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THE ALGEBRAIC GEOMETRY OF REPRESENTATION SPACES
ASSOCIATED TO SEIFERT FIBERED HOMOLOGY 3-SPHERES

Stefan Bauer and Christian Okonek*

Introduction

In this paper we will study geometric properties of representation spaces associated to
certain homology 3-spheres. Recall that a smooth 3-dimensional manifold M is a homology
3-sphere, if it has the same integral homology groups as $°. Examples of homology spheres
exist in abundance, e.g. the well known Poincaré sphere SU(2)/I, where I C SU(2) is the
binary icosahedral group. A rather large but still accessible class of homology 3-spheres
are the Seifert fibered 3—spheres. These can be described as follows: Let ay,...,a, be
integers greater that 1. For a sufficiently general (n — 2) x n-matrix A = (a;;) of complex
numbers the complete intersection

Va(ar,...,an) ={z€ C* |anz{"+...+ainzg* =0; i=1,...,n—2}

of Brieskorn varieties is a complex surface which is non-singular except at the origin. The
link
Daler,...,an) = Valay,...,a,)N %1

of the singularity is a smooth 3-manifold whose diffeomorphism type is independent of
A. T 4lay,...,a,) is a homology 3-sphere if and only if the a; are pairwise relatively

" prime. The natural C*—action on Va(ai,-..,ay) induces a fixed point free S1-action on
La(a1,-..,a,) with orbit space S?. The orbit map represents £ 4(ai,...,a,) as a Seifert
fibered space over S? with n exceptional (multiple) fibres of order ay,...,a,. The set
of diffeomorphism types Z(ai,...,a,) of these neighborhood boundaries is exactly the
set of all diffeomorphism types of Seifert fibered homology 3-spheres, as has been shown
by Neumann and Raymond, [78]. This includes for n = 3 the well known Brieskorn
Spheres Z(p, g, ) with £(2, 3,5) being the Poincaré sphere SU(2)/I. There exist several
alternative ways to construct these Seifert fibered 3-spheres, e.g. using Dehn twists or as
homogeneous spaces of either SU(2) or PSI(2,R) as shown by Milnor [75], Neumann [77]
and Neumann-Raymond [78]. The representation spaces which we will investigate are the
spaces

R(E) = Hom*(m1(Z), SU(2))/ad SU(2)

of nontrivial SU(2)-representations of the fundamental group m;(X) of such a Seifert
fibered homology 3-sphere ¥ = Z(ay,...,a,).
The motivation for analyzing these spaces arises from recent developments in 3- and

4-dimensional manifold theory, which we briefly indicate. For any (not necessarily Seifert
fibered) oriented homology 3-sphere M, Casson has defined a Z—valued invariant A(M)

* partially supported by the Heisenberg program of the DFG
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which is computed using the space R{M) of irreducible SU(2)-representations of 7(M)
(cf. Akbulut-McCarthy [87]). This invariant has been refined by Floer [88], who introduced
the instanton homology of such a sphere M. His invariant is a Z/8-graded abelian group
I.(M), which is the homology group of a certain graded complex whose modules —in the
simplest cases— are generated by the elements of R(M). These instanton homology groups
have very interesting relations to 4-manifold theory: Donaldson has defined a series of C*°~
invariants for certain smooth closed 4-manifolds X which have been applied to detecting
different C>-structures (cf. Donaldson [87] and [87]). His invariants are a sequence of
Z-valued polynomials ®; on Hy(X; Z) defined for sufficiently large integers k. If now X is
decomposed into two pieces X = X+ U X~ with intersection Xt N X~ = M a homology
3-sphere M, then the Donaldson polynomials factor in some sense through the instanton
homology groups of M. This is nicely explained by Atiyah [88]. Both the definition of the
Donaldson polynomials as well as of the Floer homology makes heavy use of gauge theory
on 3- and 4-dimensional manifolds. These invariants are therefore in general difficult to
compute explicitely.

In order to determine the Floer homology for Seifert fibered homology spheres, Fin-
tushel and Stern [88] showed that any connected component of the compact space R(X)
is a differentiable manifold of even dimension. The critical points of a Morse function
R(L)—R give a base of the instanton chain complex. The grading in the chain complex
of such a critical point b is —(R(b) — () + 3). Here u(b) denotes the Morse index of b
and R(b) is an invariant of the connected component of b € R(X). The invariants R(b)
take only odd values. By describing R(X) as a space of "linkages”, Fintushel and Stern
determined the 2-dimensional components of R(X) to be spheres. So in the case of Seifert
fibered spheres with no more than four exceptional fibers (otherwise there are components
of dimension greater than 2!) the differentials in the Floer chain complex have to vanish
and I,(X) can be computed from the numerical invariants R(b) and the Betti numbers of
the components of R(X). Fintushel and Stern finally conjectured that this nice description
should hold for all Seifert fibered spheres. More precisely:

Conjecture(Fintushel-Stern): For a Seifert fibered homology sphere T the representation
space R(Z) admits a Morse function with only even indices.

The description of R(Z) in terms of linkages in principle works in all dimensions,
but gets quite involved even in low dimensions. In this paper we introduce a different
approach, showing that the representation spaces R(ZL) of Seifert fibered homology spheres
Y, admit a description in terms of algebraic geometry. We show that the R(Z)’s are
complex algebraic varieties, which exhibit a surprisingly rich geometry. Making use of
their geometric properties we prove the conjecture "up to torsion”,

Let us explain this in more detail: The quotient group m;(X)/center is a Fuchsian
group of genus zero. These groups arise as fundamental groups of certain algebraic surfaces,
known as generalized Dolgachev surfaces. In particular there is for any Seifert fibered
homology sphere £ a Dolgachev surface X such that the space R(X) coincides with the
representation space

R(X) := Hom*(71(X), SU(2))/ad SU(2).
The latter space on the other hand can be interpreted as a certain moduli space of algebraic
vector bundles on X, using Donaldson’s solution [85] to the Kobayashi—Hitchin conjecture.
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This identification provides R(X) with the structure of a complex projective variety. We
work this out in the first chapter.

In the second chapter we show that every connected component of this moduli space
is a smooth rational variety. These varieties come with a natural stratification, the strata
being locally closed smooth subvarieties isomorphic to Zariski open subsets of projective
spaces. As a byproduct it turns out that representations with the same rotation num-
bers (cf. Fintushel-Stern [88]) form a connected component. A similar result is true for
PSI(2, R)-representations, according to Jankins—-Neumann [85]. The main result of the
second chapter yields the conjecture of Fintushel-Stern for all components of R(X) of di-
mension < 4. Furthermore —using a result of Smale {62]— it shows that the conjecture is
equivalent to the following purely homological conjecture:

Equivalent conjecture: The cohomology groups H}(R(X); Z) vanish in odd dimensions.

In the third chapter we prove this modified conjecture up to torsion, i.e. we show
that the odd Betti numbers of R(Z) vanish. In order to achieve this we investigate the
geometry of the stratification of the moduli spaces. The individual strata are complements
of certain subvarieties in projective spaces. These subvarieties, though being singular, have
a nice description as cones over secant varieties. Applying Deligne’s solution to the Weil
conjectures to these cones we obtain the vanishing of the odd Betti numbers. The birational
invariance of the topological Brauer group finally proves the conjecture of Fintushel and
Stern for the components of R(X) of dimension not greater than six.

In chapter four we illustrate how the results can be used for explicit computations. In
particular we give formulae for the computation of the Betti numbers of the representation
spaces R(X(ay,...,an)) in terms of the initial data ay,...,a,. This would give the Floer
homology groups, if the conjecture of Fintushel and Stern turned out to be true in general.
We illustrate the general situation with some complex 2—-dimensional examples.

At the end of this introduction we comment upon the role of the Dolgachev surfaces.
One should think both the Dogachev surfaces and the Seifert fibered spheres as being
different geometric realizations of a 2-dimensional orbifold: Moding out the S'-action on
a Seifert sphere gives the same orbifold as does the elliptic fibration of a Dolgachev surface.
The spaces R(L) and R(X) thus are nothing else than representation spaces of orbifold
fundamental groups.

Acknowledgements: We are indebted to S. Kosarew and H. Spindler for several
useful conversations. We would also like to express our sincere thanks to the Sonder-
forschungsbereich 170 ” Geometrie und Analysis” in Gottingen or its hospitality during the
preparation of the paper. The second named author would like to express his gratitude to
the University of California at Berkeley, where he stayed parts of the time. Finally we are
gratefull to the Max~Plack-Institut fiir Mathematik in Bonn for its support.

Addendum: After finishing the paper, we learnt that P. Kirk and E. Klassen proved
the conjecture of Fintushel and Stern directly. Using linkages they showed that there
always is a Morse function with only even indices. Combining this result with the com-
putation of the Betti numbers of the representation space in chapter 4 and the work of
Fintushel and Stern, one gets the Floer homology for all Seifert fibered homology spheres.
Finally Furuta and Steer have announced similar results: Using differential geometry they
show that the components of the representation spaces are simply connected Kihler man-
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ifolds and compute the integral homology groups.

1. Representation spaces and moduli of stable bundles

In this chapter we will interpret the representation space R(Z(ay,...,a,)) as a moduli
space of stable algebraic bundles over a generalized Dolgachev surface.
A set {aj,...,a,} of pairwise coprime integers greater than 1 constitute the initial

data. We will always assume these integers to be indexed in such a way that at most
a; is even. A Dolgachev surface X is constructed as follows: Blowing up the projective
plane P? in the nine base points of a generic cubic pencil results in an elliptic fibration
f’z(:co, ...,zs)—P1. Applying logarithmic transformations along n disjoint smooth fibres
with multiplicities a4, ..., a, gives a complex surface X together with an elliptic fibration
7 : X—P!. In order to emphasize the a;, such a Dolgachev surface X sometimes will be
denoted by X (ay,...,a,).

Let F denote a generic fiber of 7 and F; the reduction of a multiple fiber with multi-
plicity a;. The divisors F' and a;F; are linearly equivalent. The canonical bundle formula
(cf.Barth, Peters, Van de Ven [84], p.161) shows that a canonical divisor Kx is linearly
equivalent to —F + .1 (a; — 1)F;. In particular the geometric genus p, = h°(Kx) = 0.
Logarithmic transformations preserve the topological Euler characteristic, hence e(X) = 12
and Noether’s formula implies x(Ox) = 1. Thus A!(Ox) = A"!(X) vanishes and the Pi-
card group Pic(X) is isomorphic to the second cohomology of X with integer coefficients.
There is an ample line bundle £ on X with ¢;(£)? > 0. By Kodaira’s ampleness criterion
X is algebraic (cf. Barth et al., [84], p.116 and 126).

The following formulae for certain cohomology groups will be useful in the sequel. Note
that a vertical divisor always is linearly equivalent to a divisor of the form IF + 3. I;F;
with 0 S l,‘ < a;.

1.1. Lemma: Let £ denote the bundle Ox(IF + >, ;F;) with 0 < [; < a;.
i) A%(L) =maz(l+1,0); AY(L)=maz(l,-1-1); ~¥L)=maz(0,-1).
ii) The bundles £ ®o, Onp and L ®o, Oy, r, are isomorphic to O, and O, p.(I;F}),
respectively. One has h%(O,r) = n and h%(O,,,r.(LF})) = 1+ [a] (n; —1; — 1)], where
[z] is the greatest integer satisfying [z] < z.
iii) R%(Op, ® £) = h°(Op, ® L), if D; and D, are linearly equivalent vertical divisors.

Proof: Suppose ! > 0. Let D,,...D; denote pairwise disjoint generic fibers. Then
Op, ® L = Op,, since £ admits a section which is nonvanishing on D;. The sheaf Ox(IF)
admits a section vanishing exactly on Dy, ..., D;. The corresponding short exact sequence
of sheaves

0—Ox—Ox(IF)— @£-=1 Op,—0

gives h°(Ox(IF)) =1+ 1, since X has vanishing irregularity and the D; are connected.
The map 0—Ox(IF + L;F;)—Ox((I + 1)F), induced by multiplication with the

divisor (a; — l;)F;, yields an estimate [ + 1 < hA°({F + I;F;) < I + 2. There are sections

in Ox((! + 1)F) not containing a; F; in its zero locus. Hence the second inequality has to
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be a strict one. Induction on the number of nonvanishing /; implies h°(L) = + 1. Serre
duality shows
RY(L) = K%(Kx ® L)
= hO(OX((—I - l)F + E,-(a.- -1l - 1)F,') =0.
Applying the Riemann Roch formula finally gives x(£) = 1, which implies A'(£) = I. This
shows 1) in case [ > 0.

The case | < 0 follows by Serre duality.
The Riemann-Roch formula gives

RUOx(LF)) = R (Ox(LF)) + R°(Ox(Kx — LF})) —1=0.
Applied to the cohomology sequence associated to the short exact sequence
0—Ox((l; — n;))F})—Ox(l; F;)— Oy, r, (i F;)—0
one gets:
K (O, r (LiFY)) = R(Ox((Ii = ni)Fy)) + 1 — RY(Ox(I; — ni)Fy)
= h(Ox(Kx + (n; — ;) F)

= k' (Ox(=F + (ai — li + ni — 1)F}))
_ [ai"rni—li—l].

ag

The third statement is a direct consequence of the first two using the linear equivalence

a;F; ~ F. &

The choices involved in the construction of a Dolgachev surface give rise to a moduli
space of algebraic surfaces. Nevertheless the diffeomorphism type of the underlying four
dimensional manifolds is completely determined by the set {a;}. In case n < 1 the surface
is rational and diffeomorphic to P%(zy,...,zs). The moduli space is irreducible for n = 2
according to Friedman and Morgan, [88], p. 318. For n > 3 we do not know, whether the
moduli space is irreducible. However, by a result of Ue [86], p. 634, the diffeomorphism
type is determined by the fundamental group, which in turn is determined by the {q;}.

1.2. Proposition:

The fundamental group of a Dolgachev surface X{ay,...,ay,) for a given base point
has the presentation

WI(X(CL],...,GI")) =< tl,...,tn It?‘ =1, tltg‘...'tn=1 > .

The closed paths ¢; are freely homotopic, i.e. the base point is not fixed by the homotopy,
to closed paths 7;, contained in the exceptional fibers F;. These paths satisfy the following
property: Parallel transport along 7; in the holomorphic flat normal bundle Np,,x of F;

results in multiplication with e:z:p(:gi;—‘i/—__—]).



Proof: The computation of the fundamental group of X was done in principle by
Dolgachev [81] I1.3, more explicitely by Ue, [86] p 634 and p 639. Let U; denote a small
disk neighborhood of n(F;) € P!. Dolgachev shows that, restricted to P! \ U;U;, there is
a section of 7 containing the base point in its image. We will identify P! \ U;U; with its
image. Choose paths o; in P\ U;U;from the base point to dU; without self intersections
and without crossings. Moving counterclockwise along the boundary of U; defines a path
w;. By the computation of Dolgachev the fundamental group of X has the presentation
of the proposition, where the t; are given by o7 'w;o;. It remains to be shown that w; is
homotopic to a closed path as in the statement.

The normal bundle Ng,/x is isomorphic to OF,(F;). The linear equivalence a;F; ~ F and
(1.1.ii) show that Op,(F;) is a torsion bundle. In particular Np,,x is flat.

We now use the explicit description of logarithmic transformation in Barth et al., [84], p.
164f. Set m = a; and U; = A, and denote 7~ (4A,) by Y'. The space Y’ is the orbit space
of the Z/m-action on A, x C/Z + Zw(s™), given by

(s,¢) — (e(1/m) - s,¢c + k/m).

Here t = s™ and e(z) denotes ezp(27+/—1z) and the integers k and m are coprime. For an
element s € A, define 7, to be the closed path r — (e(r/m) - s, kr/m). The space Y'\ Y,
where Y} is the fiber over 0 € A, is identified with (A, \ 0) x C/Z + Zw(t) by the map

fi(8,¢)— (8™, c— (k/(27r\/—_1))log(.s)).

The image f(7,) is given by r — (e(r) - 8, log(s)). In particular f(r,) is homotopic both
to w; and T,—¢ = 7.

By construction the normal bundle of F; is the orbit space of C x C/Z + Zw(0) by the
action (z,c) — (e(1/m) - z,c + k/m). The claim on parallel transport is immediate. &

The groups described in the proposition above are well known: In general these groups
are Fuchsian groups of genus zero. The only exceptions are: For n < 2 the fundamental
group is trivial and m(X(2,3,5)) = As is an alternating group. We will exclude these
exceptional cases from our discussion in the sequel.The results nevertheless extend with
only minor modification of the arguments. These Fuchsian groups are related to Seifert
fibered homology 3-spheres ¥(a,,...,a,) in the following way: The fundamental group of
Z(ay,...,an) has the presentation

T1(Z(@1,. 1 @n)) =< b1y ey by B | 18 RY = tita bbb = (R 1] = 1> .

Here by, ..., b, are arbitrary numbers subject to the condition a(by + Y i (bi/ai)) =1
where a is the product over all a; (cf.Neumann-Raymond [78]); the space I is said to
have Seifert invariants (bo; (a1,b1), (a2,82),...,(@n,bn)). These fundamental groups are
cocompact subgroups of PSL(2,R), as shown by Milnor [75] and Neumann [77]. The
center of m(Z(ay,...,a,)) is generated by h and is infinite cyclic (cf.Burde-Zieschang [85]

p. 199). In particular
(X (a1,...,a.)) 2 71(Z(a1,...,aa))/center.
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Applying the Serre spectral sequence to the fiber sequence of Eilenberg MacLane spaces
S'—%(ay,...,a,)—Br(X(ay,-..,a,))

one easily deduces H2(m;(X); Z) & Z. Let ¢ : 71(Z(ay,...,a,))—SU(2) be a nontrivial
homomorphism. The image of ¢ is contained in the centralizer of ¢(h), which is a torus, if
#(h) # £1. The fundamental group of a homology sphere being perfect thus forces ¢(h) =
+1. Factoring out centers gives a homomorphism ¢ : 73 (X (ai,. .., a,))—S0(3). To such
a homomorphism we can associate a second Stiefel-Whitney class wyo € H?*(m,(X); Z/2) =
Z/2. A similar trick as used in the paper of Fintushel and Stern [88] p. 12, will help us
to avoid separate discussions for the different Stiefel-Whitney classes. We use the homo-
morphism x : m(X(2a1, a2, ...,an))—m(X(a1,...,a,)) of fundamental groups defined
by x(s;) = t;, where s; and t; are generators as in proposition (1.2).

1.3. Lemma: Reduction modulo centers gives a bijective map
Hom(m(E(ay,-..,an)), SU(2))— Hom(m (X (ay,...,a,)), SO(3)).
Moreover x induces a bijection
Hom(m (X (a1,...,a.)), SO(3))— Hom(m (X (2a1,az, ..., an)), SU(2)).

Proof: Abbreviate m(Z(a;,...,a,)) by 7 and m;(2(2a1, ag,...,a,)) by #'. Since the
cohomology group H?*(r;Z/2) vanishes, every homomorphism to SO(3) can be lifted to
SU(2) and since H!(w;Z/2) vanishes, this can be done uniquely. That proves the first
claim.

If the tuple (bo; (2a1, b1), (az,b2),...,(@n, b)) denotes the Seifert invariants of 7', then
7 has (2bp; (a1, b1), (az,2b,),...,(an,2b,)) as Seifert invariants. Using the presentations
of the groups, one can see that the homomorphism x can be lifted to a homomorphism
X : ®'—m, which, restricted to the centers, has cokernel of order 2. Naturality of exact
cohomology sequences associated to the fiber sequence

S'—T(ar,...,a)—Bri(X(a1,...,a,)),
(cf. Whitehead [78], p. 651), gives a commuting diagram

HY(S%,Z) = H(x/center); Z)
2] N Ix*
H!(SY;Z2) — H?*(n'/center; Z).

The group H%(m (X(a1,...,an)); Z/2) thus is mapped to zero by x*. As a consequence
there is for any homomorphism ¢ : #— S0O(3) a unique lift of ¢ox to SU(2). On the other
hand & homomorphism % : n'/center— SO(3), which admits a lift ¥ to SU(2), factors
through 7 /center: The square of $(s2!) is trivial and hence $(s%!) = +1. &
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Let R(Y) = Hom*(m1(Y),SU(2))/ad SU(2) denote the space of nontrivial SU(2)-
representations of the fundamental group of a space Y. As usual we assume the tupel
(a1,...,an) to be ordered in such a way that as,...,q, are odd.

1.4. Theorem:
The representation space R(X(ay,...,a,)) for a Seifert fibered homology 3-sphere

Y(aj,...,ay,) is isomorphic to the representation space R(X(2a;,as,...,a,)) for a Dol-
gachev surface X (2a;, az, ..., an).
For an ample divisor H on a Dolgachev surface X = X(ay,...,a,) there is a diffeomor-

phism R(X) = M¥(0,0) of the representation space with the moduli space of H-stable
algebraic bundles on X of rank two with vanishing Chern classes.

Proof: The first statement in the theorem is just a reformulation of previous results.
The second statement is a consequence of the solution of the Kobayashi-Hitchin conjecture
by Donaldson, [85]. The divisor H induces a projective imbedding of X. Let g denote a
Kahler metric on X with Kahler form wg, whose associated cohomology class is dual to a
hyperplane section. The moduli space M}f5(0,0) of irreducible Hermite-Einstein bundles
with vanishing Chern classes on X is by the result of Donaldson isomorphic to M%(0,0).
These bundles are flat according to Liibke {82] or Kobayashi [87], p. 115. In particular
M¥(0,0) is isomorphic to the U(2)-representation space of the fundamental group of X.
Since 71 (X)) is a perfect group, all U(2)-representations actually are SU(2)-representations.

&

The trick of using the homomorphism x of course is not essential for the argument. As
an application of the work of Okonek-Van de Ven [88], one can show that R(E(ay,...,an))
is diffeomorphic to a disjoint union of the moduli spaces

ME(Kx,0) I ME(0,0)

of algebraic bundles over X = X(ay,...,an). The moduli space M¥(Kx,0) is easier to
compute than M 5(1(0, 0), but one cannot avoid computing the latter.

2. Algebraic Description of the Moduli Spaces

We will show that the moduli space M%(0,0) of H-stable bundles over a Dolgachev
surface X = X(ay,...,a,) as defined in the preceding chapter admits the structure of a
smooth projective algebraic variety over the complex numbers, which hasa natural strati-
fication by Zariski open subsets of projective spaces.

As in the last chapter we will assume the integers a; to be odd for 1 > 2. It will be
important lateron to have some information on the differentiable structure of the repre-
sentation spaces R(X(ai1,...,a,)). A representation a : m(X)—SU(2) has associated
to it some invariants: Let ¢; denote the generators of m;(X) as in proposition (1.2). Up to
conjugation the image a(t;) is given by a matrix

=), wmon(2)

0w a;

8



The tuple (£l1,...,+l,) with l; € Z/a; actually is an invariant of the connected component
of R(X(ay,...,an)) containing a. The following proposition was proved in a different way
by Fintushel and Stern [88], prop. 2.7.

2.1. Proposition: The representation space R(X) for a Dolgachev surface X is a smooth

compact manifold. A connected component with invariant (%/y,...,+!,) has dimension
2(M — 3), where M is the number of [; satisfying 2I; # 0.

Proof: Let S;; denote the conjugacy class of «(t;), which is a 2-sphere, if 2/; #£ 0 and
a single point else. The homomorphisms with invariants (xly,...,+l,) are given as the
preimage ¢~'(1) of the map

$:5, x...x85, — SU(2)

(z1,-.-,%n) — T ... Tp.

The proposition is an immediate consequence of the following two claims:
1. The unit element 1 € SU(2) is a regular value of ¢.
2. SU(2)/+1 acts freely on ¢~1(1).
ad 1: Let z = (%1,...,2,) be an element in ¢~1(1). To show surjectivity of the
differential (D), at the point z, we consider the maps p; : SU(2)—SU(2), given by

Yr—Ty-... i 1YTi41 ... " Ty

The differential

n

(%) (D¢): = [[(Prils,)

1=1

is not surjective if and only if the images of all the factors coincide. Suppose z; # 1.
Then the unique maximal torus T; containing z; intersects S;; transversely. The map p; as
a composition of multiplications is an isometry. The differential (*) thus is not surjective
if and only if

Pi(Ti) = ea:p(Im(Dp.. |31,~ ):J;.)
coincides for all z. In this case one has

-1 -1

-1
Ty =zDhr] =...=2122...paTnz, -, ... 2]

and because of z; € T; this is equivalent to
T'=Tp=...=T,.

In particular o has abelian image and thus has to be trivial, since m;(X) is perfect. This
contradicts our assumption ; # %1 .

ad 2: Suppose there is an element z € SU(2)/{£1} and a representation o with
ra(t;)z™! = a(t;) for all i. Then «a(t;) has to be an element of the unique maximal torus
containing z. Thus a(7;(X)) is contained in this torus and consequently trivial. &
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In order to describe the stable bundles arising, we need a technical definition:

2.2. Definition: An algebraic bundle E of rank 2 over a Dolgachev surface X will be
called admissible, if there is a nonsplitting short exact sequence

E: 0—Ox(=D) = € £ Ox(D)—0,

satisfying the following conditions:
1) D ~dF + % d;F;, with 0 < d; < a;, is a vertical divisor such that for some a >> 0
the divisor aD is linearly equivalent to an effective divisor.
1) 2d £ —m, where m denotes the number of nonvanishing d;.
ii1) In case 2d = —m the inequality

holds for the maximal ¢ with d; # 0.

Let Z denote the finite subset Z of the Picard group Pic(X) formed by the line bundles
Ox (D) satisfying the three conditionsabove.

As an immediate consequence of conditions ii) and iii) the divisor 2D is not linearly
equivalent to an effective divisor. Condition iii) of course depends on the chosen ordering of
the set {a;}. This condition is included high-handedly to achieve the uniqueness statement
in the following characterization of stable bundles:

Let H® denote an ample divisor on X and H = (H®- Kx +1)Kx + H°. Then the divisor
H is ample.

2.3. Proposition: An admissible bundle £ is simple and the presentation E as an
extension is unique up to isomorphism. Furthermore any H-stable bundle of rank two
with vanishing Chern classes over a Dolgachev surface is admissible.

Proof: Applying condition ii) to £(D) gives h°(£(D)) = h°(Ox) = 1. The nonsplitting

of the short exact sequence
E®Ox(-D): 0—Ox(-2D)—E(—D)—Ox—0

implies that the boundary map H®(Ox)——H!(Ox(—2D)) is nontrivial. In particular
h°(£(—D)) = 0. The cohomology sequence associated to the short exact sequence

EQE: 0—&(—D)—End(E)—E(D)—0,
gives h%(End(£)) <1, 1. e. £ is simple.

Let

E': 0—Ox(—C) 1 £ 25 Ox(C)—0,

be another presentation of £ as an admissible bundle with C ~ ¢F + 3", ¢;F;. The map é«
corresponds to a section of Ox(C+D). Let my and m. denote the numbers of nonvanishing
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d; and c;, respectively. Furthermore let A be the number of indices 7, for which the
inequality ¢; + d; > ¢; holds. Condition ii) implies 2d < —mg < —A and 2¢ < —m, < —A.
Note that one of these inequalities has to be a strict one, since equality mg = m, = A
contradicts condition iii). Summation leads to the strict inequality

d+c+ A <D0.

Invoking (1.1) gives h%(Ox(C + D)) = 0, i. e. « factors through v. This implies up to
linear equivalence the inequality C' < D of divisors. The argument is symmetric in C' and
D. Thus C and D are linear equivalent. In particular there is an isomorphism of the short
exact sequences E and E'.

Now let £ denote an H-stable bundle with vanishing Chern classes. The Riemann-
Roch theorem gives '

RO(E) + KU (E(K x)) > 2.

In case £ admits a nontrivial section, it cannot be H-stable. Hence there is a divisor
C' > 0 and a short exact sequence

0—'0){(0' ~Kx)—E—T Q0x(Kx — C')—--+0,

where J is the ideal sheaf of a 0-dimensional subscheme of X. If C' were not vertical,
then C' - Kx > 0 and the estimate

H.-C=H'Kx+1)C'" Kx+H" C'>H Kx +1=H -Kx +1

would contradict the stability condition H-C' < H-Kx. Set C = Kx — C'. The sheaf 7
is the structure sheaf Oy, since

length(Ox [J) = c2(€ ® Ox(C)) = 0.

It remains to check our three conditions. The stability condition H - C for the vertical
divisor C is equivalent with the first condition: just multiply with the product a; -...- a,.

(**) In particular there exists a presentation of the bundle £
0—Ox(—C)—E—0Ox(C)—0

as an extension of line bundles with R°(Ox(C)) = 0 and h°(Ox(nC)) # 0 for some
n>>0

However, the divisor C' ~ cF + . ¢;F; not necessarily satisfies the last two conditions. It
has to be replaced by an admissible divisor.

Let B ~ bF + 3, b F; be a vertical divisor satisfying B-H > 0 and h°(Ox(B)) = 0. Then
the exact sequence

0—Ox(B - C)—E&(B)—Ox(B + C')—-)O‘

11



and lemma (1.1.) lead to an estimate

hY(E(B)) > h°(C + B) + h°(B ~ C) — k(B - C)
=h"(B+C)+1-hr"Kx ~B+0C)
=b+c+#{|bi+ci>ai}+1)+1—(-1+c—b+#{i|bi<ci}+1)
=20 4+2+#{i|bi+ci>ai} —#{i| b <ci}
For the replacing procedure to work we need a divisor B satisfying the conditions i)-iii)

such that A°(£(B)) > 1. Given such a divisor, there exists an effective divisor D’ such
that by the same argument as above a short exact sequence

0—Ox(D")\—E(B)—Ox(2B — D')—0

presents £ as an admissible bundle with Ox(B—D’') € Z. Such a divisor B can be specified
the following way: Let m denote the number #{z | ¢; # 0} of nonvanishing ¢;. In case m
is odd, set

b=

-m—1 b — 0 ife;=0
2 P T lai—1 else

In case m is even, set

—m 0 if C; = 0
b= - 7 b= { a; —¢; 1f i is the maximal index with ¢; # 0
a; —1 else

The inequality min(e;, a; — ¢;) < 5'2_—1 holds, because by (**) the maximal index i with
¢; # 0 is greater than 1. &

The isomorphism class of the extension E is determined by the image of the boundary
homomorphism

d: HY(Ox)—HY(Ox(-2D)) = Ext'(Ox, Ox(-2D))

in the exact cohomology sequence associated to the short exact sequence £ ® Ox(-C).
The proposition above shows that the isomorphism classes of admissible bundles correspond
bijectively to elements of

[I p>)¥ ] PpE'(Ox(-2D)).

Ox(D)eZ Ox(D)eZ

Henceforth an admissible bundle will be identified with the corresponding element in
[z P(D).

So far we have found two invariants of representations: First the tuple (£{4,...,+l;),
then the admissible line bundles in Z. As one might expect, these invariants are closely
related. Before we can show this we need a lemma:

12



2.4. Lemma: Let £ € P(D) be an admissible bundle. Then the restriction to F; splits:
€ Q®ox OF, = OF.'(D) ©® OF.'(—D)'
In particular the holomorphic structure of £Qo, OF; is flat.

Proof: We consider the following diagram with exact columns and rows:

0 0 0
! l 1

0 — Ox(-2D-F,) — &-D-F) — Ox(-F) — 0
! ! !

0 — Ox(-2D) — E(-D) — Ox — 0
l l l

0 — Or,(-2D) — EQ®O0Ogr(-D) — OF, — 0
l ! !
0 0 0

The bundles £(—D) and £ ® OF,(—D) are classified by the subspaces
d(H%(Ox)) C H(Ox(-2D)) and d(H°(OF,)) C H(Op,(-2D)).

Of course d(H%(Ox)) is mapped onto d(H°(OF,)) in the cohomology sequence associated
to the first column of the diagram. In order to show that d(H%(Op,)) is trivial, we have
to show that the map « in the exact sequence

0-—H°(Ox(—2D ~ F}))— H’(Ox(-2D))—H°(OF,(-2D))—
—rHl(Ox(—zD - F,')) =, HI(OX(—2D))"—'

is surjective. We will do that by computing the ranks of the cohomology groups in the
exact sequence above. Using (1.1.) and the conditions of definition (2.2.), we get:

R°(Ox(—2D — F;)) = h°(Ox(-2D)) = 0,

0 _ 1 if2d; =0
h (OF‘( 2D)) = {0 else

and R (Ox(-2D - F))) = { Ziggﬁ:gggg i ZSZ:!; ="

Combining these formulas gives the desired surjectivity of «. L
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In the first chapter we showed that an H-stable bundle £ € P(D) is flat and is defined
by a representation a(€) € R(X).

2.5. Proposition: The representation a(£) for an H-stable bundle £ € P(D) has
invariants (£ly,...,+l,) = (£d;,...,*dy,), where D ~ dF + 3", d; F;.

Proof: We only have to put together (2.4.) and proposition (1.2.). To compute the
invariants we have to know the effect of parallel transport in € along the path 7, C F;
defined in (1.2.). Parallel transport in the normal bundle Np,,x = OFf,(F;) results in

multiplication by ezp (%E) Applying this to £ Qo OF, = N?.-‘;':X ® N®;(/ﬂ);—¢h) now

proves the claim. &

2.6. Theorem: The moduli space M#(0,0) of H-stable bundles of rank 2 with vanishing
Chern classes on a Dolgachev surface X = X{a;,...,a,) is a smooth, projective, complex
algebraic manifold. It admits a stratification by locally closed smooth subvarieties U(D),
each of which is isomorphic to a Zariski open subset of a projective space.

For an invariant (%d,...,®d,) there exists at most one connected component of the
moduli space M¥(0,0) with d; € Z/a;. The dimension of such a component is M — 3,
where M is the number of indices 7, 1 < i < n, with 2d; # 0.

Proof: Maruyama [77] has shown that for fixed Chern classes and fixed ample divisor
H a (coarse) moduli space of H—stable bundles exists and is quasiprojective. The moduli
space MX(0,0) moreover is projective, since the underlying topological space R(X) is
compact. Let Sx(0,0) denote the moduli space of simple bundles with vanishing Chern
classes, as constructed by Altman-Kleiman [80]. The underlying analytic space of Sx(0,0)
, for which we will use the same notation, coincides with the moduli space of analytic simple
bundles (cf. Norton [79], Kosarew-Okonek [87], Fujiki-Schumacher [87], Kobayashi [87],
Liibke-Okonek [87] and Miyajima [88]). The underlying analytic space of M¥(0,0) is
Hausdorff and is contained in the locally Hausdorff complex analytic space Sx(0,0) as an
open subset (cf. Kobayashi [87], p. 266, Liibke-Okonek [87] or Kosarew—Okonek [87]). Let
£ € P(D) be a stable bundle. There is an estimate for the dimension of the Zariski tangent
space H!(End(£)): From the cohomology sequence associated to the exact sequence

0—E(—D)—End(E)—E(D)—0

of bundles we get

B (End(£)) < ' (E(~D)) + K (E(D)).

The exact sequences

0—Ox(—2D)—E&(-D)—Ox—0

and 0—Ox—E&(-D)—0x(2D)—0,
together with the properties of the admissible bundle Ox(2D), give:
h'(E(=D)) = h'(Ox(—2D)) -1 and h'(E(D)) = k' (Ox(2D)).

14



A multiple of 2D ~ §F + 3, §;F; is linear equivalent to an effective divisor. This forces
—6 < M. The divisor ~2D is linear equivalent to (=6 — M)F + > 6.F; for 6, = —I; mod
a; and 0 < I! < a;. Hence h1(Ox(—2D)) = M + § — 1. Combined with the equality

(* * *) R} (Ox(2D)) = -6 -1

we obtain the estimate

h'(End(E)) < M - 3.

The moduli space locally can be embedded in the Zariski tangent space, cf. Kobayashi [87],
261. Since the topological dimension of the moduli space is 2(M — 3) by proposition
(2.2), it has to be smooth.
The inclusion P(D)—8x(0,0) is a smooth closed embedding. To prove this claim one has
to check that the inclusion is holomorphic and that the differential is injective. The former
follows by the universal propery of Sx(0,0). For an affine neighborhood V of £ € P(D)
one can construct a bundle £ over V x X, such that the restricted bundles £, over v x X
are classified by v. Choose an open Stem covering U of X and represent £ by a cocycle
(9i;) € Z(U,Gl(2,0x)). Because £ is an extension of two line bundles, the g;; can be
chosen to be upper triangular matrices (§ T) € T(2,0x). Let (hij)* € Z(U,T(2,0x))
represent a base of a hyperplane V; of Ezt'(Ox(D),Ox(—D)) not containing £. The
bundle £ over V x X = (Vy 4+ £) x X then is represented by the cocycle (gi; - [1, e*hf;
for a* € C, :
The differential, the Kodaira—Spencer map, can be computed as deformations over
the double point and is given by the map

Vo = Ezt!(Ox(D), Ox(-D)) - Ezt!(£, Ox(-D)) - Ext'(€,£)
induced by the projection £— O x (D) and the inclusion Ox(~D)—&. The map
a: H'(Ox(-2D))—H'(£(-D))
is contained in the long exact cohomology sequence associated to the extension
0—Ox(-2D)—E&(~-D)—0Ox—0
and thus is injective on V. Similarly the sequence
0—E&(—D)—E®E—E(D)—0
gives B in cohomology. In the proof of (2.3) it was shown that H%(End(€))— H°(£(D))

is surjective. Hence the Kodaira-Spencer map V;—s Ezt1(£, £) is injective.
Consider the pullback diagram

Hz U(D) — M¥ (0 0)
l ‘ 1
[I,P(D) < Sx(0,0).
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The image of j is contained in the image of 7. Since j is an open embedding, this gives the
claimed stratification.

Let (£d,,...,+d,) be a tuple with d; € Z/a; and suppose Ox(C) € Z is an ad-
missible bundle satisfying the equality A'(Ox(—2D)) = M — 2 and (%cy,...,%c,) =
(%di,...,%dy,). Here we use the linear equivalence C ~ ¢F + 3, ¢;F; with 0 < ¢; < a;.
Using (* * ) we get 2C ~ —F + 3. I;F; with 0 < I; < a;. Hence

(* * *x) 2c+#{i|ci 2 aif2} =-1
. The inequality 2¢ < —m of definition (2.2.11) forces
{t]|eci=2aif2} 2m—1.

Condition (2.2.iii) finally determines uniquely whether ¢; is in the interval [0, a;/2[ or in
[ai/2,a;[. The invariants c¢; therefore are determined without any ambiguity by the con-
gruences *c¢; = £d; mod a;. Thus there is at most one component of maximal dimension
contained in [, U(D) for any given invariant (+d,,...,+d,), i.e. representations with
the same invariants do belong to the same connected component of R(X). &

2.7. Corollary: i) The moduli space M (0,0) is rational.
ii) The representation spaces R(Z) of Seifert fibered homology 3-spheres are simply
connected. &

Let C be a connected component of R(E) of (real) dimension < 4. Then C is either
diffeomorphic to P! or to a rational surface. The rational surfaces are well known; they
are blow—-ups of P? or of Hirzebruch surfaces and all admit Morse functions with only even
indices. This proves the conjecture of Fintushel-Stern for all components of dimension
< 4, in particular for Seifert spheres ¥(a;,...,a,) with n <5.

In order to treat the higher dimensional components we invoke a result of Smale [62],
theorem 6.1, to the effect that 1-connected differentiable manifolds of dimension > 6 always
admit Morse functions with the minimum possible number of critical points. Combined
with our description of R(Z) this yields

2.8. Corollary: The conjecture of Fintushel-Stern is equivalent to the vanishing of
HY(R(X);Z) in odd dimensions. &

3. Cohomological Properties of the Moduli Spaces

In this chapter we analyze the stratification of the moduli spaces. Using Deligne’s
solution to the Weil conjecture we prove the vanishing of the odd Betti numbers of R(X),
which then leads to a solution of the conjecture of Fintushel and Stern modulo torsion.

As we have seen in the proof of theorem (2.6), an admissible bundle may be simple,
but unstable. This phenomenon is connected with the existence of certain ”destabilizing”
vertical curves in X. Let £ € P(D) be an admissible bundle, classified by the image of the
differential

d: H(Ox)—H'(Ox(-2D))
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in the cohomology sequence associated to the short exact sequence

0—Ox(—2D)—E(~D) L5 Ox—s0.
The divisor 2D is linear equivalent to §F + 3. 6; F; with 0 < §; < a;.

3.1. Proposition: An admissible bundle £ € P(D) is unstable if and only if there exists
an effective vertical divisor L = D — C in X such that

1) Ox(C) € Z is admissible

ii) the image d(H°(Ox)) is contained in the kernel of the map

HY(Ox(-2D))—HY(Ox(-D - C))

induced by multiplication with the section of Ox(L) with zero locus L.
Furthermore L ~ IF + 3. I;F; can be chosen with I; € {0,4;}.

Proof: Let p: Ox(C)—¢& be a nontrivial map such that C'- H > 0. Then the map
o = (8 ® Ox(D)) o p is nonvanishing, since otherwise C - H < (-D)- H < 0. Hence
o ®Ox(—C) gives a section of Ox (L) with zero locus L, which is an effective divisor, since
€ doesn’t split. In the proof of proposition (2.3) it was shown that the inequality C-H > 0
forces the effective divisors K — C and L to be vertical. In particular C - H # 0, since Kx
is not linearly equivalent to an effective divisor and thus Ox(C) € Z.
Suppose L is an effective divisor with Ox(C) € Z. Multiplication with the associated
section of Ox (L) leads to a morphism of short exact sequences:

0 — Ox(-2D) — €&(-D) — Ox — 0

! ! o/ !
0 — Ox(-D-C) — E&L-D) — Ox(L) — 0

The existence of a map o in the diagram is equivalent to the existence of a destabilizing
map p and also is equivalent to the vanishing of the composed map in the commuting
square .
H°(Ox) -5  H'(Ox(-2D))
l l .
HOx(L)) = H'Ox(-D-C))
Suppose L ~ IF + Y. ;F; with 0 < [; < a; does not satisfy I; € {0,(a; — 6;)}. Consider
the effective divisor
' 1 _ T o l; if 6; > I;
L'=1L Z,\F where \; = {l.~ 6 it <l
The line bundle Ox(D — L) is an element of Z, since both Ox(D — L) and Ox(D) are
elements of Z. The commuting diagram
0 — Ox(-2D) £  Ox(L'-2D) — Op(L'-2D) — 0
1= IDIIRIEY i

0 — Ox(-2D) & Ox(L-2D) — O (L-2D) — 0
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induces on the cohomology level a diagram

0 — HYOxIL'(L' —2D)) <& HYOx(-2D)) X HY(Ox(L' -2D))

l L= !
0 — HYOxL(L-2D)) & HYOx(-2D)) -% HYOx(L-2D)).
The lines are exact, since Ox(L — 2D) admits only the trivial section. Computation of
dimensions shows

h*(Op (L' - 2D)) = h*(OL(L ~ 2D)) = 1+ #{i | & < L}

and hence multiplication by L and multiplication by L' give the same kernel. An identical
argument as for L gives a nontrivial section of £(L' — D). L

This criterion for detecting unstable points in the moduli space of simple bundles
can be used to describe the subvariety P(D) \ U{D) of unstable bundles globally. For our
analysis it will be necessary to consider a more general class of curves than the destabilizing
ones. So we fix an element Ox(D) € Z with D ~ dF + 5, d;F; and 2D ~ 6F + 5, 6, F;
with 0 < 6;,d; < a;. ‘

3.2. Deflnition: An effective vertical divisor L ~ IF + > . LF; with 0 < I; < a; is
associated to P(D), if

) K(OL(L - 2D)) < k(Ox(~2D))

ii) I; € {0,6;}.
If furthermore the bundle Ox(D — L) € Z is admissible, L will be called destabilizing.

3.3. Lemma: Let £ € P(D) be an admissible bundle and L a vertical effective divisor
associated to P(D). The short exact sequence of sheaves

0—Ox(-2D)—Ox(L —2D)—0OL(L - 2D)—0
leads to a short exact sequence in cohomology
0— H(OL(L - 2D)) 25 HY(Ox(—2D))—H (Ox(L — 2D))—0.

Proof: Let L ~IF + %, L;F; and 2D ~ 6F + . §;F; with the usual convention 0 <
li,8; < a;. With help of (1.1) we can compute the dimensions k' (Ox(—2D)) =M +6§—-1
and h°(OL(L — 2D)) =1+ #{i | 6 < I;}. Writing the divisor L — 2D ~ fF 4 Y. fiFi in
standard form with 0 < f; < a;, we get an estimate

f=1-6-M+#{i|§<L}=-6-M+h(OL(L-2D))
<-6-M+h(Ox(-2D)) = -1.

As a consequence the cohomology group H?(Ox(L — 2D)) vanishes. A further application
of (1.1) shows

R (Ox(L —2D)) = —f — 1 = h}(Ox(—2D)) — h°(OL(L — 2D)),
proving the surjectivity part of the claim. &
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As aset P(D)\U(D) is the union Uy P(ker(-L)) over all destabilizing curves associated
to P(D). If a curve L is destabilizing for a bundle in P(D), then so are all curves in the
complete linear system |L|. Of course not all these curves destabilize the same bundles in
P(D). For a bundle Fy over a variety Y we will denote the projective bundle of lines in
Fy by P(Fy). This definition coincides with the Grothendieck construction Proj(Fy ) on
the dual locally free sheaf 3, as defined in Hartshorne [77], p.. 160.

The bilinear form

a: H(Ox(-2D)) ® H(Ox(L))—H(Ox(-2D + L))
for a curve L associated to Ox (D) determines canonically a sheaf homomorphism
(%) & : Hl(Ox(—2D)) ® 0|L|(—1)—-—-)H1(0x(—2D + L)) ® 0|L|

(v®u,C-u)— (vu®1,C-u).

By the lemma above & is fiberwise surjective, thus is a surjective bundle homomorphism
with kernel 87 |, a bundle over the complete linear system |L|. Using the defining inclusion,
we get a map

(%) P12y : P(Sf))—P(H(Ox(-2D)) @ Oy (-1))
=~ P(H'(Ox(-2D))® O))) = P(D) x |L| £5 P(D).

The image of 1|1 is an irreducible subvariety Inst(L) of P(D). We will give a description
of this image for a destabilizing vertical curve L. To do that we recall some geometric
constructions.

A rational norm curve N in projective r-space P" is a rational curve of degree r not
contained in any linear subspace. The construction is straightforward: View P™ = P(S5,V)
as the space of lines in the r-th symmetric tensor power of a 2-dimensional vector space
V. The curve N is the image of the map P! = P(V)—P", given by z — z".

The join Wy x...* W, of subvarieties Wy, ..., W, of P" is the smallest closed subvariety
containing span(ws, ..., w;) for all tuples (wy,...,w;) € W; x...x W;. The secant variety

Seci(N)=N=*...xN
l—times

is a special case of this construction.
Let Ox(D) be an admissible line bundle with 2D ~ §F + 3. 6;F;, 0 < §; < q; and
let M be the cardinality of the set J = {7 | é; # 0}.

3.4. Proposition: Suppose dim P(D) > 1. Then there is a rational norm curve N and
M disjoint points {p;} C N, such that the following statements hold:
i) L ~IF+ 3, L;F; with 0 <I; < a; is an associated destabilizing divisor, then

Inst(L) = Sec(N)*( 4 pj) with I={i|l; #0}.
icJ
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ii) For any pair of destabilizing divisors L and L' the intersection Inst(L) N Inst(L') is
a finite union Ux Inst(Lg). This union is over all subvarietes Inst(Ly) for divisors Ly,
which are destabilizing and associated to P(D), such that there are nontrivial maps
OX(Lk)—>OX(L) and Ox(Lk)—)Ox(L').

ili) The subvariety P(D)\ U(D) of unstable bundles is a finite union UInst(L) for desta-
bilizing curves L associated to P(D).

Proof: The dimension of H!(Ox{(—2D))is M +8§—1 =k + 1. We first show that the
map

a: HY(Ox(-2D)) ® HY(Ox(kF))—H (Ox(~2D + kF)) 2 C

is nondegenerate. To prove this we take (k + 1) disjoint generic fibers F°,...,F* The
differential
dpog. 4rr : H(Opoy 4 px)— H'(Ox(—2D))

is an isomorphism. Since dpoy 4 ps = dpo+...+dps, we have found a base f/,0 <1<k
of the latter space. Looking at the kernel of the multiplication of H'(Ox(—2D)) with the
divisor (ES F!—F*), we notice that the set {f?,..., f*}\{f'} is a base of this kernel. Thus
a is nondegenerate and H'(Ox(~2D)) can be identified with the dual of H*(Ox(kF)).
Using the commuting diagram

HY(Ox(-2D)) %5 HY(Ox(-2D + §F))

l= (ai — 8i)Fil
HY (Ox(-2D)) 5  HYOx(-2D+ F))

and counting dimensions, we see that multiplication with §; F; gives the same kernel as does
multiplication with a;F;. This shows that p; = P(Im(ds,r,)) is a point on the subvariety
Im(i;F|). Moreover to study P(Im(dy)) we can replace any divisor L' associated to P(D)
by a divisor L > L', which again is associated to P(D}, such that h°(Ox (L)) = R%(Ox (L")
and L is linear equivalent to a multiple of a generic fiber.

So let us for a moment fix such a divisor L ~ [F. Using the canonical isomorphism

HYOx(kF)) 2 Sy (H*(Ox(F))) = SiV,

the map HY(Ox(-2D)) -& HY(Ox(-2D + L))

is the dual of the map
SpiV—5:V

z— L.z,

In particular & in (*) is the defining map for the dual of the 1-secant bundle of the rational
normal curve, also named Schwarzenberger bundle (cf. Schwarzenberger, [64] and Spindler-
Trautmann [87], p. 5f and p. 16f). In particular Inst(L) is the l-secant variety of a rational
norm curve N in P(D). The first claim in the theorem is now immediate. Statement iii) is
a consequence of proposition (3.1). To prove the second statement it is sufficient to show
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that for destabilizing effective divisors L and L' associated to P(D) there is a third such
divisor L", such that
Im(dy)N Im(dy) = Im(dyl).

Let C denote the union of the curves L and L', respecting of course the multiplicities, and
let L" be the intersection L N L'. We will construct a base of Im(dc¢), such that subsets
of this base constitute bases of Im(dL) and Im(dys). Therefore the intersection of these
two subsets gives a base for the intersection Imn(dy) N Im(dy ), which will turn out to be
Im(dp). The construction relies on the fact that L and L’ are destabilizing. By definition
this implies

(D-L)-H>0 and (D—-L')-H>0

and consequently h°(Ox(—2D + L+ L')) = 0. In particular dj4 is injective. Because of
the inequality of divisors C < L+ L', d¢ is injective, too. As a divisor, L is a sum Y [, F,
of reduced vertical divisors Fy, counted with multiplicities {, Similarly L' = 3 I/ F,, and
C =3 (maz(la,l))Fa = 3 caFu. Note that Im(dc) = @olIm(d.,F,). The sequence

Im(dpa) - Im(dzpa) C...CIm(de,r,)

constitutes a flag. So we may choose a base of Im(d¢) respecting both the direct sum
decomposition and the flag structure. It is immediate that such a base will do the

job. &

In order to apply the Weil conjecture to the moduli space M#(0,0), we need a nice
decomposition of the secant varieties. Let S);p) denote the l-secant bundle for the rational
norm curve in P(D), which is defined over the complete linear system |IF| with 2/ <
dimP(D) = r. Let Sec; denote the l-secant variety

Nx*...xN
N e

I—times

of the rational norm curve N C P(D).
3.5. Lemma: The projective bundle P(SI‘, ry) over [IF| admits a stratification

-1
P(Siep) = [ ] A

=0

with locally closed smooth strata 4; & (Sec(,_,-) \ Sec(i—i—1)) X P:.

Px_'oof: We use the same notation as in the proof of (3.4) and abbreviate S; = S;V
and P' = PS;. Multiplication S;_; ® S;— S} induces a (:.)-fold covering

¢i: Xi =P  x P' P! = |IF|.
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Consider the tautological diagram

0
i
0 F
l !
0 — S(r-:)®0x.-(—1a—1) — ST‘®OX.' — ¢:SP' — 0
! l= !

0 — S(T—1+i)®oxi(_170) — 5,®0x, — Sp-ix0Opi ~— 0

S

O — e

The epimorphism in in the last row defines an inclusion j fitting into the commuting
diagram:

P(Sa_)xPi = P(Sh_.xOpi) & P(Sh)xp P 25 P(S3)
lprl l Vi l l P
P(Spi-i) Yoy Secy—; AN Secy = Secy

Here the maps 4; are just the maps 1| defined earlier in (*+). The leftmost square
implies:

(z,b;_,-)"l(Sch_,-) \ Sec(l—i—l)) = (1.[’1_.')"1(566(1_,-) \ Seca_,-_l)) x P*

The proposition is a consequence of the following
Claim: The map f; = pry 0 J induces an isomorphism

($1-:) " (Secq—iy \ Secq-i—1)) = (1) ™ (Secu—iy \ Secq—i-1)).
For the proof consider the diagram
P(Sh_)x PP D PSn)xp Xi = X;
| 5 | | ¢
¥r'(Secu-y) =  P(Sp)  — P!
l (2 l Y

566(1_;) “— SCC[

View P! as a symmetric product S'(P'), where P! = PS,. Then the projective bundle
P(S5:) can be written as a subspace

P(Sp:) = {(a;21,...,21) € P" x P! with a € span(z],...,z})} C P" x P!,
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where P™ = P(S,). Here we use the convention to denote by
span(y,...,y)
N
the i-th osculating space. The subspace %' (Sec(—;)) then is:

{(a;21,...,2) €P"x P! |a€ span(z ..., x5 _.) for {z;,...,z;_,} C{z1,...,zi}}.

The subspace ;! (Secq—iy \ Sec(—i—1)) consists of the elements, for which the span con-
taining a is unique. The invers for §; is given by:

(@521, oy T) — (@5 T 5oy BBy ooy By e v s EggreeesEjy_sye v TU)s
&

For the next lemma let N, denote a rational norm curve in P" and let py,...p, be
disjoint closed points on N,

3.6. Lemma: There is an isomorphism

(Seci(Ne)*x{p1} % ... {ps}) \ {Ps} = P(O4(1) ® O4) \ P(O4),

where A is the join A = Sec;(Np—1)* {p1} *...* {p,—1}.

Proof: Let P"~! C P" be a hyperplane intersecting N, in r — 1 disjoint points such
that the points py,...,ps~1 are contained in that hyperplane, but not p,. We will show

that for
B = (Sect(Ny) x {p1} +...x {p.})\ {ps}

the intersection BNP"~! is isomorphic to A. Furthermore we will show that B is isomorphic
to the join A * {p,}. The claim then follows from the well known isomorphism

P"\ {p,} = P(Opr-1(1) ® Opr-1) \ P(Op:--1).

As a first step we will show that the intersection N,_; = P™"! N (N, * {p,}) is a rational
norm curve in the hyperplane. For this we take a generic hyperplane H in P"~! and count
the number of intersections with N,_;. The hyperplane in P" generated by H and p,
intersects N, in r disjoint points, one of them being p,. The line connecting one of these
points with p, is contained in N, * {p,} and intersects H exactly once. This gives r — 1
points of intersection of H with N,._;. On the other hand any point of intersection of H
with N,_; lies on a line connecting p, with a point on N,. This point on N, then is an
intersection point with the hyperplane in P" generated by H and p,. This implies that
the curve N,_; has degree (r — 1) and therefor has to be a rational norm curve in P71,
Furthermore N, x {p,} = N,_; * {p,}. Associativity of the join construction gives the
result. &
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Let X denote a scheme of finite type, defined over the complex numbers.

3.7. Proposition: There is a subring A C C of finite type over Z and an extension

X — X

fl Lfe
Spec(C) — Spec(A)

such that f¢ is flat. This extension can be constructed simultaneously for a finite number
of schemes X;,..., X, and a finite number of maps g;; : X;—X; such that there exist
maps gf; over spec(A) extending g;;. Moreover these extensions can be chosen such that
1) if f is smooth (resp. proper, irreducible, integer), then so is f°.
i) if g;;.X;— X is a locally closed immersion, then so is g{; : X;— ).

A proof can be found in EGA 1V,2,3,4. References are assembled e.g. in I. Bauer-
Kosarew [88], 2.1 and 2.2. »

Let X be a smooth projective variety and A an extension over the ring A as above.
We may assume a given prime to be invertible in A.

3.8. Proposition: There exists a finite residue field Fq of A with separable closure F,
such that the étale cohomology H ‘(qu; Q) of the reduction Xy, of X is isomorphic to

the singular cohomology H(X; Q) for all i.

Proof: The construction of Q;-cohomology is by taking limits over Z/I"—cohomology
and then moding out torsion, compare Freitag-Kiehl [87], I,12. For finite Z /I"~cohomology
the isomorphisms are a consequence of the proper base change theorem and the fact that
the higher direct image sheaves R' f,(Z/I") are all locally constant, cf. Freitag-Kiehl [87],
p. 61 and p. 94.

For a maximal ideal in A ® Q the quotient field is a number field by Deligne-Illusie
[87], p. 257. If p is the inverse image in A of such a maximal ideal in A ® Q, then a
maximal ideal s of A containing p will give a finite quotient field F,. Let R denote the
strict henselization of A. Then the inclusion A—C admits an extension to R. Using this
extension we get a specialization isomorphism

R fu(Z)1)y—— R fu(Z/1™)o

of the stalk over the special point to the stalk over the generic point, cf Freitag-Kiehl {87],
p. 96. Taking inverse limits over n gives the claimed isomorphisms of étale cohomology
groups. But for the generic fiber X the étale and the singular cohomology coincide. &

Let M#(0,0) be the moduli space of rank-2 bundles with vanishing Chern classes
over the Dolgachev surface X = X(ay,...,a,) for pairwise coprime a;.

3.9. Theorem: The rational cohomology groups H*(M¥(0,0); Q) vanish in odd dimen-
sions 1.
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Proof: Using 3.8. and 3.7. we can take the reduction Mg of the moduli space to

the separate closure F, of a finite field F, and compute the Betti numbers of the étale
cohomology groups H '(M . ;Qi). To do tha.t we compute the zeta—function of M— Let

vi(Mz ) denote the number of closed points in the reduction Mg , of the moduh space
to the fgmlte field F . The zeta—~function then is defined by

. (Mg ).tk
Z(qu;t) = ezp (Z ——-——k'— .

k=1
Claim: The space qu satisfies the following property:
(C) There are integers by, by, . . ., by, such that for any power ¢* of ¢ the number vk(qu)

is given by
vi(Mg,) =D bai(g")'.
=0

Assurming this claim we can prove the theorem. Using the formula

k

2z
,Og(l—:r) Z_k—’

k=1

the zeta—function takes the form
n
- — — git)—bai
(+ % %) Z(Mg,, ) = [J(1 - g')~*=.
=0
The theorem of Deligne [74] states that the zeta-function is a rational function

P3 P2n—1
P P...P,

Z(.MF 1) =

The degree of the polynomial P; is the dimension of H ‘(Mﬁq; Q) and the zeroes of P; are

of absolute value ¢*/2.
Application of this theorem to (x * %) gives the result.

It remains to prove the claim. The condition (C) has some nice properties:
1) Projective space PZ satisfies (C). More generally every projective bundle P™(&y)
q

over a variety V' defined over Spec(F,) satisfies (C), if V does satisfy (C).

ii) Condition (C) is additive in the following sense:
Suppose a variety Vp admits a stratification IIV; = V; with locally closed subvarieties
Vi, all defined over F,. If each V; with i # 1y satisfies (C), then so does V;,.
As an immediate consequence of ii) one has

iii) Let Vi,...,V, be irreducible closed subvarieties in V such that V; NV} is a union UV}
and any V; satisfies (C). Then the union U;V; also satisfies (C).
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Because of 3.7. a nice stratification, i.e. with locally closed strata, of the moduli space
M*L(0,0) will give a nice stratification of the reduced moduli space qu. We thus only
have to show that the strata U(D) of 2.6. have reductions satisfying (C). Using ii) above
this is equivalent to P(D)\ U(D) having reductions satisfying (C). By 3.4. and iii) above
it is sufficient to show this for Inst(L). By lemma 3.6. and i) this is a consequence, if
the reduction of the secant varieties Sec; satisfy (C). This, however, follows from easy
induction over ! using 3.5. and i). &

The torsion subgroup of H3(Y;Z) for a smooth variety Y, in algebraic geometry
known as topological Brauer group, is a birational invariant, c¢f. Grothendieck {68], p. 50
and p. 138. Since it vanishes for Y = P? we obtain

3.10. Corollary: The conjecture of Fintushel-Stern holds for all components of R(Z) of
real dimension < 6.

4, The Betti numbers

In this chapter we apply the results of the paper to compute the Betti numbers of
each component of the representation spaces. By explicitely computing some complex 2—-
dimensional components of the representation space for a particular Seifert sphere with
five multiple fibers we illustrate the general situation. These low dimensional examples
already reveal some of the characteristic features of the representation spaces.

Let D ~ dF + Y, d;F; denote an admissible divisor. It will be convenient to use the
divisor 2D ~ 8F + 3. 6;F;. In case ay is even this corresponds to looking at flat SO(3)-
bundles over X(a;/2,az2...,a,) instead of flat SU(2)-bundles over the Dolgachev surface
X(ay,...,ay). In the first chapter we have shown that these are equivalent points of view.

Let (+dy,...,+dy) be an n—tuple with d; € Z/a;. The first question to ask is whether
there exists a component in the moduli space M¥(0,0) realizing this tuple as rotation
numbers. Here X denotes a Dolgachev surface X(a,,...,a,). Without any loss of gener-
ality we may and will assume that none of the d; vanishes. To fix an integer representing
+d; we impose the condition

a:
(1) —é'- < di < a; with the only exception 0< d, < a?", if n is even.

The integers §; then satisfy
0<6;<a; and §; = 2d;mod q,.

4.1. Proposition: There exists a component in the moduli space M%(0,0) realizing the
tuple (+dy, ..., ®d,) as rotation numbers, if and only if the following numerical conditions
are satisfied:

1) Yiei(i/ai) > 1.
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i) For any combination of integers m; subject to the conditions 0 < m; < 2 and
E?:l m; = n — 2 the estimate

g(—l)m‘ (2—) < 14 24{i | m; = 2)

must hold. If §; = 0, then m; has to be set m; = 1.

The special case of n = 3 was shown by Fintushel and Stern [88].

Proof: Let D denote a divisor corresponding to a stratum of maximal dimension. In
the final part of the proof of theorem (2.6) we saw that the number of d; with a;/2 < d;
is either n — 1 or n, depending on whether n is even or odd. In case n even the definition
of admissible bundles then forces d,, < a,/2. Furthermore the proof of (2.6) showed that
2D is linearly equivalent to —F + 3 ., & F; with 0 < §; < a;. A multiple of the divisor
2D is effective. Hence the inequality

2D - H = (-1+i§) (F-H)>0

must hold. For the ample divisor H the product F' - H is positive. This shows the first
condition, together with the choice of the d;, being equivalent to the existence of an
admissible divisor realizing the given rotation numbers.

It remains to check, whether or not the whole component P(D) is unstable. By
proposition (3.1) this amounts to search for a destabilizing curve L ~ IF + . L;F;, for
which the corresponding subvariety Inst(L) has maximal dimension n — 3 — #{z | 6; = 0}.
The dimension of Inst(L) is #{l; # 0} + 21 — 1. So the candidates for destabilizing the
whole of P(D) can be described the following way: Let m; be a combination as in the
statement and set

l=#{i|m; =2} and 1;:{3‘ ::;S’:*:l

By proposition (3.1) the crucial condition on L for being destabilizing is that the divisor
D — L has to be admissible, in particular the inequality 2(D —L)- H > 0 has to be satisfied,

which reduces to:
< 5 N2
-1 2 - bl :
( +Z:a,-) (21+2Za'_)>0

=1 iel

But this is just condition ii}) of the statement. &

In the third chapter we described the subvarieties Inst(L) C P(D) representing bun-
dles destabilized by a curve L ~ IF + . [;F;. These subvarieties are joins

Nx...xN*p; *...%xp;,
i
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where N is a rational norm curve in P(D) and the p;’s are points on this curve. There are
only two possibile choices for the I;: zero or 6;. The points p; in the join above correspond
to the nonvanishing /;’s.

Again we look at a divisor D corresponding to a stratum of maximal dimension. We
already saw in the proof of (4.1) how to check whether a given join

Nx...« Nx*p;, *...%p;, CP(D)
!

represents unstable bundles.

4.2. Remark: A curve L ~ IF + . l;F; associated to P(D) is destabilizing if and only
if the following estimate holds:

~_qymi (& {0 LifL=0
;(-—1) (Z) >1+4 21, where m; = { 1, if I; = §6;.

&

We now turn to the computation of the Betti numbers of a given component of the
moduli space. Let D ~ dF + 3. d;F; be a divisor satisfying (1} and L ~ IF + 3, LiF;
a destabilizing curve associated to P(D). The subvariety Inst(L) C P(D) has dimension
21—14#{i | l; = 6;}. Using (4.1) we can check whether P(D) contains stable bundles and
if so, we may use (4.2) to count the number e; of subvarieties Inst(L) C P(D) of (complex)
dimension < (7 — 1) and the number f; of subvarieties Inst(L) C P(D) of codimension
< j. We denote the dimension of P(D) by r.

4.3 Theorem: The Betti numbers of a component of the moduli space M (0,0) with
rotation numbers (+d;,...,xd,) are given by the formulae by; = by,—2; = 1+¢€; — f; and
b2j+1 = 0.

Proof: We use the counting method of the proof of theorem (3.9) and consider the
reduction My of the moduli space to a suitable finite field F;. All spaces in the sequel
will be defined over F;. We will therefore omit the index F,.

Let C denote the component of M%(0,0) with rotation numbers (+d,...,xd,). We
will prove the following formula:

(2) ve(C) = va(P") + ) (ni(P°%) — mi(P*)),

where the sum is over all linear equivalence classes of destabilizing curves L, tj is the
dimension of Inst(L) and P** = P(D — L). Applying the remarks we made in the proof
of (3.9) to (2), combined with the equality

(3) sp+tL=r—1
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gives the claim. So it remains to show (2) and (3). For the latter we have to check
r = h1(Ox(—2D — 2L)) + dim (Inst(L)).
This, however, is clear, since
R (Ox(—2D - 2L)) = h'(Ox(—-2D)) — 21 — #{i | 2(d: — I;) < 0}
=r+1-21-#{i|!; £0}
and dim Inst(L) = 21 + #{i | l; # 0} — 1. The proof of (2) is a bit more involved. We

start with the equation
@)= Y. wU(©)
Ox(C)el

where I C Z is the subset of all admissible bundles with C ~ c¢F' + E.’ ¢; F; such that
(xeq,...,xeq) = (£di,...,+d,). The linear equivalence C ~ D — L gives a 1-1 corre-
spondence of admissible bundles Ox(C) € I\ Ox(D) = I and complete linear systems
|L| of destabilizing curves associated to P(D). So in order to prove (2) it suffices to show

(4) > u(P) = u(P(C)\U(C)).
I I

For a destabilizing curve L associated to P(C) we denote by Jc(L) the subspace

Jo(L) = (Inst(L)\ [] Inst(L")) c P(C).
L'<L

With this notation we can give a stratification

P(C)\U(C) = | | Je(L),
I;

where the sum is over all destabilizing curves L associated to P(C).

Let L be a destabilizing curve associated to P(D). If L' is another curve associated

to P(D), then it is destabilizing and moreover (L — L') is a destabilizing curve associated
to P(D — L'). This yields

(3) 2 nPEON\UE)= ( > w1 (L - L')))

T ox(D-LYeI \I}_,
= > ( > v(Jp_p(L - L’))) :
Ox(D=L)el* \L'—L

Note that J¢{L) is of the form
(N*...xNxp; *...xp; )\ (UInst(L"),
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where each of the Inst(L') is a similar join with either one factor missing or one of the
N’s replaced by a p;;. We claim

(6) vi(Inst(L)) = v (P*).

Before proving this equation we look at its consequences: First it would follow vi{Jo( L))
uk(JD(L)), where L ~ IF + .. I;F; is a destabilizing curve associated to P(D) with I =1
and (I; =0 < l; =0)for L ~IF + Y_; iF;. Furthermore (5) could be reformulated

Y w(P(C)\U(C)) 3 (Z Vk(JD(-i’)))

I Ox(D-L)EIr* \L<L

Y w(Inst(L))

Ox(D-L)el*

= Z vi(P'r),

Ox(D-L)eI*

proving (2). So it remains to show (6). Using (3.6) we see
ve(N*.. . xNxpi *...%p;, Y)=q¢" vi(N*...x Nxp; x...%p; _)+1.

So we are done, if we can show

2 -1
vi(Seci(N)) = v (PY1) = T
where = = ¢*. The inductive claim is
$21 $l_2
(7) vk(Seci(N) \ Seci—1(N)) = 1

We invoke (3.5) to the effect
vi(Seci(N)\ Seci—1(N)) =

= 1 (PY) - vk(Pl_l) - Zl — 1v(Seci—; \ Seci—j—1)cot uk(P‘) =
=1

— (:L‘ _ 1)—2(($l+1 _ 1)($I _ 1) _ i$21—2i—2(m2 _ 1)(33:'-{-1 _ 1)) —

t -2
=@ -D(L e - 1) = Y ¥ + 1) - 1)

{2 -1 -3 -1 21-3
— (:t: _ 1)—1(($2I + Z$l+i+1 _ Zwi) _ (Z$1+£+1 + Z - Z ml)) —
t=0 =0 =0 =0 1=0
2 p20-2
T Tz
That finishes the proof. &
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We will conclude our considerations with complex 2-dimensional examples. Any com-
ponent of the moduli space M¥(0,0) of this dimension has to be the projective plane P2
or a blow-up of a Hizebruch surface.

Let (a1,...,an) = (256,103,257,259, 303) be our chosen tuple. We will consider the
following five combinations of rotation numbers:

dase  dios  dist  diase daoa

case 1 154 62 155 156 182
case 2 255 102 256 258 302
case 3 154 67 168 169 197
case 4 180 72 180 180 212
case 5 129 52 180 180 212

In case 1 the ratio é;/a; is slightly greater than 0.2 for all i. The conditions of (4.1)
are satisfied and by (4.2) there are no destabilizing curves. Thus P(D) = P? is stable.
In the next case the ratio 6;/a; is slightly less than 1 for all ;. Again there is a com-

ponent in the moduli space realizing the chosen rotation numbers. In this case, however,
there is a whole bunch of destabilizing curves L ~ IF + E,- l; F;, which we list below:

geometry Of Inst(L) l 1256 [103 1257 1259 1303
N a quadric in P? 1 0 0 0 0 0
P1, point on N 0 254 O 0 0 0
p2, point on N 0 0 101 0 0 0
p3, point on N 0 0 0 255 0 0
p4, point on N 0 0 0 0 257 0
Ps, point on N 0 O 0 0 0 301
D1p2, connecting line 0 254 101 O 0 0
D2P3, connecting line 0 0 101 255 0 0
D2Ps, connecting line 0 0 101 257 0 0
D2Ps, connecting line 0 0 101 O 0 301

Using (4.3) we see that the resulting space

has the Betti numbers of P2, hence has to be

the projective plane. The figure on the right 7 \
visualizes the subspace of unstable bundles
in the projective plane. To get the mod-
uli space one has to replace the points p;
by lines. Then the strict transforms of the
curves in the picture are to be blown down to
points. One can easily check that the result-
ing space actually is P?. In general any com- fr — 0 (3
bination of these five points, the connecting Ps

lines and the quadric may occur, as long as

the sequence of blow—ups and blow—-downs will give a smooth surface. Checking the cases
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one can see that the only possibilities for the resulting space are: P2, P! x P!, and P?
blown up in up to five points.

Computing the cases 3, 4, 5 reveals in case 3 one single destabilizing curve. The
resulting space thus is P2 blown up in this point. In case 4 we get five unstable points in
the plane. The resulting space consequently is P2 blown up in these five points.

Case 5 finally gives an example of P! x P!: There are two unstable points in P? and
the connecting line is unstable, too. Let’s summarize:

4.4, Corollary: It is exactly the following complex surfaces which arise as 2—dimensional
components in the moduli spaces M#(0,0): P2, blown up in 0 to 5 points, and P x P1.
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