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§0 Introduction

In this article, we survey some results, mainly those of [Y2], [FY2], on almost nonneg-
atively curved manifolds.

Our concern is the topology of manifolds with almost nonnegative curvature. First
recall what the topological characteristics of nonnegative curvature are. These are the first
Betti number and fundamental groups at present. In fact, we know the following results
on these topological invariant of nonnegatively Ricci-curved manifolds. Throughout the
paper, M is a closed n-dimensional Riemannian manifolds unless otherwise stated. We
denote by Riccips the Ricci curvature of M.

A classical result by Bochner is stated as

Theorem 0.1 ([BY]). Suppose Ricciyy > 0. Then the first Betti number b (M) =
rank Hy(M, Q) is less than or equal to n, where b,(M) = n if and only if M is isometric
to a flat torus.

In [CGI2], Cheeger and Gromoll generalized this result as follows.

Theorem 0.2 ([CGI2]). If Riccips > 0, then 71(M) contains a finite index free abelian
subgroup of rank < n.

There still exists a uniform bound on the first Betti number due to Gromov, which gen-
eralizes Bochner’s result, even if one allows M to have negative Ricci curvature somewhere:

Theorem 0.3 ([G5]). If the diameter and curvature of M satisfy Riccip diam(M)? >
—D?, then b)(M) <(n-1)+CP.

In particular, there exists a positive number €, such that if Riccipy diam(M)? > —ep,
then by (M) is still less than or equal to n.

At this stage, this is the only result known for topology of manifold whose Ricci curvature
is bounded below by a negative constant. Gromov proposed the following conjecture in

[G3].

Conjecture 0.4 (Gromov). There exists a positive number €, such that if Riccias diam(M)? >
—ep, and if b; (M) = n, then M has the topological type of a torus.

Unfortunately, this conjecture is still too difficult to attack it. Our object here is the
study of manifolds M with almost nonnegative sectional curvature in the sense:

Ky diam(M)? > —e

for a small positive number e. More precisely, if M satisfies the above inequality, we say
that M is of e-nonnegative curvature. We also say that a closed manifold M is of almost
nonnegative curvature if M admits a metric of e-nonnegative curvature for each e. For
instance, the product of $2 and a nilmanifold is of almost nonnegative, and a circle bundle
over an almost nonnegatively curved manifold is also of almost nonnegative. (See Theorem
2.8 for a more general example).

Another motivation to our work is the following almost flat manifold theorem due to
Gromov with a modification by Rubh.



Theorem 0.5 ([G1],[Ru]). There exists a positive number e, such that if
|K p| diam(M)? < e,
then M is diffeomorphic to an infranilmanifold.

Some of main results discussed in this article are stated as follows.
Theorem A ([Y2]). There exists a positive number €, such that

(a) if M is of €,-nonnegative curvaure, then a finite cover of M fibers over a b (M)-
dimensional torus.
(b) In the maximal case by(M) = n, M is diffeomorphic to a torus.

Next we describe the results on the fudamental groups of manifolds of almost nonneg-
ative curvaure, obtained by the joint works with Kenji Fukaya ([FY2,3]).

A group is called almost nilpotent (abelian, solvable) if it contains a nilpotent (abelian,
solvable) subgroup of finite index. Let A be a solvable group. The length of polycyclicity
L(A) of A is defined as the smallest integer s for which A admits a filtration :

A=AoDA1D"'DAa={1}»

such that each A;/A4+; is cyclic.

Theorem B ([FY2]). There exist positive numbers €, and ¢, such that if M is of €,-
nonnegative curvature, then m (M) is almost nilpotent and contains a solvable subgroup
A satisfying

(1) [ (M) : A] < cq,
(2) L(A) < n.

This extends Theorem 0.5 in the 7,-level, and settles a conjecture in [G2].

A finite index subgroup of m; (M) constructed in Theorem B can be generated by n
elements and has the degree of nilpotency < n. However we have no uniform bounds on
the index of the nilpotent subgroup in terms of dimension n, although this seems to be
possible. The theorem says that we have such a uniform bound for a solvable subgroup. We
remark that Theorem B is still new even for nonnegatively curved manifolds (See Remark
1.3).

A)A significance of the study of almost nonnegatively curved manifold is in the simple fact
that a manifold collapses to a point while keeping a lower curvature bound, say Ky > —1,
if and only if it is of almost nonnegative. As we see later, in the general situation that
a manifold collapses to a lower dimensional space under a lower curvature bound, an
“almost nonnegatively curved space” appears as fibre of some fibration (See Theorem 4.1).
Theorems A and B actually hold for such a fibre.

The proof of Theorem B makes it possible to genaralize it to a class of manifolds with
a lower curvature bound.



Theorem C ([FY3]). Given n and D > 0, there exist only finitely many discrete groups
I'1,...,T&, which are finitely represented, such that if an n-dimensional manifold M sat-
isfies Ky diam(M)? > —D?, then there exists an exact sequence

1—A—m(M) — T —1,

for some 1 € 1+ < k, where A is an almost nilpotent group satisfying the conclusion of
Theorem B.

In the case D = ¢,, I'; should be trivial by Theorem B. Theorem C says the set
of all isomorphism classes of fundamental groups of manifolds with fixed lower sectional
curvature and upper diameter bounds is finite modulo almost nilpotent subgroups. In a
noncollapsing case, M. Anderson [Al] proved the finiteness of the set of all isomorphism
classes of fundamental groups of manifolds with fiexd lower bounds on Ricci curvature and
volume and an upper diameter bound (Theorem 12.1).

QOur discussion using Hausdorff convergence provides some new results even for non-
negatively curved manifolds (See Section 8), and one will recognize almost nonnegatively
curved manifolds as natural objects of study.

The organization of this article is as follows.

In Section 1, we recall two basic methods in the study of nonnegative Ricci curvature,
the Bochner technique and the Cheeger and Gromoll splitting theorem. Outlines of the
proofs of Theorems 0.1, 0.2 are given there.

Our basic argument is the Hausdorff convergence introduced by Gromov in [G5]. We
recall the fundamental properties of this notion in Section 2. We give some examples
of Hausdorff convergence and provide some basic facts in the pointed equivariant Haus-
dorff convergence, which we need later in the study of the first Homology classes and the
fundamental groups of almost nonnegatively curved manifolds.

In Section 3, we discuss Alexandrov spaces, which occur as the Hausdorff limit of man-
ifolds with a lower sectional curvature bound. We give a proof of the splitting theorem
for Alexandrov spaces with nonnegative curvature, which is one of our basic tools. As an
application, we provide the Lie group property of the isometry group of an Alexandrov
space, proved in [FY3].

In Section 4, we discuss the fibration theorem, which is our another basic tool. We give
a proof of this theorem along the line of [Y3], and discuss the properties of fibre of the
fibration.

The proof of Theorem A is given in Section 5. The fibre bundle version of Theorem
A was proved in [Y2]. Here we mainly prove the case when M is almost nonnegatively
curved. '

In Section 6, we discuss almost nonnegative Ricci curvature under the stronger assump-
tion |K| € 1. Under the additional assumption, one can apply the Bochner technique.

For the proof of Theorem B, we generalize the Bieberbach theorem in Section 7, and
the solvability part of Theorem B is proved in Section 8.

In the proof of the nilpotency part of Theorem B, we need the notion of covering space
along fibre introduced in {FY1]. After considering the three-dimensional case in Section 9
as an introduction, we give an outline of the proof of the nilpotency part in Section 10.
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Theorem B is extended in Section 11 to a generalized Margulis’ lemma, from which
Theorem C follows.

In Section 12, we consider the special case when manifolds have a lower volume bound.
In this case the structure of manifolds is similar to that of nonnegatively curved manifolds.

In the final Section 13, we provide some conjectures and related arguments.

§1 Basic Methods in Nonnegative Curvature

Before proceeding to the study of almost nonnegative curvature, we recall basic methods
on the study of nonnegative curvature, and give outlines of the proofs of Theorems 0.1 and
0.2.

There are two basic methods in the study of topological structure of closed manifolds
with nonnegative Ricci curvature. One is the Bochner method which is analytic, and the
other is the Cheeger and Gromoll method which is more geometric.

First we recall the Bochner method. Let wy,...,w;, be harmonic 1-forms on a closed
Riemannian manifold M forming a basis of the first de Rham cohomology. Then the
Albanese map A : M — T is defined by

A(z) = ([:wl,...,/:wb,),

RY

{(f_,wla---,f.,wbl) | v € 'rrl(M)}'_

The method is based on the following Weitzenbock formula.

where p € M is fixed and

™ =

Theorem 1.1. For every 1-form on M we have

(Aw,w) = %A|w|2 + | Dw]? + Ricci(jw, fw).

The proof of Theorem 0.1 1s as follows: If the Ricci cuvature of M is nonnegative and
if w is harmonic, the above formula implies

/ |Dw|? dz < 0.
M

Hence |Dw| = 0 and w must be parallel. Thus we have b = 5(M;Q) < n and the
Albanese map A : M — T% is a Riemannian submersion. In the maximal case b, = n
therefore, M is isometric to a flat torus.

Next we recall the Cheeger Gromoll method, which is based on the following splitting
theorem.



Theorem 1.2 ([T],[CGI2]). Let N be a complete manifold with nonnegative Ricci cur-
vature, and suppose that it contains a line. Then N is isometric to a product Np x R.

Now let M be a closed manifold of nonnegative Ricci curvature. By Theorem 1.2 M
is isometric to a product My x R¥, where we may assume that M, is compact. Since T,
the fundamental group of M, preserves the splitting, we have a homomorphism ¢ : I' —
Isom(R*), and hence an exact sequence

1—K-—T —pT)—1,

where K is the kernel of ¢. Note that K is finite. By the Bieberbach theorem (cf.[Wol]),
©(I") contains a finite index abelian subgroup. Thus I' must be almost abelian. (See
Lemma 7.2). This complets the proof of Thorem 0.2.

Remark 1.3. Theorem 0.2 grasps only the nontorsion part of the fundamental group. Hence
as a lense space S°/Z, shows, there is no bound on the index of the free abelian subgroup.
However by taking a solvable subgroup A in place of an abelian subgroup, we can have a
uniform bound on the index of A (Theorem B). This will be shown in Section 8 for almost
nonnegatively curved manifolds (See Theorem 8.1).

§2 Hausdorff Convergence

In our argument, we shall use the notion of Hausdorff distance introduced by Gromov

([G5]) as a basic method. In this section, we present some basic properties related with
the Hausdorff distance. We begin with

Definition 2.1. A (not necessarily continuous) map f : X — Y between metric spaces is
called an €-Hausdorff approzimation if

(1) |d(f(=), f(y)) — d(z,y)| < efor all z,y € X.
(2) The e-neighbohood of f(X) covers Y.

Then the Hausdorff distance dy(X,Y’) is defined as the infimum of € such that there exist
e-Hausdorff approximations from X to Y and from Y to X.

The Hausdorff distance actually defines a distance on the set of all compact metric
spaces. For unbounded spaces, this metric is not useful, but the notion of pointed Hausdorff
distandce is effective. For pointed metric spaces (X, p) and (Y, ¢), the pointed Hausdorff
distance dp g ((X, p),(Y, q)) is defined as the infimum of € such that there exist e-Hausdorff
approximations f : By(1/¢,X) — B,(1/e+ ¢€Y) and g : By(1/¢,Y) — Bp(l/e + ¢, X)
between metric balls with f(p) = ¢ and ¢(q) = p.

Definition 2.2. The dilatation of a Lipschitz map f: X — Y is defined as

N CONO))

dll(f) - sH#yeEX d(Ia y)
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We say that f is an e-isometry if it is a bilipschitz homeomorphism and if |log(dil f)| +
[log(dil f~!)| < €. Then the Lipschitz distance d(X,Y) between X and Y is defined as
the infimum of € such that there exists an e-isometry between X and Y. By definition,
d1(X,Y) = oo if there are no bilipschitz homeomorphisms between X and Y.

The pointed Lipschitz distance d, ((X,p),(Y,q)) is defined as the infimum of € such
that there exist e-isometries f : Bp(1/¢,X) — Y and g : B4(1/¢,Y) — X onto their images
such that f(p) = ¢, g(¢) = p.

Here are some simple examples.

Example 2.3. (1) When € — 0, the product S'(¢) x X converges to X with respect to
the Hausdorff distance.
(2) Let L C R? be the tree defined by

L = {(z,y)|z or y is an integer},

and d is the induced length metric on L. Then (L, ed) converges to the norm space (R?, || ||)
with respect to the Hausdorff distance as ¢ — 0, where ||(z,y)|| = |z| + |y

(3) For an arbitrary Riemannian manifold (M, ¢) of dimension n and for any p € M,
the scaled metrics ((M, g/€),p) converge to the flat Euclidean space (R",0) as ¢ — 0 with
respect to the pointed Lipschitz distance.

Why is the Hausdorff distance useful ? This is because of the Gromov precompactness
theorem.

Theorem 2.4([G5]). Let k be an arbitrary real number and D > 0. Then

(1) The set of all closed n-dimensional Riemannian manifolds M with Ricciy > k and
diam s < D is relatively compact with respect to the Hausdorff distance.

(2) The set of all pointed complete n-dimensional Riemannian manifolds (M, p) with
Riccips > k is relatively compact with respect to the pointed Hausdorff distance.

Thus for any sequence M; with the geometric bounds in Theorem 2.4 (1) for instance,
a subsequence M; converges to a compact metric space X. It is not difficult to see that
the lmit X is a length space. However, in genaral, it is not even a topological manifold.

Let M be as in Theorem 2.4 (1). Then by the Bishop and Gromov volume comparison
theorem ([G5]), we have a uniform upper bound C(n, k, D)e~" for the number of disjoint
e-balls in M. This is the key in the proof of Theorem 2.4. This argument immediately
implies that

(2.5) The Hausdorff dimension, dimy X, of the limit X is less than or equal to n.

Let B be a set of geometric bounds on some Riemannian invariants. We say that a
sequence of Riemannian n-manifolds M; collapses to X under B if

(1) M; satisfies B.

(2) lim.'_‘oo dH(M.',X) = 0.
(3) dimpg X <n.



A smooth manifold M is called to collapse under B if it admits a sequence of complete
Riemannian metrics g; such that (M, g;) collapses to a space under B.
Here are some basic questions.

Question 2.6. (1) What can one say about the singularities of X ?
(2) What can one say about topological relations between M; and X ?
(3) Which manifolds collapse under prescribed geometric bounds B ?

In the case when B = {|K| < 1, diam < D}, Fukaya ['2,3] studied questions (1) and (2).
In this case the limit X has a nice stratification in the C1"®-metric category. Under the
bound B = {|K| < 1}, Cheeger and Gromov [CGv1,2| and Cheeger, Fukaya and Gromov
[CFG] studied the question (3). If one assumes only a lower curvature bound K > —1, we
know that X is an Alexandrov space, which will be discussed in the next section.

Next we exhibit an example of collapsing under a lower curvature bound. Let G be
a compact connected Lie group. Clearly G with bi-invariant metrics collapses to a point
under the lower curvature bound 0. This can be generalized in the following form.

Theorem 2.7 ([Y2]). Let G act on a compact manifold M, and g an G-invariant metric

on M. Then M collapses to the quotient space (M, g)/G under a lower sectional curvature
bound.

For a genaralization of Theorem 2.7, see [PWZ].

To give a specific example related with the theorem above, let consider the circle action
on the sphere $2"*? defined as follows: We fix a great hyper sphere $27+! C §2"+2, Then
let the circle act on each hypersphere parallel to $2"*! as Hopf fibration. This defines a
smooth circle action on §2"+2, By Theorem 2.7, one can find a sequence of metrics on
S2n+1 converging to the quotient $2"*! /S, the suspension over the complex projective
space CP"™, which is not a topological manifold.(cf.[GP2]).

When a sequence M; of Riemannian manifolds converges to one of lower dimenson under
a lower sectional curvature bound, we can describe the topological relation between M;
and the limit (See Theorem 4.1).

In a way similar to Theorem 2.7, we have the following family of almost nonnegatively
curved manifolds.

Theorem 2.8 ({FY2]). Let F — M — N be a fibre bundle with structure group G, a
compact Lie group, such that

(1) N is of almost nonnegative curvature,
(2) F has G-invariant metric of nonnegative curvature.

Then M is of almost nonnegative curvatue.

Since we need to understand the convergence of isometric group actions in later sections,

we now present the definition and some properties of the pointed equivariant Hausdorff
distance, which was introduced by Fukaya [F1].



Definition 2.9. We say that a tripple (X, T',p) belongs to M., if every metric ball in
X is relatively compact, p € X and if T is a closed subgroup of Isom(X), the group of
isometries of X. For R > 0, we put

I'(R) = {y €T|d(yp,p) < R}.

For (X,T,p),(Y,A,q) € M., we say that a tripple (f,p, 1) represent an e-pointed equi-
variant Hausdorff approzimation from (X, T, p) to (Y, A, g) if

(1) f:Bp(1/e,X) = By(l/e+¢€,Y) is an e-Hausdorff approximation with f(p) = q.
(2) ¢ :T(1/e) = A and ¥ : A(1/€) — T satisfy the follwing:

(21) Iy €T(1/e) and z,7z € By(1/¢, X), then d(f(7z), 9(7)(f2)) <.

(22) If p € A(1/€) and z,%(p)(z) € Bp(1/€, X), then d(f(¥(u)(2)), u(fz)) <e.

Now the pointed equivariant Hausdorff distance dp .. g((X, T, p), (Y, A, ¢)) is defiened as the
infimum of € such that there exist e-pointed equivariant Hausdorff approximations from
(X,T,p) to (Y, A, ¢) and from (Y, A, q) to (X, T, p).

When the pointed equivariant Hausdorff distance between (X, T, p) and (Y, A, ¢) is small,
the definition says that the I'-acton on X is close to A-action on Y through the Hausdorff
approximation f. This implies

Proposition 2.10 ([F1]). If a sequence (X;, i, pi) converges to (Y, A, q) with respect to
the pointed equivariant Hausdorff distance, then the quotient space (X;/T;,p;) converges
to (Y/A, q) with respect to the pointed Hausdorff distance.

Example 2.11. Let ; be the isometry of R? defined by vi(z,y,2) = (R(1/i)(z,y),z +
1/:2?), where R(8) denotes the rotation on the (z,y)-plane around the origin with angle 6,
and let I'; be the group generated by v;. Then (R3,T;,0) converges to (R?, 5! x R,0).
Note that the limit depends on the choice of reference points. For instance, if we take p;
with d(0,p;) = ¢ as the reference points, then (R3,T;, p;) converges to (R}, R x Z,0).

When spaces converge, one can always construct the limit of groups as follows:

Theorem 2.12([Y2],[FYZ2]). Let (X;,Ti,pi) € M., and assume that (X;, p;) converges
to (Y, q) with respect to the pointed Hausdorff distance. Then there exists a closed sub-
group A of Isom(Y) such that for a subsequence (X;,Ti,p;) converges to (Y,A,q) with
respect to the pointed equivariant Hausdorff distance.

Notice that A may be a continuous group even if I'; are discrete.

Proof. For simplicity, we give the proof in the case when Y is compact. In this case, the
pointed Hausdorff convergence (X;, pi) — (Y, ¢) coincides with the Hausdorff convergence
X; —= Y. For each positive integer j, we take a finite set £; C Y satisfying

(1) i C L4y

(2) the union UX; is dense in Y.

Let f; : X; =Y and g; : Y — X; be ¢;-Hausdorff approximations such that d(g; fiz,z) <
2¢; for all z € X;, where ¢; = dy(X;,Y) — 0. We consider the set A;(j) consisting of all
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elements of the form, 4 = f; o 7 o g; restricted to £;, where v runs over T';. Since I; is
finite, for sufficiently large i relative to 7, A;(j) is a subset of the compact metric space

: -1 4z, py)
= - . 1 g 20 7I) .
L) ={¢:Z;-Y|27 < i(.7) <2 forall z,y € I;},

equipped with L*-norm. Thus for each fixed j, passing to a subsequence, we may assume
that (the closure of) A;(j) converges to a compact set A(7) C L(j) with respect to the
(classical) Hausdorff distance in £(7). Remark that each element of A(j) is an isometric
imbedding of X; into Y. By diagonal argument, we have a sequence A(1), A(2), ... such
that for § < k, A(j) is contained in the restriction A(k)|s;. Now one can define the direct
limit A = lim;_, A(j). Since each element in A, an isometric imbedding of UL; into Y,
extends to an isometry of Y, we can consider A as a closed set of Isom(Y"). Furthermore by
the choice of f; and g;, it is easy to see that A is a group. The convergence (X;,[;) — (Y, A)
follows from construction. O

For the proof of Theorem B, we shall first prove that the fundamental group of an
almost nonnegatively curved manifold is almost solvable. Recall that a solvable group is
made by several extensions of abelian groups. The following result plays an essential role
in finding such extensions (See Section 8).

Theorem 2.13([FY2,3]). Let (X;,I;,p;) converge to (Y, G, q) and G' a normal subgroup
of G, and suppose that

(1) G/G' is discrete.

(2) Y/G is compact.

(3) X; is simply connected and the action of T'; is free and properly discontinuous.
(4) There exists a positive number Ry such that G' is generated by G'(Ryp).

Then G/G' is finitely represented and there exists a normal subgroup I'; of I'; such that

(5) (Xi,T% pi) converges to (Y,G',q) for a subsequence.
(6) T/ is isomorphic to G/G' for sufficiently large 1.
(7) For every € >0, I'; can be generated by I';( Ry + €) for sufficiently large i.

In the case when G’ is the identity component of G, the group I'; constructed above is
called the collapsing part of T;. For instance, in the convergence (R3,T;,p;) — (R R x
Z,0) in Example 2.11, the group I': generated by «} is the collapsing part. However as the
following example shows, this is not always possible if one does not suppose an assumption
in Theorem 2.13.

Example 2.14. We consider the product R x (S2,1 go), where g¢ is the standard metric
on §%. Let S* C SO(4) be a subgroup freely acting on S3. Define an isometry v; of X by
vi(z,y) = (z +i72,6;2 y), where 8, = e2™V=1/t € §1, Let T; be the group generated by
;. Then one can check that (X;, T;, p;) converges to (R*,Z x R, 0). However there is no
sugbroups of I'; converging to 0 x R.

The proof of Theorem 2.13 is too long to present here. We just describe only the
construction of I'..
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Let R be a large number relative to max{D, Ry}, where D is the diameter of Y/G. Let
(fi, i, ¢i) represent an €;-pointed equivariant Hausdorff approximation from (X;,T';, pi)
to (Y, G, q), where lim; .o, €; = 0. Thus p; : T';(1/e;) = G(1/¢€;). Put

Ty(R) = {y e Ti(R)|vi(7) € G'}.
Then the required I} is defined to be the group generated by I'i(R).

§3 Alexandrov Spaces and Splitting Theorem

As indicated in the preceeding section, the Hausdorff limit of a sequence of Riemannian
minifolds with a lower sectional curvature bound is an Alexandrov space. The properties
of the limit space is likely to approximate those of manifolds in the sequence. Recently
Burago,” Gromov and Perelman [BGP] made an important progress in the geometry of
Alexandrov spaces.

Let X be alocally compact length space. Then locally there exists a minimizing segment
joining every two points nearby, which is called a minimal geodesic, or simply a geodeesic.
A geodesic joining z and y in X is denoted by zy. For three point z,y, 2 € X, we denote by
A(z,y, z) a geodesic triangle consisting of three geodesic joining them. For a real number
k, we use the notation /:\(z,y,z) to denote a geodesic triangle A(%, 7, ) in M?(k), the
simply connected complete surface of constant curvature k, with the same side lengths as
A(z,y, z) if it exists. We also denote by Z:cyz the angle between §Z and 2.

Definition 3.1. Under the notation above, X is called an Alezandrov space with curvature
> k if it satisfies the following condition:
(1) For any point p € X, there exists an open set U containing p such that for every
z,y,z € U and for w on a geodesic yz, we have d(z,z) > d(Z,w), where ¥ is the point on
the side ¢z corresponding to w.

Or equivalently,
(2) For every geodesic v and ¢ from p let z, and y; be the points on 4 and o respectively
such that d(p,z,) = s, d(p,y:) = t. Then Zz,py; is monotone non-increasing in s and t.

From definition, the angle between the two geodesics v and o is defined as the limit:

L(y,0)= i Vi .
(7,0) (nt)=(o,0) P!

It is an important property of such spaces that geodesics do not branch, which immediately
follows from the definition. Notice however that a geodesic may not be extended anymore
at some point.

From now on we consider only Alexandrov spaces with curvature bounded from below
and with finite Hausdorff dimension, which will be simply called Alexandrov spaces.
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Example 3.2. (1) A Riemannian manifold with sectional curvature > k is an Alexan-
drov space with the same lower curvature bound. More generally, let M; be a sequence of
complete Riemannian manifolds with Ky, > k;, lim k; = k and suppose that (M;, p;) con-
verges to (X, zg) with respect to the pointed Hausdorff distance. Then X is an Alexandrov
space with curvature > k.

(2) Let (X,do) be a length space with diameter < 7, and consider the Euclidean cone
K(X)=X x[0,00)/X x 0 over X with the distance:

d((z,3),(y,t)) = (s* +t2 — 2stcos do(z,y))"/?, z,ye X.

Then K(X) is an Alexandrov space with curvature > 0 if and only if (X, dy) is an Alexan-
drov space with curvature > 1.

(3) Let (X,do) be a length space with diameter < 7. Then the spherical suspension
S(X)=X x [0,7]/X x {0,7} with the distance:

cos d((z,s),(y,t)) = cos scos t + sin ssin t cos do(r,y),

is an Alexandrov space with curvature > 1 if and only if (X, dp) is an Alexandrov space
with curvature > 1.

A detailed argument for (2),(3) of the example above is given in [BGP].
A comparison theorem of Toponogov type is still valid in Alexandrov spaces.

Theorem 3.3 ([BGP]). If X is a complete Alexandrov space, the triangle comparison
(1) and angle comparison (2) in Definition 3.1 hold true for arbitrary triangles A(z,y, z)
and for arbitrary minimal geodesics v and o in X with v(0) = a(0).

Before proceeding to the splitting theorem, we observe the following elementary

Splitting Principle 3.4. Let X be a complete Alexandrov space with curvature > —«?,
and v : [—o,0] = X a minimal geodesic joining p and q. Let u >» § > 0 be given. Then
for any € B,(6)\(Bp(ps) U By(ps)), we have

Lpzq 2 Lpzq > — 7e,u(6),
where B.(8) is the 6-neighborhood of 7, and
Te,u(6) = const(coth xu sinh k6)'/2.

In particular when ku is sufficiently small (e.g. k = 0), 7« ,(6) = const(8/u)"/2.

Proof. We give a proof for k = 0. The genaral case is similar. By the law of cosine, we
have

d(?: Q)Z = d(p, z)Z + d(Qa $)2 - 2d(pa w)d(Qa IB) cos meq'
By the assumption z € B,(6), we have

d(p,q) > d(p,z) + d(g,7) — 26.
The conclusion follows immediately from d(p,z) > u, d(g,z) > p. O
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Corollary 3.5. In addition to the assumpsion of 3.4, suppose that X is a Riemannian
manifold. Then there exists a open set Vs containinig B (8)\(Bp{p) U By(t)) such that

(1) Vs is diffeomorphic to a product Wy x [0,1].
(2) Vs is contained in a 7(6)-neighborhood of By(8)\(B,(u) U By(p)),

where 7(8) = 7y 4,0(6) with lims_.oo 7(6) = 0.
Proof. Consider the distance function f(z) = d(z,v) to 7, which is differentiable almost

everywhere. For any z € B,(6)\(Bp(s) U B,y(1)), let y be a point on v closest to z. It
follows from 3.4 that

(3.6) |[Zpzy — 7 [2| < 7(8), |Lqzy—m/[2| < 7(6).
Let us consider a C'!-approximation Jp of the distance function d,(z) = d(p, z):

1

dp(z) = Vo By Ja o d(z,y) dy.

By (3.6), the gradients of f and J are almost parpendicular, and the integral curve of
d, is contained in 7(6)-neighborhood of B +(O\(Bp(p) U Bq(p)) Let W; be the set of
all intersections of such integral curves of d, with the level d 1(4). Then the required

diffeomorphism Wy x [0,1] — V; can be defined by using the 1ntegra.l curves of dp. O

Remark 3.7. By a recent work by Perelman [Prl], one can obtain a topological version of
Corollary 3.5 for an Alexandrov space.

In the special case when k = 0 and ¢ = 00, we have the following result, a genaralization
of Theorem 1.2, which will play an essential role in our argument.

Splitting Theorem 3.8 ([GP3],[Y2]). Let X be a complete Alexandrov space with
curvature > 0. If X contains a line, then it is isometric to a product Xy x R.

Proof. Let £ be a line in X. We say that another line £' is biasymptotic to € if and only if
sup d(£(t),£') < oo and supd(£'(t),£) < oo. Applying Splitting Principle 3.4 to p = £(c0)
and ¢ = {(—o0), we have

(3.9) At each point z € X, there is a unique line £, biasymmptotic to £ with £,(0) = .
Let f = fi be the Busemann function associated with the ray £][0, oo):

flz) = lirglas —d(z,£(s)).
The line £, is characterized by the equation:

(3.10) flez(t)) =t + f(z).
Next we show that

13



(3.11) The level sets of f are totally geodesic.

We prove that Ly = f~1(0) is totally geodesic. Let r be a point on a minimal geodesic
joining two points p,q € Ly. Put z, = €(s), y, = €(—s) for large s > 0. By the definition
of f,

(3.12) |d(z4,p) — 8| < 0,y |d(zs,q) — 8| < 04,

where lim,—.oc 0, = 0. By Theorem 3.3, d(r,z,) > d(#,%,), where ¥ is the point on
$§ C A(p, q,z,) corresponding to r. It is easily verified from (3.12) that |d(Z,,7) — s| < o0,,
and hence d(r,z,) > s — 0,. Similarly, we have d(r,y,) > s — 0,. On the other hand,
d(r,z,)+d(r,y,) —2s = o, since £ is a line. It follows that |d(r,z,)— s| < o,, which implies
r € Lyg. Thus L, is totally geodesic.

Now we consider the following situation: Let two lines £; and £; biasymptotic to £
intersect two level sets Ly and L of f at z; and y;, (i = 1,2) where z; = {,NL;,y; = £2NL;.
Put a = d(L,, Ls), b; = d(z;,y;) ¢ = d(z1,y2). To complete the proof of Theorem 3.4, it
suffices to prove

(313) b =b and c?=ada?+02

Let us assume f(L;) < f(L;) and prove b; = b;. Let z, be the intersection of segment
y1£1(s) with Ly for large s > 0. Then Theorem 3.3 applied to A(z1,y1,£1(s) implies that
by = lim,— o0 d(25,y2) > b;. Similarly, b; > by. To prove the second half, let Z; be the point
on the comparison triangle A(zl,yl,fl(s)) corresponding to z3, and put d, = d(Z,%1)-
Since lim,—.o0 ds = (a® 4 b?)!/2, Theorem 3.3 implies that d(z2,y1) > (a® + b?)'/2. The
opposite inequality d{zz,1,) < (a? 4 b?)1/? is immediate. O

A system of pairs of points (p;, ¢:)/=, is called an (m, §)-streiner at p in an Alexandrov

space X if it satisfies
(1) Zpipgi > — 8,

Zp,-pp,- >n/2-6
(2) Zqipg; > 7[2 -6

Zpipg; > /26, (i#))
Remark that when § is small, the condition (1) above shows that the segments p;p and
p¢i form an almost minimizing broken geodesic, and the condition (2) shows that those
m broken geodesics are independent in a certain sense. We note that the existence of
some independent lines imposes a strong restriction on the space in nonnegative curvature

(Theorem 3.8). This is also the case if there exists an (m, §)-strainer for a small §. In fact
the following result can be proved by essentially using Spritting Principle 3.4.

Theorem 3.14 ([BGP]). Let X be an Alexandrov space. Then

(1) The Hausdorff dimension of X is an integer, say n.
(2) There exists a positive number § = §,, such that the set X; of all (n,§) strained points
in X is open and dense in X.
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(3) Each point in X5 has a small neighborhood which is 7(§)-isometric to an open neigh-
borhood in R™, with 7(8) = 1p(6), lims—o 7(6) = 0.

In the recent Russian version [BGP], they proved that the complement of X5 has at
least Hausdorff codimension 2. See also [OS] about this topic and C*-differentiability (in
a weak sense) of X,.

The following result is closely related with Theorem 3.14.

Theorem 3.15 ([FY2,3]). Let X be an Alexandrov space with curvature bounded below.
Then for any py € X and for any r; — oo, there exists a sequence p; converging to py such
that for a subsequence ((X,r;d),p;) converges to (R",0), where n is the dimension of X.

Proof. We may assume that ((X,r;d),po) converges to (Yo,y0). Since ¥y has curvature
> 0, by Spritting Theorem 3.8 Y; is isometric to a product R¥ x L, where L does not
contain a line. Let o; denote the pointed Hausdorff distance between ((X,r;d),pp) and
(Ya,yo). Take ¢; — 0 such that

&r; < 1/o; €1 — 00.

Put yo = (0,20) € 0 X L, and let y; € 0 X L and ¢; € (X,r;d) be such that d(0,y;) = €;r;
and g¢; is Hausdorff close to y;. Let p; be the midpoint of a geodesic joining pp and g¢;, and
z; a point in R¥ x L Hausdorff close to p;. Note that

(1) dX(PO;Pi) - OJ
(2) ridx(po,pi) — oo,
(3) dH(BPi(e,-r,', (X, r;d)),B,..(e;r.‘,R" X L)) — 0.

We change the reference point to p;. For a subsequence we may assume that ((z,r;d), pi)
converges to (Y7,y;). Under this convergence, the geodesic pog; converges to a line £.
There exist also k-independent lines in ¥; perpendicular to £ comming from the R*-factor
of Yp. Thus by the spritting theorem again, Y; is isometric to a product R¥+! x L;. If L,
is a point, then p; are required ones. Otherwise, after repeating a similar argument finitely
many times, one can get required points p;. 0O

Finally we discuss the isometry group of an Alexandrov space.
Theorem 3.16([FY3]). Let X be an Alexandrov space. Then Isom(X), the group of

isometries of X is a Lie group.

Example 3.17. Let X be a union of infinitely many circles S; with length 1/: such that
there is the only point p at which any two of S; have intersection. Then Isom(X) = I1Z,,
which is totally disconnected but not discrete. Hence it is not a Lie group. Notice that X
has curvature —oco at p.

In the proof of Theorem 3.16, we essentially use the following result:
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Theorem 3.18([Gl],[Yb]). Let G be a topological group, and suppose that there exists
a neighborhood U C G of the identity such that there exist no non-trivial subgroups
contained in U. Then G is a Lie group.

Proof of Theorem 3.16. To avoid a technical complexity, we just give the proof for the
special case when X is a Riemannian manifold. (Of course, this case is known as Myers-
Steenrod’s Theorem ([MS]). Then the essential point in the proof in the general case will
become clear.

Suppose X is a Riemannian manifold and that Isom(X) is not a Lie group. For B =
By(1,X), by Theorem 3.18, we can take a sequence G; of closed subgroup of G such that
if we put

6 = sup{5g(:c,X) |g €Gi,z€ B})
then limj_ 6; = 0, where 6,(z,X) = d(gz,z). Take p; € B; and ¢; € G; such that
8; = é4,(pi). Since X is a Riemannian manifold,
(3.19) ((X,(1/6i)d), pi) coverges to (R",0) with respect to the pointed Hausdorff dis-
tance, where n is the dimension of X.
By Theorem 2.12, we may assume that ((X,(1/6;)d), G;,p;) converges to (R",G,0) with
respect to the pointed equivariant Hausdorff distance. Remark that G is nontrivial and
compact. It is now easy to choose h € G and yo € R" such that
(1) afl(yO:ar) 2 2,
(2) if y; is a point in (X, (1/6;)d) converging to yo, then y; is contained in B;.
Let h; be an element of G; converging to h under the convergence ((X, (1/6;)d), G;,p;) —
(R",G,0). Then é4,(yi, X) > 6:(2 — 0;) > §; for a sufficiently large ¢, where limo; = 0.
This is a contradiction. [l

For an Alexandrov space X, (3.19) does not hold. Hence we need to use Theorem 3.12 to
take points ¢; near p; such that ((X,(1/6;)d), G;, ¢;) converges to (R",G,0). Remark that
in this case, the limit group G might be trivial. If G is nontrivial, the proof above would
cause a contradiction. If G is trivial, then one can think of G; like a “small subgroup”
of Isom(X,(1/6;)d) and repeat the above argument. Because of the Hausdorff closeness
between (X, (1/6;)d),q;) and (R",0), if one change the reference point within some ball
of fixed size around ¢;, and if one rescale the metric of (X, (1/6;)d), it would converge to
(R™,0). Thus a modification of the above proof would work to conclude the proof in the
general case.

§4 Fibration Theorem

We call a C'-map f: M — N to be an e-Riemannian submersion if
Ol
14

for all tangent vectors £ orthogonal to the fibers.
In this section, we give the proof of the following theorem.

<€,

16



Theorem 4.1([Y2,3]). Givenn,u > 0, there exists a positive number € = e,(us) satisfying
the following: Let M and N be complete manifolds with

(1) Km2-1,Kny2-1,
(2) dimN =n, inj(N)2>p.

If the Hausdorff distance between M and N is less than e, then there exists a locally trivial
fibre bundle f : M — N such that

(3) f is a 7(€)-Riemannian submersion,
(4) f is a 7(e)-Hausdorff approximation.

where 7(€) = Tn u(€) with lim_o 7(e) = 0.

For simplicity, we assume |K | < 1 in the proof below. The general case is proved in

[Y3] (See also Remark 4.21).
Let o be a positive number such that € € ¢ €« min{l,u}. Both ¢ and o will be
determined in the final step. Let A : R — [0.1] be a smooth cut off function such that

h(1)=1 on (—o00,0/10], h(t)=0 on [o,00),
(4.2) R'(t)=-1/c  on [20/10,80¢/10],
—1/0 < R'(t) €0, |R"(t)| < 100/02.

Let L2(N) be the space of all L%-fuctions on N with the norm normalized as

151 = i [ 15 o
b(o) In '
where b(c) is the volume of a o-ball in R". Define a smooth map fy : N — L%(N) by

fn(p)(z) = h(d(p,z)), (= €N).

Let ¢ : N = M and v : M — N be e-Hausdorff approximations such that d(ypz,z) < 2¢
and d(pyz,z) < 2¢, where we may assume that ¢ is measurable. We put

fu(p)(=) = h(d(p,¢(2))), (s €N).

where

1

p,#(2)) = B B.((2))

d(p,y)dy.

Then fas : M — L*(N) is a C'-map. We need this averaging since there is no lower bound
for injectivity radius of M. The derivatrives of both maps are given by

dfn(€)(z) = B'(d(p,2)) €(d;), € € UpN,
dfm(€)(z) = h'(d(q,¢(2)) €(dp(z)), € € UM,

17
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where dy(.) = d(.,z), dpay(.) = d(., (z)) and

1
vol Be(p(2)) Ja. (o= Cte(=)
where C(p(z)) is the cut locus of p(z). We have easily

E(dy(zy) = ¢(d,) dy,

(4.4) Ifn($(p)) — fu(p)l| < const e,
for every pe M.
From now on, ¢ ,c;, ... denote positive constants depending only on n and . We denote

by U, N the set of all unit vectors at p € N.
Since N has bounded geometry, it is straightfoward with (4.2), (4.3) to show

Lemma 4.5. fx is a smooth imbedding whose derivative is well controlled:

(1) Forevery £ € UpN,
c1 < [|[dfn ()l < ca.

(2) For every p,q with d(p,q) < o,

| fn(p) = fa ()]
< d(p, q) <o

Next we study the tubular neighborhood of fx(N) in L?(N) and the properties of the
normal projetion. We begin with the following lemma.

C3

Lemma 4.6. For any points p,q € N with d(p,q) < ¢ and for any £ € UpN, let fe U N
be the parallel translate of £ along the minimal geodesic from p to q. Then

6(dz) = €(ds)] < Zd(p,9),

for every z with 0/10 < d(p,z) < 0.

Proof. Put v = exp;1 g, w = exp;1 z, and let @ be the parallel translate of w along the
minimal geodesic from p to ¢. Since |Kn| < 1, a standard comparison argument (see [BK})
shows

d(exp,(v + w),exp, ¥) < o?lvl,
d(exp,(v + w),exp, w) < (14 0%)|v.

Hence d(exp, w,exp, ) < (1 + o?)|v|, which implies that the angle between exp;! z and
W is less than const |v|/o. Thus

1£(&,w) — é(f,exp,;l z)| < const |v|/o.

The result follows immediately. O

Bu using Lemma 4.6, we can control how rapidly the tangent spaces to fxy(N) change.

We put
T =T (InN),  Ny={fn(p)+ I LT}

18



Lemma 4.7. For every p,q with d(p,q) < o, we have

L(fn(@) = fn(@), Tp) < =-d(p,q).

Proof. Let v :[0,£] = N be a minimal geodesic joining p to ¢, and put & = %(t), where
£ = d(p,q). Then for each z € B,(20,N)

|k(d(g,z)) — h(d(p, z)) — £h'(d(p, z))¢(d: )]
= 2R (d(v(t), x))é:(d:) — K'(d(p,2))é(dz)| (. mean value theorem)
< #/o* (.. Lemma 4.6),

which implies that

‘fN(Q) ; fn(p) di(E)” < ¢fo.

The lemma follows immediately. 0O
Now we define the notion of angle between subspaces in a Hilbert space H. Let VW
be closed subspaces of H, and ny : H = V and nw : H — W the orthogonal projections.
Then the angle between V and W is defined by:
sup Z(w,my(w)) i WnVL={0}
wH0EW
L(V,W) = sup Z(v,mw(v)) fVNWL={0}
vFEOEV

/2 otherwise.

Obviously £(VL, W) = L(V,W).
lemma 4.8. For every p, ¢ with d(p,q) < o,

¢
L(Tp,Ty) = £(Np, Ny} < 't‘:‘d(Pa‘I)-

Proof. For any £ € U, N, let fe U,N be as in Lemma 4.6. Then Lemma 4.6 yields

lldfn(€) — dfn(€)]| < const d(p,q)/o.
a

Let v be the normal bundie of fy(N) in L?(N). For ¢ > 0, we put

v(e) = {(z,u) e v]lull <}, W(e) ={z +u|(z,u) € v(c)}.
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Lemma 4.9. There exists a positive number k = ¢3 /o such that W(k) provides a tubular
neighborhood of fny(N), that is, z + u # y + v for every (z,u) # (y,v) in v(k).

Proof. Let z = fn(p), y = fn(g), and suppose the intersection K = N, N N, contains
elements z + u = y + v. First we consider the case d(p,q) < 0%. Let z € K and w € N, be
such that (i)d(z, z) = d(z, K), (ii) d(z,w) = d(x, Ny). Then Zxzw < Z(N,,N,), and

Iz — w|| = ||z ~ 2|} sin Lzzw
< ||z — z|| sin £(Np, Ng)
(4.10) < -;1”3: —z||d(p,¢) (. Lemma 4.8)

c
< o ~zlllz -yl (- Lemma4.5).
30

Lemma 4.7 implies that [£(z —y, N;) — 7/2| < ¢g0, and by the choise of w, £(z —w,N,) =
n/2. It follows that ||y — w|| < constol||z — y|. Together with (4.10), this implies that
||z — z|| > ¢/o, and hence ||u]| > ¢/o, where ¢ = const.

Next we consider the general case. It follows from the argument above that
(4.11) The normal exponential mapping exp” : v — L*(N), exp”(z,u) = = + u, is non-
singular on v(c/0).
Let kg = ¢’ /o, where the constant ¢’ will be determined later. We suppose that (z,u),(y,v) €
v(ko) satisfy z + u = y + v(= 2). Let y:[0,€] = N be the minimal geodesic joining p to
g, and put ¢(s) = fn(7(s)) and define a : [0,£] x [0,1] — L*(N) by

a(s,t) = (1 —t)e(s) + tz.

Since ||z —y|| < 2x¢, Lemma 4.5 with triangle inequality implies that a(s,t) € W((2¢c4/c3 +
1)ko). Hence if ¢’ is sufficiently small, o is contained in W(¢/20). Here we need the
following sublemma due to Katsuda [K].

Sublemma 4.12. There exists a smooth map & : [0,£] x [0,1] — v(c/20) such that
exp’(&(s,t)) = a(s,t) and &(s,0) = (c(s),0).

In particular we would have &(s,1) = z, a contradiction to (4.11). Thus the sublemma
will complete the proof of Lemma 4.9,

Proof of Sublemma 4.12. Let T be the set of t € [0,1] for which there exists a lift & :
[0, €] x [0,t] = v(c/20) of . Clearly T 3 0. In view of (4.11), T is open. We show that T
18 closed. For t1,t; € T, we have

l[a(s,t1) — a(s, ta)l| <

< |ld(exp®) ™ ||ty — 2|
S C|t1 - tgl,

where C is a constant independent of s and t. Therefore if ¢; € T converges to to, &;, =
&(.,t;) is a Cauchy sequence in the space of continuous curves in v(¢/20) with L°-norm.
Thus we have t, € T. O

da

[t — ta]

Now let 7 : v(x) — fn(IN) be the projection along the fibers of the normal bundle v.
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Lemma 4.13. For every z € W(«)) with n(z) = fn(p) and for every unit vector §£ L N,

we have co
ld7=(£) = &Il < —|z — 7(2)l]-

Proof. We put y = z + t£ for small ¢t > 0 and n(y) = fn(g). Let Ny be the affine space
in L2(N) of codimension n which is parallel to N, and containing y, and let z and w be
intersections of N, and N, with the n-plane 7(z) + T, tangent to fx(N) at #(z). We then
have in a similar way to (4.10) that

Iz = wl| < ||z — y[|£(No, Np)

< =z = yllin(z) = (W)l

le = #(@)[[7(z) = =(y)ll-

2
<z
o

It follows from y — z = w — 7(z) and smallness of ||z — 7(y)|| < t that
(m(y) = 7(2)) = (y — 2)l| < ||z — w]|

%z — w(@)|lll7(z) — 7()ll

<
o

and hence

lI*(y) - m(z)|| 1’ < &:SEM,: —(2)|,

(y) = m(z) _ 5” < %";‘i”z - (@)

Letting t — 0, we obtain the conclusion. O

If e < o, fu(M) is contained in W (k) by (4.4) and the map f = fy'omo far : M —
N is defined. (4.4) also shows that d(fz,¥z) < conste, and hence f is cjoe-Hausdorff
approximation. To prove that f is a fibration, it suffices to show

Lemma 4.14. Foreveryp€ M and £ € Ugp)N, let £ € U,M be the velocity vector of a
minimal geodesic from p to p(exp () o). Then we have

|df(§) — €| < (o) + 7(e/0).
Remark 4.15. The constant on the right hand side in the above inequality can be expressed

in the form:
O(e/o) + O(Vea) + O(a?).

However to avoid technical complexity, we will not do such explicit calculation.

For the proof of Lemma 4.14, we need the following triangle comparison lemma.
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Lemma 4.16. Let A(z,y, z) and A(Z5Zz) be triangles in M and N respectively such that
d(e(z),z) < cio€, d((¥),y) < cro€, d(p(Z),2) < croe. Suppose that ¢/10 < d(z,y) < &
and ¢/10 < d(z,z) < 0. Then we have

|Lyzz — LyzZ| < (o) + T(e/0).

We assume Lemma 4.16 for a moment and prove Lemm 4.14. For every I with ¢/10 <
d(f(p),z) < o,let 71 € UgpyN and n € U, M be velocity vectors of minimal geodesics from
f(p) to = and from p to ¢(z) respectively. Then Lemma 4.16 yields

(417) |é(gaﬁ) - 4(5:7])| < T(a) + T(G/O’).
It follows that
ldfas(€) — dfn(E)||?
- E(GT) /N{h'(d(P"P(“’)))E(Jv(z)) — R'(d(f(p), 2))é(d.))? dz,

where

const

|k (d(p, ¢(2))) — B'(d(f(p), 2))| < —e, (0 (4.2))
1€(dp(zy) — €(d;)| < 7(0) + 7(e/a), (.’ Lemma 4.16).

Thus we have ||dfas(¢) ~ dfn(€)|| < 7(0) + 7(¢/o). Lemma 4.13 then implies that
lldm o dfm(€) — dfn(E)I| < 7(a) + 7(e/o).
Lemma 4.14 follows from Lemma 4.5.

Proof of Lemma 4.16. We put s = d(z,y), t = d(z,z) and 5 = d(%,¥), { = d(F,2) and
6 = Lyzz, § = L§ZZz. From the assumption Kps > —1, Toponogov's comparison theorem
implies that

d(y,z)? < s? +t¥ — 2stcos 8 + O(a*).

Since N has bounded geometry,

|d(7, %) — (3% + % — 25t cos B)] < O(o*).
It follows from |d(y, 2) — d(¥, )] < 2¢10¢€ that
(4.18) 8>8—1(0)—1(c/0).

Next take the point @ € N such that d(j,w) = d(y,z) + d(z,®), d(Z,%) = o, and put
w = ¢(w). Let 8* denote the angle Zzzw. Then in the same way as (4.17) we have

(4.19) 6* >m —8—1(0)—1(e/0),
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and
Lyzw > n — 1(0) — 7(e/0).

The last inequality implies that
|6+ 8* —=| < T(0) + T(e/0).
The result follows from (4.18) and (4.19). O

Finally we prove that f is an almost Riemannian submersion.
For any p € M, set

(4.20) H, = {¢ € U,M |d(p,exp, 0£/10) = o/10},

which can be thought as the set of horizontan directions. By Lemma 4.14, df, induces a
7-Hausdorff approximation between H, and S"~'(1) = Uy, N, where 1 = (o) + 7(¢/0).
This implies that if n € Up M satisfies |£(n, H;) — 7/2| < 7, then |£(n,€) — 7 /2| < 7 for all
£ € H,. In view of (4.2), (4.3), we have that |df(n)| < 7, and hence f is a 7-Riemannian
submersion as required. This completes the proof of Theorem 4.1. O

Remark 4.21. The imbedding technique used here is originally due to Gromov [G5]. Kat-
suda [K] overcame some gaps in [G5,ch.8]). The fibration theorem for |K»s| < 1 was proved
by Fukaya [F2]. He proved that the fibre is diffeomorphic to an infranilmanifold in that
case, which generalizes Theorem 0.5. The proof presented here comes from that in [Y3],
where an extension of Theorem 4.1 to Alexandrov spaces 18 discussed.

Remark 4.22. 1t is proved in {Y2] that the fibre of f is of 7(e)-nonnegative curvature
in some generalized sense, which one can formulate in terms of the deviation from the
totally geodesicity of the fibers. (Remark that if the fiber is totally geodesic, it is of 7(€)-
nonnegative in the usual sense because of 4.1 (3)). In the following we present a weaker
version of this fact by making use of Splitting Theorem 3.8.

Proposition 4.23. Forgivenm > n, u > 0 and 0 < p < 1, there exists a positive number
€ = €m,n,u(p) satisfying the following: Let M and N satisfy the assumptions of Theorem
4.1 for u and € with dimM = m, and let f : M — N be the fibration constructed there.

Let F be a fibre of f with diameter §f, and d the distance of M restricted to F. Then we
have

(1) If+ is a minimal geodesic joining z,y € F withd(z,y) > péF, then the angle between
v and F is less than 7(e).
(2) There exists an Alexandrov space X with nonnegative curvature such that

dH((Fv d/&p),X) < T(G),
where 7(€) = T n,u,6(€) with lim,_,q 7(€) = 0.

Proof. This is done by contradiction. If the proposition is not true, we would have se-
quences of m-manifolds M; and n-manifolds N; with dy(M;, N;) < ¢; — 0 satisfying the
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assumption in Theorem 4.1 such that the 7(¢;)-Riemannian submersions f; : M; — N;
constructed there do not satisfy the conclusion for some p < 1. Namely there exists a
point ¢; € N; such that the fibre F; = f 1(q,-) satisfies the following.

(1) For some z;,y; € F; with d(z;,y;) > pdF, the angle between F; and a minimal geodesic
~v; joining z; and y; is greater than a positive number §; independent of 1, or

(2) There exists a positive number ¢ such that dy((F;,d/éF,), X) > c for any Alexandrov
space X with nonnegative curvature.

Put n = 4;(0) and let n, € H,, be such that

4(’71%) = A(W,HnL

where H, is as in (4.20). Let £ = df(n)/|df(n)|, and let £ € U, M; be the velocity vector
of minimal geodesic ¢; joining z; to a point z; with fi(z;) = exp o€, where o; is a positive
number, ¢; € o; € g, as in the proof of Theorem 4.1. Then Lemma 4.14 implies that
Z(&,nn) < 7(e€).

Now we consider the scaling of metrics g; = gum,/6F,, hi = gn,/6F;, where g, gn; are
the original metrics. We denote by d; the distance function of (M;, g;). Let w; be the point
on ¢; with d;(z;,w;) = 1. Let suppose that limd;(z;,y;) = s. Since the angle between +;
and ¢; is less than 7/2 — 6y /2, Toponogov’s theorem yields that

d,-(y,-,w.-) < (1 + 82)1/2 —C,

where ¢ is a positive constant depending only on 6.

For a point p; € F;, we may assume that (M;, g;, p;) and (N, h;, ¢;) converges to (X, zo)
and (Y, yo) respectively. By using inj(N;) 2 u, one can verify that Y is isometric to
R". Noting that X is a complete Alexandrov space with curvatue > 0, we see from
Theorem 3.8 that X is isometric to a product Xy x R¥. Notice that the Lipschitz maps
fi + (Mi,9i,pi) = (N, hi, ¢;) also converges to a Lipshitz map f : X — Y with Lipshitz
constant equal to 1. It is not difficult to show that k = n and f : Xy x R" — R" is the
projection up to translation in R™ (See [FY2] for detail). This shows in particular that

lm di(yi, w;) = (1 +s2)'/2,
lim dH((F,',d.-),Xo) =0,

which is a contradiction. O

By using Proposition 4.23, one can prove the following, which is useful when studying
the properties of the fibre.

Theorem 4.24([Y2]). Given m > n and u’' > 0 there exists a positive number ¢ =
€m n(p') satisfying the following: Let M and N satisfy the assumptions of Theorem 4.1 for
p and € = €,(p) with dimM = m, and let f : M — N be the fibration constructed there.
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Let F be a fibre of f with diameter ér, and d the distance of M restricted to F. Suppose
that there exists a Riemannian manifold P such that

(1) Kp>-1, inj(P)>u'
2) du(P,(F,d/6p)) < €.

Then then there exists a locally trivial fibre bundle fr : (F,d/ép) — P satisfying

(1)  fr is a 7(¢, € )-Riemannian submersion,
(2) fr is a 7(€')-Hausdorff approximation,

Whe.re limg'g‘—oo T(G, €') - 0! lim('—“o T(e') = 0'

Outline of proof. Let U be a small neighborhood of F in (M,d/ér). Proposition 4.23
shows that for any p € F), the set H, of horizontal directions in U (See (4.20)) is almost
parallel to the tangent space T, F. Thus an almost Riemannian submersion fy : U — P,
constructed in Theorem 4.1 induces an almost Riemannian submersion fp : F — P.

Remark 4.25. One can iterate Theorem 4.24 as follows: Let E be a fibre of the fibration
fr:(F,d/6F) — P in Theorem 4.24, and d/ég the distance of E rescaled by its diameter.
Then if (E,d/ég) is HausdorfT close to a Riemannian manifold @, then again we have an
almost Riemannian submersion fg : (E,d/ég) — Q. This procedure is possible as long as
the rescaled fibre is Hausdorff close to a lower dimensional Riemannian manifold.

§5 Fibering by the First Betti Number

In this section, we shall give a proof of Theorem A.

For a metric space X with I' = m;(X), let h: ' = I'/[[’,T'] be the Hurewicz homomor-
phism, and Q the torsion part of I'/[[',T|. Then A = T'/h~1(R) is a free abelian group of
rank b; = 5;(X; Q). We suppose that X has a universal covering space X and consider
the abelian covering of X :

X=X/ )3 X

For a point p € X, we use the norm |l¥ll = d(yp,p) on A. The notation A(R) is as in
Definition 2.9. The following lemma is due to Gromov [GS5).

Lemma 5.1. Suppose X to be compact. Then for every € > 0, there exists a subgroup
A, of A satisfying

(1) A, has rank b;.

(2) |17l 2 € for every nontrivial v € A,.

(3) There exist generators y1,...,7s, of A, such that ||| < 2(D +¢€) for1 < i < by,
where D is the diameter of X.

Proof. SinceT is generated by I'(2D), A is also generated by A(2D). Remark that §A(e) <
oo. First we take the subgroup Aq generated by linearly independent elements v4,...,7s, €
A(2D). If Ag(e) is trivial, Ao is the required one. If v is a nontrivial element in Ag(€), we
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can find an integer m > 2 such that € < ||7™|| £ 2(D +¢). Let 5, 1 <t < by, be such that
v;-component of v is nonzero, and define A; to be the group generated v1,...,7™,..., 7,
replacing 4; by 4™. Notice that v is not contained in A, and that A; satisfies (1) and (3).
By replacing A with A, we repeat the argument to get Az such that §A;(e) < §A(e) — 2.
After repeating this procedure finitely many times, we get the required A,. O

Proof of Theorem A(a). We prove Theorem A(a) by contradiction. Suppose that it does
not hold. Then there would exist a sequence of closed Riemannian n-manifolds M; such
that
KM.. > —€ — 0, diam(M;) =1, b= bl(M.') >0,

and that no finite covers/gf M; fiber over a b;-dimensional torus. Let ]Tf, A, :h_/{,- be the
abelian cover, and p; € M;. By Theorems 2.4 and 2.12, we may assume that (M;, A;, p;)
converges to (X, G, z¢) with respect to the pointed equivariant Hausdorff distance. Remark
that X is a complete Alexandrov space with curvature > 0. Since X is noncompact and
the action of G on X is cocompact, one can find a line in X. The Splitting Theorem 3.8
then implies that X is isometric to a product ¥ x R*, where Y does not contain a line.
If Y were noncompact, it would contain a line by the same reason. Hence Y must be
compact.

Let §; = max {\/o;,/¢;}, where o; = p,H((ﬂ},pg), (X,z0)). We take the scaling of
the original metric gpa,: gi = igar;. Notice that inf K;;, — 0, diam,, — 0 and that the
pointed Hausdorff distance between ((M;, g;), p:) and ((X, 6:d), o) goes to zero as i — co.
Obviously ({(X, 6;d),zo) converges to (R¥,0). Thus we have

(5.2) ((A’i.-,g.-),p;) converges to (R*,0).

Again we may assume that ((IT/.?., gi), Ai, pi) converges to (R*, H,0). Since H is abelian and
acts on R¥ transitively, it must be the vector group R¥. We now consider the subgroup
A; = (Ai)1 C A; constructed in Lemma 5.1 for e = 1. We may assume that ((A’Z,-,g,-), A, pi)
converges to (R*, A,0), where A C H is a free abelian group of rank b;. In particular we
have obtained

(5.3) b < k.

Next we need to use a pseudogroup technique. For a large positive number R > k, we
put B(R) = By(R,RF) and
Lp = B(R)NZF,

where ZF is the integer lattice of H, and consider Ly as a pseudogroup of isometric
imbeddings of B(R) into B(2R). Similarly, we put Bi(R) = B,,(R, (M;, g;)), and for the
canonical basis e;,...,ex of Z¥ let €1,i,...,€k,i be elements in A; converging to e;,...,ex
respectively. We consider a pseudogroup L; p consisting of isometric imbeddings of B;(R)
into B;(2R) defined by the following form:

Lip={v=el e € Ailey* - -e;* € Lp, |7l £ R}
Then one can show
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(5.4) There exists R and a positive integer Ir such that there exists a bijective pseudo
homomorphism %; : L; p — Lg for every i > Igr. Furthermore, ¥; induces the equivariant
Hausdorff convergence: (B;(R),L; r) — (B(R),Lr).

Remak that M = B;(R)/L;r covers M;, and that M converges to the flat k-torus
B(R)/Lg (. Theorem 2.9). Fibration Theorem 4.1 then provides an fibering of M* over
the k-torus, a contradiction. This completes the proof of Theorem A(a). O

In the proof above, we have used the pseudo group L; g to find the finite cover M*. The
author be].iexss that it can be avoided. Probably, there would exist a subgroup L; C A;
such that ((M;, g;), L;, p;) converges to (R*, Z¥ 0). More generally,

Conjecture 5.5. Let an (free) abelian group A; freely act on X, and suppose that (X;, A, pi)
converges to (Y, G, ¢p) and that Y/G is compact. Then for a given cocompact subgroup
A C G, there exists a subgroup A; of A; such that (X;, A;,p;) converges to (Y, A, go).

When X; is simply connected, one can prove that the conjecture above is true by using
an argument similar to the proof of Theorem 2.13.

Remark 5.6. (1) If one does not assume that A; is not abelian, then the conjecture above
is false. For instance, consider the three dimensional simply connected nilpotent group:

with the left invariant metric g, such that
ge = €2(dz? + dy?) + e'dz?,

at the unit element, and the integer laticce I' of N. Then ((N,g.),I',e) converges to
(R3?,R3,0). However no subgroups of I converge to Z* C R? under this convergence.

(2) If one does not assume the compactness of Y/G, then the conjecture above is false.
For instance, consider the convergence (R®,T';,p;) — (R? R x Z,0) in Example 2.11. Then
no subgroups of I'; converge to Z x Z.

From the proof of Theorem A(a), we easily have

Theorem 5.7. Let M; be a sequence of compact Riemannian n manifolds withinf Ky, —
0, diamyy, = 1, b)(M;) = by, and M; the universal cover of M;. Then for any p; € M;,
there exists a sequence é6; — 0 such that if g; = é;gpm,,

(1) inf K, — 0,

(2) ((Mi,g:),p:i) converges to (R¥,0), where £ > b;.

Proof. As before, we may assume that (M;,5;) and (M, p;) converges to (X x Rf) and
(Y x R*) respectively, where both X and Y are compact, and the covering map =; :

M; — M; carries p; to p;. In the same way as in (5.2), we can find §; — 0 such that for
gi = bigm;, ((M;,g:),5;) and ((M;,g;),p;) converges to (R¢,0) and (R*,0) respectively.
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By Ascoli’s Theorem, w; : ((A’Z,g;), pi) — ((ﬂ//f.-,g.-), pi) converges to a Lipschitz map
Too : (R%,0) = (R*,0). Thus £ > k, and we already know k > b;. O

Next we shall prove Theorem A(b) by contradiction. Let M; be a sequence of closed
Riemannian n-manifolds such that
(5.8) Ky, > —€;, =0, diam(M;) =0, b(M;)=n,

but M; is not diffeomorphic to a torus. Theorem A(a) implies that ILFZ. is diffeomorphic to
R". From (5.3), we see that (M;, p;) converges to (R",0). Thus by Fibation Theorem 4.1,
(5.9) (ﬁz, pi) converges to (R”,0) with respect to the pointed Lipschitz distance.
Lemma 5.10. T'; is abelian for all suficiently large 1.
Proof. Let p; : I'; — A; be the projection, where A; = I';/h™1(§) is as before. Let
A; = (Ai)1 be as in Lemma 5.1 for e = 1. Recall that

A; has rank n,
(5.11) [|A| > 1 for every nontrivial A € A;,

there exist genarators Ay,..., A, of A; such that ||A;f] < 4.
Take v; € p;'(}A;) such that ||y;|| = |||, where the norm is with respect to p; € M,
and p; € M;. Suppose that the lemma does not hold. Then we would have a sequence
81,629,...,in [I;,T;] such that 27 < ||5,|| <4j.

Now for @ = (ay,...,an41) € (Z4)™1!, we consider the norm: [ja]| = }_ a;. We put

Ya=71" " ¥4"6a,,, € [i. Remark that

7ol < 4f|qa].
(5.12) | 1”1 o]
lva"vell 2 1 for a # b.
For r >» 1, we obtain with (5.12)
const 7™+ ~ H{a € (Z4)™* [|a]| < r)

< Hoalllall < 4r}

< Vol By, (4r + 1/3132.-).

Vol B;,(1/2, M;)
In view of (5.9), the right hande side of the inequality above conveges to (8r + 1)"*. This
is a contradiction. O

As a result of the lemma above, we see that M; is a homotopy torus. However it is
known that there exist some exotic tori having different differentiable structures from the
standard one, and that every homotopy torus can be covered by the standard torus (See
Theorem 5.13 below).

We shall prove that M; is diffeomorphic to the standard torus for large :. First we
consider the case of higer dimensions n > 5. In this case the structure of the set S(T")
of all differentiable structures whose underlying n-manifold is homotopoic to T" is well
understood.
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Theorem 5.13 ([HS],[Wal],[KS]). If n > 5, S(T") is finite and has an abelian group
structure.

The identity of S(T") corresponds to the standard torus.

It is also known that any covering T" — T™ naturally acts on S(T"), from which we
obtain

Corollary 5.14. Let d, be a positive number that is relatively prime with the order of
S(T™). Let M"™ be a compact differentiable homotopy torus (n > 5). Then a dy-fold
covering of M is diffeomorphic to the standard torus if and only if M is diffeomorphic to
the standard torus.

Proof of Theorem A(b) for n > 5. Let M; be as in (5.8). Lemma 5.10 implies that
(M;,T;, pi) converges to (R", R",0). We shall find some subgroup of I'; having a controlled
index and not “collapsing”.

Since diam(M;) — 0, we can find a subgroup A; ; C T'; such that

[Ti: Ay ,;] is a power of d,,.

(5.15) 1 < diam(M;) < 2.

Passing to a subsequence, we may assume that (A,Z,Al-,,-,p'.') converges to (R",G1,0),
where G, is isomerphic to ZF* @ R"~*1  where k; > 0 by (5.15). Put My = Mi/A1;.
Since M, ; converges to the flat torus 7! = R"/G,, we have a fibration

F,' “— Ml,i -L') Tkl.

In particular, we have the decomposition A;; = H;; ® T'; ;, where H, ; is isomorphic to
Z*t and T, ; is the fundamental group of the fiber F; that is the collapsing part of T';. Next
we choose a subgroup Az ; C Ty as follows. Let B C T*! be a contractible ball around
the reference point f;(f; mod A, ,) over which F; is the ﬁber of f;. Let U; = f71(B) and
U; be the component of 7; Y (U;) containing p;, where ; : M — M, ; is the projection.
Notice that ; : U; — U; is a universal cover, and that F; = #;!(F;) is also a universal
cover of Fj.

Sublemma 5.16. There exists a subgroup Az ; CT'y; such that

(1) [T1,i: Az is a power of d,,.
(2) 1 S dia.m(Fl,,-/Ag,.') S 2.
Proof. Under the convergence (M;, ;) — (R",0), (F}, i) converges to an (n — k;)-plane.

Thus it converges to (R"~*',0) with respect to the pointed Lipschitz distance (See Theo-
rem 4.24). The assertion follows from diam(F;) =+ 0. O

Now we may assume that (A?:-,Hlli ® Az, pi) converges to (R",G2,0), where G7 is
isomorphic to Z*¥1*+*2 @ R"~*1—*%2 and k; > 0. Repeating the procedure finitely many
times, we obtain subgroups H, i, Hz ;,..., H; ¢ of I'; such that
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I''=Hi® - ®Hi(CT;) is a direct sum.
(5.17) [T; : T'7] is a power of d,,.
(Ei.—,r;,ﬁ.-) converges to (R", A*,0), where A* is isomorphic to Z".

Hence M* = M; /T'? converges to the flat torus R”/A*, and it is diffeomorphic to the
torus. Therefore by Corollary 5.14, M; is diffeomorphic to a torus. This completes the of
Theorem A(b) forn > 5. O

Finally we give the proof of Theorem A(b) for n < 5. Here we consider the metric on M;
whose diameter is equal to one. We know that M; converges to a flat torus T* of positive
dimension, and has a fibration

F, ; M,' -— Tk,

where 7, (F;) & Z"~*.
We need some information on the space of diffeomorphisms of a torus.

Theorem 5.18 ([EE],[Wad]). (1) The group of diffeomorphisms of any closed ori-
entable surface which is homotopic to the identity is connected.
(2) The group of PL-homeomorphisms of an irreducible, sufficiently large closed PL-three
manifold M?® which are homotopic to the identity is connected.

Remark that 7 is irreducible and sufficiently large.
We begin with the lowest dimension.

Case 1) n = 2. This is trivial.
Case 2) n = 3.

If k > 2, M; is clearly diffeomorphic to T3. If k = 1, F; = T? and M; can be identified
with the quotient T2 x [0,1]/g, where g : T? x 0 — T? x 1 is the gluing diffeomorphism.
Since TI'; is abelian, f should be homotopic to the identity. By Theorem 5.18 (1), it is
diffeotopic to the identity, and M is diffeomorphic to T° as required.

Case 3) n = 4.

If ¥ > 3, M; is clearly diffeomorphic to a torus. Suppose k = 1. It is now easy to
show that the fibre F; with metric scaled in such a way diam(F;) = 1 converges to a
flat torus T7¢. By Theorem 4.24 we have a fibration E; < F; — T%. The argument in
Case 2) shows F; & T3. Now M is identified with the quotient space T° x [0,1]/g, where
g: T?x0 — T2 x1is the gluing diffeomorphism. Suince [; is abelian, g is homotopic to the
identity. It follows from Theorem 5.18 (2) that M is PL-homeomorphic to T4, and hence

by [Mu] it is diffeomorphic to a torus. If k = 2, use the projection T2 — S x 0 to the first

factor to get a fibration N; — M; EiN S'. We also have a fibration 7?2 «— N; ﬂ» 0x St.

By the argument in Case 2), we see that N; is diffeomorphic to 2. Thus it is reduced to
the case k = 1:
T3 — M,‘ — Sl.
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The proof of Theorem A(b) is now complete.

By using Theorem 4.24, one can prove Theorem A for the fibre of a fibration as in
Theorem 4.1.

Theorem 5.19([Y2]). Given m > n, u > 0 there exists a positive number € = €, ,()
satisfying the following: Let M™ and N" be complete manifolds with

Ky 2 -1, Ky 2-1, an(N) 2 i,
dH(M,N) < €.

Let F be a fiber of a fibration as in Theorem 4.1. Then

(a) A finite cover of F fibers over. a b,(F')-dimensional torus.
(b) Ifb(M) =m —n, F is diffeomorphic to T™™".

§6 Bounded Almost Nonnegative Curvature

In this section, we consider almost nonnegative Ricci curvature under the stronger
assumption |K| < 1. By using the Bochner technique, one can generalize an argument in
Section 1 as follows.

Theorem 6.1 ([Y1]). Givenn and D > 0, there exists a positive number € = ¢,(D) such
that if M satisfies that

|[Kp| £1, diam(M) < D, Ricciyg > —¢,

then every harmonic 1-form on M does not vanish.
In particular, the Albanese map A : M — T as in Section 1 is a fibre bundle.

Proof. Let w be a harmanic 1-form on M. By the Weitzenbock formula 1.1,

/ |Dw|? + Ricci(fw, fw) = 0.
M

Here we consider the following norm on 1-forms :

Il = o7 . lol? .

By assuming ||w| = 1, we have from Gallot and Li’s inequalies ([Gal,[Li])
|w|co < const ||w|| = const.

Thus Riccipys > —e yields that

vollM /M |Dw]?® < const e.
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By using the assumption |Kas| < 1, we shall prove
(6.3) |Dwlce < 7(e),
where 7(€) = 7, p(€) with lim._o 7(¢) = 0.

For any p € M, put B = By(1,T,M), B' = Bs(1/2,T,M). Let g be the metric on B
pulled back by the expoential map exp, : B — M. Since the injectivity radius of (B',g) is
greater than 1/2, it follows from Jost-Karcher ([JK]), there exists a harmonic coordinate
ball of fixed size centered at any point in B’ and that the eigen values of the metric tensor
with respect to this coordinate have some positive uniform bounds from both below and
above on B'. Consider the harmonic form & = exp,w on B, and take a function f on B
such that df = &. Since Af = 60 = 0, it follows from the Schauder estimmate (see [GT])
that

|flpr,c2.a < const |f|g,co.
Since we may assume that |f|g co < const |O|g co, we see

I(:)lBl,cl.u S const |‘D|B,C°

(6.4) < const jw|co
= const .
Thus we have proved that |w|ps,c1.a < const. Now (6.3) follows from (6.2),(6.4) and
diam(M) < D.
Now we see that w is almost parallel if € is small. Thus if wy,...,w; are harmanic

1-forms of M forming a basis of the first de Rham cohomology group, they are pointwisely
linear independent. Hence the Albanese map is a fibration. O

Remark that A : M — T is harmonic, and by (6.3) it is a 7(¢)-Riemannian submersion.
Problem 6.5. Find a geometric or topological property of the fibre of A.

Recently Lacouturier and Robelt have obtained a generalization of Theorem 6.1. They
replaced the uniform bound |Ka| <1 by a bound on some integral norm on K.

If one assumes no bounds on the sectional curvature, Theorem 6.1 dose not hold any
more because of the following result due to Anderson.

Theorem 6.6 ([A2]). For any n > 4 and 1 < k < n — 1, one can construct an n-
dimensional closed manifold M with by(M) = k by doing a surgery on T™ such that

(1) No finite cover of M fibers over b, -dimensional torus.
(2) For every € > 0 there exists a metric g on M such that

| Riceiy, | < €, diam(g,) = 1.
(3) (M,g.) converges to a flat torus T* with respect to the Hausdorff distance.
Remark that the Gromov conjecture 0.4 is still open.
Next we present a result for aspherical manifold, i.e. m; = 0 for ¢ > 2, with bounded
sectional and almost nonnegaive Ricci curvature. We note that every aspherical mani-

fold with nonnegative Ricci curvature is flat ([CG2]), which directly comes from Splitting
Theorem 1.2. This can be genaralized as follows.
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Theorem 6.7 ([FY1]). Given n and D > 0 there exists a positive number € = e,(D)
such that if M is an asphirical Riemannian manifolds with

|Kp| <1, diamy < D, Riccips > —e,
then it is diffeomorphic to an infranilmanifold.

Outline of the proof. The proof is done by contradiction. Suppose that the theorem is not
true. Then we would have a sequence M; of n-dimensional aspherical manifolds with the
given sectional curvature and diameter bounds and with Riccipg, > —¢; — 0 such that M; is
not diffeomorphic to an infranilmanifold. By the topological assumption, we see from [F4]

that the universal cover M; does not collapse. Namely with the bound |K| < 1, (AAJJ., Pi)
converges to a pointed space (N, ¢q) of the same dimension with rspect to C*® topology
on compace subsets. More generally this convergence happens in the L*P-topology, where
p > n (See [N] for instance). Thus the metric tensor of N is in L??, and hence has second
derivatives almost everywhere. Therefore we can get the splitting theorem for N (Compare
[Ca]). Since N is contractible (see [F4]), it must be isometric to R™. Thus in some sense,
M; is L¥P-almost flat. If it was C2-almost flat, Theorem 0.5 works. Since it is not the case,
we use the technique of covering space along fibre introduced in (FY1]. By applying this
aurgument, we have a (singular) fibration F; — M; — R™ /A over a flat orbifold R™ /A,
where the fibre F; is an infranilmanifold and the structure group can be reduced to some
particular form (similar to that in Proposition 10.1). By using that informasion on the
structure group, we can construct smooth almost flat metrics on M; for sufficient large :

(See [FY1] for the detail). O

§7 Generarization of Bieberbach’ Theorem

In this section, we give a generalization of Bieberbach’s theorem needed in the proof of
Theorem B. As indicated in Section 1, the proof of Theorem 0.2 depends on Splitting The-
orem 1.2 and the Bieberbach theorem. In our case, we consider the equivariant Hausdorff
convergence of the isometric action of fundamental groups on universal covering spaces.
The limit group is not necessarily discrete. Thus we need the following

Theorem 7.1([FY2]). Let G be a closed subgroup of Isom(R"). Then mo(G) = G/G, is
almost abelian. More precisely, 7o(G) contains a free abelian group A of finite index such
that rank(A) < dim(R"*/G).

The case when G is discrete in Theorem 7.1 is Bieberbach’s theorem.

We need the following elementary lemma from group theory. The proof is omitted (See
[FY2]).

lemma 7.2. Let a group G admit an exact sequence
1—Q—G—ZF —1,
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where §Q is finite with order £. Then G contains a free abelian subgroup A of rank k such
that [G : A] < C(k,£).

Proof of Theorem 7.1. The proof is done by inductoin on the dimension on G. The case
dim G = 0 is the Bieberbach theorem. Suppose that dimG > 1 and let R be the radical
of G. Put N =[R, R]. We divide the proof into the following three cases.

Casel) dimN > 0.
Case 2) dimR > 0 and R is abelian.
Case 3) R={1}.

Here we consider only Case 1). The proof for the other cases are similar. Let C be the
center of N. For g € G, put
min(g) = {z € R"|d(gz,z) < d(gy,y) forally € R"},

L = ) min(g).

geC
Remark that L is nonempty and is a G-invariant convex set without boundary. Hence
L = R’ C R, and we obtain a homomorphism ¢ : G — Isom(R?), where ¢(G) is closed.
Now putting K = ker(p), we have the exact sequences
1 — K — G— p(G) — 1,
mo(K) — 7o(G) — mo(p(G)) — 1,
where mo(K) is finite because of the compactness of K. Hence in view of Lemma 7.2, it
suffices to prove the theorem for ¢(G) C Isom(RY).
Case a) (C)= {1}.
Since dim¢(G) =dimG/K < dimG/C < dim G, the inductive assumption works.
Case b) (C) # {1}.

Since ¢(C) is normal in ¢(G), ¢(G) acts on R¢/p(C) = RY/R™™ = R™, where m < £.
Let ¢ : p(G) — Isom(R™) be the induced homomorphism. Putting K’ = ker(y), we have
exact sequences:

1— K’ — p(G) — %(G) — 1,
mo(K') — ma((G)) — ma($p(G)) — 1.

Since ¢(C) C K' C Isom(R*™™), we have K'/p(C) C O(€ — m). It follows that mo(K') is
finite. It is easy to show that ¥¢(G) is closed. Thus it suffices to prove the theorem for
Y(G) C Isom(R™). Since

dim $¢(G) £ dim¢(G)/¢(C) = dimG/C < dim G,

the inductive assumption now works. [
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Corollary 7.3([FY2]). Under the situation in Theorem 7.1, suppose further that R" /G
is compact. Then G contains a normal subgroup G' such that

1) [G:G] < cp.
(2) R"/G' is isometric to a flat torus.

Proof. This is also done by induction on dim(G). The case dim G = 0 is the Bieberbach'’s
theorem. Suppose dim G > 0. We use the same notation as in the proof of Theorem 7.1,
and assume the case 1). Since L is G-invariant and convex and since R"/G is compact,
we see that L = R". Hence ¢ = identity. Remark that C is normal in G. Since

R"/G = (R"/C)/(G/C) = R™/(G/C),

and since dim(G/C) < dim G, the inductive assumption works. O

In Theorem 7.1, there are no uniform bounds depending only on n for the index [7o(G) :
A] even if R*/G is compact.

Example 7.4. Let G be the subgroup of Isom(R?) generated by the translations R? and
the rotation with angle 27 /p around the origin. Then R?/G is a point and m(G) = Z,.

§8 Solvability Theorem

In this section, we give the proof of the solvability part of Theorem B.

Theorem 8.1 ([FY2]). There exist positive numbers €, and ¢, such that if M is of
€n-nonnegative curature, then m1(M) contains a solvable subgroup A such that

(1) [mi(M) : Al < cp.
(2) L(A) € n.

A solvable group is made of several extensions of abelian groups. In the proof below we
shall see that Theorems 3.8 and 7.1 provide each building block, and that Theorems 2.12
and 4.1 provide each extension.

We begin with an algegraic lemma.

Lemma 8.2. Consider the following exact sequence:
11— A— T —ZF —1,

where A contains a solvable subgroup A’ such that [A : A'l = ¢, L(A') = m. Then T
contains a solvable subgroup I'' such that [[': V] < C(¢), L(T") < k+ m.

Proof. Take a subgroup A* of A’ which is characteristic in A. (See [FY2]). Thus A* is
normal in I' and we have an exact sequence :

1—»£—>£—»Zk—»l.

A* A*
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Then the conclusion follows from Lemma 7.2. O

Proof of Theorem 8.1. This is done by contradiction and induction on the dimention of M.
We mainly prove only almost solvablity. Suppose that the theorem is not true. Then we
would have a sequence of closed n-manifolds M; such that Ky, > —¢€;, ¢, — 0 as 1 — o0,
and that diam(M;) = 1 but I'; = m1(M;) is not almost solvable. Passing to a subsequence,
we may assume that M, converges to a compact Alexandrov space X. Since X might not
be a manifold, we need to consider the action of I'; on the universal cover JTJ’. For p; € M;,
we may assume by Theorems 2.4 and 2.12 that (M;, T, pi) converges to a tripple (Y, G, q)
with respect to the pointed equivariant Hausdorff distance. Splitting Theorem 3.8 then
shows that Y is isometric to a product R* x Y, where Y, is compact.

Assertion 8.3. G/G, contains a finite index free abelian subgroup of rank < k.

Proof. Since G preserves the splitting R* x Yy, we obtain a homomorphism ¢ : G —
Isom(RF). If K = ker(p), G/K is a closed subgroup of Isom(RF), we see by Theorem 7.1
that

(G/K)/(G/K)o = G/GoK

contains a finite index free abelian subgroup of rank < k. In view of Lemma 7.2, the
assertion follows from the exact sequence:

GoK G G
— —

Go Go  GoK

1 — — 1,

where Gy K /Gy is finite. O

Note that G/Gy is discrete by Theorem 3.16, and that (R* x Y)/G = X is compact.
Hence we can apply Theorem 2.12 to get a normal subgroup I} of T'; such that

(E/.T,-,r',.,p,-) converges to (Y, Go, 9).
(8.4.) T';/T" is isomorphic to G /G for large i.
For any € > 0, I'; is generated by I'(e) for large ¢ > I(e).

Assertion 8.5. T is almost solvable for sufficiently large i.

Proof. We put 29 = ¢ mod G € X. For a given r; — oo, by Theorem 3.15 we can
choose z; € X such that ((X,r;d),z;) converges to (R™,0). Remark that m > 1 since
diam(X) = 1. Set dy(M;, X) = o; and dp x(((X,r;d),z;),(R™,0)) = 0j, and let p;; € M;
be a point which is Hausdorff close to ;. By triangle inequality,

dp. u({((M;,rj9m;),pi;),(R™,0)) < rjo; + o;.

Hence one can make the above Hausdorff distance as small as one likes if one takes a
large ; = j, and any large ¢+ > ¢3. Thus for some choice of such j, and iy, we have an
almost Riemannian submersion f; : By, (1,(M;,rj,gnm:)) — Bo(2,R™) over its image such
that the fibre F; = f7?(0) is of almost nonnegative curvature in the generalized sense. In
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view of Proposition 4.23 and Theorem 4.24, we can apply the inductive assumption to the
fibre. Thus m;(F;) is almost solvable for all sufficiently large ¢. Let ¢ = 1/(10r;,). Since
B, (¢, M;) is included in the neighborhood fi!(Bs(1,R™)) = By(1,R™) x F; for large i,
(8.4) implies that I"; is contained in the image of the inclusion homomorphism:

I; C Im[my(Fi) = ).
This shows that I'} is also almost solvable. O
Finally, we have the exact sequence:
(8.6) 1—I — I — G/Gy — 1,

where I, is almost solvable and G/Gy is almost abelian. Therefore the following lemma
yields that T'; is almost solvable, a contradiction.

This argument also gives a uniform bound on the index of a solvable subgroup of I'; (by
contradiction).

The inequality of the length of polycyclicity follows from

£(Ts) = £(T%) + rank(G/Go).
(8.7 L(T") £ L(m(F;)) <n—m, (. inductive assumption).
rank(G/Gy) < dimR*/p(G) < dimX =m, (- Theorem 7.1).

This completes the proof of Theorem 8.1. O

Remark 8.8. Remark that the inductive step in the above proof, we have to pursue the
fibre properties at most n times by using Proposition 4.23 and Theorem 4.24. Although
this is possible, we avoided this argument in [F'Y2], where the theorem was proved for the
fibre of the almost Riemannian submersion in Fibration Theorem 4.1 by using a reverse
induction.

Next we give some consequences from Theorem 8.1. We will see below the significance
of the uniform bound (2) in Theorem 8.1.

Corollary 8.9([FY2]). There exists a positive number C,, satisfying the following: Let
M be of e,-nonnegative curvature, and suppose that any solvable subgroup A of m (M)

with [m1(M), A} £ C, has L(A) = n. Then

(1) A is poly-Z group.
(2) The universal cover of M is diffeomorphic to R".

Proof. We use the notation in the proof of Theorem 8.1. By (8.7), we have

rank(G/Gy) = dimR*/¢(G) = dim X = m,
L(T)=n—m.
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By Corollary 7.3, there exists a normal subgroup Go C G C G such that R*/o(B) is
isometric to a flat torus T™. We put X = R* x Y/G. Consider the following commutative
diagram:

Rt xY —n R*

n| J»

X —17m
q2

where p; and ¢; are the natural projections, which do not increase distance. Let R* =
R™ x R¥™ be the orthogona.l decomposition for which p, : R™ — T™ is a Riemannian
covering. Since pz 0 ¢1 is a local isometry on each R™-factor, so is ¢2. It follows that
X is isometric to a flat torus T™. By Theorem 2.13, we can take a normal subgroup r
converging to G. Hence M = M / I converges to T™, and we have a fibration

Fo M- T,
and the exact sequence :
l1—mF)—T-—2Z™ —1.
Applying the inductive assumption to the fibre F', we obtain the conslusion. O

The uniform bound on the index of a solvable subgroup in Theorem 8.1 is useful. By
using this theorem essentially, we have the following corollaries.

Corollary 8.10([FY2]). There exists a positive integer p, such that if M is of €p-
nonnegative, then b, (M, Z,) < n for all prime number p > p,.
If the equality by(M,Z,) = n happens, M is diffeomorphic to a torus.

The inequality is immediate from Theorem 8.1. The equality case follows from an
argument similar to Theorem A(b).
Corollary 8.11. There exists a positive number C,, such that if M is of ¢,,-nonnegative
curvature and if m;(M) is finite, then

Tiam(3) < O

where M is the universal cover of M.
Proof. Suppose that the conclusion does not hold. Then we would have a sequence of
closed n-manifolds M; with ¢;-nonnegative, ¢; — 0, with finite fundamental groups I'; such

that the diameter quotient for M; goes to co as i — co. By Theorem 8.1, we may assume
that I'; is solvable with length of policyclicity < n. Let

r=r">r > o0 = {1},
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be the derived series, I{* = [[{*™" 1>~V and put M*) = M;/T{”. Then we have a
tower of abelian coverings:

Mo MO0 s MO M,

We take a scaling of metrics here so that diam(M;) — 0 and the lower bound of sectional
curvature of M; still goes to zero. Then we find some 0 < 3 < n — 1 such that for a
subsequence Ml-(") and M,-(""'l) converge to a point and a space Y which is not a point,
respectively. By taking the scaling carefully, we may assme that Y is noncompact and
actually isometric to a Euclidean space R¥, k¥ > 1 (See Theorem 5.7). Then by the
pseudogroup thechnique used in Section § (the argument after (5.3)), we can find a covering
M} of M'-(’) so that it converges to a flat torus T*. By Fibration Theorem 4.1, we have a
fibration of M over T*, which contradicts the finiteness of I';, O

Notice that we have no explicit estimates for our constant C,, in the above result. On
the other hand, for any lens space S™/I" with constant curvature, we know

diam(S™)

Tam(Sm/T) ~ =

Thus it would be interesting to find a (realistic) explicit constant C,,.
The following corollary is immediate from the proof of Corollary 8.11.

Corollary 8.12. Let M be of €, -nonnegétive curvature with infinite fundamental group.
Then a finite cover of M fibers over S'. In particular, the Eular characteristic of M
vanishes.

Conjecture 8.13. The Pontryagin numbers of an €,-nonnegatively curved manifold with
infinite fundamental group vanish as well.

§9 Three Dimensional Case

We will give an outline of the proof of Theorem B in the next section. The key point in
the proof is to develope the method of covering space along fibers introduced in the study
of almost nonpositively curved manifolds ({FY1]). In this section, We shall make the basic
idea clear by considering the three dimensional case, where we can determine the manifold
structure up to finite cover and up to the Poincare conjecture.

Theorem 9.1([FY2]). There exists a positive number € such that if a closed three-
manifold M is of e-nonnegative curvature, then a finite covering of M is either homotopic
to $ or diffeomorphic to one of $* x S§%, a nilmanifold or a torus.

Proof. We may assume that the fundamental group of M is infinite. Then the proof of
Corollary 8.11 shows that a finite cover M* of M converges to a flat torus T*. If k > 2, M*
is diffeomorphic to an infranilmanifold or a torus (See the augument below). Let £ = 1 and
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suppose that the conclusion does not hold in this case. Then we would have a sequence of
closed three manifolds M; such that K, > —¢; — 0 and a finite cover M* converges to
S' but M; does not satisfy the conclusion of the theorem. By Theorem 4.1, there exists a
fibration
Fi,— M! — S H

where F; is diffeomorphic to one of S?, a projective plane P? , a torus T* or a Klein bottle
K? by Theorem 5.19. If F; ~ S%, M? is diffeomorphic to §% x §1. If F; ~ P? or F; ~ K2,
one can take a finite cover of M; with fibre S? or T? respectively. Thus we may assume
that F; ~ T?. Let

1 — 2 —TI—2Z—1

be the associated exact sequence, where I'; = 7(M]). Now take v; € T'; which projects
to 1 € Z, and define A, € SL(2,Z) by

Ay(9) = migr"
Then the following is easily verified.

Lemma 9.2. T'; is nilpotent if and only if A, is conjugate to an element of the form

(1)

The fibre F; collapses to a point, and it is inconvenient to analyze the properties of A,,.
Therefore we take a finite cover of F; in order to “look at” the fibre. This is the basic idea
of covering space along fibre.

For m € Z, let T{™ be the subgroup of I'; generated by (mZ)?(C Z?) and 7;, and let
M{™ be the finite cover of M; with fundamental group I™. Let F{™ be the m?-fold
covering of F; corresponding to M .-(m). Then we can find m; such that

(9.3) 1 < diam(F{™)) < 2.
Passing to a subsequence, we may assume that (E,FE"“), pi) converges to (R*,G,0).

Remark that dim(R¥*/G) > 2 because of (9.3). By Corollary 7.3, R*¥/G can be finitely

(branched) covered by T2 or T®. If M{ is the finite cover of M,-(m‘) corresponding to it,
M! converges to T¢, £ =2o0r 3. If £ =3, M' = T3. If £ = 2, we have a fibration

S — M! — T2,
Hence Z = m(S?) C I‘Em") is a normal subgroup and is A.,-invariant. Hence it is also

normal in T;. Therefore by choosing a basis of Z* = 7;(F;), we see that A., is conjugate
to an element of the form

+1 ¢

¢ 1/
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Lemma 9.2 implies that I'; is almost nilpotent, and hence M; is diffeomorphic to an
infranilmanifold. O

§10 Nilpotency Theorem

In this section, we give just an outline of the proof of Theorem B. For the detail, see
[FY2].

First we consider the following exact sequence:
1—mA—0T —A4A—1,

where A is almost nilpotent and A is almost abelian. We need a criterion for T" to be
almost nilpotent.

Proposition 10.1 ([FY2]). The group I is almost nilpotent if and only if there exists a
subset T" generating I" such that for any v € T', there exists a stratification

1=ACAIC - CAr=A,
and N € Z such that
(1) A; is normal and "N -invariant.
(2) iffAi/Ai—1 = oo, it is abelian.
(8) AN € Aut(Ai/Ai-y) defined by

AN(g)=+Vgy7V
is of finite order.

Remark that if I" is almost nilpotent, one can take the upper central series of a normal
nilpotent subgroup of I" as stratification.

We prove Theorem B by contradiction and inductuion on dim M. If the theorem does
not hold, we would have a sequence of closed n-manifolds M; with Ky, > —¢ — 0,
diam(M;) = 1 but I'; = m(M;) is not almost nilpotent. As in Section 8, we may assume
that (AA/f,, T, p;) converges to (R*¥ x Y, G, ¢). By (8.6) we have the exact sequence:

1— I —0T;, —G/Gy — 1,

where G/Gy is almost abelian and we may assme that I} is almost nilpotent by inductive
assumption (See also Remark 8.8). Now for our purpose it is better to kill the compact
factor Y in the sprilliting R¥ x Y. As in (5.2), we can choose a positive number §; — 0
such that for the metric g; = 0igay,

(10.2) (J‘Tf;,g;,p;) converges to (R*,0),

while keeping inf K,, — 0. Notice that diam(M;,g;) — 0. From now on we use the
notation .
X =(Mi,gf)a A.‘=F;, A=G/GO:
and verify the condition of Proposition 10.1.
Notice that I'; is generated by I';(1), and suppose that it does not satisfy the condition
of Proposition 10.1. Then there exists 7! € I';(1) not satisfying the condition. Remark
that [y!] € I';/A; must be of infinite order. Then one can prove the following.
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Lemma 10.3. There exists v; € [';(1) of the form v; = (7i)™ui, pi € A; such that if
Ai(vi) denote the group generated by A; and «;, then Ay(y:)(1/3) = Ai(1/3).

We may assume that A; is solvable by Theorem 8.1. We may also assume that (X i A ('y.), Pi)
converges to (R, H ,0), under which A; and 5; converge to H C H and Yoo € H, respec-
tively. Let H(voo) be the group generated by H and ... We do not know if H is connected.

By Lemma 10.3 H/H is discrete and hence H contains the identity component of H.
Summing up we have

Proposition 10.4.
(1) Lminoo(Xi, A, pi) = (RX, H,0) where H C Hy.
(2) A, is normal in A;(7;).

1— A — Ai(vi) —mZ — 1.

(3) v =€ H.

1— H—> HYo) —Z — 1.

(4) Ai(v:) is solvable with length of polycyclicity < n.
(8)  Ai(7i)(1/3) = Ai(1/3), Ai = A1)

Our purpose is to show that A; has a stratification satisfying the condition for v; in
Proposition 10.1. From the form of +;, this would implies that A; has a stratification
satisfying the condition for ] in the proposition, a contradiction.

We know that A; is generated by A;(§;), where §; — 0. However we do not know if this
is the case for [A;, A;]. From this reason we need a more stronger notion.

For (X,T,p) € M4, we put

[(e; D) = {y €T |d(vy,z) <e forall ze€ By(D,X)}.

Definition 10.5. We say that a sequence (X, K, p;) is locally generated if for any D > 0,
there exists €;(D) — 0 such that K; is generated by K;(e;(D); D).

Then we can prove

Lemma 10.6. If(X;, K;,p;) is locally generated, (X;, [Ki, K;], pi) is also locally generated.

In the first step, we shall replace {A;} be a locally generated sequence. To do this, we
need a technical lemma similar to Theorem 2.13.
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lemma 10.7. Let L; C A; be normal in A;(7:) such that lim;—o(X;, Li, pi) = (R¥, L,0),
and let a sequence é§; — 0 and D > 0 be given. Then for a subsequence there exists a
subgroup L) C L; satisfying

(1) L} is normal in A;(7;).
(2) L. is locally generated.
(3) LD Li(éi; D) for each 1.
(4)  lim;—oo(X;, L, p;) = (R*, L',0), where L' D L.

Suppose further that there exists Ry > 0 such that L; is generated by Li(Ry). Let
L(ve) and Li(7i) be the groups generated by L U~ and L; U~; respectively. Then there
exists a surjective homomorphism L(yo)/L' — Li(vi)/ L} which carries [ys] to [vi].

In the lemma above, we do not assume the compactness of R*/L, which is the point
essentially different from Theorem 2.13.

Applying Lemma 10.7 to L; = A;, L = H, we have the following lemma, which is the
first step in construction of the stratification of A;.

Lemma 10.8. There exists A; C A; satisfying

(1) Al is normal in Ai(¥).
(2) (Xi, Al pi) is locally genarated.
(3) A € Aut(A;/A}) is of finite order.

Proof. By Lemma 10.7, there exists A} C A, satisfying (1),(2) and such that there exists
a surjective homomorphism H(ve)/Ho — Ai(7i)/A:. Theorem 7.1 shows that H (v )/Ho
is almost abelian, which implies (3). O

The following lemma is a main step in the proof.
Lemma 10.9. Let [E;, E;] C F; C E; C A; be normal in A(%;), and suppose that
(1) E; and F; are locally generated.
(2) U(Ei/Fi) = oo.
(3) l_img_.oo(X;,E,',p,') = (Rk, E,O).
Then there exists E; such that for a subsequence
(4) F,CE;CE,, E} is normal in Ai(¥i).
(5) E; is locally generated.
(6) A., € Aut(E;/E!) is of finite order.
(7) limj~co(Xi, El,pi) = (R¥, E',0), where dim E' < dim E.

Remark that the conclusion (7) above is analogous to the argument in Section 9 (See
(9.3)). |

Now we put

Aiy = A, Aiey1 = [Aig, Aig]

By Proposition 10.4(4), there exists N such that A; v = {1}.
Applying Lemma 10.9 inductively, we obtain
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Assertion 10.10. There exists A{, y which is normal in Ai(%;) satisfying
(1) A."k = A},k :) Al?,k D A D Ai,k—]-l'

(2) Ay, € Aut(A] ,_‘/A{;‘) is of finite order.

(3) ]-imi—roo(xia Aik;pi) = (Rk,Hj,)n 0)’

where dim H; x > dim Hj4 & l'f[A{,k : A{II] = 0.

By the conclusion (3) above, there exists L independent of ¢ such that [Af; : Aj 4] is
finite. Finally we get a stratification of A;:

1= Ai,K C A{:K—l C “'A?,K—l C Ai,K—]
CA{:K—Z C - CA,‘_K_3 C oo CA,‘)] =A: CA,‘,

satisfying the condition of Proposition 10.1. Thus the proof of Theorem B is complete. O

Remark 10.11. In our argument here, we were not able to control the torsion parts of
successive quotients in the stratification. This is the main reason why we cannot get a
uniform bound on the index of a nilpotent subgroup.

§11 Generalized Margulis’ Lemma

Let M be a complete Riemannian n-manifold with |Kas| < 1. In the proof of Theorem
0.5, Gromov [G1] essentially used Margulis’ lemma, which states that the small loops at
any point p € M of length < €, generate an almost nilpotent subgroup of m(M). By
using Theorem B, we can drop the upper bound of curvature.

Theorem 11.1 ([FY2]). There exists a positive number €, such that if M is a complete
Riemannian n-manifold with Kpy > —1, then for any p € M the image under the inclusion
homomorphism:

Im [‘A'IBP(C,“M) — 7I'1.Bp(1, M)]

is almost nilpotent and satisfies the conclusion of Theorem B.

As the first step, we show that the conclusion holds for some p € M.

Lemma 11.2. There exists é, > 0 such that if M and p are as in Theorem 11.1, there
exists a point ¢ € By(1/2, M) such that

Im [ By(6,, M) — m B,(1, M)]
is almost nilpotent and satisfies the conclusion of Theorem B.

This follows from Theorem B for the fibre of an almost Riemannian submersion and the
arugument in the proof of Theorem 8.1.
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Outline of the proof of Theorem 11.1. Suppose the theorem does not hold. Then we would
have a sequence of complete n-manifolds M; with Ky, > —1, a point p; € M; and ¢; —» 0
such that

I = Im(m B,,(e;, M;) — 7 B, (1, M;)]

is not almost nilpotent. By Lemma 11.2, we have § = 6, > 0 and ¢; € M; with d(pi,qi) <
1/2 such that
Ti= Im [my By, (6, M;) - m B (1, M)]

is almost nilpotent. In the argument below, we show that [['; : I'; N Tj] is finite, a contra-
diction.

Let m; : X; — B,,(1,M;) be the universal covering space, and z,,y; € X; such that
mi(zi) = pi, mi(yi) = ¢i, and d(z;,yi) = d(pi, ¢;). We put G; = m Bp,(1, M;). Passing to a
subsequence, we may assume that (X;, G, z;) converges to (X, G,z ). By [G1] (See also
[BK]),

(11.3) there exists N > 0 such that I'; can be generated by N elements v;1,...,7i,N
with v, ; € I'i(2¢;).
Let f; : By,(Di,X;) = B._(Di + 1/D;, X), i : Gi(D;) = G) and ¢; : G(D;) — G; be
a pointed equivariant Hausdorff approximation as in Definition 2.9, where D; — oo. By
Ascoli-Arzera’s theorem, we may assume that
(11.4) @i(7i,;) converges to Yo,; € G for each ;.
By (11.3),

700,_1'(300) = Tco:
We may also assume that I'; converges to I',) C Goo.

Sublemma 11.5. G/T'., is discrete.

Proof. Let y; — yoo € X. By the definition of I';, the open set {7y € G| d(YYoo, Yoo) < 6/2}
of G is contained in I',_. O

We put z = zo for simplicity. Let G, be the isotoropy subgroup at z. Lemma 11.5
shows that L = [G; : G NT,] is finite. In view of ¥oo,; € Gz, using (11.3) and (11.4)
one can show that [I; : T'; NT;] < C(N, L) for sufficiently large 1. Therefore I'; is almost
nilpotent. 0O

Proof of Theorem C. Suppose that the theorem does not hold. Then there would exist
a sequence of closed n-manifolds M; with Ky, > —1, diam(M;) < D, I'; = 71(M;) such
that

i 2T; (1#J) mod almost nilpotent groups.

Passing to a subsequence, we may assume that (A’Z-,F,-, pi) converges to (Y,G,q). By
Theorem 2.13, there exists a normal subgroup I'; of I'; such that

(1) T converges to Gy.

(2) T/T;=G/G for large 1.

45



(3) T is generated by I'i(¢;), where im;_.0 €; = 0.

It follows from Theorem 11.1 that I'; is almost nilpotent and satisfies the conclusion of
Theorem B. Theorem 2.13 also shows that G/G) is finitely represented. This is a contra-
diction. O

§12 Noncollapsing Case

In this section we observe almost nonnegatively curved manifolds with a lower volume
bound. Such a manifold should have the structure similar to that of a nonnegatively curved
manifold.

We begin with the following finiteness theorem for fundamental groups due to Anderson.

Theorem 12.1([A1]). The set of all isomorphism classes of fundamental groups of closed
n-manifolds with

Ricciyg 2 —(n —1)k?, diam(M) <D, vol(M) > vy,
18 finite.

Proof. Let M satisfy the geometric bounds above, M the universal cover of M with a
reference point p € M and I' = 7;(M) the deck tranformation group. The point of the
proof is to show '

Assertion 12.2. There exist positive numbers § and Ny depending only on the given
constants such that

§T(6) = E{y € T'|d(yp,p) < 6} < No.

Proof. Let F be the fundamental domain of I': F = {z € M |d(p,z) < d(yp,z) for all y € T}.
For a § > 0, we put N = f{I'(6), I'(6) = {m1,...,ywv}and gi =711, (1<i<N). It
follows from d(p, gip) < 16 that

[4
|Jgi(F)C B,(¢6+ D), (1<€<N),

i=1
and hence by Bishop’s volume comparison theorem
(12.3) fvg < £vol(M) < bi(€6 + D),

where bg(r) denotes the volume of an r-ball in the n-dimensional complete, simply con-
nected space of constant curvature —k?. Hence if we put Ny = bi(2D)/vy, § = D/N, for
instance, we have the required estimate. [

Now by a result due to Gromov [G5], I' can be generated by those -y; such that d(p, vip) <
2D and the relations are of form v;v;77! = 1. Hence to prove the theorem, it suffices to
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evaluate §I'(2D). Let {z;} be a maximal subset of {yp |y € I'(2D)} such that d(zj,zx) > §
for j # k. Let K be the number of {z;}. By the Bishop and Gromov volume comparison
theorem [G5),

vol B,(2D + 6/2) < be(2D + 6/2)

K< —IB,62) = &(/2
This yields that
be(2D + §/2)
(12.4) fT(2D) < KYr(8) < NOW-

0O

For almost nonnegative Ricci curvature, Wei gave an estimte for growth of fundamental
groups by using the idea of Theorem 12.1.

Corollary 12.5([We]). Given n and D,vo > 0 there exists a positive number ¢ =
€n(D, vg) such that if a closed n-manifold M satisfies

Riccipy > —€, diam(M) < D, vol(M) 2 vy,
then my(M) has polynomial growth of order < n.

Proof. Let M satisfy the bounds above for € > 0. By (12.4), we can take generators
Y1y---y7L of I' = w1 (M) such that d(y;p,p) £ 2D, where L is bounded by a uniform
constant. Let g(s) be the number of words in T" of length < s with respect to 1,...,7L.
Similarly to (12.3), we have

(12.6) g(8)vg < b(2sD + D).

If ¢(s) is not of polynomial growth of order < n for any sufficienlty small ¢, there exists a
sequence $; — oo such that g(s;) > ts;. Since there are only finitely many possibilities for
the isomorphism class of I' (Theorem 12.1), one can take s; independent of M. On the other
hand, by (12.6) for any large s we can find a small € > 0 such that g(s) < constn p o, ™.
This is a contradiction. 0O

For almost nonnegative sectional curvature, by using Theorem 8.1, we have

Corollary 12.7 ([FY2]). Given n and D,vy > 0, there exists a positive number € =
en(D,vp) such that if a closed n-manifold M satisfies that

Ky > —¢, diam(M) < D, vol(M) > vy,
then m (M) contains a free abelian subgroup A of rank < n such that [ (M) : A] < c,.
Proof. Suppose the theorem does not hold. Then we would have a sequence of closed

n-manifolds M; with Ky, > —¢; — 0, VOlAgi_> vp, diam(M;) < D, and that T'; = m(M;)
does not satisfy the conclusion. For p; in M;, the universal cover of M;, we may assume
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as in the proof of Theorem 8.1 that (ﬁ,rg,p;) converges to (R* x Y, G, q) with respect to
the pointed equivariant Hausdorff distance, where Y is compact. By a result of Cheeger
[C], there exists a positive number § = 6,(D, vo) such that I';(§) = {1}, which implies that
G, is trivial, and hence G is discrete. By Assertion 8.3, G/Gy contains a finite index, free
abelian subgroup of rank < k, and by Theorem 2.13, I'; is isomorphic to G for sufficiently
large 7, a contradiction. O

Remark 12.8. In Corollary 12.5, it follows from the polynomial growth theorem [G4] that
m1(M) is almost nilpotent. Remark that for any nilmanifold N" which is not a torus,
71(N) has polynomial growth of order > n (See [Mi], [Wo2]). Probably, the conclusion of
Corollary 12.7 should hold under the assumption of Corollary 12.5.

For a (topological) splitting property of a finite cover of an almost nonnegatively curved
manifold with a lower volume bound, see [SW], [Wu], [Ca).

§13 Concluding Remarks

First we remark that the main methods in our argument was both Splitting Theorem 3.8
and Fibration Theorem 4.1. We have a generalization of Theorem 4.1 to Alexandrov spaces
([Y3],see also [Wi]). The resulting map in this case is an almost Lipschitz submersion, which
is not not known to be a fibre bundle yet. However it is sufficient for generalizations of
Theorem A(b) and the results for fundamental groups, Theorems B and C, to Alexandrov
spaces (See [Y3]).

A main problem still remainning would be to extend the results to manifolds with almost
nonnegative Ricci curvature. Thus we are led to

Conjecture 13.1 ([FY2]). Let (X, p) be the pointed Hausdorff limit of a sequence (M;, p;)
of complete n-manifolds with Riccipg, > —¢; — 0. Then the splitting theorem holds for X.

For the fibration theorem, Anderson’s theorem 6.6 shows that it does not hold for
dim N < dim M. However the equality case dim N = dim M is open:
Conjecture 13.2 ([FY2]). There exists a positive number € = €, (o) such that if the Haus-
dorff distance between complete n-manifolds M and N with

Ricciy 2 —(n—1), |Kn|<1, inj(N)2po

is less than €, then M and N has the same topological type.

By Perelman’s recent result [Pr2}, the conjecture above would be true up to homotopy
if one can prove the following volume convergence:
Conjecture 13.3. Under the same situation as in Conjecture 13.2, for any p € M

vol B, (r, M)

vol By(r, N) — Y <rle)
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where ¢ € N is a point Hausdorff close to p and lim.—¢ 7(€) = 0.

Let us assume that a sequence of n-dimensional complete Riemannian manifolds M;
converges to an n-dimensional Riemannian manifold N. Then the lower semicontituity of
volume

lim inf vol(M;) > vol(N)

does not hold except for n = 1, unless no curvature assumptions are made, as the following
example shows.

Example 13.4. Let L C R? be as in Example 2.3 (2). For each positive integer k, we
divide each of the four edges of S = LN [0,1]? into small intervals of length 6§ = 27*. Let
Sk C R? be the tree made by joining all pairs of such partition points by segments. Then
we can consider Sj as a tree on the flat torus T2 = R?/Z?. For € > 0 much smaller than
8, let Mi(e) denote the boundary of the e-neighborhood of Si in 7% = T2 x S!. After
carrying out a smoothing procedure for M;(¢€), we obtain a smooth hypersurface in T3
denoted also M (€) such that it converges to T? with respect to the Hausdorff distance as
both & and € € 2~ converges to zero. Obviously, the area of Mi(e) converges to zero.

The following conjecture would be affirmative if one can settle Conjectures 13.1 and
13.3.

Conjecture 13.5(Gromov). If Riccidiam? > —e,, then the fundamental group is almost
nilpotent.

For some refinements of the above conjecture, see [FY2].
The following is closely related with the Chern conjecture that every abelian subgroup
of the fundamental group of a closed manifold with positive sectional curvature is cyclic.

Conjecture 13.6. There exists a positive number ¢, such that if a closed n-manifold M has
positive sectional curvature, then 7 (M) contains a cyclic subgroup S such that [m (M) :
S] < ¢n. Thus the fundamental groups of positively curved manifolds would be essentially
cyclic.

The following is a sort of a gap theorem conjecture.

Conjecture 13.7. There exists a positive number ¢, such that if M™ is of €,-nonnegaive
curvature, then it is of almost nonnegative curvature.

Tha gap theorems for almost flat manifolds and almost nonpositively curved manifolds
were proved in [G1] and [FY1] respectively.

So far only few results other than =, or b are known for topology of closed manifolds
of nonnegative curvature except for Gromov’s Betti number theorem [G3], several sphere
theorems or related results.

Question 13.8. What can one say about ;, (¢ > 1) for nonnegatively curved manifolds ?

See [GH] for related topics.
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In this article, we considered almost nonnegative sectional or Ricci curvature. For posi-
tive scalar curvature, some topological obstruction is known ([Lc], [GL], [SY]). A question
related with our work is

Question 13.9. What can one say about convergence of metrics of almost nonnegative
scalar curvature on some closed manifold M ? (For instance M = T"). This would be
more realistic if one assumes the geometirc bounds, |K| < 1, diam < D, vol > vy, for
instance.
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