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LOWER ESTIMATES FOR THE SUPREMUM
OF SOME RANDOM PROCESSES, II

B. KASHIN AND L. TZAFRIRI*

In this paper we give some lower estimates for the supremum of random processes
of the type

n

(1) Z a;ili(t)pi(z),

=1

where {a;}", are real coefficients, {£;}"; is a system of independent random
variables on a probability space (T, 7, 7) normalized in Ly(T, 7T, 1), and {pi}i, is
a system of norm one functions in an Lq (X, I, u) space with (X, I, 1) being another
probability space.

This work continues the investigation done in [2], where the simpler case a; =
1,1 €1 < n was considered. The method of the proof of the theorem below is the
same as in {2], and is based on the application of a sharper version of the central
limit theorem for sequences of independent vectors in R?. Our theorem generalizes
results from Salem and Zygmund [5] (see Theorems 4.5.1 and 5.4.1 there), where
only the case p; = cos(iz) was considered. Let us remark that the method used in
the paper [5] can be, after corresponding modifications, also applied for studying
the process (1), for more general orthogonal systems.

As an application of the main estimate, we study random d-dimensional trigono-
metric and more general polynomials, and give some lower L,-estimates that could
be useful in harmonic analysis and approximation theory.

Theorem. For every M < oo there exist constants C; = C;(M) > 0,5 =1,2,3
and g = q(M) > 0 such that, whenever {p;}l, is a system of functions in an Ly(u)
-space satisfying

(1°) leillLawy =1 and  flpillyu) S M, forall 1<i<n,

(2°) 1> aitillaquy < MO a2, for all {ai}i,,
i=1

=1

and {£;}, are independent random variables over a probability space (T, T ,7) with

*This work was performed while both authors visited the Max-Planck-Institut in Bonn, Germany.
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(3°)  E(&)=0,E& =1 and (E&P)P <M, forall 1<i<n,

then, for any choice of coefficients {a;}%,,

(i) r{teTl| Zai i(t)pi(@)lloo < C:(z lai]?)' /(1 + log R)}/*} < C,R7Y,

1=1 =1

. o feon "\ iz (S lail®)? 12
() Bl ai&iillem 2 Ca(_lail®) /2 (1 +log )

i=1 i=1 E?:l lai]*

Remark. By using the so-called contraction principle (see Theorem 4.9 in (3]), one
can prove the inequality (i) under the weaker assumption

(3') E(&)=0, El&*=1 and E|&|>1/M, for 1<i<n,

instead of (3) above. However, we are not aware of other reduction methods that
would allow to prove (i) under similar weaker assumptions.

The proof consists of several steps.

Step 1. Fix coefficients {a;}}; so that 3 I_, |ai[* = 1, take ¢ = e(M) = ;(3z)°
and consider the set

n M3 n
B = {5 Y laPlei@)l < 23 Jaif)
i=1

1=1
Then, by our assumptions,

n

c M3 . 3 - 3 3 3 3
B Dl < [ 3l loite)Pd <43

=1 =1

from which it follows that

#(Ef) <e
ie. that p(Ey)>1-—c¢.

Next notice that the function

n

p(z) =Y laillei(z)?

1=1



satisfies |l¢l|L,(4) = 1 and, since L3(p) in 2-convex,

n n
lellLsa = (/(Z lail*lei(2)*)*2dp)*® = 13 lail® leil*) 211
' =1

1=1

< Z |ai Pl pill 4y < M2

=1
Consider now the set

B, = {z0(z) > )

and observe that

/.: p(z)dpy < %

3

so that

3
3 < [ el < lpllan(E) < MPU(ED' .
2

This yields that p(E;) > (g37)° so that, if we set

4M?
E3 = {z € Ey0(z) <2( 3 )*}
then
4M?
2P WB) ~uB) < [ pla)de < Nl = 1
E;~FE3
from which it follows that
1, 3
> = = 2.
#(Es) 2 5(7m) =2

In order to get the final conclusion, put E = E; N E; and observe that:

(i) u(E) 2 e(M) >0

(ii) Forz € B, 301, |aiPlpi(2)® < M YL, |ail?,

(iii) For z € E, the function ¢(z) = Y |_, |ai|*|pi(z)|? satisfies the inequalities

2
M = 4(a1).

1
= < () <2(
4

Step II. The change of density. Define a new measure v by
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XE“(:E)(I/J) TE E°

v = pWE)
XE(:I)(]E tp(u)dp)d#’ €E

and notice that v is a probability measure on the same measure space as . More-
over, if we put

wi(z); z € E°
¢ ( ) _ ;], <1 <n
R IE(P(“)dF 1/2
e == ; E
e DR
then
(1) ”’(l).'”L:(,) =1, forall 1<i<n,
(ii) 1Y aitbillLaey = 1) aiilliagn < MO lail?)?,
i=1 =1 =1
foralll1 <:<n,
i1 .'1:=n P12 = e du = K?
(i) #a) = 3l = gy [t =5,
for £ € E, where
1 -2
1 < K* < ~(M)
(iv) 3 el ()P < B D laif?,
i=1 i=1

for z € E and B(M) = 10° M'8, Finally, notice that for z € E and t € T,

l Z aii(t)pi(e)| < BMP| Y aibi(t)pi(s)|

i=1

so that

1Y aibi®)bi(@) Loy S SM|D aibi(®)pi(2) | oo ()-

i=1 i=1

Hence, it suffices to prove the assertion for the system {#;}"_, restricted to the set

E.
Step III. Fix m, which will be determined later, and notice that
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nt

m2 I ¢'l Ij ¢I 'Tk)l dul(ml) ( ) <
LhE=1 i=1

< ,,(E > [ / |Z|a.l il i) P (z;)dv () <
3 i Z|a.| () Pdu(z;) < Da.r‘

5 k=1

s V(E)m)"’

Hence, one can find m points {z;}}., in the set E such that

.n% Z |Z Iailz'\bi(z_f)lﬂg(mk)ﬁ M) ——)? z la[*.

=1 i=1 =1

Step IV. For z € E and p > 0, put

Byfe) = (t€ T, aibi(tii(e) > o).

Our aim is to show that, for every M, there exist constants 1 > a(M) > 0, C; =
C2(M) and ¢ = ¢(M) > 0 such that if {z;}7L, are the points selected in Step III

and p = 2£(1 + log R)!/?, with a < o(M), then

(2) (T ~ | Ey(3;)) < C2R™".

i=1

In fact, it suffices to prove (2) for R > Ro(M) because the case 1 < R < Ro(M)
can be taken care by just increasing the constant C;. Put

ft) = xe,en(t) teT,

and observe that if 7({J;L, E,(z;)) < &, for some x > 0, then by the Cauchy-
Schwartz inequality, we get that

m

Ef| < (BIFP) (| Eolzi)'? < s2(EIFP)V2,

=1
which means that the inequality

(3 Elfl 2 (1~ C.R™)VA(EIf1?)/*
implies (2), and thus our assertion with C, = &E.
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Step V. In order to estimate E|f| and (E|f|?)!/?, we shall use a sharper version of
the one and two-dimensional central limit theorem. More precisely, we shall use
Proposition 1 from [2], which is due to V. Rotar’ [4] (see also Corollary 17.2 in [1}).

The first application of the above result is done in the one-dimensional case, when,
for fixed 1 < 5 < m, we put

Xi(t) = aili(t)ihi(z;);1 <t <n,teT.
Then

ps == ZEIX == Z lailEléi *[i(z;)I° <

I—l

<M S e < 2D S,

i=1 =1

2 2 Kz K!
V=—Zcov(x =—Z|a.| EiG[*gi(e;) = — and A= —,

n
=1

which, by the afore mentioned version of the central limit theorem, yields that

nl/2 oo _ 2, 3
|T(Ep($j))“m/_ﬁ?e 3w dy| <Cl Ka Z| il

i=1

or, by a change of variable, that

1 '
(o) - e | < < G Yl < 0 Zla‘l P
p

i=1

for some constant 1 < C} = C3(M) < oo.

We shall use the notation ¢; < g; whenever there is a universal constant 0 < C' < oo
so that C™! < g2(€)/g1(€) < C for the relevant values of the parameter £. With
this notation, we recall that

/ e'fzfzdf = lé; p>1.
P pes
Hence if with a(M) and 0 < a < a(M) fixed, we impose on R a condition of the
type R > Ro(a(M)) = Ro(M) then the error term in the application of the central
limit theorem is much less than the main term and also p > K so we can deduce
easily that

2

r(Ep(z;) < K2p e Hm1 < < m
and thus



=%

E|f| = Z o(z)) xmK?*p~ e

Step VI Since

ElfI* = Elfl+ ) 7(Ep(z;) 0 Ey(zx))
1hk=1
Rk
the proof of (3) requires that we estimate each of the terms appearing in the right
hand side of the above identity.
Put

o1 = (k) 1S5 # k< my | D lailPoi(e (e < 35

=1

and notice that

(11(;21')2 = mﬂzla:l ilz;)pi(ze)[* <( Zla.l‘

from which it follows that

|_ 10Mm Zl ‘14

i=1

Hence,

' IOKMm -1 -2
> T(Ep(2;) N Eplzi)) < (— 3 )2Z| i{tp~temakT
(5,h) €0} i=1

J#k
2

( 10 KMm )2 p~le 2K
" g(M) R

On the other hand,

(pr"le_EJ;?n"')2
R1/2

R (BIA? =

so if a(M) is sufficiently small then

Z T(Ep(z;) N Ep(zx)) < (E|f)*.
(jh)Eaf
J#k

Rm /2

Assume now that



2
m = [4pe5’;77R1/2] +1

and notice that this condition implies that

Y (EIY,

for some absolute constant W.

At this time, we want to point out that the value of m above depends on that of «
which will be made precise only later.

The main part of the argument of the proof will be devoted to evaluate the expres-
sion

Z T(E,(z;) N Ep(zk))-
(J.Ik)ecl
J#Ek

Step VII. Fix a pair s = (J, k) € o1 and consider the random vectors in R? defined
by

X (t) = (aili(t)pi(z;), aili()i(zr)); 1S i <n, t €T,

In order to apply the central limit theorem for these random vectors, we notice that

g2l Z|a,| BlE: (o) + o)) < LA $ o

=1
while
ool ( Cim lailli(=)? T, lﬂilzﬂb-‘(xj)tbs‘(mk))
P laP e (me) T lail? i)
1 ( K* Yim1 |ai|2¢i($j)¢i($k))
"\ S0l () K? |
Hence,
11 1 1
detV"——I —I;Ia;]tl} ;) )|)>n-2(z—i'6'5)=gn—z
and
traceV?® = 2K
n



Denote the eigenvalues of V* by A; and Az, and observe that they should be positive.
Suppose that 0 < A} € Az, and notice that A; + A; = trace V?, which yields that
A2 < % Therefore, since det V* = A; Az it follows that

1 2K?
Enl <AMA L

l.e.

1
A > ———.
' = 10K?n

By using again the central limit theorem, in the version of [4] which contains an
error term, as we did before, we get that

1 =2} o0 et
; e - (Y(V*)7'Y)
IT(Ep(Q:J) n EP(xk)) 27‘r(det Va)]/g / _ / _ [ i dY S

n
<SCinTp AT 2 < Dy Y el

=1

for some constant D) = D;(M) < co. Hence,

n 1 o0 o oy—1
| . . — LUV
T(EP(ZL'J) N Ep(.'lik)) S D] ; |a|I + 2n(det(nV’))1/2 L /; € d

which yields that

Z T(Ep(z;) N Ep(wx)) < Dym® Z |ai|*+

s=(k)€ay i=1

1 — H(U(nV*)~1U)
/ / m(det(nV* ))]/26 du.

Notice that

n n Dim? _ (E|f|)?
D Yl < Dym()_ e = i < G,

=1 i=1

provided that R > Ro(M). As we have already mentioned, the case when R is
relatively small can be taken care by increasing the constant C; in the statement
of the Theorem. It remains to compare the expression

o (= ] 1 -1
—i(U,(nV,) U)dU
/,, / 2 @V

with the expression




where

5 <mACI Y Jailt.

=1

. ; : (Elf])? .
As before, we can ensure that 4 is dominated by —Rll—,lgL. In order to compare these
two integral expressions, notice that

vyt = ] ( K -TL |a.~|2¢.-(z,~)¢.~(zk))
det(nV?) — Yoic lailPi(z;)¥i(z) K?

so if we introduce the notation
n
Cs = Z |lai|*¥i(z; )0i(ze); s € 0,
=1
then

1 c
1(2—1515_’ ~KT-1e, 2
1

(nV’)“ = c

It follows that

e~ S U@V gy
/p,/ 27r(det nV’ )1/2 v

; +':‘=L— +ris i)

7S w
e Jo i 27r(del'.(n.V-"))1/2

Now, for s € 71, put

‘uldUQ.

1 cs

by =

FEaAlR i <R

and notice that, for any value of L > 1,

Ay =

10



© oo 1 {— 4 (ui+ud)+bowina) g 0 <
L, Z 27r(det(nv"))1/26 3 ujduy &

<32] / z —2a2be (4] +“§)du1du2 z -2z (L741)0%
L,

s€oy A€o,
But, for any s € o4,

K?—¢ 1 1
,—b, = s — > = v (M
a Ko ~ K55 2 70D 7 & v(M) >0

which 1mplies that

2

/oo /OO z 1 e{—gf'(u?+ug)+b.ulu,} < m_eﬂﬂﬂﬂ;&ﬂlﬁ
1 by i, BV <L

IfL2+1= ma:c(;zﬁf"mﬂ) then

m? zveoeio? o Da(Elf])?

Lp? - R?
for suitable D; = D3(M) < oo and ¢ = ¢(M) > 0. Hence, for another constant
D; = D3(M) < 00,

3 7(Bp(;) N E,(zx)) < %Lf”u

3€0;
+ f ’ f ’ 2 1 el= % i rbuua) gy gy,
I P aco 2Tl‘(det,(nV’))l/2

Step VIII. In order to complete the proof, we have to compare the expression

{ %;—(uf+u§)+b.u1u2}

A= E 21r(det nV )1/2

pointwise in the range p < u;,ug < Lp, with the expression

1
T 27K?
which appears in the calculation of the expression 3 .. T(E,(z;))7(Ex(zk)). We

need to show that A < B(1 4+ D;R™9), for some choice of Dy = Dy(M) < oo and
¢ = ¢ (M) > 0. To this end, set

lo1]e™ %7 (u? + ud),

1
or—1 }

1
5r={3€‘71355|03|<

11



and observe that, by Step III,

2 2 4
el? < 3 Jail
221‘ Z | s
8€o

i=1

le.

|6,] < min(m? (

‘2Z]a'

and

oy = | é--

r=3

For s € é,, we have that

(ca/ K)?*(ul + uf) — 2c,u1us
| <
K4 -2
< 32272 (ud + ud) + 27 uyuy) < V127 LE?

l(@s - 7 =) +u3) - 2| < |

provided of course that p < u;, uy < Lp, and V} is a suitably chosen universal
constant. Moreover, s € 4, also yields that

1 Kt
92r—-2 = (1 +V22—r)2’

for some universal constant V5. It follows that

det(nV?®) = K* — |c,|* > K* -

A<
|o1 |
where
had 2,2
S = 2_:15,[(1 + g—f)el’%r—
[} 1og, R o
Z + Z =851 + 5,.
r=3 "=1+['.°Lx log, R]
However,
M 2/3,.2 p- Va 5&:5
Sl_3log2R(€(M))R R7'(1+ 8)
log, R, wit?? _ Dym? |o
< Dy Rl/sme ¥S R1/4 = 7S Ri/a’

12



for suitable constants Dy = Dy(M), Ds = Ds(M) and Dg = Dg(M), provided
a(M) satisfies a condition of type

«(MK?VL? 1
4 20°

Also

>, |7 Vi Vs
SZ S E ) |6r|(1 + le!s )(1 + R14/4) S Iall(l + Rl_?“)’
r=1+{3 logy R)

for suitable universal constants V4 and Vs, if a(M )2L2V1 < 1. The final conclusion
is that

Dy
R RI/4 )

for some constant D7 = D7(M), and this completes the proof.

151 < loal(1 +

O

Remarks. 1. It is useful to understand the order in which various constants ap-
pearing in the proof are selected. Once M is fixed, the change of density argument
together with the selection of the new system {i;}., give rise to the constants
e=¢eM) >0,y =79(M) < 00,8 =0(M) =10°M" and K = K(M). With
¥'(M) = "r(M_])-l-ﬁs_ we then choose L(M) so that

2
2 —
L*+1= max(q«’(M)K’ ,2).
Once the universal constants Vj and V2 are determined we select a = a(M)

subject to various conditions which are splead all over the proof. Then we fix
2

p = c"K(l + log R)!/? provided R = iz > sl i large relative to a constant

Ry = Ro(M); otherwise, we complete the proof immediately by ta.kmg C, suffi-

ciently large. Finally, we select the number of points m = [4pR!/ 2655?7] + 1 for
which we proceed with the random selection argument described in Step III.

2. As in the previous paper [2], the theorem above remains true of we replace p = 3
by any other value of 2 < p.

The main theorem can be used, for instance, in order to study random processes
of the type

FN,a,d(t,J?) = Z £"(t)(Pﬂ($)

3
ny...ng)"
n‘_‘(nlt"':nd)ezi ( )
1<ny...ngq|<N

where the dimension d > 1,0 < a < 1 and the random variables {¢.} and the
system {p,}, which both are indexed by n € Z4, satisfy the conditions of the

theorem, for some choice of M.

13



In this case, we conclude the existence of constants K; = K;(M,a), K; =
K;(M,a) and ¢ = ¢(M,a) > 0 so that

(4)  t{te T, ||Fnaalt, )L <K IN3=*(14logN)¥} < K,N™9,

for all N.

oo (u,2)

This estimate is obtained by recalling that the cardinality of the set I'y, of all
d-tuples n = (n;,... ,ny) € Z;" so that 1 < |n;...n4| < N, satisfies

ITN| < N(1 +log N)*~1.
Hence, the computation of the expression

1 1
( E ———)%0<a< 5,
ez (ny...n4) 2

1<|ny..n4|<N

shows that it is of order of magnitude

1 _ — d=1
(7aa N1 +1og N)=)1/2 = NE2(1 4 log N) 7.
Then (4) follows immediately from the main theorem since R is polynomial in N.

This estimate is sharp in the case when {¢,} is the d-dimensional trigonometric
system and {£,} the usual Rademacher functions, since in this case

EllFNn,a,d(t )| Loy (u,2) < KsN3—%(1 + logN)%,

for some constant K.

In the case a = %, the direct application of the main theorem does not yield
a sharp estimate since R is now of logarithmic order. In order to overcome this
difficulty, we consider instead the random process

Fyya(t2) =

én(t)ﬂon(x)
Z (ny...ng)%

n=(ny,... ,ud)GZ'i
VN<|ny..ng|<N

for which the theorem gives that

E||F1’v.§.d(t»$)||Lm(u,z) 2c(l+ logN)%,

for some constant ¢ > 0.Since {£,} are independent random variables of mean zero,
it follows that also

EllFn,4,0(t @)L () 2 EIFy 3 a8 @) Lo (u2) 2 (1 + log N)%.

This estimate is sharp in the classical case discussed above.
In a similar manner, we can study also random processes of the form

14



B £n(t)pn(z)
Q)= 2 o b+ log e )
=(ny,...,n4 +

1<In1...n.;|SN

where § < 8 < 93! and the systems {{,} and {p,} are as before.
For 3 > %, a direct calculation shows that

E|Qn,p,d(t,Z) || Ly(p,x) S K4,

for some Iy = K4(d) < oo and all N. On the other hand, by applying the main
theorem again to the auxiliary process

, _ fn(t)()oﬂ(z)
N W R = R

VN<|ny..ng|<N

we obtain, as before, that

a1

which is of interest only if § < %’—1 Again, this estimate is sharp in the case of
the trigonometric functions and that of the Rademacher functions. This fact can
be checked as in [5] p. 284.

Remark. As we have seen in the above examples, it is sometimes useful to replace
the assertion (ii) of the theorem by

i , 12)2
ii") E E a; §ipi ) 2> Cs  max a7 (1 + 1o —(2"5'\ lail 1/2
( ) " 3 ¥ “Loa(l) = 3 AC{L '"}(gf; | I ) ( 24 EieA Iail‘t )

=1
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