The algebraic geometry of representation spaces associated to Seifert fibered homology 3-spheres

Stefan BAUER ${ }^{(1)}$ and Christian OKONEK ${ }^{(2)}$

(1)

Sonderforschungsbereich 170
"Geometrie und Analysis"
Bunsenstraßes - 5
D-s 400 Gottingen
F.R. Germany

Max-Planck-Institut
für Mathematik
Gottfried-Clarenstr. 26
D-5900 Bonn 3
F.R. Germany
(2)

Mathematisches Institut der Universität
Wegelestraße 10
D-5s00 Bonn
F.R. Germany

THE ALGEBRAIC GEOMETRY OF REPRESENTATION SPACES

ASSOCIATED TO SEIFERT FIBERED HOMOLOGY 3-SPHERES

Stefan Bauer and Christian Okonek*

Introduction

In this paper we will study geometric properties of representation spaces associated to certain homology 3-spheres. Recall that a smooth 3-dimensional manifold M is a homology 3 -sphere, if it has the same integral homology groups as S^{3}. Examples of homology spheres exist in abundance, e.g. the well known Poincare sphere $S U(2) / I$, where $I \subset S U(2)$ is the binary icosahedral group. A rather large but still accessible class of homology 3 -spheres are the Seifert fibered 3 -spheres. These can be described as follows: Let a_{1}, \ldots, a_{n} be integers greater that 1 . For a sufficiently general $(n-2) \times n$-matrix $A=\left(\alpha_{i j}\right)$ of complex numbers the complete intersection

$$
V_{A}\left(a_{1}, \ldots, a_{n}\right)=\left\{z \in \mathbf{C}^{n} \mid \alpha_{i 1} z_{1}^{a_{1}}+\ldots+\alpha_{i n} z_{n}^{a_{n}}=0 ; \quad i=1, \ldots, n-2\right\}
$$

of Brieskorn varieties is a complex surface which is non-singular except at the origin. The link

$$
\Sigma_{A}\left(a_{1}, \ldots, a_{n}\right)=V_{A}\left(a_{1}, \ldots, a_{n}\right) \cap S^{2 n-1}
$$

of the singularity is a smooth 3 -manifold whose diffeomorphism type is independent of A. $\Sigma_{A}\left(a_{1}, \ldots, a_{n}\right)$ is a homology 3 -sphere if and only if the a_{i} are pairwise relatively prime. The natural \mathbf{C}^{*}-action on $V_{A}\left(a_{1}, \ldots, a_{n}\right)$ induces a fixed point free S^{1}-action on $\Sigma_{A}\left(a_{1}, \ldots, a_{n}\right)$ with orbit space S^{2}. The orbit map represents $\Sigma_{A}\left(a_{1}, \ldots, a_{n}\right)$ as a Seifert fibered space over S^{2} with n exceptional (multiple) fibres of order a_{1}, \ldots, a_{n}. The set of diffeomorphism types $\Sigma\left(a_{1}, \ldots, a_{n}\right)$ of these neighborhood boundaries is exactly the set of all diffeomorphism types of Seifert fibered homology 3 -spheres, as has been shown by Neumann and Raymond, [78]. This includes for $n=3$ the well known Brieskorn Spheres $\Sigma(p, q, r)$ with $\Sigma(2,3,5)$ being the Poincaré sphere $S U(2) / I$. There exist several alternative ways to construct these Seifert fibered 3 -spheres, e.g. using Dehn twists or as homogeneous spaces of either $\operatorname{SU}(2)$ or $\widetilde{\mathbf{P S l}}(2, \mathbf{R})$ as shown by Milnor [75], Neumann [77] and Neumann-Raymond [78]. The representation spaces which we will investigate are the spaces

$$
\mathcal{R}(\Sigma)=\operatorname{Hom}^{*}\left(\pi_{1}(\Sigma), S U(2)\right) / a d S U(2)
$$

of nontrivial $S U(2)$-representations of the fundamental group $\pi_{1}(\Sigma)$ of such a Seifert fibered homology 3 -sphere $\Sigma=\Sigma\left(a_{1}, \ldots, a_{n}\right)$.

The motivation for analyzing these spaces arises from recent developments in 3 - and 4-dimensional manifold theory, which we briefly indicate. For any (not necessarily Seifert fibered) oriented homology 3 -sphere M, Casson has defined a \mathbf{Z}-valued invariant $\lambda(M)$

[^0]which is computed using the space $\mathcal{R}(M)$ of irreducible $S U(2)$-representations of $\pi_{1}(M)$ (cf. Akbulut-McCarthy [87]). This invariant has been refined by Floer [88], who introduced the instanton homology of such a sphere M. His invariant is a $\mathbf{Z} / 8$-graded abelian group $I_{*}(M)$, which is the homology group of a certain graded complex whose modules -in the simplest cases- are generated by the elements of $\mathcal{R}(M)$. These instanton homology groups have very interesting relations to 4 -manifold theory: Donaldson has defined a series of $\mathcal{C}^{\infty}{ }_{-}$ invariants for certain smooth closed 4 -manifolds X which have been applied to detecting different \mathcal{C}^{∞}-structures (cf. Donaldson [87] and [87]). His invariants are a sequence of \mathbf{Z}-valued polynomials Φ_{k} on $H_{2}(X ; \mathbf{Z})$ defined for sufficiently large integers k. If now X is decomposed into two pieces $X=X^{+} \cup X^{-}$with intersection $X^{+} \cap X^{-}=M$ a homology 3 -sphere M, then the Donaldson polynomials factor in some sense through the instanton homology groups of M. This is nicely explained by Atiyah [88]. Both the definition of the Donaldson polynomials as well as of the Floer homology makes heavy use of gauge theory on 3- and 4-dimensional manifolds. These invariants are therefore in general difficult to compute explicitely.

In order to determine the Floer homology for Seifert fibered homology spheres, Fintushel and Stern [88] showed that any connected component of the compact space $\mathcal{R}(\Sigma)$ is a differentiable manifold of even dimension. The critical points of a Morse function $\mathcal{R}(\Sigma) \longrightarrow \mathbf{R}$ give a base of the instanton chain complex. The grading in the chain complex of such a critical point b is $-(R(b)-\mu(b)+3)$. Here $\mu(b)$ denotes the Morse index of b and $R(b)$ is an invariant of the connected component of $b \in \mathcal{R}(\Sigma)$. The invariants $R(b)$ take only odd values. By describing $\mathcal{R}(\Sigma)$ as a space of "linkages", Fintushel and Stern determined the 2-dimensional components of $\mathcal{R}(\Sigma)$ to be spheres. So in the case of Seifert fibered spheres with no more than four exceptional fibers (otherwise there are components of dimension greater than 2!) the differentials in the Floer chain complex have to vanish and $I_{*}(\Sigma)$ can be computed from the numerical invariants $R(b)$ and the Betti numbers of the components of $\mathcal{R}(\Sigma)$. Fintushel and Stern finally conjectured that this nice description should hold for all Seifert fibered spheres. More precisely:
Conjecture(Fintushel-Stern): For a Seifert fibered homology sphere Σ the representation space $\mathcal{R}(\Sigma)$ admits a Morse function with only even indices.

The description of $\mathcal{R}(\Sigma)$ in terms of linkages in principle works in all dimensions, but gets quite involved even in low dimensions. In this paper we introduce a different approach, showing that the representation spaces $\mathcal{R}(\Sigma)$ of Seifert fibered homology spheres Σ admit a description in terms of algebraic geometry. We show that the $\mathcal{R}(\Sigma)$'s are complex algebraic varieties, which exhibit a surprisingly rich geometry. Making use of their geometric properties we prove the conjecture "up to torsion".

Let us explain this in more detail: The quotient group $\pi_{1}(\Sigma) /$ center is a Fuchsian group of genus zero. These groups arise as fundamental groups of certain algebraic surfaces, known as generalized Dolgachev surfaces. In particular there is for any Seifert fibered homology sphere Σ a Dolgachev surface X such that the space $\mathcal{R}(\Sigma)$ coincides with the representation space

$$
\mathcal{R}(X):=\operatorname{Hom}^{*}\left(\pi_{1}(X), S U(2)\right) / a d S U(2) .
$$

The latter space on the other hand can be interpreted as a certain moduli space of algebraic vector bundles on X, using Donaldson's solution [85] to the Kobayashi-Hitchin conjecture.

This identification provides $\mathcal{R}(\Sigma)$ with the structure of a complex projective variety. We work this out in the first chapter.

In the second chapter we show that every connected component of this moduli space is a smooth rational variety. These varieties come with a natural stratification, the strata being locally closed smooth subvarieties isomorphic to Zariski open subsets of projective spaces. As a byproduct it turns out that representations with the same rotation numbers (cf. Fintushel-Stern [88]) form a connected component. A similar result is true for $\mathbf{P S l}(2, \mathbf{R})$-representations, according to Jankins-Neumann [85]. The main result of the second chapter yields the conjecture of Fintushel-Stern for all components of $\mathcal{R}(\Sigma)$ of dimension ≤ 4. Furthermore -using a result of Smale [62]- it shows that the conjecture is equivalent to the following purely homological conjecture:
Equivalent conjecture: The cohomology groups $H^{i}(\mathcal{R}(\Sigma) ; \mathbf{Z})$ vanish in odd dimensions.
In the third chapter we prove this modified conjecture up to torsion, i.e. we show that the odd Betti numbers of $\mathcal{R}(\Sigma)$ vanish. In order to achieve this we investigate the geometry of the stratification of the moduli spaces. The individual strata are complements of certain subvarieties in projective spaces. These subvarieties, though being singular, have a nice description as cones over secant varieties. Applying Deligne's solution to the Weil conjectures to these cones we obtain the vanishing of the odd Betti numbers. The birational invariance of the topological Brauer group finally proves the conjecture of Fintushel and Stern for the components of $\mathcal{R}(\Sigma)$ of dimension not greater than six.

In chapter four we illustrate how the results can be used for explicit computations. In particular we give formulae for the computation of the Betti numbers of the representation spaces $\mathcal{R}\left(\Sigma\left(a_{1}, \ldots, a_{n}\right)\right)$ in terms of the initial data a_{1}, \ldots, a_{n}. This would give the Floer homology groups, if the conjecture of Fintushel and Stern turned out to be true in general. We illustrate the general situation with some complex 2-dimensional examples.

At the end of this introduction we comment upon the rôle of the Dolgachev surfaces. One should think both the Dogachev surfaces and the Seifert fibered spheres as being different geometric realizations of a 2-dimensional orbifold: Moding out the S^{1}-action on a Seifert sphere gives the same orbifold as does the elliptic fibration of a Dolgachev surface. The spaces $\mathcal{R}(\Sigma)$ and $\mathcal{R}(X)$ thus are nothing else than representation spaces of orbifold fundamental groups.

Acknowledgements: We are indebted to S. Kosarew and H. Spindler for several useful conversations. We would also like to express our sincere thanks to the Sonderforschungsbereich 170 "Geometrie und Analysis" in Göttingen or its hospitality during the preparation of the paper. The second named author would like to express his gratitude to the University of California at Berkeley, where he stayed parts of the time. Finally we are gratefull to the Max-Plack-Institut für Mathematik in Bonn for its support.

Addendum: After finishing the paper, we learnt that P. Kirk and E. Klassen proved the conjecture of Fintushel and Stern directly. Using linkages they showed that there always is a Morse function with only even indices. Combining this result with the computation of the Betti numbers of the representation space in chapter 4 and the work of Fintushel and Stern, one gets the Floer homology for all Seifert fibered homology spheres. Finally Furuta and Steer have announced similar results: Using differential geometry they show that the components of the representation spaces are simply connected Kähler man-
ifolds and compute the integral homology groups.

1. Representation spaces and moduli of stable bundles

In this chapter we will interpret the representation space $\mathcal{R}\left(\Sigma\left(a_{1}, \ldots, a_{n}\right)\right)$ as a moduli space of stable algebraic bundles over a generalized Dolgachev surface.

A set $\left\{a_{1}, \ldots, a_{n}\right\}$ of pairwise coprime integers greater than 1 constitute the initial data. We will always assume these integers to be indexed in such a way that at most a_{1} is even. A Dolgachev surface X is constructed as follows: Blowing up the projective plane \mathbf{P}^{2} in the nine base points of a generic cubic pencil results in an elliptic fibration $\hat{\mathbf{P}}^{2}\left(x_{0}, \ldots, x_{8}\right) \longrightarrow \mathbf{P}^{1}$. Applying logarithmic transformations along n disjoint smooth fibres with multiplicities a_{1}, \ldots, a_{n} gives a complex surface X together with an elliptic fibration $\pi: X \longrightarrow \mathbf{P}^{1}$. In order to emphasize the a_{i}, such a Dolgachev surface X sometimes will be denoted by $X\left(a_{1}, \ldots, a_{n}\right)$.

Let F denote a generic fiber of π and F_{i} the reduction of a multiple fiber with multiplicity a_{i}. The divisors F and $a_{i} F_{i}$ are linearly equivalent. The canonical bundle formula (cf.Barth, Peters, Van de Ven [84], p.161) shows that a canonical divisor K_{X} is linearly equivalent to $-F+\sum_{i=1}^{n}\left(a_{i}-1\right) F_{i}$. In particular the geometric genus $p_{g}=h^{0}\left(K_{X}\right)=0$. Logarithmic transformations preserve the topological Euler characteristic, hence $e(X)=12$ and Noether's formula implies $\chi\left(\mathcal{O}_{X}\right)=1$. Thus $h^{1}\left(\mathcal{O}_{X}\right)=h^{0,1}(X)$ vanishes and the $\mathrm{Pi}-$ card group $\operatorname{Pic}(X)$ is isomorphic to the second cohomology of X with integer coefficients. There is an ample line bundle \mathcal{L} on X with $c_{1}(\mathcal{L})^{2}>0$. By Kodaira's ampleness criterion X is algebraic (cf. Barth et al., [84], p. 116 and 126).

The following formulae for certain cohomology groups will be useful in the sequel. Note that a vertical divisor always is linearly equivalent to a divisor of the form $l F+\sum_{i} l_{i} F_{i}$ with $0 \leq l_{i}<a_{i}$.
1.1. Lemma: Let \mathcal{L} denote the bundle $\mathcal{O}_{X}\left(l F+\sum_{i} l_{i} F_{i}\right)$ with $0 \leq l_{i}<a_{i}$.
i) $h^{0}(\mathcal{L})=\max (l+1,0) ; \quad h^{1}(\mathcal{L})=\max (l,-l-1) ; \quad h^{2}(\mathcal{L})=\max (0,-l)$.
ii) The bundles $\mathcal{L} \otimes \mathcal{O}_{x} \mathcal{O}_{n F}$ and $\mathcal{L} \otimes_{\mathcal{O}_{X}} \mathcal{O}_{n_{i} F_{i}}$ are isomorphic to $\mathcal{O}_{n F}$ and $\mathcal{O}_{n_{i} F_{i}}\left(l_{i} F_{i}\right)$, respectively. One has $h^{0}\left(\mathcal{O}_{n F}\right)=n$ and $h^{0}\left(\mathcal{O}_{n_{i} F_{i}}\left(l_{i} F_{i}\right)\right)=1+\left[a_{i}^{-1}\left(n_{i}-l_{i}-1\right)\right]$, where $[x]$ is the greatest integer satisfying $[x] \leq x$.
iii) $h^{0}\left(\mathcal{O}_{D_{1}} \otimes \mathcal{L}\right)=h^{0}\left(\mathcal{O}_{D_{2}} \otimes \mathcal{L}\right)$, if D_{1} and D_{2} are linearly equivalent vertical divisors.

Proof: Suppose $l \geq 0$. Let $D_{1}, \ldots D_{l}$ denote pairwise disjoint generic fibers. Then $\mathcal{O}_{D_{i}} \otimes \mathcal{L} \cong \mathcal{O}_{D_{i}}$, since \mathcal{L} admits a section which is nonvanishing on D_{i}. The sheaf $\mathcal{O}_{X}(l F)$ admits a section vanishing exactly on D_{1}, \ldots, D_{l}. The corresponding short exact sequence of sheaves

$$
0 \longrightarrow \mathcal{O}_{X} \longrightarrow \mathcal{O}_{X}(l F) \longrightarrow \oplus_{i=1}^{l} \mathcal{O}_{D_{i}} \longrightarrow 0
$$

gives $h^{0}\left(\mathcal{O}_{X}(l F)\right)=l+1$, since X has vanishing irregularity and the D_{i} are connected.
The map $0 \longrightarrow \mathcal{O}_{X}\left(l F+l_{i} F_{i}\right) \longrightarrow \mathcal{O}_{X}((l+1) F)$, induced by multiplication with the divisor $\left(a_{i}-l_{i}\right) F_{i}$, yields an estimate $l+1 \leq h^{0}\left(l F+l_{i} F_{i}\right) \leq l+2$. There are sections in $\mathcal{O}_{X}((l+1) F)$ not containing $a_{i} F_{i}$ in its zero locus. Hence the second inequality has to
be a strict one. Induction on the number of nonvanishing l_{i} implies $h^{0}(\mathcal{L})=l+1$. Serre duality shows

$$
\begin{aligned}
h^{2}(\mathcal{L}) & =h^{0}\left(\mathcal{K}_{X} \otimes \mathcal{L}^{*}\right) \\
& =h^{0}\left(\mathcal{O}_{X}\left((-l-1) F+\Sigma_{i}\left(a_{i}-l_{i}-1\right) F_{i}\right)=0\right.
\end{aligned}
$$

Applying the Riemann Roch formula finally gives $\chi(\mathcal{L})=1$, which implies $h^{1}(\mathcal{L})=l$. This shows i) in case $l \geq 0$.
The case $l<0$ follows by Serre duality.
The Riemann-Roch formula gives

$$
h^{1}\left(\mathcal{O}_{X}\left(l_{i} F_{i}\right)\right)=h^{0}\left(\mathcal{O}_{X}\left(l_{i} F_{i}\right)\right)+h^{0}\left(\mathcal{O}_{X}\left(K_{X}-l_{i} F_{i}\right)\right)-1=0
$$

Applied to the cohomology sequence associated to the short exact sequence

$$
0 \longrightarrow \mathcal{O}_{X}\left(\left(l_{i}-n_{i}\right) F_{i}\right) \longrightarrow \mathcal{O}_{X}\left(l_{i} F_{i}\right) \longrightarrow \mathcal{O}_{n_{i} F_{i}}\left(l_{i} F_{i}\right) \longrightarrow 0
$$

one gets:

$$
\begin{aligned}
h^{0}\left(\mathcal{O}_{n_{i} F_{i}}\left(l_{i} F_{i}\right)\right) & =h^{1}\left(\mathcal{O}_{X}\left(\left(l_{i}-n_{i}\right) F_{i}\right)\right)+1-h^{0}\left(\mathcal{O}_{X}\left(l_{i}-n_{i}\right) F_{i}\right) \\
& =h^{0}\left(\mathcal{O}_{X}\left(K_{X}+\left(n_{i}-l_{i}\right) F_{i}\right)\right. \\
& =h^{0}\left(\mathcal{O}_{X}\left(-F+\left(a_{i}-l_{i}+n_{i}-1\right) F_{i}\right)\right) \\
& =\left[\frac{a_{i}+n_{i}-l_{i}-1}{a_{i}}\right] .
\end{aligned}
$$

The third statement is a direct consequence of the first two using the linear equivalence $a_{i} F_{i} \sim F$.

The choices involved in the construction of a Dolgachev surface give rise to a moduli space of algebraic surfaces. Nevertheless the diffeomorphism type of the underlying four dimensional manifolds is completely determined by the set $\left\{a_{i}\right\}$. In case $n \leq 1$ the surface is rational and diffeomorphic to $\hat{\mathbf{P}}^{2}\left(x_{0}, \ldots, x_{8}\right)$. The moduli space is irreducible for $n=2$ according to Friedman and Morgan, [88], p. 318. For $n \geq 3$ we do not know, whether the moduli space is irreducible. However, by a result of Ue [86], p. 634, the diffeomorphism type is determined by the fundamental group, which in turn is determined by the $\left\{a_{i}\right\}$.

1.2. Proposition:

The fundamental group of a Dolgachev surface $X\left(a_{1}, \ldots, a_{n}\right)$ for a given base point has the presentation

$$
\pi_{1}\left(X\left(a_{1}, \ldots, a_{n}\right)\right)=<t_{1}, \ldots, t_{n} \mid t_{i}^{a_{i}}=1, t_{1} t_{2} \cdot \ldots \cdot t_{n}=1>
$$

The closed paths t_{i} are freely homotopic, i.e. the base point is not fixed by the homotopy, to closed paths τ_{i}, contained in the exceptional fibers F_{i}. These paths satisfy the following property: Parallel transport along τ_{i} in the holomorphic flat normal bundle $N_{F_{i} / X}$ of F_{i} results in multiplication with $\exp \left(\frac{-2 \pi \sqrt{-1}}{a_{i}}\right)$.

Proof: The computation of the fundamental group of X was done in principle by Dolgachev [81] II.3, more explicitely by Ue, [86] p 634 and p 639. Let U_{i} denote a small disk neighborhood of $\pi\left(F_{i}\right) \in \mathbf{P}^{1}$. Dolgachev shows that, restricted to $\mathbf{P}^{1} \backslash \cup_{i} U_{i}$, there is a section of π containing the base point in its image. We will identify $\mathbf{P}^{1} \backslash \cup_{i} U_{i}$ with its image. Choose paths σ_{i} in $\mathbf{P}^{1} \backslash \cup_{i} U_{i}$ from the base point to ∂U_{i} without self intersections and without crossings. Moving counterclockwise along the boundary of U_{i} defines a path w_{i}. By the computation of Dolgachev the fundamental group of X has the presentation of the proposition, where the t_{i} are given by $\sigma_{i}^{-1} w_{i} \sigma_{i}$. It remains to be shown that w_{i} is homotopic to a closed path as in the statement.
The normal bundle $N_{F_{i} / X}$ is isomorphic to $\mathcal{O}_{F_{i}}\left(F_{i}\right)$. The linear equivalence $a_{i} F_{i} \sim F$ and (1.1.ii) show that $\mathcal{O}_{F_{i}}\left(F_{i}\right)$ is a torsion bundle. In particular $N_{F_{i} / X}$ is flat.

We now use the explicit description of logarithmic transformation in Barth et al., [84], p. 164f. Set $m=a_{i}$ and $U_{i}=\Delta_{t}$ and denote $\pi^{-1}\left(\Delta_{t}\right)$ by Y^{\prime}. The space Y^{\prime} is the orbit space of the \mathbf{Z} / m-action on $\Delta_{\boldsymbol{s}} \times \mathbf{C} / \mathbf{Z}+\mathbf{Z} \omega\left(s^{m}\right)$, given by

$$
(s, c) \longmapsto(e(1 / m) \cdot s, c+k / m) .
$$

Here $t=s^{m}$ and $e(x)$ denotes $\exp (2 \pi \sqrt{-1} x)$ and the integers k and m are coprime. For an element $s \in \Delta$, define τ_{s} to be the closed path $r \mapsto(e(r / m) \cdot s, k r / m)$. The space $Y^{\prime} \backslash Y_{0}$, where Y_{0} is the fiber over $0 \in \Delta_{t}$, is identified with $\left(\Delta_{t} \backslash 0\right) \times \mathbf{C} / \mathbf{Z}+\mathbf{Z} \omega(t)$ by the map

$$
f:(s, c) \longmapsto\left(s^{m}, c-(k /(2 \pi \sqrt{-1})) \log (s)\right) .
$$

The image $f\left(\tau_{s}\right)$ is given by $r \longmapsto(e(r) \cdot s, \log (s))$. In particular $f\left(\tau_{s}\right)$ is homotopic both to w_{i} and $\tau_{s=0}=\tau_{i}$.
By construction the normal bundle of F_{i} is the orbit space of $\mathbf{C} \times \mathbf{C} / \mathbf{Z}+\mathbf{Z} \omega(0)$ by the action $(z, c) \longmapsto(e(1 / m) \cdot z, c+k / m)$. The claim on parallel transport is immediate.

The groups described in the proposition above are well known: In general these groups are Fuchsian groups of genus zero. The only exceptions are: For $n \leq 2$ the fundamental group is trivial and $\pi_{1}(X(2,3,5)) \cong \mathcal{A}_{5}$ is an alternating group. We will exclude these exceptional cases from our discussion in the sequel.The results nevertheless extend with only minor modification of the arguments. These Fuchsian groups are related to Seifert fibered homology 3 -spheres $\Sigma\left(a_{1}, \ldots, a_{n}\right)$ in the following way: The fundamental group of $\Sigma\left(a_{1}, \ldots, a_{n}\right)$ has the presentation

$$
\pi_{1}\left(\Sigma\left(a_{1}, \ldots, a_{n}\right)\right)=<t_{1}, \ldots, t_{n}, h \mid t_{i}^{a_{i}} \cdot h^{b_{i}}=t_{1} t_{2} \ldots t_{n} h^{b_{0}}=\left[h, t_{i}\right]=1>.
$$

Here b_{0}, \ldots, b_{n} are arbitrary numbers subject to the condition $a\left(b_{0}+\sum_{i=1}^{n}\left(b_{i} / a_{i}\right)\right)=1$ where a is the product over all a_{i} (cf.Neumann-Raymond [78]); the space Σ is said to have Seifert invariants $\left(b_{0} ;\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{n}, b_{n}\right)\right)$. These fundamental groups are cocompact subgroups of $\widehat{P S L}(2, \mathbf{R})$, as shown by Milnor [75] and Neumann [77]. The center of $\pi_{1}\left(\Sigma\left(a_{1}, \ldots, a_{n}\right)\right)$ is generated by h and is infinite cyclic (cf.Burde-Zieschang [85] p. 199). In particular

$$
\pi_{1}\left(X\left(a_{1}, \ldots, a_{n}\right)\right) \cong \pi_{1}\left(\Sigma\left(a_{1}, \ldots, a_{n}\right)\right) / \text { center }
$$

Applying the Serre spectral sequence to the fiber sequence of Eilenberg MacLane spaces

$$
S^{1} \longrightarrow \Sigma\left(a_{1}, \ldots, a_{n}\right) \longrightarrow B \pi_{1}\left(X\left(a_{1}, \ldots, a_{n}\right)\right)
$$

one easily deduces $H^{2}\left(\pi_{1}(X) ; \mathbf{Z}\right) \cong \mathbf{Z}$. Let $\phi: \pi_{1}\left(\Sigma\left(a_{1}, \ldots, a_{n}\right)\right) \longrightarrow S U(2)$ be a nontrivial homomorphism. The image of ϕ is contained in the centralizer of $\phi(h)$, which is a torus, if $\phi(h) \neq \pm 1$. The fundamental group of a homology sphere being perfect thus forces $\phi(h)=$ ± 1. Factoring out centers gives a homomorphism $\bar{\phi}: \pi_{1}\left(X\left(a_{1}, \ldots, a_{n}\right)\right) \longrightarrow S O(3)$. To such a homomorphism we can associate a second Stiefel-Whitney class $w_{2} \in H^{2}\left(\pi_{1}(X) ; \mathbf{Z} / 2\right) \cong$ $\mathbf{Z} / 2$. A similar trick as used in the paper of Fintushel and Stern [88] p. 12, will help us to avoid separate discussions for the different Stiefel-Whitney classes. We use the homomorphism $\chi: \pi_{1}\left(X\left(2 a_{1}, a_{2}, \ldots, a_{n}\right)\right) \longrightarrow \pi_{1}\left(X\left(a_{1}, \ldots, a_{n}\right)\right)$ of fundamental groups defined by $\chi\left(s_{i}\right)=t_{i}$, where s_{i} and t_{i} are generators as in proposition (1.2).
1.3. Lemma: Reduction modulo centers gives a bijective map

$$
H o m\left(\pi_{1}\left(\Sigma\left(a_{1}, \ldots, a_{n}\right)\right), S U(2)\right) \longrightarrow H o m\left(\pi_{1}\left(X\left(a_{1}, \ldots, a_{n}\right)\right), S O(3)\right)
$$

Moreover χ induces a bijection

$$
\operatorname{Hom}\left(\pi_{1}\left(X\left(a_{1}, \ldots, a_{n}\right)\right), S O(3)\right) \longrightarrow \operatorname{Hom}\left(\pi_{1}\left(X\left(2 a_{1}, a_{2}, \ldots, a_{n}\right)\right), S U(2)\right) .
$$

Proof: Abbreviate $\pi_{1}\left(\Sigma\left(a_{1}, \ldots, a_{n}\right)\right)$ by π and $\pi_{1}\left(\Sigma\left(2 a_{1}, a_{2}, \ldots, a_{n}\right)\right)$ by π^{\prime}. Since the cohomology group $H^{2}(\pi ; \mathbf{Z} / 2)$ vanishes, every homomorphism to $S O(3)$ can be lifted to $S U(2)$ and since $H^{1}(\pi ; \mathbf{Z} / 2)$ vanishes, this can be done uniquely. That proves the first claim.

If the tuple $\left(b_{0} ;\left(2 a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{n}, b_{n}\right)\right)$ denotes the Seifert invariants of π^{\prime}, then π has $\left(2 b_{0} ;\left(a_{1}, b_{1}\right),\left(a_{2}, 2 b_{2}\right), \ldots,\left(a_{n}, 2 b_{n}\right)\right)$ as Seifert invariants. Using the presentations of the groups, one can see that the homomorphism χ can be lifted to a homomorphism $\chi: \pi^{\prime} \longrightarrow \pi$, which, restricted to the centers, has cokernel of order 2. Naturality of exact cohomology sequences associated to the fiber sequence

$$
S^{1} \longrightarrow \Sigma\left(a_{1}, \ldots, a_{n}\right) \longrightarrow B \pi_{1}\left(X\left(a_{1}, \ldots, a_{n}\right)\right),
$$

(cf. Whitehead [78], p. 651), gives a commuting diagram

The group $H^{2}\left(\pi_{1}\left(X\left(a_{1}, \ldots, a_{n}\right)\right) ; \mathbf{Z} / 2\right)$ thus is mapped to zero by χ^{*}. As a consequence there is for any homomorphism $\phi: \pi \longrightarrow S O(3)$ a unique lift of $\phi \circ \chi$ to $S U(2)$. On the other hand a homomorphism $\psi: \pi^{\prime} /$ center $\longrightarrow S O(3)$, which admits a lift $\hat{\psi}$ to $S U(2)$, factors through $\pi /$ center: The square of $\hat{\psi}\left(s_{1}^{a_{1}}\right)$ is trivial and hence $\hat{\psi}\left(s_{1}^{a_{1}}\right)= \pm 1$.

Let $\mathcal{R}(Y)=\operatorname{Hom}^{*}\left(\pi_{1}(Y), S U(2)\right) / a d S U(2)$ denote the space of nontrivial $S U(2)$ representations of the fundamental group of a space Y. As usual we assume the tupel $\left(a_{1}, \ldots, a_{n}\right)$ to be ordered in such a way that a_{2}, \ldots, a_{n} are odd.

1.4. Theorem:

The representation space $\mathcal{R}\left(\Sigma\left(a_{1}, \ldots, a_{n}\right)\right)$ for a Seifert fibered homology 3 -sphere $\Sigma\left(a_{1}, \ldots, a_{n}\right)$ is isomorphic to the representation space $\mathcal{R}\left(X\left(2 a_{1}, a_{2}, \ldots, a_{n}\right)\right)$ for a Dolgachev surface $X\left(2 a_{1}, a_{2}, \ldots, a_{n}\right)$.
For an ample divisor H on a Dolgachev surface $X=X\left(a_{1}, \ldots, a_{n}\right)$ there is a diffeomorphism $\mathcal{R}(X) \cong \mathcal{M}_{X}^{H}(0,0)$ of the representation space with the moduli space of H-stable algebraic bundles on X of rank two with vanishing Chern classes.

Proof: The first statement in the theorem is just a reformulation of previous results. The second statement is a consequence of the solution of the Kobayashi-Hitchin conjecture by Donaldson, [85]. The divisor H induces a projective imbedding of X. Let g denote a Kähler metric on X with Kähler form ω_{g}, whose associated cohomology class is dual to a hyperplane section. The moduli space $\mathcal{M}_{H E}^{\omega_{g}}(0,0)$ of irreducible Hermite-Einstein bundles with vanishing Chern classes on X is by the result of Donaldson isomorphic to $\mathcal{M}_{X}^{H}(0,0)$. These bundles are flat according to Lübke [82] or Kobayashi [87], p. 115. In particular $\mathcal{M}_{X}^{H}(0,0)$ is isomorphic to the $U(2)$-representation space of the fundamental group of X. Since $\pi_{1}(X)$ is a perfect group, all $U(2)$-representations actually are $S U(2)$-representations.

The trick of using the homomorphism χ of course is not essential for the argument. As an application of the work of Okonek-Van de Ven [88], one can show that $\mathcal{R}\left(\Sigma\left(a_{1}, \ldots, a_{n}\right)\right)$ is diffeomorphic to a disjoint union of the moduli spaces

$$
\mathcal{M}_{X}^{H}\left(K_{X}, 0\right) \amalg \mathcal{M}_{X}^{H}(0,0)
$$

of algebraic bundles over $X=X\left(a_{1}, \ldots, a_{n}\right)$. The moduli space $\mathcal{M}_{X}^{H}\left(K_{X}, 0\right)$ is easier to compute than $\mathcal{M}_{X}^{H}(0,0)$, but one cannot avoid computing the latter.

2. Algebraic Description of the Moduli Spaces

We will show that the moduli space $\mathcal{M}_{X}^{H}(0,0)$ of H-stable bundles over a Dolgachev surface $X=X\left(a_{1}, \ldots, a_{n}\right)$ as defined in the preceding chapter admits the structure of a smooth projective algebraic variety over the complex numbers, which hasa natural stratification by Zariski open subsets of projective spaces.

As in the last chapter we will assume the integers a_{i} to be odd for $i \geq 2$. It will be important lateron to have some information on the differentiable structure of the representation spaces $\mathcal{R}\left(X\left(a_{1}, \ldots, a_{n}\right)\right)$. A representation $\alpha: \pi_{1}(X) \longrightarrow S U(2)$ has associated to it some invariants: Let t_{i} denote the generators of $\pi_{1}(X)$ as in proposition (1.2). Up to conjugation the image $\alpha\left(t_{i}\right)$ is given by a matrix

$$
\alpha\left(t_{i}\right)=\left(\begin{array}{cc}
\omega & 0 \\
0 & \bar{\omega}
\end{array}\right), \quad \omega=\exp \left(\frac{2 \pi \sqrt{-1}}{a_{i}}\right)^{l_{i}}
$$

The tuple $\left(\pm l_{1}, \ldots, \pm l_{n}\right)$ with $l_{i} \in \mathbf{Z} / a_{i}$ actually is an invariant of the connected component of $\mathcal{R}\left(X\left(a_{1}, \ldots, a_{n}\right)\right)$ containing α. The following proposition was proved in a different way by Fintushel and Stern [88], prop. 2.7.
2.1. Proposition: The representation space $\mathcal{R}(X)$ for a Dolgachev surface X is a smooth compact manifold. A connected component with invariant ($\pm l_{1}, \ldots, \pm l_{n}$) has dimension $2(M-3)$, where M is the number of l_{i} satisfying $2 l_{i} \neq 0$.

Proof: Let $S_{l_{i}}$ denote the conjugacy class of $\alpha\left(t_{\boldsymbol{i}}\right)$, which is a 2 -sphere, if $2 l_{i} \neq 0$ and a single point else. The homomorphisms with invariants ($\pm l_{1}, \ldots, \pm l_{n}$) are given as the preimage $\phi^{-1}(1)$ of the map

$$
\begin{array}{ccc}
\phi: S_{l_{1}} \times \ldots \times S_{l_{n}} & \longrightarrow & S U(2) \\
\left(x_{1}, \ldots, x_{n}\right) & \longmapsto & x_{1} \cdot \ldots \cdot x_{n} .
\end{array}
$$

The proposition is an immediate consequence of the following two claims:

1. The unit element $1 \in S U(2)$ is a regular value of ϕ.
2. $S U(2) / \pm 1$ acts freely on $\phi^{-1}(1)$.
ad 1: Let $x=\left(x_{1}, \ldots, x_{n}\right)$ be an element in $\phi^{-1}(1)$. To show surjectivity of the differential $\left(D_{\phi}\right)_{x}$ at the point x, we consider the maps $\rho_{i}: S U(2) \longrightarrow S U(2)$, given by

$$
y \longmapsto x_{1} \cdot \ldots \cdot x_{i-1} y x_{i+1} \cdot \ldots \cdot x_{n}
$$

The differential

$$
\begin{equation*}
(D \phi)_{x}=\prod_{i=1}^{n}\left(\left.D \rho_{i}\right|_{S_{i}}\right)_{x_{i}} \tag{*}
\end{equation*}
$$

is not surjective if and only if the images of all the factors coincide. Suppose $x_{i} \neq \pm 1$. Then the unique maximal torus T_{i} containing x_{i} intersects $S_{l_{i}}$ transversely. The map ρ_{i} as a composition of multiplications is an isometry. The differential (*) thus is not surjective if and only if

$$
\rho_{\mathbf{i}}\left(T_{\mathbf{i}}\right)=\exp \left(\operatorname{Im}\left(D_{\rho_{\mathbf{i}}} \mid s_{s_{\mathbf{i}}}\right)_{x_{\mathbf{i}}}^{\perp}\right)
$$

coincides for all i. In this case one has

$$
T_{1}=x_{1} T_{2} x_{1}^{-1}=\ldots=x_{1} x_{2} \ldots x_{n-1} T_{n} x_{n-1}^{-1} \ldots x_{1}^{-1}
$$

and because of $x_{i} \in T_{i}$ this is equivalent to

$$
T_{1}=T_{2}=\ldots=T_{n}
$$

In particular α has abelian image and thus has to be trivial, since $\pi_{1}(X)$ is perfect. This contradicts our assumption $x_{i} \neq \pm 1$.
ad 2: \quad Suppose there is an element $x \in S U(2) /\{ \pm 1\}$ and a representation α with $x \alpha\left(t_{i}\right) x^{-1}=\alpha\left(t_{i}\right)$ for all i. Then $\alpha\left(t_{i}\right)$ has to be an element of the unique maximal torus containing x. Thus $\alpha\left(\pi_{1}(X)\right)$ is contained in this torus and consequently trivial.

In order to describe the stable bundles arising, we need a technical definition:
2.2. Definition: An algebraic bundle E of rank 2 over a Dolgachev surface X will be called admissible, if there is a nonsplitting short exact sequence
$E:$

$$
0 \longrightarrow \mathcal{O}_{X}(-D) \xrightarrow{\alpha} \mathcal{E} \xrightarrow{\beta} \mathcal{O}_{X}(D) \longrightarrow 0,
$$

satisfying the following conditions:
i) $D \sim d F+\sum d_{i} F_{i}$, with $0 \leq d_{i}<a_{i}$, is a vertical divisor such that for some $a \gg 0$ the divisor $a D$ is linearly equivalent to an effective divisor.
ii) $2 d \leq-m$, where m denotes the number of nonvanishing d_{i}.
iii) In case $2 d=-m$ the inequality

$$
d_{i} \leq \frac{a_{i}-1}{2}
$$

holds for the maximal i with $d_{i} \neq 0$.
Let Z denote the finite subset \mathbf{Z} of the Picard group $\operatorname{Pic}(X)$ formed by the line bundles $\mathcal{O}_{X}(D)$ satisfying the three conditionsabove.

As an immediate consequence of conditions ii) and iii) the divisor $2 D$ is not linearly equivalent to an effective divisor. Condition iii) of course depends on the chosen ordering of the set $\left\{a_{\mathbf{i}}\right\}$. This condition is included high-handedly to achieve the uniqueness statement in the following characterization of stable bundles:
Let H^{0} denote an ample divisor on X and $H=\left(H^{0} \cdot K_{X}+1\right) K_{X}+H^{0}$. Then the divisor H is ample.
2.3. Proposition: An admissible bundle \mathcal{E} is simple and the presentation E as an extension is unique up to isomorphism. Furthermore any H-stable bundle of rank two with vanishing Chern classes over a Dolgachev surface is admissible.

Proof: Applying condition ii) to $\mathcal{E}(D)$ gives $h^{0}(\mathcal{E}(D))=h^{0}\left(\mathcal{O}_{X}\right)=1$. The nonsplitting of the short exact sequence
$E \otimes \mathcal{O}_{X}(-D):$

$$
0 \longrightarrow \mathcal{O}_{X}(-2 D) \longrightarrow \mathcal{E}(-D) \longrightarrow \mathcal{O}_{X} \longrightarrow 0
$$

implies that the boundary map $H^{0}\left(\mathcal{O}_{X}\right) \longrightarrow H^{1}\left(\mathcal{O}_{X}(-2 D)\right)$ is nontrivial. In particular $h^{0}(\mathcal{E}(-D))=0$. The cohomology sequence associated to the short exact sequence
$E \otimes \mathcal{E}:$

$$
0 \longrightarrow \mathcal{E}(-D) \longrightarrow \mathcal{E} n d(\mathcal{E}) \longrightarrow \mathcal{E}(D) \longrightarrow 0,
$$

gives $h^{0}(\mathcal{E} n d(\mathcal{E})) \leq 1$, i. e. \mathcal{E} is simple.
Let
E^{\prime} :

$$
0 \longrightarrow \mathcal{O}_{X}(-C) \xrightarrow{\gamma} \mathcal{E} \xrightarrow{\delta} \mathcal{O}_{X}(C) \longrightarrow 0,
$$

be another presentation of \mathcal{E} as an admissible bundle with $C \sim c F+\sum_{i} c_{i} F_{i}$. The map $\delta \alpha$ corresponds to a section of $\mathcal{O}_{X}(C+D)$. Let m_{d} and m_{c} denote the numbers of nonvanishing
d_{i} and c_{i}, respectively. Furthermore let Δ be the number of indices i, for which the inequality $c_{i}+d_{i} \geq a_{i}$ holds. Condition ii) implies $2 d \leq-m_{d} \leq-\Delta$ and $2 c \leq-m_{c} \leq-\Delta$. Note that one of these inequalities has to be a strict one, since equality $m_{d}=m_{c}=\Delta$ contradicts condition iii). Summation leads to the strict inequality

$$
d+c+\Delta<0
$$

Invoking (1.1) gives $h^{0}\left(\mathcal{O}_{X}(C+D)\right)=0$, i. e. α factors through γ. This implies up to linear equivalence the inequality $C \leq D$ of divisors. The argument is symmetric in C and D. Thus C and D are linear equivalent. In particular there is an isomorphism of the short exact sequences E and E^{\prime}.

Now let \mathcal{E} denote an H-stable bundle with vanishing Chern classes. The RiemannRoch theorem gives

$$
h^{0}(\mathcal{E})+h^{0}\left(\mathcal{E}\left(K_{X}\right)\right) \geq 2
$$

In case \mathcal{E} admits a nontrivial section, it cannot be H-stable. Hence there is a divisor $C^{\prime} \geq 0$ and a short exact sequence

$$
0 \longrightarrow \mathcal{O}_{X}\left(C^{\prime}-K_{X}\right) \longrightarrow \mathcal{E} \longrightarrow \mathcal{J} \otimes \mathcal{O}_{X}\left(K_{X}-C^{\prime}\right) \longrightarrow 0
$$

where \mathcal{J} is the ideal sheaf of a 0 -dimensional subscheme of X. If C^{\prime} were not vertical, then $C^{\prime} \cdot K_{X}>0$ and the estimate

$$
H \cdot C^{\prime}=\left(H^{0} \cdot K_{X}+1\right) C^{\prime} \cdot K_{X}+H^{0} \cdot C^{\prime}>H^{0} \cdot K_{X}+1=H \cdot K_{X}+1
$$

would contradict the stability condition $H \cdot C^{\prime}<H \cdot K_{X}$. Set $C=K_{X}-C^{\prime}$. The sheaf \mathcal{J} is the structure sheaf \mathcal{O}_{X}, since

$$
\text { length }\left(\mathcal{O}_{X} / \mathcal{J}\right)=c_{2}\left(\mathcal{E} \otimes \mathcal{O}_{X}(C)\right)=0
$$

It remains to check our three conditions. The stability condition $H \cdot C$ for the vertical divisor C is equivalent with the first condition: just multiply with the product $a_{1} \cdot \ldots \cdot a_{n}$. (**) In particular there exists a presentation of the bundle \mathcal{E}

$$
0 \longrightarrow \mathcal{O}_{X}(-C) \longrightarrow \mathcal{E} \longrightarrow \mathcal{O}_{X}(C) \longrightarrow 0
$$

as an extension of line bundles with $h^{0}\left(\mathcal{O}_{X}(C)\right)=0$ and $h^{0}\left(\mathcal{O}_{X}(n C)\right) \neq 0$ for some $n \gg 0$.
However, the divisor $C \sim c F+\sum_{i} c_{i} F_{i}$ not necessarily satisfies the last two conditions. It has to be replaced by an admissible divisor.
Let $B \sim b F+\sum_{i} b_{i} F_{\mathbf{i}}$ be a vertical divisor satisfying $B \cdot H>0$ and $h^{0}\left(\mathcal{O}_{X}(B)\right)=0$. Then the exact sequence

$$
0 \longrightarrow \mathcal{O}_{X}(B-C) \longrightarrow \mathcal{E}(B) \longrightarrow \mathcal{O}_{X}(B+C) \longrightarrow 0
$$

and lemma (1.1.) lead to an estimate

$$
\begin{aligned}
h^{0}(\mathcal{E}(B)) & \geq h^{0}(C+B)+h^{0}(B-C)-h^{1}(B-C) \\
& =h^{0}(B+C)+1-h^{0}\left(K_{X}-B+C\right) \\
& =\left(b+c+\#\left\{i \mid b_{i}+c_{i} \geq a_{i}\right\}+1\right)+1-\left(-1+c-b+\#\left\{i \mid b_{i}<c_{i}\right\}+1\right) \\
& =2 b+2+\#\left\{i \mid b_{i}+c_{i} \geq a_{i}\right\}-\#\left\{i \mid b_{i}<c_{i}\right\}
\end{aligned}
$$

For the replacing procedure to work we need a divisor B satisfying the conditions i)-iii) such that $h^{0}(\mathcal{E}(B)) \geq 1$. Given such a divisor, there exists an effective divisor D^{\prime} such that by the same argument as above a short exact sequence

$$
0 \longrightarrow \mathcal{O}_{X}\left(D^{\prime}\right) \longrightarrow \mathcal{E}(B) \longrightarrow \mathcal{O}_{X}\left(2 B-D^{\prime}\right) \longrightarrow 0
$$

presents \mathcal{E} as an admissible bundle with $\mathcal{O}_{X}\left(B-D^{\prime}\right) \in Z$. Such a divisor B can be specified the following way: Let m denote the number $\#\left\{i \mid c_{i} \neq 0\right\}$ of nonvanishing c_{i}. In case m is odd, set

$$
b=\frac{-m-1}{2} ; \quad b_{i}= \begin{cases}0 & \text { if } c_{i}=0 \\ a_{i}-1 & \text { else }\end{cases}
$$

In case m is even, set

$$
b=\frac{-m}{2} ; \quad b_{i}= \begin{cases}0 & \text { if } c_{i}=0 \\ a_{i}-c_{i} & \text { if } i \text { is the maximal index with } c_{i} \neq 0 \\ a_{i}-1 & \text { else }\end{cases}
$$

The inequality $\min \left(c_{i}, a_{i}-c_{i}\right) \leq \frac{a_{i}-1}{2}$ holds, because by (**) the maximal index i with $c_{i} \neq 0$ is greater than 1.

The isomorphism class of the extension E is determined by the image of the boundary homomorphism

$$
d: H^{0}\left(\mathcal{O}_{X}\right) \longrightarrow H^{1}\left(\mathcal{O}_{X}(-2 D)\right)=\operatorname{Ext}^{1}\left(\mathcal{O}_{X}, \mathcal{O}_{X}(-2 D)\right)
$$

in the exact cohomology sequence associated to the short exact sequence $E \otimes \mathcal{O}_{X}(-C)$. The proposition above shows that the isomorphism classes of admissible bundles correspond bijectively to elements of

$$
\coprod_{\mathcal{O}_{X}(D) \in Z} \mathbf{P}(D) \stackrel{\text { def }}{=} \coprod_{\mathcal{O}_{X}(D) \in Z} \mathbf{P}\left(H^{1}\left(\mathcal{O}_{X}(-2 D)\right) .\right.
$$

Henceforth an admissible bundle will be identified with the corresponding element in $\amalg_{Z} \mathbf{P}(D)$.

So far we have found two invariants of representations: First the tuple $\left(\pm l_{1}, \ldots, \pm l_{n}\right)$, then the admissible line bundles in Z. As one might expect, these invariants are closely related. Before we can show this we need a lemma:
2.4. Lemma: Let $\mathcal{E} \in \mathbf{P}(D)$ be an admissible bundle. Then the restriction to F_{i} splits:

$$
\mathcal{E} \otimes_{\mathcal{O}_{\boldsymbol{X}}} \mathcal{O}_{F_{\mathbf{i}}} \cong \mathcal{O}_{F_{\mathbf{i}}}(D) \oplus \mathcal{O}_{F_{\mathbf{i}}}(-D) .
$$

In particular the holomorphic structure of $\mathcal{E} \otimes \mathcal{O}_{X} \mathcal{O}_{F_{i}}$ is flat.

Proof: We consider the following diagram with exact columns and rows:

The bundles $\mathcal{E}(-D)$ and $\mathcal{E} \otimes \mathcal{O}_{F_{i}}(-D)$ are classified by the subspaces

$$
d\left(H^{0}\left(\mathcal{O}_{X}\right)\right) \subset H^{1}\left(\mathcal{O}_{X}(-2 D)\right) \quad \text { and } \quad d\left(H^{0}\left(\mathcal{O}_{F_{\mathrm{i}}}\right)\right) \subset H^{1}\left(\mathcal{O}_{F_{\mathrm{i}}}(-2 D)\right)
$$

Of course $d\left(H^{0}\left(\mathcal{O}_{X}\right)\right)$ is mapped onto $d\left(H^{0}\left(\mathcal{O}_{F_{i}}\right)\right)$ in the cohomology sequence associated to the first column of the diagram. In order to show that $d\left(H^{0}\left(\mathcal{O}_{F_{i}}\right)\right)$ is trivial, we have to show that the map α in the exact sequence

$$
\begin{aligned}
& 0 \longrightarrow H^{0}\left(\mathcal{O}_{X}\left(-2 D-F_{i}\right)\right) \longrightarrow H^{0}\left(\mathcal{O}_{X}(-2 D)\right) \longrightarrow H^{0}\left(\mathcal{O}_{F_{i}}(-2 D)\right) \longrightarrow \\
& \longrightarrow H^{1}\left(\mathcal{O}_{X}\left(-2 D-F_{i}\right)\right) \xrightarrow{\alpha} H^{1}\left(\mathcal{O}_{X}(-2 D)\right) \longrightarrow \quad \ldots
\end{aligned}
$$

is surjective. We will do that by computing the ranks of the cohomology groups in the exact sequence above. Using (1.1.) and the conditions of definition (2.2.), we get:

$$
\begin{aligned}
h^{0}\left(\mathcal{O}_{X}\left(-2 D-F_{i}\right)\right) & =h^{0}\left(\mathcal{O}_{X}(-2 D)\right)=0, \\
h^{0}\left(\mathcal{O}_{F_{i}}(-2 D)\right) & = \begin{cases}1 & \text { if } 2 d_{i}=0 \\
0 & \text { else }\end{cases}
\end{aligned}
$$

and

$$
h^{1}\left(\mathcal{O}_{X}\left(-2 D-F_{i}\right)\right)= \begin{cases}h^{1}\left(\mathcal{O}_{X}(-2 D)\right)+1 & \text { if } 2 d_{i}=0 \\ h^{1}\left(\mathcal{O}_{X}(-2 D)\right) & \text { else } .\end{cases}
$$

Combining these formulas gives the desired surjectivity of α.

In the first chapter we showed that an H-stable bundle $\mathcal{E} \in \mathbf{P}(D)$ is flat and is defined by a representation $\alpha(\mathcal{E}) \in \mathcal{R}(X)$.
2.5. Proposition: The representation $\alpha(\mathcal{E})$ for an H-stable bundle $\mathcal{E} \in \mathbf{P}(D)$ has invariants $\left(\pm l_{1}, \ldots, \pm l_{n}\right)=\left(\pm d_{1}, \ldots, \pm d_{n}\right)$, where $D \sim d F+\sum_{i} d_{i} F_{i}$.

Proof: We only have to put together (2.4.) and proposition (1.2.). To compute the invariants we have to know the effect of parallel transport in \mathcal{E} along the path $\tau_{i} \subset F_{i}$ defined in (1.2.). Parallel transport in the normal bundle $N_{F_{i} / X}=\mathcal{O}_{F_{i}}\left(F_{i}\right)$ results in multiplication by $\exp \left(\frac{-2 \pi \sqrt{-1}}{a_{i}}\right)$. Applying this to $\mathcal{E} \otimes \mathcal{O}_{X} \mathcal{O}_{F_{i}} \cong N_{F_{i} / X}^{\otimes d_{i}} \oplus N_{F_{i} / X}^{\otimes\left(a_{i}-d_{i}\right)}$ now proves the claim.
2.6. Theorem: The moduli space $\mathcal{M}_{X}^{H}(0,0)$ of H-stable bundles of rank 2 with vanishing Chern classes on a Dolgachev surface $X=X\left(a_{1}, \ldots, a_{n}\right)$ is a smooth, projective, complex algebraic manifold. It admits a stratification by locally closed smooth subvarieties $U(D)$, each of which is isomorphic to a Zariski open subset of a projective space.
For an invariant $\left(\pm d_{1}, \ldots, \pm d_{n}\right)$ there exists at most one connected component of the moduli space $\mathcal{M}_{X}^{H}(0,0)$ with $d_{i} \in \mathbf{Z} / a_{i}$. The dimension of such a component is $M-3$, where M is the number of indices $i, 1 \leq i \leq n$, with $2 d_{i} \neq 0$.

Proof: Maruyama [77] has shown that for fixed Chern classes and fixed ample divisor H a (coarse) moduli space of H-stable bundles exists and is quasiprojective. The moduli space $\mathcal{M}_{X}^{H}(0,0)$ moreover is projective, since the underlying topological space $\mathcal{R}(X)$ is compact. Let $\mathcal{S}_{X}(0,0)$ denote the moduli space of simple bundles with vanishing Chern classes, as constructed by Altman-Kleiman [80]. The underlying analytic space of $\mathcal{S}_{X}(0,0)$, for which we will use the same notation, coincides with the moduli space of analytic simple bundles (cf. Norton [79], Kosarew-Okonek [87], Fujiki-Schumacher [87], Kobayashi [87], Lübke-Okonek [87] and Miyajima [88]). The underlying analytic space of $\mathcal{M}_{X}^{H}(0,0)$ is Hausdorff and is contained in the locally Hausdorff complex analytic space $\mathcal{S}_{X}(0,0)$ as an open subset (cf. Kobayashi [87], p. 266, Lübke-Okonek [87] or Kosarew-Okonek [87]). Let $\mathcal{E} \in \mathbf{P}(D)$ be a stable bundle. There is an estimate for the dimension of the Zariski tangent space $H^{1}(\mathcal{E} n d(\mathcal{E}))$: From the cohomology sequence associated to the exact sequence

$$
0 \longrightarrow \mathcal{E}(-D) \longrightarrow \mathcal{E} n d(\mathcal{E}) \longrightarrow \mathcal{E}(D) \longrightarrow 0
$$

of bundles we get

$$
h^{1}(\mathcal{E} n d(\mathcal{E})) \leq h^{1}(\mathcal{E}(-D))+h^{1}(\mathcal{E}(D)) .
$$

The exact sequences

$$
0 \longrightarrow \mathcal{O}_{X}(-2 D) \longrightarrow \mathcal{E}(-D) \longrightarrow \mathcal{O}_{X} \longrightarrow 0
$$

and

$$
0 \longrightarrow \mathcal{O}_{X} \longrightarrow \mathcal{E}(-D) \longrightarrow \mathcal{O}_{X}(2 D) \longrightarrow 0
$$

together with the properties of the admissible bundle $\mathcal{O}_{X}(2 D)$, give:

$$
h^{1}(\mathcal{E}(-D))=h^{1}\left(\mathcal{O}_{X}(-2 D)\right)-1 \quad \text { and } \quad h^{1}(\mathcal{E}(D))=h^{1}\left(\mathcal{O}_{X}(2 D)\right)
$$

A multiple of $2 D \sim \delta F+\sum_{i} \delta_{i} F_{i}$ is linear equivalent to an effective divisor. This forces $-\delta<M$. The divisor $-2 D$ is linear equivalent to $(-\delta-M) F+\sum_{i} \delta_{i}^{\prime} F_{i}$ for $\delta_{i}^{\prime}=-l_{i} \bmod$ a_{i} and $0 \leq l_{i}^{\prime}<a_{i}$. Hence $h^{1}\left(\mathcal{O}_{X}(-2 D)\right)=M+\delta-1$. Combined with the equality

$$
\begin{equation*}
h^{1}\left(\mathcal{O}_{X}(2 D)\right)=-\delta-1 \tag{***}
\end{equation*}
$$

we obtain the estimate

$$
h^{1}(\mathcal{E} n d(\mathcal{E})) \leq M-3 .
$$

The moduli space locally can be embedded in the Zariski tangent space, cf. Kobayashi [87], p. 261. Since the topological dimension of the moduli space is $2(M-3)$ by proposition (2.2), it has to be smooth.

The inclusion $\mathbf{P}(D) \longrightarrow \mathcal{S}_{X}(0,0)$ is a smooth closed embedding. To prove this claim one has to check that the inclusion is holomorphic and that the differential is injective. The former follows by the universal propery of $\mathcal{S}_{X}(0,0)$. For an affine neighborhood V of $\mathcal{E} \in \mathbf{P}(D)$ one can construct a bundle $\tilde{\mathcal{E}}$ over $V \times X$, such that the restricted bundles $\tilde{\mathcal{E}}_{v}$ over $v \times X$ are classified by v. Choose an open Stein covering \mathcal{U} of X and represent \mathcal{E} by a cocycle $\left(g_{i j}\right) \in Z\left(\mathcal{U}, G l\left(2, \mathcal{O}_{X}\right)\right)$. Because \mathcal{E} is an extension of two line bundles, the $g_{i j}$ can be chosen to be upper triangular matrices $\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right) \in T\left(2, \mathcal{O}_{X}\right)$. Let $\left(h_{i j}\right)^{\mu} \in Z\left(\mathcal{U}, T\left(2, \mathcal{O}_{X}\right)\right)$ represent a base of a hyperplane V_{0} of $\operatorname{Ext}^{1}\left(\mathcal{O}_{X}(D), \mathcal{O}_{X}(-D)\right)$ not containing \mathcal{E}. The bundle $\tilde{\mathcal{E}}$ over $V \times X=\left(V_{0}+\mathcal{E}\right) \times X$ then is represented by the cocycle $\left(g_{i j} \cdot \prod_{\mu} \alpha^{\mu} h_{i j}^{\mu}\right)$ for $\alpha^{\mu} \in \mathbf{C}$,

The differential, the Kodaira-Spencer map, can be computed as deformations over the double point and is given by the map

$$
V_{0} \hookrightarrow \operatorname{Ext}^{1}\left(\mathcal{O}_{X}(D), \mathcal{O}_{X}(-D)\right) \xrightarrow{\alpha} \operatorname{Ext}^{1}\left(\mathcal{E}, \mathcal{O}_{X}(-D)\right) \xrightarrow{\beta} \operatorname{Ext}^{1}(\mathcal{E}, \mathcal{E})
$$

induced by the projection $\mathcal{E} \longrightarrow \mathcal{O}_{X}(D)$ and the inclusion $\mathcal{O}_{X}(-D) \longrightarrow \mathcal{E}$. The map

$$
\alpha: H^{1}\left(\mathcal{O}_{X}(-2 D)\right) \longrightarrow H^{1}(\mathcal{E}(-D))
$$

is contained in the long exact cohomology sequence associated to the extension

$$
0 \longrightarrow \mathcal{O}_{X}(-2 D) \longrightarrow \mathcal{E}(-D) \longrightarrow \mathcal{O}_{X} \longrightarrow 0
$$

and thus is injective on V_{0}. Similarly the sequence

$$
0 \longrightarrow \mathcal{E}(-D) \longrightarrow \mathcal{E} \otimes \mathcal{E} \longrightarrow \mathcal{E}(D) \longrightarrow 0
$$

gives β in cohomology. In the proof of (2.3) it was shown that $H^{0}(\mathcal{E} n d(\mathcal{E})) \longrightarrow H^{0}(\mathcal{E}(D))$ is surjective. Hence the Kodaira-Spencer map $V_{0} \longrightarrow E x t^{1}(\mathcal{E}, \mathcal{E})$ is injective.

Consider the pullback diagram

The image of j is contained in the image of i. Since j is an open embedding, this gives the claimed stratification.

Let $\left(\pm d_{1}, \ldots, \pm d_{n}\right)$ be a tuple with $d_{i} \in \mathbf{Z} / a_{i}$ and suppose $\mathcal{O}_{X}(C) \in Z$ is an admissible bundle satisfying the equality $h^{1}\left(\mathcal{O}_{X}(-2 D)\right)=M-2$ and $\left(\pm c_{1}, \ldots, \pm c_{n}\right)=$ $\left(\pm d_{1}, \ldots, \pm d_{n}\right)$. Here we use the linear equivalence $C \sim c F+\sum_{i} c_{i} F_{i}$ with $0 \leq c_{i}<a_{i}$. Using (***) we get $2 C \sim-F+\sum_{i} l_{i} F_{i}$ with $0 \leq l_{i}<a_{i}$. Hence
(****)

$$
2 c+\#\left\{i \mid c_{i} \geq a_{i} / 2\right\}=-1
$$

The inequality $2 c \leq-m$ of definition (2.2.ii) forces

$$
\left\{i \mid c_{i} \geq a_{i} / 2\right\} \geq m-1
$$

Condition (2.2.iii) finally determines uniquely whether c_{i} is in the interval $\left[0, a_{i} / 2[\right.$ or in $\left[a_{i} / 2, a_{i}\left[\right.\right.$. The invariants c_{i} therefore are determined without any ambiguity by the congruences $\pm c_{i}= \pm d_{i}$ mod a_{i}. Thus there is at most one component of maximal dimension contained in $\coprod_{Z} U(D)$ for any given invariant ($\pm d_{1}, \ldots, \pm d_{n}$), i.e. representations with the same invariants do belong to the same connected component of $\mathcal{R}(X)$.
2.7. Corollary: i) The moduli space $\mathcal{M}_{X}^{H}(0,0)$ is rational.
ii) The representation spaces $\mathcal{R}(\Sigma)$ of Seifert fibered homology 3 -spheres are simply connected.

Let \mathcal{C} be a connected component of $\mathcal{R}(\Sigma)$ of (real) dimension ≤ 4. Then \mathcal{C} is either diffeomorphic to \mathbf{P}^{1} or to a rational surface. The rational surfaces are well known; they are blow-ups of \mathbf{P}^{2} or of Hirzebruch surfaces and all admit Morse functions with only even indices. This proves the conjecture of Fintushel-Stern for all components of dimension ≤ 4, in particular for Seifert spheres $\Sigma\left(a_{1}, \ldots, a_{n}\right)$ with $n \leq 5$.

In order to treat the higher dimensional components we invoke a result of Smale [62], theorem 6.1, to the effect that 1 -connected differentiable manifolds of dimension ≥ 6 always admit Morse functions with the minimum possible number of critical points. Combined with our description of $\mathcal{R}(\Sigma)$ this yields
2.8. Corollary: The conjecture of Fintushel-Stern is equivalent to the vanishing of $H^{i}(\mathcal{R}(\Sigma) ; \mathbf{Z})$ in odd dimensions.

3. Cohomological Properties of the Moduli Spaces

In this chapter we analyze the stratification of the moduli spaces. Using Deligne's solution to the Weil conjecture we prove the vanishing of the odd Betti numbers of $\mathcal{R}(\Sigma)$, which then leads to a solution of the conjecture of Fintushel and Stern modulo torsion.

As we have seen in the proof of theorem (2.6), an admissible bundle may be simple, but unstable. This phenomenon is connected with the existence of certain "destabilizing" vertical curves in X. Let $\mathcal{E} \in \mathbf{P}(D)$ be an admissible bundle, classified by the image of the differential

$$
d: H^{0}\left(\mathcal{O}_{X}\right) \longrightarrow H^{1}\left(\mathcal{O}_{X}(-2 D)\right)
$$

in the cohomology sequence associated to the short exact sequence

$$
0 \longrightarrow \mathcal{O}_{X}(-2 D) \longrightarrow \mathcal{E}(-D) \xrightarrow{\beta} \mathcal{O}_{X} \longrightarrow 0 .
$$

The divisor $2 D$ is linear equivalent to $\delta F+\sum_{i} \delta_{i} F_{i}$ with $0 \leq \delta_{i}<a_{i}$.
3.1. Proposition: An admissible bundle $\mathcal{E} \in \mathbf{P}(D)$ is unstable if and only if there exists an effective vertical divisor $L=D-C$ in X such that
i) $\mathcal{O}_{X}(C) \in Z$ is admissible
ii) the image $d\left(H^{0}\left(\mathcal{O}_{X}\right)\right)$ is contained in the kernel of the map

$$
H^{1}\left(\mathcal{O}_{X}(-2 D)\right) \longrightarrow H^{1}\left(\mathcal{O}_{X}(-D-C)\right)
$$

induced by multiplication with the section of $\mathcal{O}_{X}(L)$ with zero locus L. Furthermore $L \sim l F+\sum_{i} l_{i} F_{i}$ can be chosen with $l_{i} \in\left\{0, \delta_{i}\right\}$.

Proof: Let $\rho: \mathcal{O}_{X}(C) \longrightarrow \mathcal{E}$ be a nontrivial map such that $C \cdot H \geq 0$. Then the map $\sigma=\left(\beta \otimes \mathcal{O}_{X}(D)\right) \circ \rho$ is nonvanishing, since otherwise $C \cdot H \leq(-D) \cdot H<0$. Hence $\sigma \otimes \mathcal{O}_{X}(-C)$ gives a section of $\mathcal{O}_{X}(L)$ with zero locus L, which is an effective divisor, since \mathcal{E} doesn't split. In the proof of proposition (2.3) it was shown that the inequality $C \cdot H \geq 0$ forces the effective divisors $K-C$ and L to be vertical. In particular $C \cdot H \neq 0$, since K_{X} is not linearly equivalent to an effective divisor and thus $\mathcal{O}_{X}(C) \in Z$.
Suppose L is an effective divisor with $\mathcal{O}_{X}(C) \in Z$. Multiplication with the associated section of $\mathcal{O}_{X}(L)$ leads to a morphism of short exact sequences:

$$
\left.\begin{array}{clcccccc}
0 & \longrightarrow & \mathcal{O}_{X}(-2 D) & \longrightarrow & \mathcal{E}(-D) & \longrightarrow & \mathcal{O}_{X} & \longrightarrow
\end{array}\right) 00
$$

The existence of a map σ in the diagram is equivalent to the existence of a destabilizing map ρ and also is equivalent to the vanishing of the composed map in the commuting square

Suppose $L \sim l F+\sum_{i} l_{i} F_{i}$ with $0 \leq l_{i}<a_{i}$ does not satisfy $l_{i} \in\left\{0,\left(a_{i}-\delta_{i}\right)\right\}$. Consider the effective divisor

$$
L^{\prime}=L-\sum_{i} \lambda_{i} F_{i}, \quad \text { where } \quad \lambda_{i}= \begin{cases}l_{i} & \text { if } \delta_{i}>l_{i} \\ l_{i}-\delta_{i} & \text { if } \delta_{i} \leq l_{i}\end{cases}
$$

The line bundle $\mathcal{O}_{X}\left(D-L^{\prime}\right)$ is an element of Z, since both $\mathcal{O}_{X}(D-L)$ and $\mathcal{O}_{X}(D)$ are elements of Z. The commuting diagram

$$
\left.\begin{array}{rllllllll}
0 & \longrightarrow & \mathcal{O}_{X}(-2 D) & \xrightarrow{L^{\prime}} & \mathcal{O}_{X}\left(L^{\prime}-2 D\right) & & \longrightarrow & \mathcal{O}_{L^{\prime}}\left(L^{\prime}-2 D\right) & \downarrow
\end{array}\right)
$$

induces on the cohomology level a diagram

$$
\begin{array}{ccccccc}
0 & \longrightarrow & H^{0}\left(\mathcal{O}_{X} L^{\prime}\left(L^{\prime}-2 D\right)\right) & \xrightarrow{d_{L^{\prime}}} & H^{1}\left(\mathcal{O}_{X}(-2 D)\right) & \xrightarrow{L^{\prime}} & H^{1}\left(\mathcal{O}_{X}\left(L^{\prime}-2 D\right)\right) \\
0 & & & \downarrow & & & \\
& H^{0}\left(\mathcal{O}_{X} L(L-2 D)\right) & \xrightarrow{d_{L}} & H^{1}\left(\mathcal{O}_{X}(-2 D)\right) & \xrightarrow{L} & H^{1}\left(\mathcal{O}_{X}(L-2 D)\right) .
\end{array}
$$

The lines are exact, since $\mathcal{O}_{X}(L-2 D)$ admits only the trivial section. Computation of dimensions shows

$$
h^{0}\left(\mathcal{O}_{L^{\prime}}\left(L^{\prime}-2 D\right)\right)=h^{0}\left(\mathcal{O}_{L}(L-2 D)\right)=l+\#\left\{i \mid \delta_{i} \leq l_{i}\right\}
$$

and hence multiplication by L and multiplication by L^{\prime} give the same kernel. An identical argument as for L gives a nontrivial section of $\mathcal{E}\left(L^{\prime}-D\right)$.

This criterion for detecting unstable points in the moduli space of simple bundles can be used to describe the subvariety $\mathbf{P}(D) \backslash U(D)$ of unstable bundles globally. For our analysis it will be necessary to consider a more general class of curves than the destabilizing ones. So we fix an element $\mathcal{O}_{X}(D) \in Z$ with $D \sim d F+\sum_{i} d_{i} F_{i}$ and $2 D \sim \delta F+\sum_{i} \delta_{i} F_{i}$ with $0 \leq \delta_{i}, d_{i}<a_{i}$.
3.2. Definition: An effective vertical divisor $L \sim l F+\sum_{i} l_{i} F_{i}$ with $0 \leq l_{i}<a_{i}$ is associated to $\mathrm{P}(D)$, if
i) $h^{0}\left(\mathcal{O}_{L}(L-2 D)\right) \leq h^{1}\left(\mathcal{O}_{X}(-2 D)\right)$
ii) $l_{i} \in\left\{0, \delta_{i}\right\}$.

If furthermore the bundle $\mathcal{O}_{X}(D-L) \in Z$ is admissible, L will be called destabilizing.
3.3. Lemma: Let $\mathcal{E} \in \mathbf{P}(D)$ be an admissible bundle and L a vertical effective divisor associated to $\mathbf{P}(D)$. The short exact sequence of sheaves

$$
0 \longrightarrow \mathcal{O}_{X}(-2 D) \longrightarrow \mathcal{O}_{X}(L-2 D) \longrightarrow \mathcal{O}_{L}(L-2 D) \longrightarrow 0
$$

leads to a short exact sequence in cohomology

$$
0 \longrightarrow H^{0}\left(\mathcal{O}_{L}(L-2 D)\right) \xrightarrow{d_{L}} H^{1}\left(\mathcal{O}_{X}(-2 D)\right) \longrightarrow H^{1}\left(\mathcal{O}_{X}(L-2 D)\right) \longrightarrow 0
$$

Proof: Let $L \sim l F+\sum_{i} l_{i} F_{i}$ and $2 D \sim \delta F+\sum_{i} \delta_{i} F_{i}$ with the usual convention $0 \leq$ $l_{i}, \delta_{i}<a_{i}$. With help of (1.1) we can compute the dimensions $h^{1}\left(\mathcal{O}_{X}(-2 D)\right)=M+\delta-1$ and $h^{0}\left(\mathcal{O}_{L}(L-2 D)\right)=l+\#\left\{i \mid \delta_{i} \leq l_{i}\right\}$. Writing the divisor $L-2 D \sim f F+\sum_{i} f_{i} F_{i}$ in standard form with $0 \leq f_{i}<a_{i}$, we get an estimate

$$
\begin{aligned}
f & =l-\delta-M+\#\left\{i \mid \delta_{i} \leq l_{i}\right\}=-\delta-M+h^{0}\left(\mathcal{O}_{L}(L-2 D)\right) \\
& \leq-\delta-M+h^{1}\left(\mathcal{O}_{X}(-2 D)\right)=-1
\end{aligned}
$$

As a consequence the cohomology group $H^{0}\left(\mathcal{O}_{X}(L-2 D)\right)$ vanishes. A further application of (1.1) shows

$$
h^{1}\left(\mathcal{O}_{X}(L-2 D)\right)=-f-1=h^{1}\left(\mathcal{O}_{X}(-2 D)\right)-h^{0}\left(\mathcal{O}_{L}(L-2 D)\right)
$$

proving the surjectivity part of the claim.

As a set $\mathbf{P}(D) \backslash U(D)$ is the union $U_{L} \mathbf{P}(k e r(\cdot L))$ over all destabilizing curves associated to $\mathbf{P}(D)$. If a curve L is destabilizing for a bundle in $\mathbf{P}(D)$, then so are all curves in the complete linear system $|L|$. Of course not all these curves destabilize the same bundles in $\mathbf{P}(D)$. For a bundle \mathcal{F}_{Y} over a variety Y we will denote the projective bundle of lines in \mathcal{F}_{Y} by $\mathbf{P}\left(\mathcal{F}_{Y}\right)$. This definition coincides with the Grothendieck construction $\operatorname{Proj}\left(\mathcal{F}_{Y}^{*}\right)$ on the dual locally free sheaf $\mathcal{F}_{\mathcal{Y}}^{*}$, as defined in Hartshorne [77], p.. 160.
The bilinear form

$$
\alpha: H^{1}\left(\mathcal{O}_{X}(-2 D)\right) \otimes H^{0}\left(\mathcal{O}_{X}(L)\right) \longrightarrow H^{1}\left(\mathcal{O}_{X}(-2 D+L)\right)
$$

for a curve L associated to $\mathcal{O}_{X}(D)$ determines canonically a sheaf homomorphism

$$
\begin{gather*}
\hat{\alpha}: H^{1}\left(\mathcal{O}_{X}(-2 D)\right) \otimes \mathcal{O}_{|L|}(-1) \longrightarrow H^{1}\left(\mathcal{O}_{X}(-2 D+L)\right) \otimes \mathcal{O}_{|L|} \tag{*}\\
(v \otimes u, \mathbf{C} \cdot u) \longmapsto(v u \otimes 1, \mathbf{C} \cdot u)
\end{gather*}
$$

By the lemma above $\hat{\alpha}$ is fiberwise surjective, thus is a surjective bundle homomorphism with kernel $\mathcal{S}_{|L|}^{*}$, a bundle over the complete linear system $|L|$. Using the defining inclusion, we get a map

$$
\begin{align*}
\psi_{|L|}: \mathbf{P}\left(\mathcal{S}_{|L|}^{*}\right) & \longrightarrow \mathbf{P}\left(H^{1}\left(\mathcal{O}_{X}(-2 D)\right) \otimes \mathcal{O}_{|L|}(-1)\right) \tag{**}\\
& \cong \mathbf{P}\left(H^{1}\left(\mathcal{O}_{X}(-2 D)\right) \otimes \mathcal{O}_{|L|}\right)=\mathbf{P}(D) \times|L| \xrightarrow{\text { pr }} \mathbf{P}(D)
\end{align*}
$$

The image of $\psi_{|L|}$ is an irreducible subvariety $\operatorname{Inst}(L)$ of $\mathbf{P}(D)$. We will give a description of this image for a destabilizing vertical curve L. To do that we recall some geometric constructions.

A rational norm curve N in projective r-space $\mathbf{P}^{\mathbf{r}}$ is a rational curve of degree r not contained in any linear subspace. The construction is straightforward: View $\mathbf{P}^{r}=\mathbf{P}\left(S_{r} V\right)$ as the space of lines in the r-th symmetric tensor power of a 2 -dimensional vector space V. The curve N is the image of the map $\mathbf{P}^{1}=\mathbf{P}(V) \longrightarrow \mathbf{P}^{r}$, given by $x \mapsto x^{r}$.

The join $W_{1} * \ldots * W_{l}$ of subvarieties W_{1}, \ldots, W_{l} of \mathbf{P}^{n} is the smallest closed subvariety containing $\operatorname{span}\left(w_{1}, \ldots, w_{l}\right)$ for all tuples $\left(w_{1}, \ldots, w_{l}\right) \in W_{1} \times \ldots \times W_{l}$. The secant variety

$$
\operatorname{Sec}_{l}(N)=\underbrace{N * \ldots * N}_{1-\text { times }}
$$

is a special case of this construction.
Let $\mathcal{O}_{X}(D)$ be an admissible line bundle with $2 D \sim \delta F+\sum_{i} \delta_{i} F_{i}, 0 \leq \delta_{i}<a_{i}$ and let M be the cardinality of the set $J=\left\{i \mid \delta_{i} \neq 0\right\}$.
3.4. Proposition: Suppose $\operatorname{dim} \mathbf{P}(D) \geq 1$. Then there is a rational norm curve N and M disjoint points $\left\{p_{j}\right\} \subset N$, such that the following statements hold:
i) If $L \sim l F+\sum_{i} l_{i} F_{i}$ with $0 \leq l_{i}<a_{i}$ is an associated destabilizing divisor, then

$$
\operatorname{Inst}(L)=\operatorname{Sec}(N) * \underset{I \subset J}{\left.\underset{\sim}{*} p_{j}\right)} \quad \text { with } \quad I=\left\{i \mid l_{i} \neq 0\right\}
$$

ii) For any pair of destabilizing divisors L and L^{\prime} the intersection $\operatorname{Inst}(L) \cap \operatorname{Inst}\left(L^{\prime}\right)$ is a finite union $\cup_{k} \operatorname{Inst}\left(L_{k}\right)$. This union is over all subvarietes $\operatorname{Inst}\left(L_{k}\right)$ for divisors L_{k}, which are destabilizing and associated to $\mathbf{P}(D)$, such that there are nontrivial maps $\mathcal{O}_{X}\left(L_{k}\right) \longrightarrow \mathcal{O}_{X}(L)$ and $\mathcal{O}_{X}\left(L_{k}\right) \longrightarrow \mathcal{O}_{X}\left(L^{\prime}\right)$.
iii) The subvariety $\mathbf{P}(D) \backslash U(D)$ of unstable bundles is a finite union $U I n s t(L)$ for destabilizing curves L associated to $\mathbf{P}(D)$.

Proof: The dimension of $H^{1}\left(\mathcal{O}_{X}(-2 D)\right)$ is $M+\delta-1=k+1$. We first show that the map

$$
\alpha: H^{1}\left(\mathcal{O}_{X}(-2 D)\right) \otimes H^{0}\left(\mathcal{O}_{X}(k F)\right) \longrightarrow H^{1}\left(\mathcal{O}_{X}(-2 D+k F)\right) \cong \mathbf{C}
$$

is nondegenerate. To prove this we take $(k+1)$ disjoint generic fibers F^{0}, \ldots, F^{k}. The differential

$$
d_{F^{0}+\ldots+F^{k}}: H^{0}\left(\mathcal{O}_{F^{0}+\ldots+F^{k}}\right) \longrightarrow H^{1}\left(\mathcal{O}_{X}(-2 D)\right)
$$

is an isomorphism. Since $d_{F^{0}+\ldots+F^{\star}}=d_{F^{0}}+\ldots+d_{F^{k}}$, we have found a base $f^{l}, 0 \leq l \leq k$ of the latter space. Looking at the kernel of the multiplication of $H^{1}\left(\mathcal{O}_{X}(-2 D)\right)$ with the divisor $\left(\sum_{0}^{k} F^{l}-F^{i}\right)$, we notice that the set $\left\{f^{1}, \ldots, f^{k}\right\} \backslash\left\{f^{i}\right\}$ is a base of this kernel. Thus α is nondegenerate and $H^{1}\left(\mathcal{O}_{X}(-2 D)\right)$ can be identified with the dual of $H^{0}\left(\mathcal{O}_{X}(k F)\right)$. Using the commuting diagram

$$
\begin{array}{ccc}
H^{1}\left(\mathcal{O}_{X}(-2 D)\right) & \xrightarrow{\delta_{i} F_{i}} & H^{1}\left(\mathcal{O}_{X}\left(-2 D+\delta_{i} F_{i}\right)\right) \\
\downarrow= & & \left(a_{i}-\delta_{i}\right) F_{i} \downarrow \\
H^{1}\left(\mathcal{O}_{X}(-2 D)\right) & \xrightarrow{a_{i} F_{i}} & H^{1}\left(\mathcal{O}_{X}(-2 D+F)\right)
\end{array}
$$

and counting dimensions, we see that multiplication with $\delta_{i} F_{i}$ gives the same kernel as does multiplication with $a_{i} F_{i}$. This shows that $p_{i}=\mathbf{P}\left(\operatorname{Im}\left(d_{\delta_{i} F_{i}}\right)\right)$ is a point on the subvariety $\operatorname{Im}\left(\psi_{|F|}\right)$. Moreover to study $\mathbf{P}\left(\operatorname{Im}\left(d_{L^{\prime}}\right)\right)$ we can replace any divisor L^{\prime} associated to $\mathbf{P}(D)$ by a divisor $L \geq L^{\prime}$, which again is associated to $\mathbf{P}(D)$, such that $h^{0}\left(\mathcal{O}_{X}(L)\right)=h^{0}\left(\mathcal{O}_{X}\left(L^{\prime}\right)\right)$ and L is linear equivalent to a multiple of a generic fiber.
So let us for a moment fix such a divisor $L \sim l F$. Using the canonical isomorphism

$$
H^{0}\left(\mathcal{O}_{X}(k F)\right) \cong S_{k}\left(H^{0}\left(\mathcal{O}_{X}(F)\right)\right)=S_{k} V
$$

the map

$$
H^{1}\left(\mathcal{O}_{X}(-2 D)\right) \xrightarrow{\cdot L} H^{1}\left(\mathcal{O}_{X}(-2 D+L)\right)
$$

is the dual of the map

$$
\begin{aligned}
S_{k-1} V & \longrightarrow S_{k} V \\
x & \longmapsto L \cdot x .
\end{aligned}
$$

In particular $\hat{\alpha}$ in (*) is the defining map for the dual of the l-secant bundle of the rational normal curve, also named Schwarzenberger bundle (cf. Schwarzenberger, [64] and SpindlerTrautmann [87], p. 5f and p. 16f). In particular Inst (L) is the l-secant variety of a rational norm curve N in $\mathbf{P}(D)$. The first claim in the theorem is now immediate. Statement iii) is a consequence of proposition (3.1). To prove the second statement it is sufficient to show
that for destabilizing effective divisors L and L^{\prime} associated to $\mathbf{P}(D)$ there is a third such divisor $L^{\prime \prime}$, such that

$$
\operatorname{Im}\left(d_{L}\right) \cap \operatorname{Im}\left(d_{L^{\prime}}\right)=\operatorname{Im}\left(d_{L^{\prime \prime}}\right)
$$

Let C denote the union of the curves L and L^{\prime}, respecting of course the multiplicities, and let $L^{\prime \prime}$ be the intersection $L \cap L^{\prime}$. We will construct a base of $\operatorname{Im}\left(d_{C}\right)$, such that subsets of this base constitute bases of $\operatorname{Im}\left(d_{L}\right)$ and $\operatorname{Im}\left(d_{L^{\prime}}\right)$. Therefore the intersection of these two subsets gives a base for the intersection $\operatorname{Im}\left(d_{L}\right) \cap \operatorname{Im}\left(d_{L^{\prime}}\right)$, which will turn out to be $\operatorname{Im}\left(d_{L^{\prime \prime}}\right)$. The construction relies on the fact that L and L^{\prime} are destabilizing. By definition this implies

$$
(D-L) \cdot H>0 \quad \text { and } \quad\left(D-L^{\prime}\right) \cdot H>0
$$

and consequently $h^{0}\left(\mathcal{O}_{X}\left(-2 D+L+L^{\prime}\right)\right)=0$. In particular $d_{L+L^{\prime}}$ is injective. Because of the inequality of divisors $C \leq L+L^{\prime}, d_{C}$ is injective, too. As a divisor, L is a sum $\sum l_{\alpha} F_{\alpha}$ of reduced vertical divisors F_{α}, counted with multiplicities l_{α} Similarly $L^{\prime}=\sum l_{\alpha}^{\prime} F_{\alpha}$ and $C=\sum\left(\max \left(l_{\alpha}, l_{\alpha}^{\prime}\right)\right) F_{\alpha}=\sum c_{\alpha} F_{\alpha}$. Note that $\operatorname{Im}\left(d_{C}\right)=\oplus_{\alpha} \operatorname{Im}\left(d_{c_{\alpha} F_{\alpha}}\right)$. The sequence

$$
\operatorname{Im}\left(d_{F_{\alpha}}\right) \subseteq \operatorname{Im}\left(d_{2 F_{\alpha}}\right) \subseteq \ldots \subseteq \operatorname{Im}\left(d_{c_{\alpha} F_{\alpha}}\right)
$$

constitutes a flag. So we may choose a base of $\operatorname{Im}\left(d_{C}\right)$ respecting both the direct sum decomposition and the flag structure. It is immediate that such a base will do the job.

In order to apply the Weil conjecture to the moduli space $\mathcal{M}_{X}^{H}(0,0)$, we need a nice decomposition of the secant varieties. Let $\mathcal{S}_{||F|}$ denote the l-secant bundle for the rational norm curve in $\mathbf{P}(D)$, which is defined over the complete linear system $|l F|$ with $2 l<$ $\operatorname{dim} \mathbf{P}(D)=r$. Let $S e c_{l}$ denote the 1 -secant variety

$$
\underbrace{N * \ldots * N}_{l-t i m e s}
$$

of the rational norm curve $N \subset \mathbf{P}(D)$.
3.5. Lemma: The projective bundle $\mathbf{P}\left(\mathcal{S}_{|l F|}^{*}\right)$ over $|l F|$ admits a stratification

$$
\mathrm{P}\left(\mathcal{S}_{|I F|}^{*}\right)=\coprod_{i=0}^{l-1} A_{i}
$$

with locally closed smooth strata $A_{i} \cong\left(\operatorname{Sec}_{(I-i)} \backslash \operatorname{Sec}_{(I-i-1)}\right) \times \mathbf{P}^{i}$.
Proof: We use the same notation as in the proof of (3.4) and abbreviate $S_{i}=S_{i} V$ and $\mathbf{P}^{i}=\mathbf{P} S_{i}$. Multiplication $S_{l-i} \otimes S_{i} \longrightarrow S_{l}$ induces a $\binom{l}{i}$-fold covering

$$
\phi_{i}: X_{i}=\mathbf{P}^{l-i} \times \mathbf{P}^{i} \longrightarrow \mathbf{P}^{l}=|l F|
$$

Consider the tautological diagram

The epimorphism in in the last row defines an inclusion j fitting into the commuting diagram:

Here the maps ψ_{l} are just the maps $\psi_{|I F|}$ defined earlier in (**). The leftmost square implies:

$$
\left(\psi_{l-i}^{\prime}\right)^{-1}\left(\operatorname{Sec}_{(l-i)} \backslash \operatorname{Sec}_{(l-i-1)}\right) \cong\left(\psi_{l-i}\right)^{-1}\left(\operatorname{Sec}_{(l-i)} \backslash \operatorname{Sec}_{(l-i-1)}\right) \times \mathbf{P}^{i}
$$

The proposition is a consequence of the following
Claim: The map $\beta_{i}=p r_{1} \circ j$ induces an isomorphism

$$
\left(\psi_{l-i}^{\prime}\right)^{-1}\left(\operatorname{Sec}_{(l-i)} \backslash \operatorname{Sec}_{(l-i-1)}\right) \cong\left(\psi_{l}\right)^{-1}\left(\operatorname{Sec}_{(l-i)} \backslash \operatorname{Sec}_{(l-i-1)}\right)
$$

For the proof consider the diagram

View \mathbf{P}^{l} as a symmetric product $S^{l}\left(\mathbf{P}^{1}\right)$, where $\mathbf{P}^{1}=\mathbf{P} S_{1}$. Then the projective bundle $\mathbf{P}\left(\mathcal{S}_{\mathbf{P}^{i}}^{*}\right)$ can be written as a subspace

$$
\mathbf{P}\left(\mathcal{S}_{\mathbf{P}^{l}}^{*}\right)=\left\{\left(a ; x_{1}, \ldots, x_{l}\right) \in \mathbf{P}^{r} \times \mathbf{P}^{l} \text { with } a \in \operatorname{span}\left(x_{1}^{r}, \ldots, x_{l}^{r}\right)\right\} \subset \mathbf{P}^{r} \times \mathbf{P}^{l}
$$

where $\mathbf{P}^{r}=\mathbf{P}\left(S_{r}\right)$. Here we use the convention to denote by

$$
\operatorname{span}(\underbrace{y, \ldots, y}_{i})
$$

the i-th osculating space. The subspace $\psi_{1}^{-1}\left(\operatorname{Sec}_{(1-i)}\right)$ then is:

$$
\left\{\left(a ; x_{1}, \ldots, x_{l}\right) \in \mathbf{P}^{r} \times \mathbf{P}^{l} \mid a \in \operatorname{span}\left(x_{j_{1}}^{r}, \ldots, x_{j_{i-i}}^{r}\right) \text { for }\left\{x_{j_{1}}, \ldots, x_{j_{l-i}}\right\} \subset\left\{x_{1}, \ldots, x_{l}\right\}\right\} .
$$

The subspace $\psi_{l}^{-1}\left(S e c_{(l-i)} \backslash S e c_{(l-i-1)}\right)$ consists of the elements, for which the span containing a is unique. The invers for β_{i} is given by:

$$
\left(a ; x_{1}, \ldots, x_{l}\right) \longmapsto\left(a ; x_{j_{1}}, \ldots, x_{j_{1-i}} ; x_{1}, \ldots, \hat{x}_{j_{1}}, \ldots, \hat{x}_{j_{2}}, \ldots, \hat{x}_{j_{1-i}}, \ldots x_{l}\right)
$$

For the next lemma let N_{r} denote a rational norm curve in P^{r} and let $p_{1}, \ldots p_{s}$ be disjoint closed points on N_{r}
3.6. Lemma: There is an isomorphism

$$
\left(\operatorname{Sec}_{l}\left(N_{r}\right) *\left\{p_{1}\right\} * \ldots *\left\{p_{s}\right\}\right) \backslash\left\{p_{s}\right\} \cong \mathbf{P}\left(\mathcal{O}_{A}(1) \oplus \mathcal{O}_{A}\right) \backslash \mathbf{P}\left(\mathcal{O}_{A}\right)
$$

where A is the join $A=\operatorname{Sec}_{l}\left(N_{r-1}\right) *\left\{p_{1}\right\} * \ldots *\left\{p_{s-1}\right\}$.
Proof: Let $\mathbf{P}^{r-1} \subset \mathbf{P}^{r}$ be a hyperplane intersecting N_{r} in $r-1$ disjoint points such that the points p_{1}, \ldots, p_{s-1} are contained in that hyperplane, but not p_{s}. We will show that for

$$
B=\left(\operatorname{Sec}_{l}\left(N_{r}\right) *\left\{p_{1}\right\} * \ldots *\left\{p_{s}\right\}\right) \backslash\left\{p_{s}\right\}
$$

the intersection $B \cap \mathbf{P}^{r-1}$ is isomorphic to A. Furthermore we will show that B is isomorphic to the join $A *\left\{p_{s}\right\}$. The claim then follows from the well known isomorphism

$$
\mathbf{P}^{r} \backslash\left\{p_{s}\right\} \cong \mathbf{P}\left(\mathcal{O}_{\mathbf{P}^{r-1}}(1) \oplus \mathcal{O}_{\mathbf{P}^{r-1}}\right) \backslash \mathbf{P}\left(\mathcal{O}_{\mathbf{P}^{r-1}}\right)
$$

As a first step we will show that the intersection $N_{r-1}=\mathbf{P}^{r-1} \cap\left(N_{r} *\left\{p_{s}\right\}\right)$ is a rational norm curve in the hyperplane. For this we take a generic hyperplane H in \mathbf{P}^{r-1} and count the number of intersections with N_{r-1}. The hyperplane in \mathbf{P}^{r} generated by H and p_{s} intersects N_{r} in r disjoint points, one of them being p_{s}. The line connecting one of these points with p_{s} is contained in $N_{r} *\left\{p_{s}\right\}$ and intersects H exactly once. This gives $r-1$ points of intersection of H with N_{r-1}. On the other hand any point of intersection of H with N_{r-1} lies on a line connecting p_{s} with a point on N_{r}. This point on N_{r} then is an intersection point with the hyperplane in \mathbf{P}^{r} generated by H and p_{s}. This implies that the curve N_{r-1} has degree $(r-1)$ and therefor has to be a rational norm curve in $\mathrm{P}^{\mathrm{r}-1}$. Furthermore $N_{r} *\left\{p_{s}\right\}=N_{r-1} *\left\{p_{s}\right\}$. Associativity of the join construction gives the result.

Let X denote a scheme of finite type, defined over the complex numbers.
3.7. Proposition: There is a subring $A \subset \mathbf{C}$ of finite type over \mathbf{Z} and an extension

such that f^{e} is flat. This extension can be constructed simultaneously for a finite number of schemes X_{1}, \ldots, X_{n} and a finite number of maps $g_{i j}: X_{i} \longrightarrow X_{j}$ such that there exist maps $g_{i j}^{e}$ over $\operatorname{spec}(A)$ extending $g_{i j}$. Moreover these extensions can be chosen such that
i) if f is smooth (resp. proper, irreducible, integer), then so is f^{e}.
ii) if $g_{i j} \cdot X_{i} \longrightarrow X_{j}$ is a locally closed immersion, then so is $g_{i j}^{e}: \mathcal{X}_{i} \longrightarrow \mathcal{X}_{j}$.

A proof can be found in EGA IV, 2,3,4. References are assembled e.g. in I. BauerKosarew [88], 2.1 and 2.2.

Let X be a smooth projective variety and \mathcal{X} an extension over the ring A as above. We may assume a given prime to be invertible in A.
3.8. Proposition: There exists a finite residue field \mathbf{F}_{q} of A with separable closure $\overline{\mathbf{F}}_{q}$ such that the étale cohomology $H^{i}\left(X_{\overline{\mathbf{F}}_{q}} ; \mathbf{Q}_{1}\right)$ of the reduction $X_{\overline{\mathbf{F}}_{q}}$ of \mathcal{X} is isomorphic to the singular cohomology $H^{i}\left(X ; \mathbf{Q}_{1}\right)$ for all i.

Proof: The construction of \mathbf{Q}_{1}-cohomology is by taking limits over \mathbf{Z} / l^{n}-cohomology and then moding out torsion, compare Freitag-Kiehl [87], I,12. For finite Z/l ${ }^{n}$-cohomology the isomorphisms are a consequence of the proper base change theorem and the fact that the higher direct image sheaves $R^{i} f_{*}\left(\mathbf{Z} / l^{n}\right)$ are all locally constant, cf. Freitag-Kiehl [87], p. 61 and p. 94.

For a maximal ideal in $A \otimes \mathbf{Q}$ the quotient field is a number field by Deligne-Illusie [87], p. 257. If \wp is the inverse image in A of such a maximal ideal in $A \otimes \mathbf{Q}$, then a maximal ideal s of A containing φ will give a finite quotient field \mathbf{F}_{q}. Let R denote the strict henselization of A. Then the inclusion $A \longrightarrow \mathbf{C}$ admits an extension to R. Using this extension we get a specialization isomorphism

$$
R^{i} f_{*}\left(\mathbf{Z} / l^{n}\right)_{s} \longrightarrow R^{i} f_{*}\left(\mathbf{Z} / l^{n}\right)_{0}
$$

of the stalk over the special point to the stalk over the generic point, cf Freitag-Kiehl [87], p. 96. Taking inverse limits over n gives the claimed isomorphisms of étale cohomology groups. But for the generic fiber X the étale and the singular cohomology coincide.

Let $\mathcal{M}_{X}^{H}(0,0)$ be the moduli space of rank-2 bundles with vanishing Chern classes over the Dolgachev surface $X=X\left(a_{1}, \ldots, a_{n}\right)$ for pairwise coprime a_{i}.
3.9. Theorem: The rational cohomology groups $H^{i}\left(\mathcal{M}_{X}^{H}(0,0) ; \mathbf{Q}\right)$ vanish in odd dimensions i.

Proof: Using 3.8. and 3.7. we can take the reduction $\mathcal{M}_{\bar{F}_{q}}$ of the moduli space to the separate closure $\overline{\mathbf{F}}_{q}$ of a finite field \mathbf{F}_{q} and compute the Betti numbers of the étale cohomology groups $H^{i}\left(\mathcal{M}_{\overline{\mathbf{F}}_{q}} ; \mathbf{Q}_{l}\right)$. To do that we compute the zeta-function of $\mathcal{M}_{\overline{\mathbf{F}}_{q}}$. Let $\nu_{k}\left(\mathcal{M}_{\bar{F}_{q}}\right)$ denote the number of closed points in the reduction $\mathcal{M}_{\mathbf{F}_{\mathbf{q}^{k}}}$ of the moduli space to the finite field $\mathbf{F}_{q^{k}}$. The zeta-function then is defined by

$$
Z\left(\mathcal{M}_{\overline{\mathbf{F}}_{q}} ; t\right)=\exp \left(\sum_{k=1}^{\infty} \frac{\nu_{k}\left(\mathcal{M}_{\overline{\mathbf{F}}_{q}}\right) \cdot t^{k}}{k}\right)
$$

Claim: The space $\mathcal{M}_{\overline{\mathbf{F}}_{q}}$ satisfies the following property:
(C) There are integers $b_{2}, b_{4}, \ldots, b_{2 n}$ such that for any power q^{k} of q the number $\nu_{k}\left(\mathcal{M}_{\bar{F}_{q}}\right)$ is given by

$$
\nu_{k}\left(\mathcal{M}_{\overline{\mathbf{F}}_{\mathbf{q}}}\right)=\sum_{i=0}^{n} b_{2 i}\left(q^{k}\right)^{i} .
$$

Assuming this clajm we can prove the theorem. Using the formula

$$
\log \left(\frac{1}{1-x}\right)=\sum_{k=1}^{\infty} \frac{x^{k}}{k}
$$

the zeta-function takes the form
(***)

$$
Z\left(\mathcal{M}_{\overline{\mathbf{F}}_{q}}, t\right)=\prod_{i=0}^{n}\left(1-q^{i} t\right)^{-b_{2 i}} .
$$

The theorem of Deligne [74] states that the zeta-function is a rational function

$$
Z\left(\mathcal{M}_{\overline{\mathbf{F}}_{q}}, t\right)=\frac{P_{1} \cdot P_{3} \ldots P_{2 n-1}}{P_{0} \cdot P_{2} \ldots P_{2 n}}
$$

The degree of the polynomial P_{i} is the dimension of $H^{i}\left(\mathcal{M}_{\bar{F}_{q}} ; \mathbf{Q}_{1}\right)$ and the zeroes of P_{i} are of absolute value $q^{i / 2}$.
Application of this theorem to ($* * *$) gives the result.
It remains to prove the claim. The condition (C) has some nice properties:
i) Projective space $\mathbf{P}_{\mathbf{F}_{\boldsymbol{q}}}^{n}$ satisfies (C). More generally every projective bundle $\mathbf{P}^{\boldsymbol{n}}\left(\mathcal{E}_{V}\right)$ over a variety V defined over $\operatorname{Spec}\left(\mathbf{F}_{q}\right)$ satisfies (C), if V does satisfy (C).
ii) Condition (C) is additive in the following sense:

Suppose a variety V_{0} admits a stratification $\amalg V_{i}=V_{0}$ with locally closed subvarieties V_{i}, all defined over \mathbf{F}_{q}. If each V_{i} with $i \neq i_{0}$ satisfies (C), then so does $V_{i_{0}}$.
As an immediate consequence of ii) one has
iii) Let V_{1}, \ldots, V_{n} be irreducible closed subvarieties in V such that $V_{i} \cap V_{j}$ is a union $\cup V_{l}$ and any V_{i} satisfies (C). Then the union $\cup_{i} V_{i}$ also satisfies (C).

Because of 3.7. a nice stratification, i.e. with locally closed strata, of the moduli space $\mathcal{M}_{X}^{H}(0,0)$ will give a nice stratification of the reduced moduli space $\mathcal{M}_{\overline{\mathbf{F}}_{\boldsymbol{q}}}$. We thus only have to show that the strata $U(D)$ of 2.6. have reductions satisfying (C). Using ii) above this is equivalent to $\mathbf{P}(D) \backslash U(D)$ having reductions satisfying (C). By 3.4. and iii) above it is sufficient to show this for $\operatorname{Inst}(L)$. By lemma 3.6. and i) this is a consequence, if the reduction of the secant varieties $S e c_{l}$ satisfy (C). This, however, follows from easy induction over l using 3.5. and i).

The torsion subgroup of $H^{3}(Y ; \mathbf{Z})$ for a smooth variety Y, in algebraic geometry known as topological Brauer group, is a birational invariant, cf. Grothendieck [68], p. 50 and p. 138. Since it vanishes for $Y=\mathbf{P}^{2}$ we obtain
3.10. Corollary: The conjecture of Fintushel-Stern holds for all components of $\mathcal{R}(\Sigma)$ of real dimension ≤ 6.

4. The Betti numbers

In this chapter we apply the results of the paper to compute the Betti numbers of each component of the representation spaces. By explicitely computing some complex 2dimensional components of the representation space for a particular Seifert sphere with five multiple fibers we illustrate the general situation. These low dimensional examples already reveal some of the characteristic features of the representation spaces.

Let $D \sim d F+\sum_{i} d_{i} F_{i}$ denote an admissible divisor. It will be convenient to use the divisor $2 D \sim \delta F+\sum_{i} \delta_{i} F_{i}$. In case a_{1} is even this corresponds to looking at flat $S O(3)-$ bundles over $X\left(a_{1} / 2, a_{2} \ldots, a_{n}\right)$ instead of flat $S U(2)$-bundles over the Dolgachev surface $X\left(a_{1}, \ldots, a_{n}\right)$. In the first chapter we have shown that these are equivalent points of view.

Let $\left(\pm d_{1}, \ldots, \pm d_{n}\right)$ be an n-tuple with $d_{i} \in \mathbf{Z} / a_{i}$. The first question to ask is whether there exists a component in the moduli space $\mathcal{M}_{X}^{H}(0,0)$ realizing this tuple as rotation numbers. Here X denotes a Dolgachev surface $X\left(a_{1}, \ldots, a_{n}\right)$. Without any loss of generality we may and will assume that none of the d_{i} vanishes. To fix an integer representing $\pm d_{i}$ we impose the condition

$$
\begin{equation*}
\frac{a_{i}}{2} \leq d_{i}<a_{i} \quad \text { with the only exception } 0<d_{n}<\frac{a_{n}}{2}, \quad \text { if } n \text { is even. } \tag{1}
\end{equation*}
$$

The integers δ_{i} then satisfy

$$
0 \leq \delta_{i}<a_{i} \quad \text { and } \quad \delta_{i}=2 d_{i} \bmod a_{i}
$$

4.1. Proposition: There exists a component in the moduli space $\mathcal{M}_{X}^{H}(0,0)$ realizing the tuple ($\pm d_{1}, \ldots, \pm d_{n}$) as rotation numbers, if and only if the following numerical conditions are satisfied:
i) $\sum_{i=1}^{n}\left(\delta_{i} / a_{i}\right)>1$.
ii) For any combination of integers m_{i} subject to the conditions $0 \leq m_{i} \leq 2$ and $\sum_{i=1}^{n} m_{i}=n-2$ the estimate

$$
\sum_{i=1}^{n}(-1)^{m_{i}}\left(\frac{\delta_{i}}{a_{i}}\right)<1+2 \#\left\{i \mid m_{i}=2\right\}
$$

must hold. If $\delta_{1}=0$, then m_{1} has to be set $m_{1}=1$.
The special case of $n=3$ was shown by Fintushel and Stern [88].
Proof: Let D denote a divisor corresponding to a stratum of maximal dimension. In the final part of the proof of theorem (2.6) we saw that the number of d_{i} with $a_{i} / 2 \leq d_{i}$ is either $n-1$ or n, depending on whether n is even or odd. In case n even the definition of admissible bundles then forces $d_{n}<a_{n} / 2$. Furthermore the proof of (2.6) showed that $2 D$ is linearly equivalent to $-F+\sum_{i=1}^{n} \delta_{i} F_{i}$ with $0 \leq \delta_{i}<a_{i}$. A multiple of the divisor $2 D$ is effective. Hence the inequality

$$
2 D \cdot H=\left(-1+\sum_{i=1}^{n} \frac{\delta_{i}}{a_{i}}\right) \cdot(F \cdot H)>0
$$

must hold. For the ample divisor H the product $F \cdot H$ is positive. This shows the first condition, together with the choice of the d_{i}, being equivalent to the existence of an admissible divisor realizing the given rotation numbers.

It remains to check, whether or not the whole component $\mathbf{P}(D)$ is unstable. By proposition (3.1) this amounts to search for a destabilizing curve $L \sim l F+\sum_{i} l_{i} F_{i}$, for which the corresponding subvariety $\operatorname{Inst}(L)$ has maximal dimension $n-3-\#\left\{i \mid \delta_{i}=0\right\}$. The dimension of $\operatorname{Inst}(L)$ is $\#\left\{l_{i} \neq 0\right\}+2 l-1$. So the candidates for destabilizing the whole of $\mathbf{P}(D)$ can be described the following way: Let m_{i} be a combination as in the statement and set

$$
l=\#\left\{i \mid m_{i}=2\right\} \quad \text { and } \quad l_{i}= \begin{cases}\delta_{i} & \text { if } m_{i}=1 \\ 0 & \text { else }\end{cases}
$$

By proposition (3.1) the crucial condition on L for being destabilizing is that the divisor $D-L$ has to be admissible, in particular the inequality $2(D-L) \cdot H>0$ has to be satisfied, which reduces to:

$$
\left(-1+\sum_{i=1}^{n} \frac{\delta_{i}}{a_{i}}\right)-\left(2 l+2 \sum_{i \in 1}^{n} \frac{l_{i}}{a_{i}}\right)>0 .
$$

But this is just condition ii) of the statement.
In the third chapter we described the subvarieties $\operatorname{Inst}(L) \subset \mathbf{P}(D)$ representing bundles destabilized by a curve $L \sim l F+\sum_{i} l_{i} F_{i}$. These subvarieties are joins

$$
\underbrace{N * \ldots * N}_{l} * p_{i_{1}} * \ldots * p_{i_{k}}
$$

where N is a rational norm curve in $\mathbf{P}(D)$ and the p_{i} 's are points on this curve. There are only two possibile choices for the l_{i} : zero or δ_{i}. The points p_{i} in the join above correspond to the nonvanishing l_{i} 's.

Again we look at a divisor D corresponding to a stratum of maximal dimension. We already saw in the proof of (4.1) how to check whether a given join

$$
\underbrace{N * \ldots * N}_{1} * p_{i_{1}} * \ldots * p_{i_{k}} \subset \mathbf{P}(D)
$$

represents unstable bundles.
4.2. Remark: A curve $L \sim l F+\sum_{i} l_{i} F_{i}$ associated to $\mathbf{P}(D)$ is destabilizing if and only if the following estimate holds:

$$
\sum_{i=1}^{n}(-1)^{m_{i}}\left(\frac{\delta_{i}}{a_{i}}\right)>1+2 l, \quad \text { where } \quad m_{i}= \begin{cases}0 & , \text { if } l_{i}=0 \\ 1 & , \text { if } l_{i}=\delta_{i}\end{cases}
$$

We now turn to the computation of the Betti numbers of a given component of the moduli space. Let $D \sim d F+\sum_{i} d_{i} F_{i}$ be a divisor satisfying (1) and $L \sim l F+\sum_{i} l_{i} F_{i}$ a destabilizing curve associated to $\mathbf{P}(D)$. The subvariety $\operatorname{Inst}(L) \subset \mathbf{P}(D)$ has dimension $2 l-1+\#\left\{i \mid l_{i}=\delta_{i}\right\}$. Using (4.1) we can check whether $\mathbf{P}(D)$ contains stable bundles and if so, we may use (4.2) to count the number e_{j} of subvarieties Inst $(L) \subset \mathbf{P}(D)$ of (complex) dimension $\leq(j-1)$ and the number f_{j} of subvarieties Inst $(L) \subset \mathbf{P}(D)$ of codimension $\leq j$. We denote the dimension of $\mathbf{P}(D)$ by r.
4.3 Theorem: The Betti numbers of a component of the moduli space $\mathcal{M}_{X}^{H}(0,0)$ with rotation numbers ($\pm d_{1}, \ldots, \pm d_{n}$) are given by the formulae $b_{2 j}=b_{2 r-2 j}=1+e_{j}-f_{j}$ and $b_{2 j+1}=0$.

Proof: We use the counting method of the proof of theorem (3.9) and consider the reduction $\mathcal{M}_{\boldsymbol{F}_{q}}$ of the moduli space to a suitable finite field \mathbf{F}_{q}. All spaces in the sequel will be defined over \mathbf{F}_{q}. We will therefore omit the index \mathbf{F}_{q}.

Let \mathcal{C} denote the component of $\mathcal{M}_{X}^{H}(0,0)$ with rotation numbers $\left(\pm d_{1}, \ldots, \pm d_{n}\right)$. We will prove the following formula:

$$
\begin{equation*}
\nu_{k}(\mathcal{C})=\nu_{k}\left(\mathbf{P}^{\mathbf{r}}\right)+\sum\left(\nu_{k}\left(\mathbf{P}^{s_{L}}\right)-\nu_{k}\left(\mathbf{P}^{t_{L}}\right)\right) \tag{2}
\end{equation*}
$$

where the sum is over all linear equivalence classes of destabilizing curves L, t_{L} is the dimension of $\operatorname{Inst}(L)$ and $\mathbf{P}^{s_{L}}=\mathbf{P}(D-L)$. Applying the remarks we made in the proof of (3.9) to (2), combined with the equality

$$
\begin{equation*}
s_{L}+t_{L}=r-1 \tag{3}
\end{equation*}
$$

gives the claim. So it remains to show (2) and (3). For the latter we have to check

$$
r=h^{1}\left(\mathcal{O}_{X}(-2 D-2 L)\right)+\operatorname{dim}(\operatorname{Inst}(L))
$$

This, however, is clear, since

$$
\begin{aligned}
h^{1}\left(\mathcal{O}_{X}(-2 D-2 L)\right) & =h^{1}\left(\mathcal{O}_{X}(-2 D)\right)-2 l-\#\left\{i \mid 2\left(d_{i}-l_{i}\right) \leq 0\right\} \\
& =r+1-2 l-\#\left\{i \mid l_{i} \neq 0\right\}
\end{aligned}
$$

and $\operatorname{dim} \operatorname{Inst}(L)=2 l+\#\left\{i \mid l_{i} \neq 0\right\}-1$. The proof of (2) is a bit more involved. We start with the equation

$$
\nu_{k}(\mathcal{C})=\sum_{\mathcal{O}_{X}(C) \in I} \nu_{k}(U(C))
$$

where $I \subset Z$ is the subset of all admissible bundles with $C \sim c F+\sum_{i} c_{i} F_{i}$ such that $\left(\pm c_{1}, \ldots, \pm c_{n}\right)=\left(\pm d_{1}, \ldots, \pm d_{n}\right)$. The linear equivalence $C \sim D-L$ gives a 1-1 correspondence of admissible bundles $\mathcal{O}_{X}(C) \in I \backslash \mathcal{O}_{X}(D)=I^{*}$ and complete linear systems $|L|$ of destabilizing curves associated to $\mathbf{P}(D)$. So in order to prove (2) it suffices to show

$$
\begin{equation*}
\sum_{I^{*}} \nu_{k}\left(\mathbf{P}^{t_{L}}\right)=\sum_{I} \nu_{k}(\mathbf{P}(C) \backslash U(C)) \tag{4}
\end{equation*}
$$

For a destabilizing curve L associated to $\mathbf{P}(C)$ we denote by $J_{C}(L)$ the subspace

$$
J_{C}(L)=\left(\operatorname{Inst}(L) \backslash \coprod_{L^{\prime}<L} \operatorname{Inst}\left(L^{\prime}\right)\right) \subset \mathbf{P}(C)
$$

With this notation we can give a stratification

$$
\mathbf{P}(C) \backslash U(C)=\coprod_{I_{C}^{*}} J_{C}(L),
$$

where the sum is over all destabilizing curves L associated to $\mathbf{P}(C)$.
Let L be a destabilizing curve associated to $\mathbf{P}(D)$. If L^{\prime} is another curve associated to $\mathbf{P}(D)$, then it is destabilizing and moreover $\left(L-L^{\prime}\right)$ is a destabilizing curve associated to $\mathbf{P}\left(D-L^{\prime}\right)$. This yields

$$
\begin{align*}
\sum_{I} \nu_{k}(\mathbf{P}(C) \backslash U(C)) & =\sum_{\mathcal{O}_{x}(D-L) \in I}\left(\sum_{I_{D-L}^{*}} \nu_{k}\left(J_{D-L^{\prime}}\left(L-L^{\prime}\right)\right)\right) \tag{5}\\
& =\sum_{\mathcal{O}_{X}(D-L) \in I^{\bullet}}\left(\sum_{L^{\prime}-L} \nu_{k}\left(J_{D-L^{\prime}}\left(L-L^{\prime}\right)\right)\right)
\end{align*}
$$

Note that $J_{C}(L)$ is of the form

$$
\left(N * \ldots * N * p_{i_{1}} * \ldots * p_{i_{m}}\right) \backslash\left(\cup \operatorname{Inst}\left(L^{\prime}\right)\right)
$$

where each of the $\operatorname{Inst}\left(L^{\prime}\right)$ is a similar join with either one factor missing or one of the N 's replaced by a $p_{i_{j}}$. We claim

$$
\begin{equation*}
\nu_{k}(\operatorname{Inst}(L))=\nu_{k}\left(\mathbf{P}^{t_{L}}\right) \tag{6}
\end{equation*}
$$

Before proving this equation we look at its consequences: First it would follow $\nu_{k}\left(J_{C}(L)\right)=$ $\nu_{k}\left(J_{D}(\tilde{L})\right)$, where $\tilde{L} \sim \tilde{l} F+\sum_{i} \tilde{l}_{i} F_{i}$ is a destabilizing curve associated to $\mathbf{P}(D)$ with $\tilde{l}=l$ and ($\tilde{l}_{i}=0 \Longleftrightarrow l_{i}=0$) for $L \sim l F+\sum_{i} l_{i} F_{i}$. Furthermore (5) could be reformulated

$$
\begin{aligned}
\sum_{I} \nu_{k}(\mathbf{P}(C) \backslash U(C)) & =\sum_{\mathcal{o}_{x}(D-L) \in I^{\bullet}}\left(\sum_{\tilde{L}<L} \nu_{k}\left(J_{D}(\tilde{L})\right)\right) \\
& =\sum_{\boldsymbol{o}_{x}(D-L) \in I^{*}} \nu_{k}(\operatorname{Inst}(L)) \\
& =\sum_{\boldsymbol{o}_{x}(D-L) \in I^{*}} \nu_{k}\left(\mathbf{P}^{t_{L}}\right),
\end{aligned}
$$

proving (2). So it remains to show (6). Using (3.6) we see

$$
\nu_{k}\left(N * \ldots * N * p_{i_{1}} * \ldots * p_{i_{m}}\right)=q^{k} \cdot \nu_{k}\left(N * \ldots * N * p_{i_{1}} * \ldots * p_{i_{m-1}}\right)+1
$$

So we are done, if we can show

$$
\nu_{k}\left(\operatorname{Sec}_{l}(N)\right)=\nu_{k}\left(\mathbf{P}^{2 l-1}\right)=\frac{x^{2 l}-1}{x-1}
$$

where $x=q^{k}$. The inductive claim is

$$
\begin{equation*}
\nu_{k}\left(\operatorname{Sec}_{l}(N) \backslash \operatorname{Sec}_{l-1}(N)\right)=\frac{x^{2 l}-x^{l-2}}{x-1} \tag{7}
\end{equation*}
$$

We invoke (3.5) to the effect

$$
\begin{gathered}
\nu_{k}\left(\operatorname{Sec}_{l}(N) \backslash \operatorname{Sec}_{l-1}(N)\right)= \\
=\nu_{k}\left(\mathbf{P}^{l}\right) \cdot \nu_{k}\left(\mathbf{P}^{l-1}\right)-\sum_{i=1} l-1 \nu\left(\operatorname{Sec}_{l-i} \backslash S e c_{l-i-1}\right) \cot \nu_{k}\left(\mathbf{P}^{i}\right)= \\
=(x-1)^{-2}\left(\left(x^{l+1}-1\right)\left(x^{l}-1\right)-\sum_{i=1}^{l-2} x^{2 l-2 i-2}\left(x^{2}-1\right)\left(x^{i+1}-1\right)\right)= \\
=(x-1)^{-1}\left(\left(\sum_{i=0}^{l} x^{i}\right)\left(x^{l}-1\right)-\sum_{i=0}^{l-2} x^{2 i}(x+1)\left(x^{l-i}-1\right)\right) \\
=(x-1)^{-1}\left(\left(x^{2 l}+\sum_{i=0}^{l-2} x^{l+i+1}-\sum_{i=0}^{l-1} x^{i}\right)-\left(\sum_{i=0}^{l-3} x^{l+i+1}+\sum_{i=0}^{l-1} x^{l+i}-\sum_{i=0}^{2 l-3} x^{i}\right)\right)= \\
=\frac{x^{2 l}-x^{2 l-2}}{x-1} .
\end{gathered}
$$

That finishes the proof.

We will conclude our considerations with complex 2-dimensional examples. Any component of the moduli space $\mathcal{M}_{X}^{H}(0,0)$ of this dimension has to be the projective plane \mathbf{P}^{2} or a blow-up of a Hizebruch surface.

Let $\left(a_{1}, \ldots, a_{n}\right)=(256,103,257,259,303)$ be our chosen tuple. We will consider the following five combinations of rotation numbers:

	d_{256}	d_{103}	d_{257}	d_{259}	d_{303}
case 1	154	62	155	156	182
case 2	255	102	256	258	302
case 3	154	67	168	169	197
case 4	180	72	180	180	212
case 5	129	52	180	180	212

In case 1 the ratio δ_{i} / a_{i} is slightly greater than 0.2 for all i. The conditions of (4.1) are satisfied and by (4.2) there are no destabilizing curves. Thus $\mathbf{P}(D) \cong \mathbf{P}^{2}$ is stable.

In the next case the ratio δ_{i} / a_{i} is slightly less than 1 for all i. Again there is a component in the moduli space realizing the chosen rotation numbers. In this case, however, there is a whole bunch of destabilizing curves $L \sim l F+\sum_{i} l_{i} F_{i}$, which we list below:

geometry of $\operatorname{Inst}(L)$	l	l_{256}	l_{103}	l_{257}	l_{259}	l_{303}
N a quadric in \mathbf{P}^{2}	1	0	0	0	0	0
p_{1}, point on N	0	254	0	0	0	0
p_{2}, point on N	0	0	101	0	0	0
p_{3}, point on N	0	0	0	255	0	0
p_{4}, point on N	0	0	0	0	257	0
p_{5}, point on N	0	0	0	0	0	301
$\overline{p_{1} p_{2}}$, connecting line	0	254	101	0	0	0
$\overline{p_{2} p_{3}}$, connecting line	0	0	101	255	0	0
$\overline{p_{2} p_{4}}$, connecting line	0	0	101	257	0	0
$\overline{p_{2} p_{5}}$, connecting line	0	0	101	0	0	301

Using (4.3) we see that the resulting space has the Betti numbers of P^{2}, hence has to be the projective plane. The figure on the right visualizes the subspace of unstable bundles in the projective plane. To get the moduli space one has to replace the points p_{i} by lines. Then the strict transforms of the curves in the picture are to be blown down to points. One can easily check that the resulting space actually is \mathbf{P}^{2}. In general any combination of these five points, the connecting
 lines and the quadric may occur, as long as the sequence of blow-ups and blow-downs will give a smooth surface. Checking the cases
one can see that the only possibilities for the resulting space are: $\mathbf{P}^{2}, \mathbf{P}^{1} \times \mathbf{P}^{1}$, and \mathbf{P}^{2} blown up in up to five points.

Computing the cases $3,4,5$ reveals in case 3 one single destabilizing curve. The resulting space thus is \mathbf{P}^{2} blown up in this point. In case 4 we get five unstable points in the plane. The resulting space consequently is \mathbf{P}^{2} blown up in these five points.

Case 5 finally gives an example of $\mathbf{P}^{1} \times \mathbf{P}^{1}$: There are two unstable points in \mathbf{P}^{2} and the connecting line is unstable, too. Let's summarize:
4.4. Corollary: It is exactly the following complex surfaces which arise as 2-dimensional components in the moduli spaces $\mathcal{M}_{X}^{H}(0,0)$: \mathbf{P}^{2}, blown up in 0 to 5 points, and $\mathbf{P}^{1} \times \mathbf{P}^{1}$.

References

S. Akbulut,J. McCarthy: Casson's invariant for oriented homology 3-spheres. Preprint (1987).
A.B. Altman, S.L. Kleiman: Compactifying the Picard Scheme. Advances in Math. 35, (1980) 50-112.
M.F. Atiyah: The Mathematical Heritage of Hermann Weyl, Proc. Sym. Pure Math. 48 (1988)
W. Barth, C. Peters, A. Van de Ven: Compact Complex Surfaces. Erg. der Math. (3) 4. Springer, Berlin, Heidelberg, New York (1985)
I. Bauer, S. Kosarew: The Hodge Decomposition for some classes of non-complete algebraic Manifolds. Mathematica Gottingensis, Heft 49, (1988)
G. Burde, H. Zieschang: Knots. de Gruyter Studies in Math., Berlin, New York (1985)
P. Deligne: La conjecture de Weil, I. Publ. Math. IHES 43 (1974), 273-307.
P. Deligne, L. Illusie: Relèvements modulo p^{2} et décomposition du complex de de Rham. Invent. math. 89 (1987), 247-270
I. Dolgachev: Algebraic surfaces with $p_{g}=q=0$. In: Algebraic Surfaces CIME 1977, Liguori, Napoli (1981), 97-215
S.K. Donaldson: Anti-selfdual Yang-Mills connections over an algebraic surface and stable vector bundles. Proc. Lond. Math. Soc. (3) 50 (1985) 1-26
S.K. Donaldson: Irrationality and the h-cobordism conjecture. J. Diff. Geom. 26 (1987), 141-168.
S.K. Donaldson: Polynomial invariants for smooth four manifolds. Preprint (1987a).
R. Fintushel, R. Stern: Instanton Homology of Seifert Fibered Homology Three Spheres. Preprint (1988)
A. Floer: An instanton invariant for 3-manifolds. Preprint (1988)
A. Fujiki, G. Schumacher: The Moduli Space of Hermite-Einstein Bundles on a Compact Kähler Manifold. Proc. Japan Acad. 63 (1987) 69-72
R. Friedman, J. Morgan: On the diffeomorphism types of certain algebraic surfaces I. J. Diff. Geom. 27 (1988), 297-369
E. Freitag, R. Kiehl: Etale Cohomology and the Weil Conjecture Erg. der Math. (3), 13. Springer, Berlin, Heidelberg, New York (1987)
A. Grothendieck, J. Dieudonné: Éléments de Géometrie Algébraique. EGA IV, Publ. Math. IHES 20 (1964), 24 (1965), 28 (1966), 32 (1967)
A. Grothendieck: Le Group de Brauer I, II, III. In:Dix exposés su la cohomologie des Schémas Advanced Studies Pure Math., Amsterdam (1968) 46-188
R. Hartshorne: Algebraic Geometry Springer Graduate Texts in Math. 52 New York, Heidelberg, Berlin (1983) ${ }^{2}$
Jankins, W. Neumann:Homomorphisms of Fuchsian groups to PSl(2,R). Comment. Math. Helv. 60 (1985), 480-495
S. Kobayashi: Differential Geometry of Complex Vector Bundles Princeton U.P. (1987)
S. Kosarew, C. Okonek: Global moduli spaces and simple holomorphic bundles. Mathematica Gottingensis 10 (1987)
M. Lübke: Chernklassen von Hermite-Einstein-Vektorbündeln. Math. Ann. 260 (1982) 133-141
M. Lübke, C. Okonek: Moduli Spaces of Simple Bundles and Hermite-Einstein Connections. Math. Ann. 276 (1987) 663-674
M. Maruyama: Moduli of stable sheaves I, II. J. Math. Kyoto Univ. 17 (1977) 91-126; 18 (1978) 557-614
J. Milnor: On the 3-dimensional Brieskorn Manifolds $M(p, q, r)$. In: Knots, Groups and 9-Manifolds Ann. Math. Studies 84, Princeton U.P. (1975) 175-225
K. Miyajima: A Note on Moduli Spaces of Simple Vector Bundles. Mathematica Gottingensis 19 (1988)
W.D. Neumann: Bieskorn Complete Intersections and Automorphic Forms. Invent. math. 42 (1977) 285-293
W.D. Neumann, F. Raymond: Seifert Manifolds, Plumbing, μ-Invariant and Orientation Reversing Maps. In: Algebraic and Geometric Topology, Proc. Santa Barbara 1977, Springer LNM 664 (1978) 162-196
V.A. Norton: Analytic Moduli of Complex Vector Bundles. Indiana Univ. Math. J. 28 (1979) 365-387
C. Okonek, A. Van de Ven: Γ-type invariants associated to $P U(2)$-bundles and the differentiable structure of Barlow's surface. Preprint (1988)
R.L.E. Schwarzenberger: The secant bundle of a projective variety. Proc. Lond. Math. Soc. 3, 14 (1964) 369-384
S. Smale: Structure of manifolds. Am. J. Math. 84 (1962) 387-399
H. Spindler, G. Trautmann: Rational normal curves and the Geometry of special Instanton Bundles on $\mathrm{P}^{2 n+1}$. Mathematica Gottingensis 18 (1987)
M. Ue: On the diffeomorphism types of elliptic surfaces with multiple fibers. Invent. math. 84 (1986) 633-643
G. Whitehead: Elements of Homotopy Theory Springer GTM 61 New York, Berlin, Heidelberg (1978)

[^0]: * partially supported by the Heisenberg program of the DFG

