
(6.17) Dy () 0 d
6.1 ' V)= [0 s [ ]] an
Atv 0 —iwl
(6.18) Dppy=0 on <I>Tncv>t

inside Hg e Hi . Then the cancellation rule applies to this situation and gives

the standard orientation of T [v] Py
= (--1)d {the usual orientation of T [v] H}\ }®{-14 v} by (6.14)
= (—1)d {v A Iv A (the usual orientation of T[v] Py} ®{-1Aw} by(615)
= (—1)d {Iv A v A (the usual orientation of T [v] Pi}8{F,, (AT, (M}
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= (—1)d the usual orientation of T [v] Py

by eliminating Iv with &, +v(Iv) and v with 9, +v(v) . In this way we determine
the sign of 3 in (6.10).

To establish (6.16)—(6.18) one simply observes for any vector u € Hk we have

i 0] i 0
<[0 —i] ’dA+vu)L2 = {dy 4y [(1) -i] '“)Lz

==2(Iv,u
( )Lz
and that

(df . (u) [iwl ! ]) 1 T [F (Avita), [ °
u), : =lim | -Tr +v+tu), [ . ]]
A+v 0 —iw) L2 150 JX +,m, 0 —iw,

_ % | @0

(v,1)

= 2(v,u
( ) )L2
This finishes the proof of lemma (2.2).

As a final remark we wish to point out in the case when k = 1 this argument shows
the standard orientation of the projective space [P a2 P, in such situation is opposite to
the usual complex orientation, a fact that has been known in [D3]. Working with Yang—
Mills moduli spaces with k = 2 as in the definition of I‘?( for manifolds X homeomor-

phic to S2 x 82 , the projective space P 4% IP5 we come across by contrast has its usual
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complex orientation agreed with the assigned standard orientation. Such comparisons all
depend on the parity of the integer k , the second Chern class of the SU(2)—bundle

P — X in question.
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