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LOWER ESTIMATES FOR THE SUPREMUM

OF SOME RANDOM PROCESSES, 11

B. KASHIN AND L. TZAFRIRI*

In this paper we give some lower estimates for the supremum ofrandom processes
of the type

(1)
n

L: ai~i(t)epi(X),
i=l

where {ai}i=l are real coefficients, {ei}i=l is a system of independent random
variables on a probability space (T, T,r) normalized in L 2(T, T,r}, and {epi}i=l is
a system of norm one functions in an L 2 (X, E, J.l) space with (X, E, J.l) being another
probability space.

This work continues the investigation done in [2], where the simpler case ai =
1, 1 :s; i :s; n was considered. The method of the proof of the theorem below is the
same as in [2], and is based on the application of a sharper version of the eentral
limit theorem for sequenees of independent vectors in IR 2 • Dur theorem generalizes
results from Salem and Zygnlund [5] (see Theorems 4.5.1 and 5.4.1 there), where
only the case epi = cos(ix) was considered. Let us remark that the method used in
the paper [5] ean be, after eorresponding modifications, also applied for studying
the process (1), for more general orthogonal systelus.

As an application of the main estimate, we study random d-dimensional trigono­
metrie and more general polynomials, and give some lower L(X)-estimates that eould
be useful in harmonie analysis and approximation theory.

Theorem. For every M < 00 there exist constants C j = Cj(M) > 0, j = 1,2,3
and q = q(M) > 0 such that, whenever {ep i} i=1 is a system 0f functions in an L2 (J.l )
-space satisfying

n n

(2°) I1 L:aiepiIIL~(Jl) :s; M(L: laiI2)1/2, for all {ai}?=l'
i=l i=l

and {(i}i=l are independent mndom variables ouer a probability space (T, T, r) with

*This work was performecl while hoth authors visited. the Max-Planck-Institut in Bonn, Germany.

Typeset by .A;\IfS-'JEX

1



then, for any choice of coefficients {ai}?=I'

n n

(i) r{t E T, 11 Lai (i (t)CPi(x) 1100 ::; CI(L lai 1
2)1/2 (1 + log R)I /2} ::; C2R-Q,

i=1 i=1

(ii)

Remark. By using the so-called contraction principle (see Theorem 4.9 in [3]), one
can prove the inequality (ii) under the weaker assumption

instead of (3) above. However, we are not aware of other reduction methods that
would allow to prove (i) under sinlilar weaker assumptions.

The proof consists of several steps.

Step 1. Fix coefficients {ad i~1 so that L: 7= I lai 1
2 = 1, take c; = c;( M) = ~ (4 it2 )3

and consider the set

Then, by our assumptions,

from which it follows that

J-l(Ef) ::; c;

i.e. that J-l(EI ) ~ 1 - c.

Next notice that the function

n

cp(x) = L lai[2Icpi(X)12

i=1
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satisfies II'PII LI (p) = 1 and, since L 3 (p) in 2-convex,

11,;, 11 L 3 /,(p) = (Jer:, la;l21,;,;(xW)3/2dl')2/3 = lI<t la;121,;,;12)1/2I11.(/')
i=l i=l

n

~ L: lai 121Icpdlt,(p) ~ M 2
.

i=I

Consider now the set

and observe that

so that

This yields that p(E2 } ~ (4tr::d 3 so that, if we set

4M2

E3 = {x E E2 ; cp(x} ~ 2{-3-}3}

then

from which it follows that

1 3 3
p(E3 } ~ 2(4M2} = 26.

In order to get the final conclusion, put E = EI n E3 and observe that:

(i) J-l(E} ~ e(M} > 0

(iii) For x E E, the function 'P (x) = L:?= I lai 1
2

1'P i(x )1
2 satisfies the inequalitiea

Step /1. The change of density. Define a new measure v by
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xE E{

XEt: (X )clJ.l ,

dv = ( )( cp(x)J.l(E) )d
xE x JE c.p(u )dJ.l J.l,

and notice that v is a probability measure on the same measure space as J.l. More­
over, if we put

;l$i~n

.( )(JECP(u)dJ.l)1/2. xE E
c.p. x cp(x)J.l(E) ,

then

(i)

(ii)

lil/Ji 11 L~{iI) = 1, for al1 1 ~ i ::; n,
n n n

11 L ai1/JdIL~(iI) = 11 L aicpilIL~(p) ::; M(L laiI2)1/2,
i=l i=l i=l

for all 1 ::; i ::; n,

(iii)

for x E E, where

(iv)
n n

L laiI 3 11/Ji(x)13 ~ ß(M) L lail 3
,

i=l i=l

for x E E and ß(M) = 105 M18. Finally, notice that for x E E and t E T,

n n

IL ai~i{t)ljJi{X)1 ::; 5M3 1L aiei{t)c.pi(X)1
i=l i=l

so that

n n

11 Lai~i{t)t/Jdx)J1LC>V(iI) ::; 5M3
11 Lai~i{t)cpi{X)IILc>v(p),

i=l i=l

Hence, it suffices to prove the assertion for the system {tPi}7= 1 restricted to the set
E.

Step IlI. Fix m, which will be deternlined later, and notice that
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Hence, one can find m points {x j};':::1 in the set E such that

Step IV. For x E E and p > 0, put

n

Ep(x) = {t E T; L a, ~i(t)1/J,(x) > p}.
i=l

Our wm is to show that, for evel'Y M, thel'e exist constants 1 > a(M) > 0, C2 =
C2 (M) and q = q(M) > °such that if {x j } 1=1 are the points selected in Step III
and p = °2K (1 + log R)1/2, with a :::; a(M), then

(2)
m

r(T"J UEp(xj» :::; C2 R-Q.
j=l

In fact, it suffices to pl'ove (2) for R > Rn(M) because the ca.se 1 :::; R :::; Ro(M)
cau be taken care by just increasing the constant C2 • Put

m

f{t) = LXEp(xj){t); tE T,
j=l

and observe that if r(Uj::::1 Ep(xj» < K, for same K, > 0, then by the Cauchy­
Schwartz inequali ty, we get that

rn

EIfi:::; (Elfl 2)1/2 r ( UEp(x j »1/2 < ",1/2(ElfI2 )1/2,
j=l

which means that the inequality

(3)

implies (2), and thus our assertion with Cl = °t.
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Step V. In order to esti1uate JElfl and (Elfl2)1/2, we shall use a sharper version of
the one and two-dimensional central limit theorem. More precisely, we shall use
Proposition 1 from [2], which is due to V. Rotar' [4] (see also Corollary 17.2 in [1]).

The first application of the above result is done in the one-di1nensional case, when,
for fixed 1 :$ j :$ m, we put

Then

and
K 2

.A= -,
n

which, by the afore mentioned version of the centrallimit theorem, yields that

01', by a change of variable, that

for some constant 1 < C4 = C~(M) < 00.

We shal1 use the notation 91 ::=:: 92 whenever there is a universal constant 0 < C < 00

so that C-1 < 92(~)/91 (e) :$ C for the relevant values of the parameter e. With
this notation, we recall that

100 ~ 1
e-e /2 de ::=:: e? ; p > 1.

p pe ~

Hence if with a(M) and 0 < a :$ a(M) fixed, we impose 00 R a coodition of tbe
type R > Ro(a(M)) = Ro(M) then the error term in the application of the central
limit theorem is much less than the main term and also p > K so we can deduce
easily that

~

r(Ep(xj)) ::=:: j(2 p-l e-/K'J; 1 :$ j :$ m

and thus
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nl 2

JElft = Lr(Ep(Xj)) ~ mI(2 p-I e-/K2.

j=1

Step VI. Since

m

IElfl2 = Elfl + L r(Ep(xj) n Ep(xk))
j,k=1
j;l:.k

the proof of (3) requires that we estimate each of the terms appearing in the right
hand side of the above identi ty.

Put

0"1 = {(j, k); 1 5: j f k 5: m, l:t lad2,pi(x j ),pi (xk)1 < 11
0

},
i=1

and notice that

from which it follows that

c lOMm 2~ 4lull::; ( (M)) LJlad .
e . I.=

Hence,

On the other hand,

2

1 2 (mKp-I e- 2K2)2
RI/2 (Elfl) ~ RI/2

so if o(M) is sufficiently small then

L T(Ep(Xj) n Ep(Xk)) < R~/2 (Elfl)2.
(j,h) EO'~

j;l:.k

Assume now that
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~

n~ = [4pe ~1<2 R 1
/

2
] + 1

and notice that this condition ilnplies that

for some absolute constant W.

At this time, we want to point out that the value of m above depends on that of a
which will be made precise only later.

The main part of the arguluent of the proof will be devoted to evaluate the expres­
sion

L: r(Ep(xj) n Ep(Xk))'
(j,k)E 17 1

j#k

Step VII. Fix a pair 8 = (j, k) E 0"1 and consider the random vectors in R2 defined
by

In order to apply the centrallimit theorem for these random vectors) we notice that

while

1 (2:~=1Iad2ItPi(Xj)12 2:7=1IaiI21/'i(Xj)1/'i(Xk))

V· == ~ L:;~llad2V>i(xi)V>i(Xk) L:7=llad2 1V>i(XkW -

Hence,

and

21(2
trace V~ = --.

n
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Denote the eigenvalues of V6 by Al and A2' and observe that they should be positive.
Suppose that 0 < Al ~ "\2, and notice that Al + A2 = trace V", which yields that
..\2 ::; 2~~. Therefore, since det V" = ..\1 ..\2 it follows that

l.e.

1
..\1 ~ --­lOI(2 n '

By using again the central limit theorem, in the version of [4] which contains an
error term, as we did before, we get that

n

< C 1n-1 / 2 p ..\-3/2 < D ~ la-13
- 1 3 - lL..,.. 1 ,

i=1

for sorne constant D1 = D1 (M) < 00. Hence,

which yields that

n

L T(Ep(xj) n Ep(Xk)) ::; D 1m2 L lail3+
,,=(j,k)Ea'l i=1

100100

1 e-! (V,(n V· )-1 V) dU
+ p P '~, 2rr(det(nV'))1/2 .

Notice that

D m2~ la-13 < D m2(~ la-14)1/2 = D 1 m
2

< (IElfl)2
1 ~ 1 - 1 ~ I Rl/2 - Rl/9 '

1=1 1=1

provided that R ~ R{J(M). As we have already mentioned, the case when R is
relatively small can be takell care by increasing the constant C2 in the statement
of the Theorem. It relnains to compare the expression

1
00 100 1 e- !(U,(n V.)-l V) dU

p p '~, 2rr(det(nV'))1/2

with the expression
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where

n

8 ~ m2(C~)2 L: lail4
•

i=1

As before, we can ensure that 8 is dOlninated by (~Il)~~' In order to compare these
two integral expressions, notice that

so if we introduce the notation

- L:7:1Iai I2,pi(Xj)tPi(Xk))

K'J

n

Co! = L: laiI 2 tPi(Xj)1/Ji(Xk)j sE 0"1,

i=l

then

It follows that

Now, for s E 0"1, put

1
a - -----:--"""":":""

& - [{2 - lJ?? '
and notice that, for any value of L > 1,
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Hut, for any s E 11],

K2 - C li 1 > 1 = '(M) > 0
a ll

- bll = K4 _ IclI I2 - [(2 +Cli - 'i'(M) + lo '
which implies that

If L 2 + 1 = max( il(~)J('j,2) then

m 2
-J'(M)(L2±l)e2 < D2 (Elfl)2

-e 2Lp2 - Rq

for suitable D2 = D2 (M) < 00 and q = q(M) > O. Hence, for another constant
Da = D3 (M) < 00,

Step VIII. In order to complete the proof, we have to compare the expression

pointwise in the range p ~ U), U2 ~ Lp, with the expression

B = ~1111Ie-2k:2 (ui + u~),
2rrI\.

which appears in the calculation of the expression L:lIEul r(Ep(xj))r(Ep(xl;:)). We

need to show that A ~ B(l + D4 R-q l), for some choice of D4 = D4 (M) < 00 and
q' = q'(M) > o. To this end, set
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and observe thnt, by Step III,

l.e.

and

For s E Or, we have that

provided of course that p ::; U}, U2 ::; Lp, and VI is a suitably chosen universal
constant. Moreover, s E or also yields that

1 ](4
det(nV

8

) = 1{4 -lc..12 ;::: 1{4 - 22r- 2 ;::: (1 + V
2
2- r F'

for some universal constant V2 • It follows that

B·S
A::; ~'

where

[11082 R]

L +
r=3 r=I+[t 1082 R]

However,

1 M V2 V t L 2 p 'l
S < -log R( __ )2 R2 / 3m 2R- I (1 + -)e 8

1 - 3 2 e(M) 8

< D log2 R 2 V t LtJ2
p

2 < D5 m
2 < D E!l

- 4 RI/3 m e - RI/4 - 6 RI/4 '

12



for suitable constants D 4 = D 4 (M), D 5 = D 5 (M) and D 6 = D 6 (M), provided
a(M) satisfies a condition of type

Also

00

52 ~ L 18r l(1 + ;~3 )(1 + ;~4) ~ 1<711(1 + ;~4)'
r= 1+{ ft logJ R]

for suitable universal constants V4 and Vs , if a(M)2 L2VI < 1. The final conclusion
is that

for some constant D7 = D7 (M), aud this completes the proof.

o
Remarks. 1. It is useful to understand the order in which various constants ap­
pearing in the proof are selected. Gnce M is fixed, the change of density argument
tagether with the selection of the new system {tPi} i=1 give dse to the constants
e = e(M) > 0, J = ,(M) < 00, ß = ß(M) = 105 M 18 and ]( = K(M). With
J'(M) = /(M)+'&i we then choose L(M) so that

2 2
L + 1 = max(J'(M)](2' 2).

Once the universal constants VI and V2 are determined we select a = a(M)
subject to vm"ious conditions which are spread all over the proof. Then we fix

p = °f (1 + log R)I/2 provided R, = (L~jl;tlJ)J is large relative to a constant

Ra = Ro(M); otherwise, we conlplete the proof immediately by taking C2 suffi-J
ciently large. Finally, we select the number of points m = (4pR1

/
2 e JK :J] + 1 for

which we proceed with the random selection argument described in Step III.

2. As in the previous paper [2], the theorenl above remains true of we replace p = 3
by any other value of 2 < p.

The main theorenl cau be used, for instance, in order to study random processes
of the type

where the dimension d :2: 1, 0 < a < t and the random variables {€n} and the
system {CPn}, which both are indexed by n E Zi, satisfy the conditions of the
theorem, for sOlue choice of M.
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In this case, we conclude the existence of constants K l - [(I (M, 0), K 2 ­

K 2 (M, o) and q = q(M, 0) > 0 so that

(4) T{t E T, IlFN,a,d(t, x)IILoo(IJ'~) ::; ](1 N!-a(l + log N)!} ::; K 2 N-Q,

for all N.

This estimate is obtained by recalling that the cardinality of the set rN, of all
d-tuples n = (nI, ... ,nd) E zj so that 1 :$ Inl ... ndl :$ N, satisfies

Hence, the computation of the expression

( L
nE~

I:5l u l ... u dI5N

shows that it is of order of magnitude

(N~aN(1 + log N)d-I )1/2 = N,-a (1 + log N)"j!.

Then (4) follows iInlnediately from the main theorem since R is polynomial in N.
This estimate is sharp in the case when {'Pn} ia the cl-dimensional trigonometrie

system and {eu} the nsua! Rademacher functions, since in this case

IEIIFN,a,d(t, X)I!Loo (lJlx) ::; !(aN!-a(l + 10gN);,

for some constant /(3.

In the case Cl' = ! l the direct application of the main theorem does not yield
a sharp estilnate since R ia now of logar'ithnlic order. In order to overcome this
difficulty, we consider instead the random process

for which the theorenl gives that

IEllF~,!,d(t,x)IILoo(lJ'x)~ c(l + 10gN)~ l

for some constant c > O.Since {eu} are independent random variables of mean zero,
it follows that also

EJlFN,!,d(t,x)IIL~(Jl'x) ~ IEIIF~",d(t,x)IIL~(Jl'x) ~ c(l +logN)~.

This estimate is sharp in the classieal case discussed above.

In a similar nlanner, we can study also random processes of the form
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where ~ < ß < dt1and the systelllS {~n} and {c,on} are as before.

For ß > ~, a direct calculation shows that

EllQN,ß,d(t,x)lIL 2 (Il,X) ~ K 4 ,

for some [(4 = K 4 (d) < 00 and all N. On the other hand, by applying the main
theorem again to the auxiliary process

Q',v,ß,d(t, x) =
nEzt

.JN<lnl ...nd I::;N

we obtain, as before, that

whieh is of interest only if ß < dt1. Again, this estimate is sharp in the case of
the trigonometrie functions and that of the Rademacher fuuctions. This fact can
be checked as in [5] p. 284.

Remark. As we huve seen in the above eXaIllples, it is sOluetimes useful to replace
the assertion (ii) of the theorelll by

("') JEII ~ t 1I c ('"' 1 12)1/2( 1 (L:iEA Jad
2

)2 )1/2
11 L.-, Gi ~i <Pi LIX> (,l) 2:: 3 max L.-, ai 1 + og "" I .1 4 •

. AC{I, ... ,n} . LJiEA a •
•=1 IEh
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