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§O Introduction

In this artic1e, we survey some results, mainly those of [Y2], [FY2], on almost nonneg­
atively curved manifolds.

Dur concern is the topology of manifolds with almost nonnegative curvature. First
recall what the topological characteristies of nonnegative curvature are. These are the first
Betti number and fundamental groups at present. In fact, we know the following results
on these topological invariant of nonnegatively Rieci-curved manifolds. Throughout the
paper, M is a c10sed n-dimensional Riemannian manifolds unless otherwise stated. We
denote by RiceiM the Rieci curvature of M.

A c1assical result by Bochner ia stated as

Theorem 0.1 ([BY]). Suppose RicciM 2:: O. Then the first Betti number b1 (M) =
rank H1(M, Q) is less than or equal to n, where b} (M) = n if and only iE M is isometrie
to a Rat torus.

In [CGI2], Cheeger and Gromoll generalized truB result as folIows.

Theorem 0.2 ([CG12]). H RicciM 2:: 0, then 11"} (M) contains a finite index free abelian
subgroup oE rank ~ n.

There still exists a uniform bound on the first Betti number due to Gromov, which gen­
eralizes Bocbner's result, even if one allows M to have negative Ried curvature somewhere:

Theorem 0.3 ([G5]). H the diameter and curvature oE M satisfy Ricci M diam(M)2 >
-D2, then b1(M) ~ (n - 1) + C~.

In particular, there exists a positive number €n such that if llicciM diam(M)2 > -fn,

tben b1 (M) is stillless tban or equal to n.

At this stage, this is the only result known for topology of manifold whose Ricci curvature
is bounded below by a negative constant. Gromov proposed the following conjecture in
[G5]. .

Conjecture 0.4 (Gromov). There exists a positive number f n such that if RicciM diam(M)2 >
-fn and if b1(M) = n, then M has the topological type of a torus.

Unfortunately, this eonjecture is still too difficult to attack it. Dur object here is the
study of manifolds M with almost nonnegative sectional eurvature in tbe sense:

KM diam(M)2 > -f

for a small positive number €. More precisely, if M satisfies tbe above inequality, we say
that M is of f-nonnegative curvature. We also say that a c10sed manifold M is of almost
nonnegative curvature if M admits a metric of f-nonnegative curvature for each f. For
instance, the product of 52 and a nilrnanifold is of almost nonnegative, and a circ1e bundle
over an almost nonnegatively curved manifold is also of almost nonnegative. (See Theorem
2.8 for a more general example).

Another motivation to our work is the following almost Hat manifold theorem due to
Gromov with a modification by Ruh.
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Theorem 0.5 ([Gl],[Ru]). There exists a positive number f n such tbat if

then M is diifeomorphic to an inEranilmanifold.

Some of main results discussed in this artide are stated as follows.

Theorem A ([Y2]). There exists a positive number €n such that

(a) iE M is oE fn-nonnegative curvaure, tben a finite cover oE M nbers over a b1 (M)­
dimensional torus.
(b) In tbe maximal case b1 (M) = n, M is diffeomorpmc to a torus.

Next we describe the results on the fudamental grOUp8 of manifolds of almost nonneg­
ative curvaure, obtained by the joint worles with Kenji Fukaya ([FY2,3]).

A group is called almost nilpotent (abelian, solvable) if it contains a nilpotent (abelian,
solvable) subgroup of finite index. Let A be a solvable group. The length 01 polycyclicity
..c(A) of A is defined as the smallest integer s for which A admits a filtration:

A = Ao :> Al :> ... :> All = {I},

such that each Ai/Ai+1 is cyclic.

Theorem B ([FY2]). There exist positive numbers f n and cn sucb tbat if M is oE f n ­

nonnegative curvature, then iT1 (M) is almost nilpotent and contains a solvable subgroup
A satisfying

(1)

(2)
[iT1 (M) : A] < Cn ,

..c(A) ~ n.

This extends Theorem 0.5 in the iT1-level, and settles a conjecture in [G2].
A finite index subgroup oI iT1 (M) constructed in Theorem B can be generated by n

elements and has the degree of nilpotency ~ n. However we have no uniform bounds on
the index of the nilpotent subgroup in terms of dimension n, although this seems to be
possible. The theorem says that we have such a umfonn bound for a solvable subgroup. We
remark that Theorem B is still new even for nonnegatively curved manifolds (See Remark
1.3).

A significance of the study of almost nonnegatively curved manifold is in the simple fact
that a manifold collapses to a point while keeping a lower curvature bound, say KM ;;::: -1,
if and only if it is of almost nonnegative. As we see later, in the general situation that
a manifold collapses to a lower dimensional space under a lower curvature bound, an
"almost nonnegatively curved space" appears as fibre of some fibration (See Theorem 4.1).
Theorems A and B actually hold for such a fibre.

The proof of Theorem B makes it possible to genaralize it to a dass of manifolds with
a lower curvature bound.
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Theorem C ([FY3]). Given n and D > 0, there exist only finitely many diserete groups
r1,... ,rk, which are finitely represented, such that if an n-dimensional manifold M sat­
isfies KM diam(M)2 > - D 2, then there exists an exaet sequenee

1 --J. A --+ 1Tl (M) --+ r. --+ 1,

for some 1 ~ I < k, where A is an abnost nilpotent group satisfying the eonc1usion of
Theorem B.

In the eRBe D = f n , r. should be trivial by Theorem B. Theorem C says the set
of all isomorphism classes of fundamental groups of manifolds with fixed lower seetional
eurvature and upper diameter bounds is finite modulo alm08t nilpotent subgroups. In a
noneollapsing ease, M. Anderson [Al] proved the finiteness of the set of all isomorphism
classes of fundamental groups of manifolds witb fiexd lower bounds on Rieci eurvature and
volume and an upper diameter bound (Theorem 12.1).

Our diseussion using Hausdorff eonvergenee provides sorne new results even for non­
negatively eurved manifolds (See Seetion 8), and one will recognize almost nonnegatively
eurved manifolds as natural objeets of study.

The organization of this article is as follows.
In Seetion 1, we reeall two basie methods in the study of nonnegative llieci eurvature,

tbe Bochner technique and the Cheeger and Gromoll .splitting theorem. Outlines of the
proofs of Theorems 0.1, 0.2 are given there.

Dur basic argument is the Hausdorff eonvergenee introdueed by Gromov in [G5]. We
reeall the fundamental properties of this notion in Seetion 2. We give sorne examples
of Hausdorff convergenee and provide some basie facts in the pointed equivariant Haus­
dorff convergence, whieh we need later in the study of the first Homology classes and the
fundamental groups of almost nonnegatively curved manifolds.

In Seetion 3, we diseuss Alexandrov spaces, whieh oeeur as the Hausdorff limit of man­
ifolds with a lower seetional curvature bound. We give a proof of the splitting theorem
for Alexandrov spaees with nonnegative eurvature, which is one of our basic tools. As an
applieation, we provide the Lie group property of the isometry group of an Alexandrov
space, proved in [FY3].

In Seetion 4, we diseuss the fibration theorem, whieh is our another basic too!. We give
a proof of this theorem along tbe line of [Y3], and diseuss the properties of fibre of the
fibration.

The proof of Theorem A is given in Section 5. The fibre bundle version of Theorem
A was proved in [Y2]. Here we mainly prove the ease when M is almost nonnegatively
eurved.

In Section 6, we diseuss almost nonnegative llicei curvature under the stronger assump­
tion IKI ~ 1. Under the additional assumption, one ean apply the Boehner technique.

For the proof of Theorem B, we generalize the Bieberbach theorem in Section 7, and
the solvability part of Theorem B is proved in Seetion 8.

In the proof of the nilpoteney part of Theorem B, we need the notion of eovering space
along fibre introdueed in (FY1]. After eonsidering the three-dimensional case in Seetion 9
as an introduction, we give an outline of the proof of the nilpoteney part in Section 10.
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Theorem B is extended in Seetion 11 to a generalized Margulis' lemma, from whieh
Theorem C follows.

In Seetion 12, we eonsider the special ease when manifolds have a lower volume bound.
In this ease the strueture of manifolds is similar to that of nonnegatively eurved manifolds.

In the final Seetion 13, we provide same eonjeetures and related arguments.

§1 Basic Methods in Nonnegative Curvature

Before proceeding to the study of almost nonnegative curvature, we reca1l basic methods
on the study of nonnegative curvature, and give outlines of the proofs of Theorems 0.1 and
0.2.

There are two basic methods in the study of topological strueture of closed manifolds
with nonnegative Rieci curvature. One is the Bochner method which is analytic, and the
other is the Cheeger and Gromoll method which is more geometrie.

First we reeall the Boehner method. Let Wl, ••• , Wb t be harmonie I-forms on a closed
Riemannian manifold M forming a basis of the first de Rham cohomology. Then the
Albanese map A : M -+ Tbt ia defined by

A(x) = ({ Wl, ••• , { Wb') ,

where p E M is fixed and

Rbt
Th=-:-~ ------:--------:-

{(J'YWI, ... ,J"'fWb 1 ) I "y E 1T1(M)} '.

The method is based on the following Weitzenböck formula.

Theorem 1.1. For every I-form on M we have

The proof of Theorem 0.1 is as follows: H the Rieci euvature of M is nonnegative and
if W is harmonie, the above formula implies

Henee IDwj =0 and W must be parallel. Thus we have b1 = b1(M; Q) ~ n and the
Albanese map A : M -+ Tbt is a Riemannian submersion. In the maximal ease b1 = n
therefore, M is isometrie to a Hat torus.

Next we recall the Cheeger Gromoll method, which is based on the following splitting
theorem.
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Theorem 1.2 ([T],[CGI2]). Let N be a eomplete manifold with nonnegative Ricei CUT­

vature, and suppose tbat it contains a line. Tben N is isometrie to a product No x R.

Now let M be a closed manifold of normegative Ried curvature. By Theorem 1.2 M
is isometrie to a product Mo X Rio, where we may assume that Mo is compact. Since r,
the fundamental group of M, preserves the splitting, we have a homomorphism cp : r ~
Isom{Rj;), and hence an exact sequence

1~ K ~ r ---+ <p{r) ---+ 1,

where K ia the kernel of cp. Note that K is finite. By the Bieberbach theorem (cf.[Wo1]),
cp(r) contains a finite index abelian suhgroup. Thus r must he almost abelian. (See
Lemma 7.2). This complets the proof of Thorem 0.2.

Remark 1.3. Theorem 0.2 grasps only the nontorsion part of the fundamental group. Hence
as a lense space 5 3 /Z p shows, there is no bound on the index of the free abelian subgroup.
However by taking a solvable subgroup A in place of an abelian subgroup, we can have a
uniform bound on the index of A (Theorem B). This will be shown in Section 8 for almost
nonnegatively curved manifolds (See Theorem 8.1).

§2 Hausdorff Convergence

In our argument, we shall use the notion of Hausdorff distance introduced hy Gromov
([G5]) as a basic method. In this section, we present some basic properties related with
the Hausdorff distance. We begin with

Definition 2.1. A (not necessarily continuous) map f : X ~ Y between metric spaces is
called an f -Hau~dorffapproximation if

(I) Id{f{x), f{y)) - d{x, Y)l < f for all x, y EX.
(2) The f-neighbohood of f{X) covers Y.

Then the Hau~dorffdistance dH{X, Y) is defined as the infimum of f such that there exist
f- Hausdorff approximations from X to Y and from Y to X.

The Hausdorff distance actually defines a distance on the set of all compact metrie
spaces. For unbounded spaees, this metric is not useful, hut the notion of pointed Hausdorff
distandee ia effective. For pointed metric spaces (X, p) and (Y, q), the pointed Hausdorff
distance dp,H{{X,P), (Y, q)) is defined as the infimum of f such that there exist f-Hausdorff
approximations f : Bp{l/f, X) ~ B q{l/f + f, Y) and 9 : B q{l/f, Y) ~ Bp{l/t:. + f, X)
between metric halls with f{p) = q and g{q) = p.

Definition 2.2. The dilatation of a Lipschitz map f : X ~ Y is defined aB

dil{f) = sup d(f(x),f{y)).
z#yEX d{x,y)
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We say that f is an f-iJometry if it is a bilipschitz homeomorphism and if Ilog(dil /)1 +
/log(dil /-1)1 < €. Then the Lip~chitz dütance dL(X, Y) between X and Y is defined as
the infimum of f such that there exists an f-isometry between X and Y. By definition,
dL(X, Y) = 00 if there are no bilipschitz homeomorphisms between X and Y.

The pointed Lipschitz distance dp.L((X,p), (Y, q)) is defined as the infimum of € such
that there exist f-isometries / : B p(1/f, X) --+ Y and 9 : B q(1/f, Y) --+ X onto their images
such that f(p) = q, g(q) = p.

Here are sorne simple examples.

Example 2.3. (1) When f -t 0, the product SI(f) X X converges to X with respect to
the Hausdorff distance.
(2) Let L c R 2 be the tree defined by

L = {(x, y) 1 x or y is an integer},

and dis the induced length metric on L. Then (L, fd) converges to the norm space (R2 , 11 11)
with respect to the Hausdorff distance as f --+ 0, where lI(x, y)11 = lxi + lyl.
(3) For an arbitrary Riemannian manifold (M, g) of dimension n and for any p E M,
the scaled metrics ((M,g/f),p) converge to the Hat Euclidean space (Rn,O) as f --+ 0 with
respect to the pointed Lipschitz distance.

Why is the Hausdorff distance useful ? This is because of the Gromov precompactness
theorem.

Theorem 2.4([G5]). Let k be an arbitrary real nwnber and D > O. Tben

(1) Tbe set oI al1 closed n-dimensional Riemannian manifolds M witb RicciM ;:::: k and
diamM < D is relative1y compact witb respect to tbe Hausdorff distance.
(2) Tbe set oI a11 pointed complete n-dimensional Riemanman manifolds (M,p) with
Ricei M ;:::: k is relatively compact witb respect to the pointed Hausdorff distance.

Thus for any sequence Mi with the geometrie bounds in Theorem 2.4 (1) for instance,
a subsequence Mj converges to a compact metrie space X. It is not diffieult to see that
the lmit X is a length space. However, in genaral, it is not even a topologjcal manifold.

Let M be as in Theorem 2.4 (1). Then by tbe Bishop and Gromov volume comparison
theorem ([G5]), we bave a uniform upper bound C(n, k, D)f-n for the number of disjoint
f-balls in M. This is tbe key in the proof of Theorem 2.4. This argument immediately
implies that

(2.5) The Hausdorff dimension, dimH X, of the limit X is less than or equal to n.

Let 8 be a set of geometrie bounds on sorne Riernannian invariants. We say that a
sequenee of Riemannian n-manifolds Mi collap~e~ to X under B if

(1) Mi satisfies B.
(2) limi_oo dH(Mi , X) = O.
(3) dimH X < n.
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A smooth manifold M is ealled to collapse under 8 if it admits a sequenee of eomplete
Riemannian metrics 9i such that (M,9i) collapses to aspace under 8.

Here are some basie questions.

Que~tion 2.6. (1) What cau one say about the singularities of X ?
(2) What ean one say about topological relations between Mi and X ?
(3) Which manifolds collapse under preseribed geometrie bounds 8 ?

In the case when B = {IKI ~ 1, diam ~ D}, Fukaya [F2,3] studied questions (1) and (2).
In this ease the limit X has a nice stratification in the C l ,Q-metrie eategory. Under the
bound B = {IKI ::; I}, Cheeger and Gromov [CGv1,2] and Cheeger, Fukaya and Gromov
[CFG] studied the question (3). Hone assumes only a lower eurvature bound K ;::: -1, we
know that X is an Alexandrov space, which will be discussed in the next seetion.

Next we exhibit an example of eollapsing WIder a lower eurvature bound. Let G be
a compact connected Lie group. Clearly G with bi-invariant metrics collapses to a point
under the lower eurvature bound O. This can be generalized in the following form.

Theorem 2.7 ([Y2]). Let G aet on a compact manifold M, and ganG-invariant metric
on M. Tben M collapses to tbe quotient space (M, 9 )/ Gunder a lower sectional curvature
bound.

For a genaralization of Theorem 2.7, see [PWZ].
To give a specifie example related with the theorem above, let consider the circle action

on the sphere S2n+2 defined as follows: We fix a great hyper sphere S2n+l C B2n+2. Then
let the circle act on each hypersphere parallel to S2n+l aB Hopf fibration. This defines a
smooth circ1e action on S2n+2. By Theorem 2.7, one can find a sequence of metrics on
B2n+l eonverging to the quotient S2n+l /81 , the suspension over the complex projective
space cpn, which is not a topological manifold.(ef.[GP2]).

When a sequenee Mi of Riemannian manifolds converges to one of lower dimenson under
a lower seetional eurvature bound, we cau describe the topological relation between Mi
and the limit (See Theorem 4.1).

In a way similar to Theorem 2.7, we have the following family of almost nonnegatively
curved manifolds.

Theorem 2.8 ([FY2]). Let F t......+ M -+ N be a !ibre bundle witb structure group G, a
compact Lie group, such tbat

(1) N is oE abnost nonnegative curvature,
(2) F bas G-invariant metde oE nonnegative curvature.

Tben M is oi abnost nonnegative curvatue.

Since we need to understand the convergence of isometrie group actions in later sections,
we now present the definition and some properties of the pointed equivariant Hausdorff
distance, which was introdueed by Fukaya [F1].
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Definition 2.9. We say that a tripple (X, r,p) belongs to M eq if every metric ball in
X is relatively compact, p E X and if r is a c10sed subgroup of Isom{X), the group of
isometries of X. For R > 0, we put

f(R) = i'r E r Id(,P,P) < R}.

For (X,f,p),(Y,A,q) E M eq , we say that a tripple (f,ep,tP) represent an f-pointed equi­
variant Hau$dorff approximation from (X, f,p) to (Y, A, q) if

(1) f : Bp(l/e, X) --. B q(l/e + e, Y) is an e-Hausdorff approximation with f(p) = q.
(2) ep : f(l/e) --. A and tP : A(l/e) --. f satisfy the follwing:
(2.1) H 1 E f(l/e) and X" X E Bp (l/e,X), then d(f('X),CP{"'()(fx» < €.

(2.2) H Jl E A(l/e) and X,tP(fL)(X) E Bp (l/e,X), then d(f(t/J(Jl)(X»,fL(fx» < f..

Now the pointed equivariant Hausdorff distance dp.e.H((X, f,p), (Y, A, q» is defiened as the
infunum of f. such that there exist f-pointed equivariant Hausdorff approximations from
(X,r,p) to (Y,A,q) and from (Y,A,q) to (X,f,p).

When the pointed equivariant Hausdorff distance between (X, r, p) and (Y, A, q) is small,
the definition says that the f-acton on X is elose to A-action on Y through the Hausdorff
approximation f. This implies

P ropositioD 2.10 ([F1]). H a sequence (Xi, f i ,pd converges to (Y, A, q) witb respect to
tbe pointed equivariant Hausdorff distance, then tbe quotient space (Xi/ri,fid converges
to (Y/ A, ij) witb respect to the pointed Hausdorff mstance.

Example 2.11. Let "'(i be the isometry of R 3 defined by Fi(X, y, z) = (R(l/i)(x, y), z +
1/i2 ), where R(8) denotes the rotation on the (x, y)-plane Mound the origin with angle 8,
and let ri be the group generated by Ti. Then (R3

, ri, 0) converges to (R3
, 8 1 X R,O).

Note that the limit depends on the choice of reference points. For instance, if we take Pi
-with d(O,Pi) = i as the reference points, then (R3 ,ri,pd converges to (R3 ,R x Z,O).

When spaces converge, one CRD always construct the limit of groups as folIows:

Theorem 2.12([Y2],[FY2]). Let (Xi,ri,pd E M eq and BSswne that (Xi,Pi) converges
to (Y, q) with respect to the pointed Hausdorff distance. Then tbere exists a c10sed sub­
group A of Isom(Y) such tbat for a subsequence (Xi,fi,pi) converges to (Y,A,q) witb
respect to tbe pointed equivariant Hausdorff distance.

Notice that A may be a continuoUB group even if r i are discrete.

Proof. For simplicity, we give the proof in the case when Y is compact. In this case, the
pointed Hausdorff convergence (Xi, Pi) --. (Y, q) coincides with the Hausdorff convergence
Xi --. Y. For each positive integer j, we take a finite set E j C Y satisfying

(1) Ej C Ej+l,
(2) the union UE j is dense in Y.

Let fi : Xi --. Y and 9i : Y --. Xi be ei-Hausdorff approximations such that d(gifix, x) <
2ei for all x E Xi, where ei = dH(Xi , Y) --. 0. We consider the set Ai(j) consisting of all
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elements of the fonn, ..:y = fi 0 , 0 9i restricted to ~i' where , runs over rio Since ~i is
finite, for sufficiently large i relative to j, Ai(j) is a subset of the compact metric space

( ') { I -1 d(<t'x, <t'y) ~ all "r' }r, J = <t': Ei -+ Y 2 ~ d(x, y) ::; 2 lor x, y E LIi ,

equipped with Loo-norm. Thus for each fixed j, passing to a subsequenee, we may assume
that (tbe closure of) Ai(j) eonverges to a compact set A(j) C r,(j) with respeet to the
(classical) Hausdorff distance in ,C(j). Remark that each element of A(j) is an isometrie
imbedding of Ei into Y. By diagonal argument, we have a sequence A(1), A(2), ... such
that for j < k, A(j) is contained in the restrietion A(k)IEr Now one eau define the direct
limit A = limi_oo A(j). Since each element in A, an isometrie imbedding of U~i ioto Y,
extends to an isometry of Y, we cau consider A as a cloaed set of Isom(Y). Furthermore by
the choice of fi and 9i, it ia easy to see that Ais a group. The eonvergence (Xi, ri) -+ (Y, A)
follows from construction. 0

For the proof of Theorem B, we shall first prove tbat the fundamental group of an
almost nonnegatively curved manifold is ahnost solvable. Recall that a solvable group is
made by several extensions of abelian groups. The following result plays an essential role
in finding such extensions (See Section 8).

Theorem 2.13([FY2,3]). Let (Xi, r i ,Pi) converge to (Y, G, q) and G' a Donnal subgroup
oE G, and suppose tbat

(1) GIG' is discrete.
(2) YIG is compact.
(3) Xi is simply eonnected and tbe action oE r i is Iree and properly discontinuous.
(4) Tbere exists a positive number Ra such tbat G' is generated by G'(Ro).

Tben GIG' is finitely represented and tbere exists anormal subgroup r~ oE r i such tbat

(5) (Xi,r~,pd eonverges to (Y,G',q) for a subsequence.
(6) r i /r~ is isomorphie to G/ G' Eor sufIiciently large i.
(7) For every f > 0, r~ cau be generated by rHRa + f) for sufficiently large i.

In the case when G' is the identity component of G, the group f~ construeted above is
called the collapsing part of fi' For instance, in the convergence (R3

, ri,pd -+ (R3
, R x

Z,O) in Example 2.11, the group f~ generated by ,i is the collapsing part. However as the
following example shows, this is not always possible if one does not suppose an assumption
in Theorem 2.13.

Example 2.14. We consider the produet R X (83
, i 90), where 90 is the standard metric

on 8 3
• Let 8 1 C SO(4) be a subgroup freely acting on 8 3

. DeHne an iaometry ,i of X by
'j(x, y) = (x + i- 2 , Bi 2 y), where Bt = e2rr-/=l/t E 8 1

. Let f i be the group generated by
'i. Then one can check that (Xi, ri,Pi) converges to (R4

, Z x R,O). However there is no
sugbroups of fi converging to 0 x R.

The proof of Theorem 2.13 is too long to present here. We just describe ooly the
construction of f~.
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Let R be a large number relative to max{D, Ro}, where D ia the diameter of Y/G. Let
(li, <pi, rPi) represent an fi-pointed equivariant Hausdorff approximation from (Xi, r i, pd
to (Y,G,q), where lirni_oofi = O. Thus <Pi: ri(l/f;) --+ G(l/fi)' Put

Then the required ri ia defined to be the group generated by ri(R).

§3 Alexandrov Spaces and Splitting Theorem

As indicated in the preceeding section, the Hausdorff limit of a sequence of Riemannian
minifolds with a lower sectional curvature bound is an Alexandrov space. The properties
of the limit space is likely to approximate those of manifolds in the sequence. Recently
Burago, Gromov and Perelman [BGP] made an important progress in the geometry of
Alexandrov spaces.

Let X be a locally compact length 8pace. Then locally there exists a rninimizing segment
joining every two points nearby, which is called a minimal geode~ic, or simply a geodeesic.
A geodesie joining x and y in X is denoted by xy. For three point x, y, z EX, we denote by
ß(x, y, z) a geodesie triangle consisting of three geodesie joiIung them. For areal number
k, we use the notation Li(x, y, z) to denote a geodesie triangle ß(x, y, z) in M 2(k), the
simply connected complete surface of constant curvature k, with the same side lengths as
ß(x, y, z) if it exists. We also denote by Lxyz the angle between yx and yz.

Definition 3.1. Under the notation above, X is called an Alexandrov "pace with curvature
~ k if it satis1les the following condition:
(1) For auy point p EX, there exists an open set U containing p such that for every
x, y, z E U and for w on a geodesic yz, we have d(x, z) 2: d(i, tÖ), where tÖ is the point on
the aide yz corresponding to w.

Or equivalently,
(2) For every geodesie 1 and u from p let XlJ and Yt be the points on 1 and u respectively
such that d(p, XlJ) = s, d(p, Yt) = t. Then L,xlJPYt is monotone non-increasing in s and t.

From definition, the angle between the two geodesics 1 and u is defined as the limit:

It is an important property of such spaces ~hat geodesics do not brauch, which immediately
follows from the definition. Notice however that a geodesic may not be extended anymore
at sorne point.

From now on we consider only Alexandrov spaces with curvature bounded from below
and with finite Hausdorff dimension, which will be simply called Alexandrov spaces.
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Example 3.2. (1) A Riemannian manifold with sectional curvature ~ k is an Alexan­
drov space with the same lower curvature bound. More generally, let Mi be a sequence of
complete Riemannian manifolds with KMi ~ ki, !im ki = k and suppose that (Mi,Pi) con­
verges to (X, xo) with respect to the pointed Hausdorff distance. Then X is an Alexandrov
space with curvature ~ k.
(2) Let (X, do) be a length space with diameter::; 'Ir, and consider the Euclidean cone
K(X) = X X [O,oo)/X x 0 over X with the distance:

d«x, 8), (y, t)) = (82 + t 2
- 28t cos do(x, Y))1/2, X, Y E X.

Then K(X) is an Alexandrov space with curvature ~ 0 if and only if (X, da) is an Alexan­
drov space with curvature ~ 1.
(3) Let (X, da) be a length space with diameter::; 'Ir. Then the spherical suspension
S(X) = X X [0, 1r]/X X {O, 1r} with the distance:

cos d«x, s), (y, t)) = COS 8 COS t + sin 8 sin t cos da(x, y),

is an Alexandrov space with curvature ;::: 1 if and only if (X, da) is an Alexandrov space
with curvature ~ 1.

A detailed argument for (2),(3) of the example above is given in [BGP].
A comparison theorem of Toponogov type is still valid in Alexandrov spaces.

Theorem 3.3 ([BGP]). H X is a complete Alexandrov space, the triangle comparison
(1) and angle comparison (2) in Definition 3.1 hold true for arbitrary triangles ~(x, y, z)
and for arbitrary minimal geodesies , and u in X with ,(0) = u(O).

Before proceeding to the splitting theorem, we observe the following elementary

Splitting Principle 3.4. Let X be a complete Alexandrov spaee witb eurvature ;::: _",2,

and , : [-u, u] --+ X a minimal geodesie joining p and q. Let p >- 8 > 0 be given. Tben
for any x E B..,.(8)\(Bp (p) U Bq(p)), we have

Lpxq ;;::: Lpxq > 1r - T",P(8),

where B..,.(8) is tbe 8-neighborhood of" and

T ",I' (8) = const(coth l'i:p sinh 1'i:8)1/2 .

In particular when K.p is suiIiciently small (e.g. K. = 0), T",1J(8) = eonst(8/p)I/2.

Proof. We give a proof for K, = O. The genaral case is similar. Hy the law of eosine, we
have

d(p, q)2 = d(p, x)2 + d(q, x)2 - 2d(p, x )d(q, x) cos Lpxq.

By the assumption x E B..,.(8), we have

d(p, q) > d(p, x) +d(q, x) - 28. ,

The conclusion follows immediately fromd(p,x) ;::: p, d(q,x) ;::: p. 0
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Corollary 3.5. In addition to tbe assumpsion oE 3.4, suppose that X is a Riemannian
manifold. Then tbere exists a open set V6 containinig B...,(I5)\{Bp(IJ) U Bq{p.» such tbat

(1) V6 is düfeomorphic to a product W 6 x [0,1].
(2) V6 is contained in a T(t5)-neigbborbood oE B...,(I5)\(Bp (IJ) U Bq{IJ»,

wbere T(15) = T K,Il,t7(15) witb lim6_oo T( 15) = O.

Proof. Consider the distance function f{ x) = d(x, ""I) to ""I, which is differentiable almost
everywhere. For any x E B...,(I5)\(Bp(IJ) U Bq(IJ»), let y be a point on ""I dosest to x. It
follows from 3.4 that

(3.6) ILpxy - 1r/21 < T( 15), ILqxy - 1r /21 < T(15).

Let us consider a Cl-approximation dp of the distance function dp ( x) = d(p, x):

- 1 1dp(x) = lB ( ) d(x,y)dy.
vo p f BI'(t)

By (3.6), the gradients of f and dp are almost parpendicular, and the integral curve of
dp is contained in T(t5)-neighborhood of B...,(I5)\(Bp (IJ) U Bq(IJ)). Let W6 be the set of
all intersections of such integral curves of tip with the level ti;l (IJ). Then the required

diffeomorphism W6 x [0,1] -+ V6 can be defined by using the integral curves of dp • 0

Remark 3.7. By a recent work by Perelman {PrI], one can obtain a topological version of
Corollary 3.5 for an Alexandrov space..

In the special case when K. = 0 and (1 = 00, we have the following result, a genaralization
of Theorem 1.2, which will play an essential role in our argument.

Splitting Theorem 3.8 ([GP3],[Y2]). Let X be a complete Alexandrov space witb
eurvature ~ O. H X eontains a line, tben it is isometrie to a product X o x R.

Proof. Let i be a line in X. We say that another line f' is bia.5ymptotic to f if and only if
sup d(f(t), i') < 00 and sup d(f'(t), i) < 00. Applying Splitting Principle 3.4 to p = i((0)
and q = i( -00), we have

(3.9) At each point x EX, there is a unique line i x biasymmptotic to f with ix(O) = x.

Let f = Jl be the Busemann function associated with the ray il[O, 00):

f(x) = lim s - d(x, f(s». ~',
/J-OO

The line fz; is characterized by the equation:

(3.10)

Next we show that

f(iz;(t» = t + f(x).
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(3.11) The level sets of I are totally geodesie.

We prove that La = 1-1 (0) is totally geodesie. Let r be a point on a minimal geodesie
joining two points p, q E La. Put X a = l(s)," Ya = f( -s) for large s > O. Hy the definition
of I,

(3.12)

where lima_ oo Da = O. Hy Theorem 3.3, d(r, xa ) > d(f, x.), where ;: is the point on
pq C l.(p, q, x,,) corresponding to r. It is easily verified from (3.12) that Id(x a , r) - sI < 0a,

and hence d(r,x a) > s - Da' Similarly, we have d(r,Ya) > 8 - Da' On the other hand,
d(r, xa ) +d(r, V.) - 28 = Da since l is a line. It follows that Id(r, x.) - si < Da, which implies
r E La. ThuB La is totally geodesie.

Now we consider the following situation: Let two lines f I and f 2 biasymptotic to f
intersect two level sets LI and L 2 of I at Xi and Yi, (i = 1,2) where Xi = EI nLi, Yi = f2nLi.
Put a = d(L I , L2 ), bi = d(Xi' Yd c = d(XI' Y2)' To complete the proof of Theorem 3.4, it
suffices to prove

(3.13) bl = ~ and c2 = a 2 + b~.

Let us assume I(L I ) < I(L2 ) and prove bl = ~. Let z. be the intersection of segment
ylfI (s) with L 2 for large 8 > O. Then Theorem 3.3 applied to ß(XI, YI, EI (8) implies that
~ = lima _ CXl d(za, Y2) ~ bl . Similarly, bl ~ ~. To prove the second half, let X2 be the point
on the comparison triangle ~(XbYb EI (8» corresponding to X2, and put da = d(X2' flI)'
Since lim.s_CXl da = (a2 + b~)1/2, Theorem 3.3 implies that d( X2 , YI) ~ (a2 + b~)1/2. The
opposite inequality d(X2' YI) ~ (a2 + b~)1/2 is immediate. 0

A system of pairs of points (pi, qi)~1 is called an (m, 6)."trainer at p in an Alexandrov
space X if it satisfies

(1)

(2)

Remark that when 6 is small, the condition (1) above shows that the segments PiP and
pqi form an almost minimizing broken geodesie, and the condition (2) shows that those
m broken geodesics are independent in a certain sense. We note that the existence of
some independent lines imposes a strong restrietion on the space in nonnegative curvature
(Theorem 3.8). This is also the case if there exists an (m, 6)-strainer for a small6. In fact
the following result can be proved by essentially using Spritting Principle 3.4.

Theorem 3.14 ([BGP). Let X be an Alexandrov space. Tben

(1) Tbe Hausdorff dimension oE X is an integer, say n.
(2) Tbere exists a positive number 6 = 6n such tbat tbe set X6 oE an (n, 6) strained points
in X is open and dense in X.
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(3) Each point in X6 has a small neighborhood which is T(6)-isometric to an open neigh­
borhood in Rn, witb T(6) = 7 n(6), lim6_0 T(6) = 0.

In the recent Russian version [BGP], they proved that the complement of X 6 has at
least Hausdorff codimension 2. See also [OS] about this topic and C1-differentiability (in
a weak sense) of X o.

The following result is elosely related with Theorem 3.14.

Theorem 3.15 ([FY2,3]). Let X be an Alexandrov space with curvature bounded below.
Then for any Po E X and for any Ti --+ 00, tbere exists a sequence Pi converging to Po such
that for a subsequence ((X,rid),pd converges to (Rn,O), where n is the dimension of X.

Proof. We may assume that ((X, rid), Po) converges to (Yo, Yo). Since Yo has curvature
2:: 0, by Spritting Theorem 3.8 Yo is isometrie to a produet RI: X L, where L does not
eontain a line. Let 0i denote the pointed Hausdorff distanee between ((X, rid),PO) and
(Yo, Yo). Take fi -+ °such that

Put Yo = (0, zo) E °x L, and let Yi E °x L and qi E (X, ri d) be BUch that deO, Yd = firi
and qi is Hausdorff elose to Yi. Let Pi be the midpoint of a geodesie joining Po and qi, and
Xi a point in R I: X L Hausdorff elose to Pi. Note that

(1) dx(Po, Pi) -+ 0,
(2) ridx(]Jo, pd -+ 00,

(3) dH(Bpi(firi,(X,rid)),Bzi(firi,RI: xL)) -+ 0.

We ehange the referenee point to Pi. For a subsequenee we may assume that ((x, rid),Pi)
eonverges to (Y1 , Yl). Under this convergence, the geodesie ]Joqi converges to a line l.
There exist also k-independent lines in Yl perpendieular to i comming from the RI:-factor
of Yo. Thus by the spritting theorem again, Y1 is isometrie to a produet R 1:+1 X LI. H LI
is a point, then Pi are required ones. Otherwise, after repeating a similar argwnent finitely
many times, one ean get required points Pi. 0

Finally we diseuss the isometry group of an Alexandrov spaee.

Theorem 3.16([FY3]). Let X be an Alexandrov space. Then Isom(X), the group of
isometries oE X is a Lie group.

Example 3.17. Let X be a union of infinitely many cireles Si with length I/i such that
there is the only point P at which any two of Si have intersection. Then Isom(X) f'V IIZ2 ,

which is totally diseonnected hut not diserete. Hence it is not a Lie group. Notice that X
has curvature -00 at p.

In the proof of Theorem 3.16, we essentially use the following result:
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Theorem 3.18([Gl),[Yb]). Let G be a topological group, and suppose that there exists
a neighborhood U C G oE the identity such that there exist no non-trivial subgroups
contained in U. Then G is a Lie group.

Proolol Theorem 3.16. Ta avoid a technical complexity, we just give the proof for the
special case when X is a Riemannian manifold. (Of course, this case is known as Myers­
Steenrod's Theorem ([MS]). Then the essential point in the proof in the general case will
become clear.

Suppose X is a Riemanman manifold and that Isom(X) is not a Lie group. For B =
Bp (l, X), by Theorem 3.18, we can take a sequence Gi of closed subgroup of G such that
if we put

ai = sup{ag(x,X) Ig E Gi,X E B},

then limi_oo ai - 0, where ag(x, X) = d(gx, x). Take Pi E Bi and gi E Gi such that
ai = agi(pd. Since X is a Riemannian manifold,

(3.19) ((X, (l/add),pi) coverges to (R", 0) with respect to the pointed Hausdorff dis­
tance, where n is the dimension of X.

By Theorem 2.12, we may assume that ((X, (l/ai)d), Gi,Pi) converges to (R", G, 0) with
respect to the pointed equivariant Hausdorff distance. Remark that G is nontrivial and
compact. It is now easy to choose h E G and Yo ER" such that

(1) ah(yo,R") 2: 2,
(2) if Yi is a point in (X, (1/6i)d) converging to Yo, then Yi is contained in Bi.

Let hi be an element of Gi converging to h under the convergence ((X, (l/ai)d), Gi,pd ---+

(R", G, 0). Then ahi (Yi' X) > oi(2 - od > ai for a sufficiently large i, where limoi = o.
This is a contradiction. 0

For an Alexandrov space X, (3.19) does not hold. Hence we need to use Theorem 3.12 to
take points qi near Pi such that ((X, (l/ai)d), Gi, qi) converges to (R", G, 0). Remark that
in this case, the limit group G might be trivial. If G is nontrivial, the proof above would
cause a contradiction. H G is trivial, then one can think of Gi like a "smali subgroup"
of Isom(X, (l/add) and repeat the above argument. Because of the Hausdorff closeness
between (X, (l/ai)d), qi) and (R", 0), if one change the reference point within some ball
of fixed size around qi, and if one rescale the metric of (X, (l/tSdd), it would converge to
(R",O). Thus a modification of the above proof would work to conclude the proof in the
general case.

§4 Fibration Theorem

We call a C1-map f : M ---+ N to be an f-Riemannian JubmerJion if

I
ldf(~)1 _ 11 < f-

Iel '
for all tangent vectors eorthogonal to the fibers.

In this section, we give the proof of the following theorem.
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Theorem 4.1([y2,3]). Given n,Jl > 0, there exists a positive number € = fn(Jl) satisfying
the following: Let M and N be complete manifolds with

(1) KM ~ -1, KN ~ -1,
(2) dimN = n, inj(N) 2: Jl.

H tbe Hausdorff distance between M and N is less tban f, then tbere exists a locally trivial
fibre bundle I : M -J> N such that

(3) I is a T( f)-Riemannian submersion,
(4) ! is a T( E)-Hausdorff approximation.

where T( E) = Tn,1J (f) witb limt_o T( f) = O.

For simplicity, we assume IKN I ~ 1 in the proof below. The general case is proved in
[Y3] (See also Remark 4.21).

Let u be a positive number such that f < u -< min{I, Jl}. Both f and u will be
determined in the final step. Let h : R -J> [0.1] be a smooth cut off function such that

(4.2)

h(t)=l on (-oo,u/10], h(t)=O on [u,oo),

h1
( t) = -1/u on [2a / 10, 8a /10] ,

- l/a ~ h'(t) ~ 0, Ih"(t)1 < 100/a2
•

Let L 2(N) be the space of all L 2-fuctions on N with the norm normalized as

where b(a) is the volume of au-ball in Rn. Define a smooth map IN : N -J> L 2(N) by

IN(P)(X) = h(d(p, x)), (x E N).

Let t.p : N -J> M and ,p : M -J> N be f-Hausdorff approximations such that d( ,pt.px, x) < 2f

and d( t.pVJx, x) < 2e, where we mayassume that t.p ia measurable. We put

where

!M(p)(X) = h(d(p,t.p(x))), (x E N).

- 1 1d(p,t.p(x)) = IB ( ( )) d(p, y) dy.
vo t t.p X B(Ip(z»

Then IM : M -J> L2(N) is a Cl-map. We need this averaging since there is no lower bound
for injectivity radius of M. The derivatrives of both maps are given by

(4.3)
dIN(€)(x) = h'(d(p,x))€(dz ), €E UpN,

d!M(€)(X) = h'(d(q,t.p(x))€(dlp(z)), eE UqM,
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(4.4) II/N(,p(P)) - IM(p)1I < const f,

for every P E M.
From now on, Cl ,C2, ..• denote positive constants depending only on n and p.. We denote

by UpN the set of all unit vectors at p E N.
Since N has bounded geometry, it is straightfoward with (4.2), (4.3) to show

Lemma 4.5. IN is a smooth imbedding whose derivative is weil controlled:

(1) For every eE UpN,
Cl < IldIN(e)11 < C2'

(2) For every p, q with d(p, q) ::; CF,

<
IIIN(p) - IN(q)11 <

Ca d(p, q) C4'

Next we study the tubular neighborhood of IN(N) in L2(N) and the properties of the
normal projetion. We begin with the following lemma.

Lemma 4.6. For any points p, q E N with d(p, q) ::; CF and lor anye E UpN, let f E UqN
be the parallel translate olealong tbe minimal geodesie from p to q. Then

.. es
le(dJ:) - e(dJ:)1 < -d(p, q),

CF

for every x with CF /10 ::; d(p, x) ::; CF.

Proof. Put v = exp;l q, w = exp;l x, and let tU be the parallel translate of w along the
minimal geodesic from p to q. Since IKNI ::; 1, a standard comparison argument (see [BK])
shows

d(expp(v + w),exPq w) < CF
2 1vl,

d(expp(v +w),expp w) < (1 +a2)jvl.

Hence d(expp w, eXP q w) < (1 + CF
2 )lvl, which implies that the angle between expq-l x and

W is less than const Ivl/a. Thus

IL(e, w) - L(t,exp;-l x)1 < const Ivl/a.

The result follows immediately. 0

Bu using Lemma 4.6, we can control how rapidly the tangent spaces to !N(N) change.
We put
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Lemma 4.7. For every p,q witb d(p,q) ~ u, we bave

Proof. Let 'Y : [O,l] -+ N be a minimal geodesie joining p to q, and put €t = t(t), where
l = d(p, q). Then for each x E B p (2u, N)

Ih(d(q, x)) - h(d(p, x)) - ih'(d(p, x))e(dJ:)1

= ilh'(d(,(t),x))et(dJ:) - h'(d(p,x))~(dx)1 (-: mean value theorem)

~ l2/U 2 (.,' Lemma 4.6),

which implies that

The lemma folIow8 immediately. 0

Now we define the notion of angle between subspa.ces in a Hilbert 8pace H. Let V, W
be closed subspaces of H, and 1Tv : H -+ V and 7rw : H -+ W the orthogonal projections.
Then the angle between V and W is defined by:

sup L(w, 1l"v(w)) if W n V.L = {O}
w#oew

L(V, W) = sup L(v, 1Tw(v)) if V n W.L = {O}
v#oev

1T/2

Obviously L(Vl., Wl.) = L(V, W).

lemma 4.8. For evelJ' p, q witb d(p,'q) ~ u,

otherwise.

Proof. For any ~ E UpN, let t E UqN be as in Lemma 4.6. Then Lemma 4.6 yields

o

Let v be the normal bundle üf fN(N) in L2(N). Für c > 0, we put

v(c) = {(x, u) E v Illull < cl, W(c) = {x +u I(x, u) E v(c)}.
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(4.10)

Lemma 4.9. There exists a positive number K, = cs/u such that W(I\,) provides a tubular
neighborbood of !N(N), that is, x + u f y + v for every (x, u) i= (y, v) in v(I\,).

Proo/. Let x = !N(P), y = !N(q), and suppose the intersection K = Np n N q contains
elements x + u = y +v. First we consider the case d(p, q) < 0'2. Let z E K and w E Nq be
such that (i)d(x,z) = d(x,K), (ii)d(x,w) = d(x, Nq ). Then Lxzw::; L(Np , Nq ), and

IIx - w1l = Ilx - zll sin Lxzw

:::; Ilx - zll sin L(Np , N q )

C7:::; -!Ix - zlld(p, q) (': Lemma 4.8)
u
C7:::; -lIx - zllllx - Yll (.: Lemma 4.5).

Ca U

Lemma 4.7 implies that IL(x - y, N q ) -1r/21 < C6U, and by the choise of w, L(x -w, Nq ) =
1r /2. It follows that I[y - wJl < const O'lIx - Yll. Together with (4.10), this implies that
IIx - zll > c/u, and hence llull > c/u, where c= const.

Next we consider the general case. It follows from the argwnent above that

(4.11) The normal exponential mapping expv : v -Jo L2(N), expV(x, u) = x + u, is non­
singular on v(c/u).

Let KO = c' / u, where the constant c' will be determined later. We suppose that (x, u), (y, v) E
v(l\,o) satisfy x +u = y +v(= z). Let "Y : [0, f] -Jo N be the minimal geodesic joining p to
q, and put c(s) = !N("Y(S)) and define a : [O,f] x [0,1] -Jo L2(N) by

a(s, t) = (1 - t)c(s) + tz.

Since Ilx -Yll < 2Ko, Lemma 4.5 with triangle inequality implies that a(s, t) E W((2C4/Ca +
l)Ko). Hence if c' is sufficiently small, () is contained in W(c/2u). Here we need the
following sublemma due to Katsuda [K].

Sublemma 4.12. There exists a smooth map ä : [0, i] x [0,1] -t v(c/2u) such tbat
expV(&(s,t)) = a(s,t) and &(s,O) = (c(s),O).

In particular we would have &(s, 1) =z, a contradiction to (4.11). Thus the sublemma
will complete the proof of Lemma 4.9.

Proo/ 0/ Sublemma 4.12. Let T be the set of t E [0,1] for which there exists a !ift & :
[O,i] x [O,t] -Jo v(c/2u) of a. Clearly T 3 O. In view of(4.11), T is open. We show that T
is closed. For tI, t2 E T, we have

1I&(B,t1 ) - &(B,t2 )1I:::; 11:lllt1 -t2 1

:::; lId(expV)-llllt) -t2 1

:::; Glt) - t 2 1,
where C is a constant independent of s and t. Therefore if ti E T converges to to, ä ti =
&(., td is a Cauchy sequence in the space of continuous curves in v(c/2u) with Loo-norm.
Thus we have to E T. 0

Now let 1r : v(l\:) ---+ fN(N) be the projection along the tibers of the normal bundle v.
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Lemma 4.13. For every x E W(K)) with 1r(x) = IN(P) and for every unit vector €1.. Np,
we bave

Proof. We put y = x + te for small t > 0 and 1r(y) = IN(q). Let No be the affine space
in L 2(N) of codimension n which is parallel to Np and containing y, and let z and w be
intersections of N q and No with the n-plane 1r(x) +Tp tangent to fN(N) at 1r(x). We then
have in a similar way to (4.10) that

It follows from y - x = W - 1r(x) and smallness of IIz - 1r(y)1I <: t that

lI(1r(y) - 1r(x)) - (y - x)1I ::; IIz- wll
const

::; -llx - 1r(x)III11r(x) - 1r(y) 11 ,
u

and hence

IlIor(y) ~ or(x)11 _ 11 < co;st Ilx - or(x)ll,

lI
or(y) ~ or(x) _ ~II < co:;t Ilx - or(x)ll.

Letting t --+ 0, we obtain the conclusion. 0

Hf« u, IM(M) is contained in W(K} by (4.4) and the map I = INI
0 1r 0 IM : M --+

N is defined. (4.4) also shows that d(lx, 'ljJx) < const f, and hence I is clof-Hausdorff
approximation. To prove that I is a fibration, it sufficea to show

Lemma 4.14. For every P E M and ( E Uf(p)N, let eE UpM be tbe velocity vector of a
minimal geodesic from P to <p(expf(p) u{). Tben we bave

Id!(€) - {I < T(U) + T(e/u).

Remark 4.15. The constant on the right hand side in the above inequality can be expressed
in the form:

However to avoid technical complexity, we will not do such explicit calculation.

For the proof of Lemma 4.14, we need the following triangle companson lemma.
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Lemma 4.16. Let 6(x, y, z) and ß(xjjz) be triangles in M and N respectively such tbat
d(cp(i),x) < cIOe, d(cp(ii),y) < clOe, d(cp(z),z) < cIOe. Suppose tbat u/10 ::; d(x,y) ::; u
and u/10::; d(x,z) ~ u. Tben we bave

ILyxz - Ljjxzl < r(u) + r(e/u).

We assume Lemma 4.16 for a moment and prove Lemm 4.14. For every x with u/10 ~

d(f(p), x) ~ u, let Ti E Uf(p)N and " E UpM be velocity vectors of minimal geodesics from
f(p) to x and from p to cp( x) respectively. Then Lemma 4.16 yields

(4.17)

I t follows that

IL([, ij) - L(~, ,,)1< r(u) + r(e/u).

IIdfM(~) - dfN({)11 2

= ;:) 1.{h'(d(p, <p(x)))((d",(.)) - h'(d(J(p), x))[(d.)}2 dx,

where

Ih'(d(p,cp(x») - h'(d(f(p),x»1 < const f, (-: (4.2»
u

1~(Jlp(x) - {(dx)1 < r(u) + r(f/u), (.: Lemma 4.16).

Thus we have IIdfM(~) - dfN({)11 < r(u) + r(e/u). Lemma 4.13 then implies that

IId7r 0 dfM(~) - dfN({) 11 < r(u) + r(e/u).

Lemma 4.14 follows from Lemma 4.5.

Froo/ 0/ Lemma 4.16. We put .s = d(x, V), t = d(x, z) and s = d(x, fl), l = d(x, z) and
f) = Lyxz, 8 = Lfjxz. From the assumption KM 2:: -1, Toponogov's comparison theorem
implies that

d(y, z)2 < 3
2 +t2 - 2.st cos f) + 0(u4).

Since N has bounded geometry,

ld(fj, z) - (.5"2 +r - 2stcos 8)\ < 0(u4
).

It follows from Id(y, z) - d(y, z)1 < 2ClOe that

(4.18) f) > Ö- r(u) - r(e/u).

Next take the point wEN such that d(y, w) = d(y, x) + d(x, w), d(x, w) = u, and put
w = I.p(w). Let f)* denote the angle Lzxw. Then in the same way as (4.17) we have

(4.19) f)* >7r-8-r(u)-r(f/u),
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and
Lyxw > 1r - r(u) - r(f/U).

The last inequality implies that

jO +0'" -1r1 < r(u) + r(f/u).

The result follows from (4.18) and (4.19). 0

Finally we prove that I is an almost lliemannian submersion.
For any p E M, set

(4.20)

which ean be thought as the set of horizontan direetions. By Lemma 4.14, dip induees a
r-Hausdorff approximation between Hp and sn-l(l) = Uj(p)N, where r = r(u) + r(f/u).
This implies that iff] E UpM satisfies lL('7,Hp)-1r/21 < r, then jL('7,e)-1r/21 < r for all
eE Hp. In view of (4.2), (4.3), we have that Idl(7J)1 < r, and henee f is a r-Riemanman
submersion as required. This eompletes the proof of Theorem 4.1. 0

Remark 4.21. The imbedding technique used here is originally due to Gromov [G5]. Kat­
suda [K] overeame some gaps in [G5,ch.8]. The fibration theorem for jKMI ::; 1 was proved
by Fukaya [F2]. He proved that the fibre is diffeomorphie to an infranilmanifold in that
ease, which generalizes Theorem 0.5. The proof presented here comes from that in [Y3],
where an extension of Theorem 4.1 to Alexandrov spaces is discussed.

Remark 4.22. It is proved in {Y2] that the fibre of f is of r( f)-nonnegative curvature
in same generalized sense, which one cau formulate in terms of the deviation from the
totally geodesicity of the fibers. (Remark that if the fiber is totally geodesic, it is of r( f)­
nonnegative in the usua! sense because of 4.1 (3)). In the following we present a weaker
version of this fact by making use of Splitting Theorem 3.8.

Proposition 4.23. For given m ~ n, Jl > 0 and 0 < p < 1, tbere exists a positive number
f = f m,n,Il(P) satisfying tbe following: Let M and N satisfy tbe assumptions of Theorem
4.1 for Jl and f with dimM = m, and let f : M -+ N be the :libration constructed tbere.
Let F be a :libre of f witb diameter 0F, and d the distance of M restricted to F. Tben we
bave

(1) H1 is a minimal geodesie joining x, y E F with d(x, y) ~ pEF, then tbe angle between
1 and F is less than r( f).
(2) There exists an Alexandrov space X with Donnegative curvature such that

Praof. This is done by contradiction. H the proposition is not true, we would have se­
quences of m-manifolds Mi and n-manifolds Ni with dH(Mi' Nd < fi -+ 0 satisfying the
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assumption in Theorem 4.1 such that the r(fi)-Riemannian Bubmersions fi : Mi -+ Ni
eonstrueted there do not satisfy the eonclusion for sorne p < 1. Namely there exists a
point qi E Ni such that the fibre Fi = f i-

1(qi) satisfies the following.

(1) For BOrne Xi, Yi E Fi with d(Xi' Yd > p8F, the angle between Fi and a minimal geodesie
ii joining Xi and Yi is greater than a positive number 80 independent of i, or
(2) There exists a positive number c such that dH ( (Fi, d/8F, ), X) > c for any Alexandrov
spaee X with nonnegative eurvature.

Put TI = ~1i(O) and let TJh E H rj be such that

where HZj is as in (4.20). Let e= df(TJ)/ldf(TJ)I, and let eE UrjMi be the velocity veetor
of minimal geodesie Ci joining xi to a point Zi with /i(Z.) = exp O'ie, where Ui is a positive
number, fi <: O'i < fl, 8.8 in the proof of Theorem 4.1. Then Lemma 4.14 implies that
L(e,Tlh) < r(fi).

Now we eonsider the sealing of metries 9i = 9Mj/8Fi , hi = 9Nj/8Fj , where 9M" 9Nj are
the original metrics. We denote by di the distance funetion of (Mi, 9i)' Let Wj be the point
on Ci with di(Xi,wd = 1. Let suppose that lirndi(Xi,Yi) = s. Sinee the angle between ii
and Ci is less than 7T /2 - 80 /2, Toponogov's theorem yields that

where c is a positive eonstant depending only on 80 •

For a point Pi E Fi, we may Msume that (Mi, 9i, pd and (Ni, hi, qd eonverges to (X, xo)
and (Y, Yo) respectively. By using inj(Nd ~ {L, one can verify that Y is isometrie to
Rn. Noting that X is a eomplete Alexandrov spaee with eurvatue ~ 0, we see from
Theorem 3.8 that X is isometrie to a produet X o X R k . Notiee that the Lipsehitz maps
fi : (Mi,9j,pi) -+ (Ni, hi, qd also eonverges to a Lipshitz map f : X -+ Y with Lipshitz
constant equal to 1. It is not diffieult to show that k = n and f : X o x Rn -+ Rn is the
projeetion up to translation in Rn (See [FY2] for detail). This shows in partieular that

whieh is a eontradietion. 0

By using Proposition 4.23, one ean prove the following, whieh is useful when studying
the properties of the fibre.

Theorem 4.24([Y2]). Given m ~ n and Jlo' > 0 tbere exists a positive number f' =
fm,n(J-l') satisfying tbe following: Let M and N satisfy tbe assumptions oE Theorem 4.1 for
J-l and f = f n (J-l) with dim M = m, and let f : M -+ N be tbe fibration constructed tbere.
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Let F be a fibre of f with diameter 8F, and d tbe distance of M restricted to F. Suppose
that tbere exists a Riemannian manifold P such that

(1)

(2)

K P 2: -1, inj(P) 2: 1-".

dH(P, (F, d/8F )) < e'.

Then then there exists alocally trivial /ibre bundle fF : (F, d/hF) -... P satisfying

(1) fF is a T(e, e')-Riemannian submersion,
(2) fF is a T( e')-HausdoriI approximation,

where limt,t'_o T(e, e') = 0, limt,_o r(e') = O.

Outline 0/ prooj. Let U be a small neighborhood of F in (M, d/8F). Proposition 4.23
shows that for any p E F, the set Hp of horizontal directions in U (See (4.20)) is almost
parallel to the tangent spaee TpF. Thus an almost Riemannian submersion fu : U -... P,
eonstrueted in Theorem 4.1 induces an almost Riemannian submersion fF : F -... P.

Remark 4.25. One ean iterate Theorem 4.24 as follows: Let E be a fibre of the fibration
fF : (F, d/hF) -... P in Theorem 4.24, and d/6E the distance of E resealed by its diameter.
Then if (E, d/6E ) is Hausdorff elose to a Riemannian manifold Q, then again we have an
almost Riemannian submersion fE : (E, d/6E) -... Q. This procedure is possible as long a.s
the resealed fibre is Hausdorff elose to a lower dimensional Riemannian manifold.

§5 Fibering by the First Betti Number

In this seetion, we shall give a proof of Theorem A.
For ametrie spaee X with r = 7r1 (X), let h : r -... r /[r, r] be the Hurewiez homomor­

phism, and 0 the torsion part of r / [r,r]. Then A = r / h-1 (0) is a free abelian group of
rank b1 = b1(X; Q). We suppose that X has a universal covering 8pace X and eonsider
the abelian covering of X :

x = X/h- 1(O) -Ä X.

For a point p EX, we use the norm 11, I1 = d(,p, p) on A. The notation A(R) is as in
Definition 2.9. The following lemma is due to Gromov [G5].

Lemma 5.1. Suppose X to be compact. Tben for every e > 0, there exists a subgroup
At of A satisfying

(1) At has rank b1 .

(2) II,II?= e for every nontrivial , E At.
(3) There exist generators 11, . .. , 16 1 of A{ such that 11li 11 :::; 2(D + e) for 1 :::; i :::; b},
where D is tbe dia.meter of X.

Proof. Since r is generated by r(2D), A is also generated by A(2D). Remark that ~A(e) <
00. First we take the subgroup Ao generated by linearly independent elements 1'1,'" ,161 E
A(2D). H Ao(e) is trivial, Ao is the required one. If 1 is a nontrivial element in Ao(e), we
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ean find an integer m ~ 2 such that f $ Ih,m 11 :5 2(D +f). Let i, 1 :5 i :5 bl , be such that
,i-eomponent of, is nonzero, and define Al to be the group generated 'I, ... "m, ... "bi

replaeing 'i by ,m. Notice that , is not eontained in Al and that Al satisfies (1) and (3).
By replacing An with Ab we repeat the argument to get A:z such that ~A2(€) :5 ~A(f) - 2.
After repeating this proeedure finitely many times, we get the required A f • 0

Proof of Theorem A(a). We prove Theorem A(a) byeontradietion. Suppose that it does
not hold. Then there would exist a sequenee of closed Riemannian n-manifolds Mi such
that

and that no finite covers of Mi fiber over a bl -dimensional torus. Let M. Ä Mi be the
abelian cover, and Pi E M.. By Theorems 2.4 and 2.12, we mayassurne that (Mi, Ai, Pa)
converges to (X, G, xo) with respeet to the pointed equivariant Hausdorff distanee. Remark
that X is a eomplete Alexandrov spaee with eurvature ~ O. Sinee X is noneompact and
the action of G on X is eoeompact, oue eRD find a line in X. The Splitting Theorem 3.8
then implies that X is isometrie to a produet Y X R k , where Y does not eontain a line.
If Y were noneompact, it would eontain a line by the same reason. Henee Y must be
eompact.

Let Oi = max {VOi' v'fal, where 0i = dp•H ((Mi , pa), (X, xo)). We take the sealing of
the original rnetrie 9Mi: 9i = Oi9Mi' Notiee that inf K gj -+ 0, diamgj -+ 0 and that the
pointed Hausdorff distanee between ((Mi, 9a),Pa) and ((X, Oid), xo) goes to zero as i -+ 00.

Obviously ((X, Oid), xo) eonverges to (Rk , 0). Thus we have

(5.2) ((Mi, 9a),Pa) eonverges to (Rk, 0).

Agam we may assume that (( 'Mi, 9i), Ai, Pi) eonverges to (Rk , H, 0). Sinee H is abelian and
aets on R k transitively, it must be the veetor group R k. We now consider the subgroup
Ai = (A.)l C Ai eonstrueted in Lemma 5.1 for f = 1. We may assume that ((iJi, 9i), Ai,pa)
converges to (Rk, A, 0), where ACH is a free abelian group of rank bl • In partieular we
have obtained

(5.3) bl :5 k.

Next we need to use a pseudogroup technique. For a large positive number R>- k, we
put B(R) = Bo(R, R k) and

L R = B(R) n Zk,

where Zk is the integer lattice of H, and eonsider L R as a pseudogroup of isometrie
imbeddings of B(R) into B(2R). Similarly, we put Bi(R) = Bpi(R, (M., ga)), and for the
eanonieal basis el, ... , el; of Zk, let el ,i, ... ,ek,i be elements in Ai eonverging to el, ... ,ek

respeetively. We consider a pseudogroup Li,R eonsisting of isometrie imbeddings of Bi(R)
iota B i (2R) defined by the following form:

Then one ean show
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(5.4) There exists R and a positive integer IR such that there exists a bijective pseudo
homomorphism tPi : Li,R -4 LR for every i ~ IR. Furthermore, tPi induces the equivariant
Hausdorff convergence: (Bi(R), Li,R) -4 (B(R), LR).

Remak that Mt = Bi(R)/Li,R covers Mi, and that Mt converges to the Hat k-torus
B(R)/L R (.: Theorem 2.9). Fibration Theorem 4.1 then provides an fibering of M· over
the k-torus, a contradiction. This completes the proof of Theorem A(a). 0

In the proof above, we have used the pseudo group L iJR to find the finite cover M·. The
author believes that it can be avoided. Probably, there would exist a subgroup Li C Ai

-- k ksuch that ((Mi, 9i), Li,pd converges to (R ,Z ,0). More generally,

Conjecture 5.5. Let an (free) abelian group Ai freely act on Xi, and SUppOBe that (Xi, Ai, pd
converges to (Y, G, qo) and that Y/G ia compa.ct. Then for a given cocompa.ct Bubgroup
A C G, there exists a subgroup Ai of Ai such that (Xi, Ai,Pi) converges to (Y, A, qo).

When Xi ia simply connected, one can prove that tbe conjecture above ia true by using
an argument similar to the proof of Theorem 2.13.

Remark 5.6. (1) Hone does not &Ssume that Ai is not abelian, then the conjecture above
is false. For instance, consider the three dimensional simply connected nilpotent group:

N=(~ ~ :),
001

with the left invariant metric gf. such that

at the unit element, and the integer laticce r of N. Then ((N,gt),r,e) converges to
(R3

, R 3
, 0). However no subgroups of r converge to Z3 C R 3 under this convergence.

(2) Hone does not assume the compactness of Y /G, then the conjecture above is false.
For instance, consider the convergence (R3

, r i , Pi) ~ (R3
, R x Z, 0) in ExampIe 2.11. Then

00 subgroups of ri converge to Z x Z.

From tbe proof of Theorem A('a), we easily have

Theorem 5.7. Let Mi be a sequen;:. of compact Riemanman n manifolds with inf KMi:

0, diamMi = 1, bl(Md = b}, and Mi tbe universal cover of Mi. Tben for any Pi E Mi,
tbere exists a sequence bi -4 0 such tbat if gi = Ci9Mu

(1) inf K Yi -4 0,

(2) ((Äi,gi),ßd converges to (Rl , 0), where l;::: bl .

Proof. As before, we may assume that (iJi,Pi) and (Mi,Pi) converges to (X x R l
) and

(Y x R k ) respectively, where botb X and Y are compact, and the covering map 7Ti :

Mi ~ AL cames Pi to Pi. In the same way as in (5.2), we can find 6i -4 0 such that for
-- - - l k .gi = OigMi' ((Mi, gd, Pi) and ((Mi, 9i), Pi) converges to (R ,0) and (R ,0) respectIvely.
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By Ascoli's Theorem, 7ri : ((Mi, gi), pI) -+ ((Mi, gl),pl) converges to a Lipschitz map
7r0C) : (Ri,O) -+ (Rk,O). Thus i ~ k, and we already know k ~ bt. 0

Next we shall prove Theorem A(b) by contradiction. Let Mi be a sequence of closed
Riemanman n-manifolds such that

(5.8) K Mi > -Ei -+ 0, dia.m(Md -+ 0, b1(Mi) =n,

hut Mi is not diffeomorphic to a torus. Theorem A(a) implies that Mi is diffeomorphic to
Rn. From (5.3), we see that (~,pd converges to (Rn,O). Thus by Fibation Theorem 4.1,

(5.9) (Mi,Pä) converges to (Rn,O) with respect to the pointed Lipschitz distance.

Lemma 5.10. r i is abelian for a11 sunciently large i.

Proof. Let Pi : r i -+ Ai be the projection, where Ai = r i/ h -1 (n) is as before. Let
Ai = (Adl be a.s in Lemma 5.1 for f = 1. Recall that

Ai has rank n,

(5.11) 11.x11 ;::: 1 for every nontrivial .x E Ai,

there exist genarators A), ... , An of Ai such that II.xill ~ 4.

Take ,j E-Ei1 (Aj ) such that Il,jll = IP·j 11 , where the norm is with respect to Pi E Mi
and Pi E Mi, Suppose that the lemma does not hold. Then we would have a sequence
Ö)'Ö2,"" in [ri,r.] such that 2j ~ Ilöjll ~ 4j.

Now for 0 = (a), ... ,an+l) E (z+)n+l, we cOllsider the norm: 11011 = L Gj. We put
'0 = ,rl ... ,:" Öa "+l E r i. Remark that

(5.12)
11,011 ~ 411011·

1I,~l'b 11 ;::: 1for 0 "f b.

Forr::> 1, we obtain with (5.12)

constn r n+1 '" ~{a E (Z+ )n+l 111 oll ~ r}

~ ~{'O 111 0 11 ~ 4r}

VolBpi (4r + 1/2, Mi)
< -- .
- VolBpi (1/2,Md

In view of (5.9), the right hande side of the inequality above conveges to (8r + l)n.
is a contradiction. 0

This

As a result of tbe lemma above, we see that Mi is a homotopy torus. However it is
known that there exist some exotic tori having different differentiable structures from the
standard oue, and that every homotopy torus can be covered by the standard torus (See
Theorem 5.13 below).

We shall prove that Mi is diffeomorphic to the standard torus for large i. First we
consider the case of higer dimensions n ;::: 5. In this case the structure of the set S(Tn )

of a1l differentiable structures whose underlying n-manifold is homotopoie to T n is weil
understood.
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Theorem 5.13 ([HS],(Wal],[KS]). H n ~ 5, S(T") is finite and has an abelian group
structure.

The identity of S(Tn) corresponds to the standard torus.

It is also known that any covering Tn -+ Tn naturally acta on S(T"), from which we
obtain

Corollary 5.14. Let d" be a positive number that is relative1y prime with the order oE
SeT"). Let M" be a compact differentiable homotopy torus (n ~ 5). Then a dn-fold
covering oE M is diffeomorphic to the standard torus if and only if M is diffeomorpmc to
the standard torus.

Proof of Theorem A(h) for n ~ 5. Let Mi be as In (5.8). Lemma 5.10 implies that
(Mi, r i ,Pi) converges to (Rn, R" ,0). We shall find some subgroup of r i having a controlled
index and not "collapsing".

Since diam(Md -+ 0, we can find a subgroup A1,i C fi such that

(5.15)
[fi : A1 ,i] is apower of d".

1 ~ diam(Mi ) ~ 2.

Passing to a subsequence, we mayassume that (M~,Al,i,pd converges to (R",G1,0),

where GI ia isomerphic to Z k
l EB R n-k1 , where k1 > °by (5.15). Put M1,i = MIA1,i'

Since MI, i converges to the Hat torus T k
l = R" IG), we have a fibration

In particular, we have the decomposition A1,i = H 1 ,i EB f 1,i, where H 1 ,i is isomorphie to
Z k

l and fl,i ia the fundamental group of the fiber Fi that is the eollapsing part of fi. Next
we ehoose a subgroup A2 ,l C rl,i as follows. Let B C Tkl be a eontraetible ball around
the referenee point li (Pi mod Al,i) over whieh Fi is the fiber of li' Let Ui = li-l(B) and
Ui be the component of 1f';l(Ud containing Pi, where 1fi : Mi -+ MI,i is the projeetion.
Notice that 1fi : Ui -+ Ui is a universal cover, and that Fi = 1f;I (Fd is also a universal
cover of Fi.

Sublemma 5.16. There exists a subgroup A2 ,i C rl,i such that

(1) [r1,i: A2 ,i] is a power oE d".
(2) 1 $ diam(FI,ilA2 ,d ::; 2.

Proof. Under the convergence (Mi, pd -+ (R",O), (Fi,Pi) converges to an (n - k1)-plane.
Thus it converges to (R"-k1 , 0) with respect to the pointed Lipschitz distaoce (See Theo­
rem 4.24). The assertion follows from diam(Fi) -+ O. 0

Now we mayassume that (Mi, HI,i EB A2,i,Pi) eonverges to (R", G2 , 0), where G2 is
isomorphie to Z k

l +k, ffi R n-k1-k, and k2 > 0. Repeating the proeedure finitely many
times, we öbtain subgroups HI,i, H 2 ,i, ... , Hi,l of r i such that
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(5.17)

r; = H l ,i ffi··· ffi Hl,i(C rd is a direet sumo

[ri : ril is apower of dn .

(Mi,r;,ßd eonverges to (Rn,A*,O), where A* is isomorphie to zn.

Henee M* = Mi/r; eonverges to the ßat torus Rn / A., and it is diffeomorphie to the
torus. Therefore by Corollary 5.14, Mi is diffeomorphie to a torus. This eompietes the of
Theorem A(b) for n ~ 5. 0

Finally we give the proof of Theorem A(b) for n < 5. Here we consider the metric on Mi
whose diameter is equal to one. We know that Mi converges to a flat torus TA: oi positive
dimension, and has a fibration

where 1rl (Fd CI! zn-A:.
We need some information on the space of diffeomorphisms of a torus.

Theorem 5.18 {[EE],[Wad]). (1) Tbe group oE diifeomorpmsms oE any c10sed ori­
entable surface which is homotopic to the identity is connected.
(2) The group oE P L-homeomorphisms oE an irreducible, suificiently large closed P L-three
manifold M 3 which are bomotopic to tbe identity is connected.

Remark that T 3 is irreducible and sufficiently large.
We begin with the lowest dimension.

Case 1) n = 2. This is trivial.

Case 2) n = 3.

If k ~ 2, Mi is clearly diffeomorphic to T 3
• H k = 1, Fi :: T2 and Mi ean be identified

with the quotient T 2 x [0, l]/g, where 9 : T 2 x °-4 T 2 X 1 is the gluing diffeomorphism.
Sinee ri is abelian, f should be homotopic to the identity. By Theorem 5.18 (1), it is
diffeotopic to the identity, and M is diffeomorphie to T 3 as required.

Case 3) n = 4.

H k ~ 3, Mi is clearly diffeomorphie to a torus. Suppose k = 1. It is now easy to
show that the fibre Fi with metric sealed in such a way diam(Fi) = 1 converges to a
ßat torus Tl. By Theorem 4.24 we have a fibration Ei C-J. Fi -+ Tl. The argument in
Case 2) shows Fi "-J T 3

• Now M is identified with the quotient space T 3 X [0,1]/9, where
9 : T 3

X°-+ T 3
X 1 is the gluing diffeomorphism. Suince r i is abelian, 9 is homotopie to the

identity. It follows from Theorem 5.18 (2) that M is PL-homeomorphic to T4, and hence
by [Mu] it is diffeomorphie to a torus. H k = 2, use the projection T 2 -+ SI X °to the first

factor to get a fibration Ni C-J. Mi Ä SI. We also have a fibration T 2 c..-. Ni~ °X SI.
By the argument in Case 2), we see that Ni is diffeomorphie to T 3

• Thus it is redueed to
the case k = 1:

30



The proof of Theorem A(b) is now eomplete.

By using Theorem 4.24, one can prove Theorem A for the fibre of a fibration as in
Theorem 4.1.

Theorem 5.19([Y2]). Given m ~ n, Ji > 0 there exists a positive nmnber f = fm,n(Ji)
satisfying the following: Let Mm and Nn be complete manifolds with

KM 2: -1, KN 2: -1, inj(N) ~ /-',

dH(M,N) < f.

Let F be a fiber of a fibration as in Theorem 4.1. Then

(a) A finite cover of F fibers over· a b1(F)-dimensional torus.
(b) Hb1(M) = m - n, F is diJfeomorphic to Tm-n.

§6 Bounded Almost Nonnegative Curvature

In this seetion, we eonsider almost nonnegative Rieci eurvature under the stronger
assumption IKI ::; 1. By using the Boehner technique, one ean generalize an argument in
Seetion 1 as folIows.

Theorem 6.1 ([Y1]). Given n and D > 0, there exists a positive number f = fn(D) such
tbat jf M satisnes that

IKMI ::; 1, diam(M)::; D, RieciM > -f,

tben every harmonie I-form on M does not vanish.
In particular, the Albanese map A : M -+ Tbl as in Seetion 1 is a fibre bundle.

Proof. Let w be a harmarne I-form on M. By the Weitzenböck formula 1.1,

1M IDwl 2 + RicciOw, ~w) = o.

Here we eonsider the following norm on I-forms :

IIwll2
= voll M 1M Iwl2 dx.

By assuming IIwll = 1, we have from Gallot and Li's inequalies ([Ga],[Li])

Iwlco ::; eonst IIwll = const.

Thus RieciM > -f yields that

(6.2)
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By using the assumption IKMI ::; 1, we shall prove

(6.3) IDwlco < T(E),

where T( €) = Tn,D( €) with limf_o T( f) = O.
For any p E M, put B = Bo(1, TpM), B' = Bo(1/2, TpM). Let 9 be the metric on B

pulled back by the expoential map expp : B -. M. Sinee the injectivity radius of (B' , g) is
greater than 1/2, it follows from Jost-Karcher ([JK]), there exists a harmonie eoordinate
ball of fixed size eentered at auy point in B' and that the eigen values of the metrie tensor
with respect to this eoordinate have sorne positive uniform bounds from both below and
above on B'. Consider the harmonie fonn w= exp; w on B, and take a funetion f on B
such that df = w. Sinee f11 = DCJ = 0, it follows from the Schauder estimmate (see [GT])
that

IIIB',C2 ,a ::; eonst I/IB,Co.
Since we may 8.8sume that 1/1B,Co ::; const !WIB,CO, we see

IwlB'ICl,a ::; const IwIB,CO
(6.4) ::; const Iwlco

= eonst.

Thus we have proved that IwIM,C1,a ::; const. Now (6.3) follows from (6.2), (6.4) and
dia.m(M) ::; D.

Now we see that w is almost parallel· if f is small. Thus if WI, •.• ,wk are harmanie
1-forms of M forming a basis of the first de Rham cohomology group, they are pointwisely
linear independent. Hence the Albanese map ia a fibration. 0

Remark that A : M -+ T b
1 ia harmonie, and by (6.3) it is a T( E)-Riemannian submersion.

Problem 6.5. Find a geometrie or topologjcal property of the fibre of A.

Recently Lacouturier and Robelt have obtained a generalization of Theorem 6.1. They
replaced the uniform bound IKMI::; 1 by abound on some integral norm on KM.

Hone assumes 00 bounds on the sectional curvature, Theorem 6.1 dose not hold any
more beeause of the following result due to Anderson.

Theorem 6.6 ([A2]). For any n ~ 4 and 1 ::; k ::; n - 1, one can construct an n­
dimensional c10sed manifold M with bt (M) = k by doing a surgery on Tn such tbat

(1) No :finite cover of M :B.bers over bI-dimensional torus.
(2) For every f > 0 there exists ametrie gf on M such that

IRiecig( I < f, diam(gf) = 1.

(3) (M, gf) converges to a Bat torus Tl with respect to the Hausdorff distance.

Remark that the Gromov eonjeeture 0.4 is still open.
Next we present a result for aspherical manifold, Le. 1fi = 0 for i ~ 2, with bounded

seetional and almost nonnegaive Rieci eurvature. We note that every aspherieal mani­
fald with nonnegative Ried eurvature is flat ([CG2]), whieh directly comes from Splitting
Theorem 1.2. This ean be genaralized as follows.
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Theorem 6.7 ([FY1]). Given n and D > 0 there exists a positive number f = fn(D)
such tbat if M is an asphirical Riemannian manifolds witb

diamM :5 D,

then it is diffeomorphic to an infranilmanifold.

Outline 01 the proof. The proof is done by contradiction. Suppose that the theorem is not
true. Then we would have a sequenee Mi of n-dimensional aspherical manifolds with the
given seetional eurvature and diameter bounds and with Rieci Mi > -fi -+ 0 such that Mi is
not diffeomorphie to an infranilmanifold. By the topologieal assumption, we see from [F4]
that the universal cover Mi does not eollapse. Namely with the bound \KI ~ 1, (.g,pd
eonverges to a pointed spaee (N, q) of the same dimension with rspect to C1

,0' topology
on eompaee subsets. More generally this eonvergenee happens in the L 2 ,P-topology, where
P > n (See [N] for instance). Thus the metrie tensor of N is in L'l,p, and heuee has seeond
derivatives almost everywhere. Therefore we ean get the splitting theorem for N (Compare
[Ca]). Sinee N is eontractible (see [F4]), it must be isometrie to Rn. Thus in some sense,
Mi is L 2 'P-almost Hat. If it was C 2·almost flat, Theorem 0.5 works. Since it is not the case,
we use the technique of covering space along fibre introduced in (FY1]. By applying this
aurgument, we have a (singular) fibration Fi ~ Mi -+ R m / A over a :Bat orbifold R m / A,
where the fibre Fi is an infranilmanifold and the structure group cau be reduced to some
particular form (similar to that in Proposition 10.1). By using that informasion on the
structure group, we cau construct smooth almost ßat metries on Mi for sufficient large i
(See [FY1] for the detail). 0

§7 Generarization of Bieberbach' Theorem

In this section, we give a generalization of Bieberbach's theorem needed in the proof of
Theorem B. As indicated in Section 1, the proof of Theorem 0.2 depends on Splitting The­
orem 1.2 and the Bieberbach theorem. In our case, we consider the equivariant Hausdorlf
convergence of the isometrie action of fundamental groups on universal covering spaces.
The limit group is not necessarily discrete. Thus we need the following

Theorem 7.1([FY2]). Let G be a c10sed subgroup oE Isom(Rn). Tben 1t"o(G) = GIGo is
abnost abelian. More precisely, 1t"o (G) contains a Iree abelian group A oE finite index such
that rank(A) :5 dim(Rn /G).

The case when G is discrete in Theorem 7.1 is Bieberbach's theorem.

We need the following elementary lemma from group theory. The proof is omitted (See
[FY2]).

lemma 7.2. Let a group G admit an exact sequence

1 --+ n --+ G --+ Zl: --+ 1,
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where n is :finite with order l. Then G contains a free abe1ian subgroup A of rank k such
that [G : Al < G(k,l).

Pro%/ Theorem 7.1. The proof is done by inductoin on the dimension on G. The case
dirn G = 0 is the Bieberbach theorem. Suppose that dim G ~ 1 and let R be the radical
of G. Put N = [R, R]. We divide the proof ioto the followiog three cases.

Case 1) climN > O.
Case 2) clim R > 0 and R is abelian.
Gase 3) R = {I}.

Here we consider only Gase 1). The proof for the other cases are similar. Let G be the
center of N. For 9 E G, put

min(g) = {x E Rn Id(gx,x) ~ d(gy,y) for all y ERn},

L = nmin(g).
gEC

Remark that L is nonempty and is aG-invariant convex set without boundary. Hence
L ::: R l eRn, and we obtain a homomorphism 'P : G -+ Isom(Rl ), where 'P(G) is closed.
Now putting K = ker('P), we have the exact sequences

1 ---+ K ---+ G ---+ 'P(G) -+ 1,

1t'o(K) -+ 1ro(G) -+ 1ro('P(G» ---+ 1,

where 1t'o(K) is finite because of the compactness of K. Hence in view of Lemma 7.2, it
suffices to prove the theorem for 'P(G) C Isom(Ri).

Case a) 'P(C) = {I}.

Sioce dim'P(G) = dirnGIK ~ dimGIC < dimG, the inductive assumption works.

Gase b) 'P(C) =I {I}.

Since 'P(G) is normal in 'P(G), 'P(G) acts on R II'P(C) ~ R i IRi-m = R m , where m < i.
Let t/J : 'P(G) -+ Isom(Rm) be the induced homomorphism. Putting K' = ker(t/J), we have
exact sequences:

1 -+ K' ---+ 'P(G) -+ tP'P(G) ---+ 1,

1ro (K') ---+ 1t'o ('P(G» ---+ 1ro (tP'P(G» ---+ 1.

Since 'P(C) C K' C Isom(Rl-m), we have K'I'P(C) C O(i - m). It follows that 1ro(K') is
finite. It is easy to show that t/J'P(G) is closed. Thus it suffices to prove the theorem for
tP'P(G) c Isom(Rm). Since

dirn t/J'P(G) ~ dim'P(G)I'P(C) = dim GIG< dim G,

the inductive assumption now works. 0
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Corollary 7.3([FY2]). Under the situation in Theorem 7.1, suppose Eurther that Rn /G
is compact. Then G contains anormal su'bgroup G' such that

(1) [G: G'] < cn .

(2) Rn /G' is isometrie to a Rat torus.

Proof. This is also done by induction on dim(G). The case dim G = 0 is the Bieberbach's
theorem. Suppose dirn G > O. We use the same notation as in the proof of Theorem 7.1,
and assume the case 1). Since L is G-invariant and convex and since Rn /G is compact,
we see that L = Rn. Hence <p = identity. Remark that C is normal in G. Since

and since dimeG/ C) < dirn G, the inductive assumption works. 0

In Theorem 7.1, there are no uniform bounds depending on1y on n for the index [?fo(G) :
A] even if Rn /G is compact.

Example 7.4. Let G be the subgroup of Isom(R2 ) generated by the translations R 2 and
the rotation with angle 2?f/p around the origin. Then R 2 /G is a point and ?fo(G) = Zp.

§8 Solvability Theorem

In this section, we give the proof of the solvability part of Theorem B.

Theorem 8.1 ([FY2]). There exist positive Dumbers f n and cn such that iE M is oE
f n-nonnegative curature, tben ?f1 (M) contains a solvable subgroup A such tbat

(1)

(2)

(?f1 (M) : A] < cn •

.c(A) ~ n.

A solvable group is made of several extensions of abelian groups. In the proof be10w we
shall see that Theorems 3.8 and 7.1 provide each building block, and that Theorems 2.12
and 4.1 provide each extension.

We begin with an algegraic lemma.

Lemma 8.2. Consider the following exact sequenee:

1 ---+ A --.. r --.. ZA: ---+ 1,

where A contams a solvable subgroup A' such that [A : A'] = l, .c(A') = m. Then r
contains a solvable subgroup r' such that (r : r'] < G(l), 'c(r') ~ k + m.

Proof. Take a subgroup A· of A' which is characteristic in A. (See [FY2]). Thus A· is
normal in r and we have an exact sequence :

ArA:
1 ---+ - ---+ - --.. Z --.. 1.

A· A·
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Then the conelusion follows from Lemma. 7.2. 0

Pro%/ Theorem 8.1. This is done by eontradietion and induction on the dimention of M.
We mainly prove only almost solvablity. Suppose that the theorem is not true. Then we
would have a sequenee of elosed n-manifolds Mi such that KMi > -Ei, fi --+ 0 as i --+ 00,

and that diam{Mi) = 1 but ri = 1rl{Mi) is not almost solvable. Passing to a subsequence,
we mayassume that Mi converges to a compaet Alexandrov space X. Since X might not
be a manifold, we need to eonsider the action of r.L?n the universal cover Mi. For Pi E Mi,
we may assume by Theorems 2.4 and 2.1~ that {Mi, ri,pd eonverges to a tripple (Y, G, q)
with respect to the pointed equivariant Hausdorff distance. Splitting Theorem 3.8 then
shows that Y is isometrie to a product R k X Yo, where Yo is compact.

Assertion 8.3. G/Go contains a finite index Iree abe1ian subgroup of rank ~ k.

Proof. Since G preserves the splitting R k X Yo, we obtain a homomorphism ep : G --+

Isom{Rk ). H K = ker{ep), G/K is a elosed subgroup of Isom{Rk ), we see by Theorem 7.1
that

{G/K)/{G/K)o ct G/GoK

contains a finite index free abelian subgroup of rank ~ k. In view of Lemma 7.2, the
assertion follows from the exact sequence:

GoK G G
1 --+ -- ----+ - --+ -- --+ 1

Go Go GoK '

where GoK/Go is finite. 0

Note that G/Go is discrete by Theorem 3.16, and that {Rio x Y)/G = X is compact.
Hence we can apply Theorem 2.12 to get anormal subgroup r~ of ri such that

(8.4. )

{Mi , r~, pd canverges to (Y, Go, q).

ri/r~ is isomorphie to G/Go for large i.

For any f > 0, r~ is generated by r~{f) for large i 2:: I{ f).

Assertion 8.5. r~ is almost solvable for sufB.ciently large i.

Proo/. We put Xo = q mad G E X. For a given rj --+ 00, by Theorem 3.15 we ean
choose Xj E X such that ({X,rjd),xj) eonverges to (Rm,O). Remark that m ~ 1 since
diam{X) = 1. Set dH{Mi' X) = 0i and dp.H{{{X, rjd), xj), (Rrn, 0)) = 0j, and let Pij E Mi
be a point which is Hausdorff elose to x j. By triangle inequality,

Hence one ean make the above Hausdorff distance a.s amall a.s one likes if one takes a
large j = jo and any large i ~ io. Thus for some ehoice of such jo and io, we have an
almost Riemannian submersion fi : Bpi {1,{Mi ,rjo9M i)) --+ Bo{2,R rn ) over its image such
that the fibre Fi = f i-

1(O) is of almost nonnegative curvature in the generalized sense. In
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view of Proposition 4.23 and Theorem 4.24, we can apply the inductive assumption to the
fibre. Thus '1Tl(Fi ) is almost solvable for all sufficiently large i. Let f = 1/(10rjo)' Since
Bpi(f, Md is included in the neighborhood fi- 1 (Bo(1,Rm)) ~ Bo(1,Rm) x Fi for large i,
(8.4) implies that r~ is contained in the image of the inclusion homomorphism:

This shows that r~ is also almost solvable. 0

Finally, we have the exact sequence:

(8.6)

where r~ is almost solvable and G/ Go is almost abelian. Therefore the following lemma
yields that ri is almost solvable, a contradiction.

Tbis argument also gives a uniform bound on tbe index of a solvable subgroup of ri (by
contradiction).

The inequality of the lengtb of polycyclicity follows from

.c(rd = L:(rD + rank(G/Go).

(8.7) .c{r') ~ .c{11"1 (Fd) ~ n - m, (- .. inductive assumption).

rank{G/Go) ~ dirn RA: /r.p{G) :s; dimX = m, (';' Theorem 7.1).

Tbis cornpletes the proof of Theorem 8.1. 0

Remark 8.8. Rernark that the inductive step in the above proof, we have to pursue the
fibre properties at most n times by using Proposition 4.23 and Theorem 4.24. Although
this is possible, we avoided this argumenfin [FY2], where the theorem was proved for the
fibre of the almost Riemannian submersion in Fibration Theorem 4.1 by using areverse
induction.

Next we give some consequences from Theorem 8.1. We will see below the significance
of the uniform bound (2) in Theorem 8.1.

Corollary 8.9([FY2]). There exists a positive number Cn satisfying the following: Let
M be of fn-nonnegative curvature, and suppose that any solvable subgroup A oE 1I"1(M)
with [11"1 (M), Al :s; Cn has !(A) = n. Then

(I) A is poly-Z group.
(2) The universal cover oE M is diffeomorphic to Rn.

Proof. We use the notation in the proof of Theorem 8.1. By (8.7), we have

rank(G/Go) = dirn RA: /r.p{G) = dimX = ffi,

.c{r~) = n - m.
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By Corollary 7.3, there exists anormal subgroup Go C G c G such that R k /cp(G) is
isometrie to a Bat torus Tm. We put X = R k X YIG. Consider the following eommutative
diagram:

where Pi and qi are the natural projeetions, which do not inerease distance. Let R k =
Rm x Rk-m be the orthogonal decomposition for which 1'2 : Rm -+ Tm is a Riemannian
eovering. Sinee P2 0 qI is a loeal isometry on each R m - factor, so is q2. It follows that
X is isometrie to a Bat torus Tm. By Theorem 2.13, we ean take anormal subgroup f
converging to G. Hence M= MIr eonverges to Tm, and we have a fibration

and the exact sequenee :

Applying the induetive assumption to the fibre F, we obtain the conslusion. 0

The unifonn bound on the index of a solvable subgroup in Theorem 8.1 is useful. By
using this theorem essentially, we have the following corollaries.

Corollary 8.10([FY2]). There exists a positive integer Pn such tbat iE M is of f n ­

nonnegative, tben bI (M, Zp) ::s n for an prime number p 2: Pn.
H tbe equality bI (M, Zp) = n bappens, M is dilfeomorphic to a torus.

The inequality is immediate from Theorem 8.1. The equality case follows from an
argument similar to Theorem A(b).

Corollary 8.11. Tbere exists a positive number Cn such that if M is oE fn-nonnegative
curvature and if 'TrI (M) is finite, then

diam(M)
diam(M) < Cn,

where M is tbe universal cover oE M.

Praaf. Suppose that the conclusion does not hold. Then we would have a sequence of
closed n-manifolds Mi with fi-nonnegative, Ei -+ 0, with finite ftUldamental groups r i such
that the diameter quotient for Mi goes to 00 as i -+ 00. By Theorem 8.1, we mayassume
that r i is solvable with length of policyclicity ~ n. Let

ri = r~O) ~ r~l) ~ ... ~ r~n) = {I},
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be the derived series r~") = [r~"-I) r~"-I)J and put M~·) = M·/r~") Then we have a
'. 1 'I' •••.

tower of abelian coverings:

We take a scaling of metrics here so that diam(Md -+ 0 and the lower bound of sectional
eurvature of Mi still goes to zero. Then we find same 0 ~ s ~ n - 1 such that for a
subsequence M i(") and Mr,+I) eonverge to a point and aspace Y which is not a point,
respectively. By taking the sealing earefully, we may assme that Y is noncompaet and
actually isometrie to a Euelidean space R k, k ~ 1 (See Theorem 5.7). Then by the
pseudogroup thechnique used in Seetion 5 (the argument after (5.3)), we can find a eovering

Mt of M!") so that it eonverges to a Hat torus TI:. By Fibration Theorem 4.1, we have a
fibration of Mi- over TI:, whieh contradiets the finiteness of rio 0

Notice that we have no explicit estimates for our eonstant Cn in the above result. On
the other hand, for any lens space snIr with constant eurvature, we know

diam(sn)
diam(Sn Ir) = 2.

Thus it would be interesting to find a (realistic) explicit eonatant Cn .

The following corollary is immediate from the proof of Corollary 8.11.

Corollary 8.12. Let M be of f n -nonnegative curvature witb infinite fundamental group.
Tben a finite cover of M fibers over SI. In particular, the Eular characteristic of M
vanishes.

Conjecture 8.13. The Pontryagin numbers of an fn-nonnegatively curved manifold with
infinite fundamental group vanish aB weIl.

§9 Three Dimensional Case

We will give an outline of the proof of Theorem B in the next section. The key point in
the proof ia to develope the method of covering space along fibers introduced in the study
of almost nonpositively curved manifolds ([FY1]). In this section, We shati make the basic
idea clear by considering the three dimensional ease, where we ean determine the manifold
structure up to finite cover and up to the Poincare conjecture.

Theorem 9.1([FY2]). There exists a positive number f such that jf a c10sed tbree­
manifold M is of f-nonnegative curvature, tben a finite covering of M is either bomotopic
to S3 or dilfeomorphic to one of SI x S2, a nilmanifold or a torus.

Proo/. We may assume that the fundamental group of M is infinite. Then the proof of
Corollary 8.11 shows that a finite cover M- of M converges to a flat torus TI:. H k ~ 2, M­
is diffeomorphic to an infranilmanifold or a torus (See the augument below). Let k = 1 and
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suppose that the conc1usion does not hold in this CRSe. Then we would have a sequence of
closed three manifolds Mi such that KMi > -Ei -+ 0 and a finite cover Mt converges to
51 but Mi does not satisfy the conclusion of the theorem. By Theorem 4.1, there exists a
fibration

Fi ---+ Mt --+ 51,

where Fi is diffeomorphic to one of 52, a projective plane p2 , a torus T 2 or a Klein bottle
K2 by Theorem 5.19. H Fi ~ 52, Mt is diffeomorphic to 52 X 51. H F i ~ p2 or Fi ~ K2,
one can take a finite cover of Mi with fibre 52 or T 2 respectively. Thus we mayassume
that Fi ~ T'J. Let

1 --+ Z2 ---+ ri --+ Z --+ 1

be the 8Bsociated exact sequence, where r i = 'Trl(M;*). Now take "Yi E r i which projects
to 1 E Z, and define A"'(i E 5L(2, Z) by

Then the following is easily verified.

Lemma 9.2. ri is nilpotent if and only if A",(i is conjugate to an element of tbe form

The fibre Fi collapses to a point, and it is inconvenient to analyze the properties of A'"Yi'
Therefore we take a finite cover of Fi in order to "look at" the fibre. This is the basic idea
of covering space along fibre.

For m E Z+, let r~m) be the subgroup of ri generated by (mZ)2(C Z2) and "Yi, and let
MIm) be the finite cover of Mi with fundamental group r~m). Let Fi(m) be the m 2-fold

covering of F i corresponding to Mi(m). Then we can find mi such that

(9.3)

Passing to a subsequence, we may assume that (Mi, r~md ,pd converges to (RA:, G, 0).
Remark that dim(RA: /G) ~ 2 because of (9.3). By Corollary 7.3, RA: /G can be finitely
(branched) covered by T 2 or T 3 . If MI is the finite cover of Mi(md corresponding to it,
MI converges to Tl, f = 2 or 3. H i = 3, M' '" T 3

• H i = 2, we have a fibration

Hence Z = 'trI (51) c r~mi) is anormal subgroup and is A",(i-invariant. Hence it is also
normal in rio Therefore by choosing a basis of Z2 = 11"1 (Fd, we see that A",(i is conjugate
to an element of the form
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Lemma 9.2 implies that ri lS almost nilpotent, and hence Mt lS diffeomorphic to an
infranilmanifold. 0

§10 Nilpotency Theorem

In this section, we give just an outline of the proof of Theorem B. For the detail, see
[FY2].

First we consider the following exaet sequence:

1 -.. A -.. r ---+ A ---+ 1,

where A is almost nilpotent and A is almost abelian. We need a criterion for r to be
almost nilpotent.

Proposition 10.1 ([FY2]). Tbe group r js almost nilpotent jf and only jf tbere exists a
subset r generating r such tbat for any , E r, there exists a stratification

1 = Aa C Al C ... C AI; = A,

and N E Z+ such that

(1) Ai is nonnal and 1'N -invariant.
(2) if ijAi/Ai-l = 00, it is abelian.
(3) A~ E Aut(Ai/ Ai-I) defined by

A~(9) =1'
N

91'-
N

is of finite order.

Remark that if r is almost nilpotent, one can take the upper central senes of anormal
nilpotent subgroup of r as stratifieation.

We prove Theorem B by contradietion and induetuion on dimM. If the theorem doea
not hold, we would have a sequence of closed n-manifolds Mi with K Mi > -Ei --+ 0,
diam(Md = 1 but r i = 1r) (Md is not almost nilpotent. As in Section 8, we mayassume
that (Mi, ri,pd converges to (RS: x Y, G, q). By (8.6) we have the exact sequence:

1 ---+ ri ---+ r i -.. G/Ga ---+ 1,

where G/Ga is almost abelian and we may assme that ri is almost nilpotent by induetive
assumption (See also Remark 8.8). Now for our purpose it is better to kill the compact
faetor Y in the sprilliting R k x Y. As in (5.2), we ean choose a positive nmnber (Ji --+ 0
such that for the metric 9i = (Ji9Mi

--- k(10.2) (Mi, gi,Pi) eonverges to (R ,0),

while keeping inf K gj --+ O. Notice that diam(Mi, 9d ~ O. From now on we use the
notation

Xi = (Mi'9i), Ai = ri, A = G/Ga,

and verify tbe condition of Proposition 10.1.
Notiee that ri is generated by fiCI), and auppose that it does not satisfy the condition

of Proposition 10.1. Then there exists 1'~ E fi(I) not satisfying the eondition. Remark
that [1'il E fi/Ai fiust be of infinite order. Then one can prove the following.
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Lemma 10.3. Tbere exists ,i E ri(l) of tbe form ii = (;i)m Jli, J-li E Ai BUch tbat if
Ai(Ti) denote tbe group generated by Ai and ,i, then Ai(,d(I/3) = Ai(I/3).

We mayassume that Ai is solvable by Theorem 8.1. We may also assume that (Xi, Ai (,i), Pi)
converges to (Rk , H, 0), under which Ai and ;i converge to H c jj and '00 E ii, respec­
tively. Let H( ;00) be the group generated by H and 100' We do not know if His connected.

By Lemma 10.3 H/H is discrete and hence H contains the identity component of H.
Summing up we,have

Proposition 10.4.

(1) limi_oo(Xi, Ai,Pi) = (Rk,H,O) wbere He Ho.
(2) Ai is normal in Ai{'i) .

.......

(3) ;i -+ ;00 E H.

1 --+ H --+ H(,oo) --+ Z --+ 1.

(4) Ai ( ,i) is solvable with length of polycyclicity $ n.
(5) Ai{,d{I/3) = Ai{I/3), Ai = Ai{I).

Dur purpose is to show that Ai has a stratification satisfying the condition for ,i in
Proposition 10.1. From the form of "'fi, this would implies that Ai has a stratification
satisfying the condition for ,: in the proposition, a contradiction.

We know that Ai is generated by Ai{Öi), where Öi -+ O. However we do not know if this
is the case for [Ai, Ai]' From this reason we need a more stronger notion.

For (X,r,p) E M eq , we put

r(fj D) = {, E r Id( i, x) < f for al1 x E Bp(D, X)}.

Definition 10.5. We say that a sequence (Xi, Ki, pd is locally generated if for auy D > 0,
there exists fi(D) -+ °such that K i is generated by Ki(fi(D)i D).

Then we cau prove

Lemma 10.6. H(X i , K i , Pi) js locally generated, (Xi, [Ki, K i], Pi) js also locally generated.

In the first step, we shall rep1ace {Ai} be a 1ocal1y generated sequence. To do this, we
need a technical1emma siInilar to Theorem 2.13.
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lemma 10.7. Let Li C Ai be normal in Ai(1'i) such that limi_oo(Xi, Li,pd = (Rk,L,O),
and let a sequence Si -+ °and D > °be given. Then for 8 subsequence there exists a
subgroup L~ C Li satisfying

(1) L~ is normal in Ai (,d.
(2) L~ is locally generated.
(3) L~:J Li(Si j D) for eaeb i.
(4) limi_oo(Xi, LLpi) = (Rk, L', 0), where L' :J Lo.

Suppose further that tbere exists !l<J > 0 such that Li is generated by Li(!l<J). Let
L('00) and Li(1'i) be the groups generated by LU 1'00 and Li U 1'i respectively. Tben tbere
exists a surjective homomorphism L(1'00)/L' -+ Li(1'i)/L~ whieb carries [1'00] to [1'i].

In the lemma above, we do not assume the compactness of R k / L, which is the point
essentially different from Theorem 2.13.

Applying Lemma 10.7 to Li =Ai, L = H, we have the following lemma, which is the
first step in construction of the stratification of Ai.

Lemma 10.8. There exists Ai C Ai satisfying

(1) Ai is normal in Ai(,d.
(2) (Xi,Ai,pi) is locally genarated.
(3) Ai'i E Aut(Ai / Ai) is of finite order.

Proof. By Lemma 10.7, there exists Ai C Ai sa.tisfying (1), (2) and such that there exists
a surjective homomorphism H(1'oo)/Ho -+ Ai(1'd/Ai. Theorem 7.1 shows that H('oo)/Ho
is almost abelian, which implies (3). 0

The following lemma is a main step in the proof.

Lemma 10.9. Let [Ei, Ei] C Fi C Ei C Ai be nonnal in Ai(1'd, and suppose that

(1) Ei and Fi are locally generated.
(2) ij(Ei/Fi) = 00.

(3) limi_oo(Xi,Ei,pd = (Rk,E,O).

Then there exists Ei such that for a subsequence

(4) Fi C Ei C Ei, Ei is normal in Ai(-rd.
(5) Ei is locally generated.
(6) A"Yi E Aut(Ei / ED is oE finite order.
(7) limi_oo(Xi,E:,pd = (Rk,E',O), where dimE' < dimE.

Remark that the conclusion (7) above is analogous to the argwnent in Section 9 (See
(9.3)).

Now we put
Ai,t =Ai, Ai,t+l - [Ai,t, Ai,t].

By Proposition 10.4(4), there exists N such that Ai,N = {I}.
Applying Lemma 10.9 inductively, we obtain
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Assertion 10.10. There exists A1 k which js normal in Ai("Yi) satjsfyjng,

(1) Ai,k = A~,k ::> A~,k ::> •.. ::> Ai,k+l'

(2) A"Yi E Aut(A{k/A{~I) js of finite order.

(3) limi_oo(Xi,A{k,pd = (Rk
, Hj,k,O),

where dimHj,k > dimHj+l,k jf [A{k : A1~1] = 00.

By the conc1usion (3) above, there exists Lindependent of i such that [A~k : Ai,k+l] is
finite. Finally we get a stratification of Ai:

1 = Ai,K C ArK-l C ... A~ K-l C Ai,K-l, ,

C A~K 2 C ... CA· K-3 C ... CA· 1 = A'· CA·I, - I, I, I I,

satisfying the condition of Proposition 10.1. Thus the proof of Theorem B is complete. 0

Remark 10.11. In our argument here, we were not able to control the torsion parts of
successive quotients in the stratification. This is the main reason why we cannot get a
uniform bound on the index of a nilpotent subgroup.

§11 Generalized Margulis' Lemma

Let M be a complete Riemannian n-manifold with IKMI ::; 1. In the proof of Theorem
0.5, Gromov [G1] essentially used Margulis' lemma, which states that the smallloops at
any point p E M of length ::; f n generate an almost nilpotent subgroup of 11"1 (M). By
using Theorem B, we can drop the upper bound of curvature.

Theorem 11.1 ([FY2)). There exists a positjve number f n such that jf M is a complete
Riemannian n-manjfold with KM ;::: -1, then for any pE M the image under the inc1usjon
homomorphism'

js almost nilpotent and satjsfies tbe conc1usion of Theorem B.

As the first step, we show that the conc1usion holds for sorne p E M.

Lemma 11.2. There exists 8n > °such tbat jf M and p are as in Theorem 11.1, there
exists a point q E B p (l/2, M) such tbat

is almost niipotent and satisfies tbe conc1usion of Theorem B.

This folIows !rom Theorem B for the fibre of an almost Riemannian submersion and the
arugwnent in the proof of Theorem 8.1.
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Outline 0/ the proo/ 0/ Theorem 11.1. Suppose the theorem does not hold. Then we would
have a sequence of complete n-manifolds Mi with KM; ;::: -1, a point Pi E Mi and fi --+ 0
such that

f i = Im [1rtBpi{fi, Md --+ 1rtBpi{l, Md]

is not almost nilpotent. By Lemma 11.2, we have 6 = 6n > 0 and qi E Mi with d{pi' qd <
1/2 BUch that

f~ = hn[1rlBqj{6,Md --+ 1rlBpi{l,M)]

is almost nilpotent. In the argument below, we show that [fi : ri n ri] is finite, a contra­
diction.

Let 1ri : Xi --+ Bp,{I, Md be the universal covering space, and Xi, Yi E Xi such that
1ri{xd = Pi, 1ri{Yd = qi, and d{Xi' Yi) = d{pi' qd. We put Gi = 1rlBpi (I, Mi)' Passing to a
Bubsequence, we mayassume that (Xi,Gi,Xi) converges to (X,G,x oo )' By [GI] (See also
[BK]),

(11.3) there exists N > 0 such that ri ean be generated by N elements ')'i,l,·· ., ,i,N
with ,i,i E ri(2fd.

Let Ji : B:r:;{Di' Xi) --+ B:r:oo (Di + 1/Di, X), 'Pi : Gi(Dd --+ G) and ,pi : G(Di) --+ Gi be
a pointed equivariant Hausdorff approximation as in Definition 2.9, where D i --+ 00. By
Ascoli-Arzera's theorem, we may assume that

(11.4) 'P i('i,i) eonverges to '00 li E G for each j.

By (11.3),
,oo,i(xoo ) = XOO '

We may also assume that ri eonverges to r~ c Goo .

Sublemma 11.5. G/r~ js djscrete.

Proof. Let Yi --+ Yoo EX. By the definition of r~, the open set {, E GI d( ,Yoo, Yoo) < 6/2}
of G is contained in r~. 0

We put x = X oo for simplicity. Let G:r: be the isotoropy subgroup at x. Lemma 11.5
shows that L = [G:r: : G:r: n r~] is finite. In view of ;oo,i E G:r:, using (11.3) and (11.4)
one can show that [fi : r i n r~] < C{N, L) for sufficiently large i. Therefore r i is almost
nilpotent. 0

Proo/ 0/ Theorem C. Suppose that the theorem does not hold. Then there would exist
a sequence of closed n-manifolds Mi with KM; ;::: -1, diam(Md ~ D, fi = 1rl{Mi)'such
that

f i ~ f j (i i= j) mod almost nilpotent groups.

Passing to a subsequence, we mayassume that (Mi, ri,Pi) converges to (Y, G, q). By
Theorem 2.13, there exists anormal subgroup fi of r i such that

(1) ri converges to Go.
(2) fi/ri e:.t G/Go for large i.
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(3) ri is generated by ra fi), where limi_oo fi = O.

It follows from Theorem 11.1 that ri is almost nilpotent and satisfies the conclusion of
Theorem B. Theorem 2.13 also shows that GIGo is finitely represented. This is a contra­
dietion. 0

§12 N oncollapsing ease

In this section we observe almost nonnegatively curved ma.nifolds with a lower volume
bound. Such a manifold should have the structure similar to that of a nonnegatively curved
manifold.

We begin with the following finiteness theorem for"fundamental groups due to Anderson.

Theorem 12.1( [A1]). Tbe set of a11 isomorpmsm c1asses of fundamental groups of c10sed
n-manifolds witb

RicciM 2 -(n - 1)k2
, diam(M)::;' D, vol(M) 2 Vo,

is finite.

Proof. Let M satisfy the geometrie bounds above, M the universal cover of M with a
reference point p E M and r = 7rl (M) the deck tranfonnation group. The point of the
proof is to show

Assertion 12.2. There exist positive numbers 8 and No depending only on tbe given
constants such that

Proof. Let F be the fundamental domain ef r: F = {x E M Id(p, x) ::; d( ,p, x) for all 1 Er}.
Fer a 6 > 0, we put N = ~r(6), f(6) = {/b"" ,N} and 9i = li' "lI, (1::; i ::; N). It
fellows from d(P,9iP) < i6 that

l

U9i(F) C Bp ( R.6 +D), (1::; i ::; N),
i=l

and hence by Bishop's volume comparisen theorem

(12.3)

where bl;:(r) denotes the velume of an r-ball in the n-dimensional complete, simply con­
nected 8pace of censtant curvature -k2

• Hence if we put No = bl;:(2D)lvo, 6 = DINo for
instance, we have the required estimate. 0

Now by a result due to Gromov (G5], r can be generated by these li Buch that d(p, liP) ::;
2D and the relations are ef fonn ,ili'Y;l = 1. Hence to prove the theorem, it suffices to
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evaluate #r(2D). Let {Xj} be a maximal subset of {,p I, E r(2D)} such that d(xj, Xk) ?: 0
for J I- k. Let K be the number of {Xj}. By the Bishop and Gromov volume eomparison
theorem [G5],

This yields that

(12.4)

o
For aJmost nonnegative Rieci eurvature, Wei gave an estimte for growth of fundamental

groups by using the idea of Theorem 12.1.

Corollary 12.5([We]). Given n and D, Vo > 0 there exists a positive number f ­

fn(D, vo) such that iE a closed n-maniEold M satisnes

RieciM > -f, diam(M):::; D, vol(M)?: Vo,

tben 1r1(M) has polynomial growth of order ~ n.

Proof. Let M satisfy the bounds above for f > O. By (12.4), we ean take generators
,I, ... ,TL of r = 1r1(M) such that d(,iP,p) :::; 2D, where L is bounded by a uniform
eonstant. Let g( s) be the number of words in r of length :::; s with respeet to 11, ... , , L .

Similarly to (12.3), we have

(12.6)

H g(s) is not of polynomial growth of order :::; n for any sufficienlty sroall f, there exists a
sequenee Si --+ 00 such that g(sd > iSi. Since there are only finitely many possibilities for
the isomorphismclass ofr (Theorem 12.1), one can take Si independent of M. On the other
hand, by (12.6) for any large S we ean find a small f > 0 such that g(s) < eonstn,D,vo sn.
This is a contradiction. 0

For ahnost nonnegative sectional curvature, by using Theorem 8.1, we have

Corollary 12.7 ([FY2]). Given n and D, Vo > 0, tbere exists a positive number f =
fn(D, vo) such that if a c10sed n-manifold M satisfies tbat

KM > -f, diam(M) ~ D, vol(M) ~ vo,

then 1fl (M) contains a free abelian subgroup A of rank :::; n such that [1fl (M) : Al < en .

Proof. Suppose the theorem does not hold. Then we would have a sequence of c10sed
n-manifolds Mi with K Mi > -fi --+ 0, volA!L> vo, diam(M.) :::; D, and that ri = 1fl(Md
does not satisfy the conclusion. For Pi in Mi, the universal cover of Mi, we mayassume
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as in the proof of Theorem 8.1 that (Xi, ri,Pi) eonverges to (Rl X Y, G, q) with respeet to
the pointed equivariant Hausdorff distanee, where Y is eompact. By a result of Cheeger
[Cl, there exists a positive number fJ = fJn(D, vo) such that ri(6) = {I}, whieh implies that
Go is trivial, and henee G is diserete. By Assertion 8.3, G/Go contains a finite index, free
abelian subgroup of rank ~ k, and by Theorem 2.13, r i is isomorphie to G for suffieiently
large i, a eontradietion. 0

Remark 12.8. In Corollary 12.5, it follows from the polynomial growth theorem [G4] that
11"1 (M) is almost nilpotent. Remark that for any nilmanifold Nn which is not a torus,
11"1 (N) has polynomial growth of order > n (See [Mi], [Wo2]). Probably, the conclusion of
Corollary 12.7 should hold under the assmnption of Corollary 12.5.

For a (topologieal) splitting property of a finite cover of an almost nonnegatively eurved
manifold with a lower volume bound, see [SW], [Wu], [Ca].

§13 Concluding Remarks

First we remark that the main methods in our argument was both Splitting Theorem 3.8
and Fibration Theorem 4.1. We have a generalization of Theorem 4.1 to Alexandrov spaces
([Y3],see also [Wi]). The resulting map in this ease is an almost Lipjchitz jubmerjion, which
is not not known to be a fibre bundle yet. However it is sufficient for generalizations of
Theorem A(b) and the results for fundamental groups, Theorems B and C, to Alexandrov
spaces (See [Y3]).

A main problem still remainning would be to extend the results to manifolds with almost
nonnegative Rieci eurvature. Thus we are led to

Conjecture 13.1 ([FY2]). Let (X,p) be the pointed Hausdorff limit of a sequence (Mi,Pi)
of complete n-manifolds with llieciMi > -fi -+ O. Then the splitting theorem holds for X.

For the fibration theorem, Anderson's theorem 6.6 shows that it does not hold for
dimN < dimM. However the equality case dimN = dimM is open:

Conjecture 13.2 ([FY2]). There exists a positive number f = fn(/-,O) such that if the Haus­
dorff distance between complete n·manifolds M and N with

llieciM ~ -(n - 1), IKNI ~ 1, inj(N) ~ po

is less than f, then M and N has the same topological type.

By Perelman's recent result [Pr2), the conjecture above would be true up to homotopy
if one can prove the following volume convergence:

Conjecture 13.3. Under the same situation as in Conjecture 13.2, for any P E M

I
voIBp(r,M) -11< r(f)
volBq(r,lV) ,
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where q E N is a point Hausdorff elose to p and limt_o T( f) = O.

Let us assume that a sequence of n-dimensional complete Riemanman manifolds Mi
converges to an n-dimensional Riemannian manifold N. Then the lower semicontituity of
volume

lim .inf vol(Mi) ~ vol(N)
1-00

does not hold except for n = 1, unless no curvature assumptions are made, as the following
example shows.

Example 13.4. Let L C R 2 be as in Example 2.3 (2). For each positive integer k, we
divide each of the four edges of S = Ln {O, 1]1 into small intervals of length·6 = 2-1.. Let
SI. C R 1 be the tree made by joining all pairs of such partition points by segments. Then
we can consider SI. as a tree on the Hat torus T2 = R~/Z2. For f > 0 much smaller than
6, let Mk(f) denote the boundary of the f-neighborhood of Sk in T 3 = T 2 X SI. After
carrying out a. smoothing procedure for Mk( f), we obtain a smooth hypersurface in T 3

denoted also Mk( f) such that it converges to T 2 with respect to tbe Hausdorff distance as
both 6 and f <: 2-1. converges to zero. Obviously, the area of M k ( f) converges to zero.

The following conjecture would be affirmative if one can settle Conjectures 13.1 and
13.3.

Conjecture 13.5 (Gromov). If Ricci diam2 > -fn , then tbe fundamental group is almost
nilpotent.

For Borne refinements of the above conjecture, see {FY2].
The following is c10sely related with the Chern conjecture that every abelian subgroup

of the fundamental group of a elosed manifold with positive sectional curvature is cyclic.

Conjecture 13.6. There exists a positive number Cn such that if a closed n-manifold M has
positive sectional curvature, then 7t"1(M) contains a cyclic subgroup S such that {7t"I(M) :
5] < cn • Thus the fundamental groups of positively curved manifolds would be essentially
cyclic.

The following is a sort of a gap theorem conjecture.

Conjecture 13.7. There exists a positive number fn such that if Mn is of fn-nonnegaive
curvature, then it is of almost nonnegative curvature.

Tha gap theorems for almost Hat manifolds and almost nonpositively curved manifolds
were proved in {GI] and IFYI] respectively.

So far only few results other than 1fl or bl are known for topology of elosed manifolds
of nonnegative curvature except for Gromov's Betti number theorem [G3], several sphere
theorems or related results.

Que~tion 13.8. What can one say about 1fi, (i > 1) for nonnegatively curved manifolds ?

See [GH] for related topics.
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In this article, we considered almost nonnegative sectional or Ricci curvature. For posi­
tive scalar curvature, some topological obstruction is known ([Lc], [GL], [SY]). A question
related with our work is

Que~tion 13.9. What can one say about convergence of metrics of almost nonnegative
scalar curvature on some closed manifold M? (For instance M = Tn). This would be
more realistic if one assumes the geometirc bounds, IKI :5 1, diarn :5 D, vol 2: va, for
instance.
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