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Introduction
In this survey we shall try to describe one of the remarkable features of complex analysis and

geometry: the phenomenon of analytic continuation. The latter consists in the fact that the
objects of study in this discipline, we shall call them complex analytic objects, often extend to a
larger domain that there was their domain of definition at the beginning. The first and simplest
example is the following Bochner-Hartogs extension theorem:
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2 S. IVASHKOVICH

Let K be a compact in a domain D ⊂ Cn, n > 2, such that D \K is connected. Then every
holomorphic function in D \K extends to a holomorphic function in D.

We shall explain in this text that this statement holds true for a great number of various
analytic objects. The formal definition of the notion of a complex (and real) analytic object
will be postponed to section 4. For the moment it will be sufficient to say that holomorphic
and meromorphic functions, mappings, foliations, holomorphic bundles and coherent analytic
sheaves are complex analytic objects.

The Table of Contents tells sufficiently about the content of this survey and therefore let us
only very briefly outline the main goals of this text. We try to formulate in a possibly best and
complete way the main results obtained in the subject since the very beginning at the end of
19th century. But as a rule the proofs of the principal statements will be sketched only in the
case when they are not yet described in the monographic literature. The only exception is made
for the beginning of Chapter I where the classical results are discussed. In the former case we
send the interested reader to the corresponding surveys and books for more details. A specific
attention will receive the developments which took place since the appearance of the book of
Y.-T. Siu, [Si3], in 1974.

The extension phenomena, being one of the decisive features of complex analytic objects,
makes its way accompanied from the very beginning with important applications and motiva-
tions. One of the first examples again belongs to F. Hartogs:

Let f(z1, ...,zn) be a function of n > 2 complex variables which is separately analytic, i.e.,
for every fixed n− 1 variables f is holomorphic as a function of the remaining one. Then f is
holomorphic as a function of n variables.

We pay a specific attention to such king of applications and motivations of extension results
as well as formulate some open questions. A short historical note is added at the end of the
text.

Acknowledgement. 1. This work in its final part was done during the Authors stay at Max-
Planck-Institute für Mathematik, Bonn. I would like to thank this Institution for the hospitality.
2. I would like to express my gratitude to Vsevolod Shevchishin and Alexander Sukhov for the
help in presenting sections 3 and 16 of this text.
3. This survey was written for the volume of Russian Mathematical Surveys dedicated to
Evgeni M. Chirka on his 70th anniversary. I would like to use this occasion to express to him
my gratitude for many useful discussions along several decades and to wish him a long and
productive scientific life.

Chapter I. Around Theorems of Hartogs, Levi and Schwarz

1. Theorems of Hartogs and Levi and their immediate consequences

For a positive real number r we denote by ∆r(z0) = ∆(z0, r) the disk of radius r in C
centered at z0, i.e., ∆r(z0) = {z ∈ C : |z − z0| < r}. ∆r stands for the disk centered at
the origin, ∆ for the unit disk. By Ar1,r2 we denote the open annulus of radii r1 < r2, i.e.,
Ar1,r2 := {z ∈ C : r1 < |z| < r2}. The option r1 = 0 is not excluded and A0,r will be denoted as
∆∗r , the punctured disk. A ring domain in Cn+1, n > 1, is defined as Rn+1

r1,r2
:= Ar1,r2 ×∆n, i.e.,

Rn+1
r1,r2 is a product of an annulus and the unit polydisk ∆n.

1.1. Theorems of Hurwitz and Levi.

Theorem 1.1. (A. Hurwitz, [Hw]). Let f be a holomorphic function in R2
1−r,1. Suppose that for

some sequence {zν} of distinct complex numbers converging to zero restrictions fzν := f(·,zν)
holomorphically extend from A1−r,1 to ∆. Then f holomorphically extends to the bidisk ∆2 as
a function of two variables.
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The proof goes as follows, see Fig.3(a). Write f(λ,z) =
∑∞

n=−∞an(z)λ
n, where an are

holomorphic in ∆. The fact that f(·,zν) is holomorphic in ∆ as a function of λ means that
an(zν) = 0 for all negative n. The set A := {z ∈ ∆ : an(z) = 0 ∀n = −1, ...} is analytic. Since
it contains a converging sequence it is the whole of ∆. I.e., an ≡ 0 for all n < 0. Therefore f is
holomorphic in ∆2.

Definition 1.1. A subset A ⊂ ∆n is called thick at origin if for any neighborhood V 3 0 the
intersection A∩V is not contained in a proper analytic subset of V .

Theorem 1.2. Let f be a holomorphic function in the ring domain Rn+1
1−r,1. Suppose that for z

in some subset A ⊂ ∆n, thick at origin, restrictions fz := f(·,z) holomorphically extend from
A1−r,1 to ∆. Then f holomorphically extends to ∆n+1 as a function of n+1 variables.

Proof is the same as that of Theorem 1.1. Recall that a complex manifold/space X is called
Stein if there exists a proper holomorphic imbedding i :X → CN for some N .

Corollary 1.1. Let X be a Stein manifold (or, a reduced Stein space) and let f :Rn+1
1−r,1 →X be

a holomorphic mapping. Suppose that for z in some subset A⊂∆n, thick at origin, restrictions
fz := f(·,z) holomorphically extend from A1−r,1 to ∆. Then f holomorphically extends to ∆n+1.

Indeed, i ◦ f is defined by N holomorphic functions, say f1, ...,fN . Extending every fk to
∆n+1 by Theorem 1.2 we extend i ◦ f to a holomorphic mapping from ∆n+1 to CN . Its image
is contained in i(X) because the last is closed in CN . This gives us the extension of f itself.

Recall that a meromorphic function f on a complex manifold/normal space D is defined as
locally being a quotient of two holomorphic functions. In more colloquial terms there should
exist an open covering {Dα} of D and hα ∈ O(Dα),gα ∈ O∗(Dα) such that hαgβ = hβgα on
Dα∩Dβ . Then f = hα/gα on Dα. Taking a finer covering one can additionally suppose that for
every x ∈ Dα germs of hα and gα are relatively prime in Ox. Under this assumption we call a
point x an indeterminacy point of f if hα(x) = gα(x) = 0. Observe that the set If of indeterminacy
points of f is analytic of complex codimension > 2. By Pf denote the divisor of poles of f , by
Zf its divisor of zeroes. Then If = Pf ∩Zf .

Before stating the Theorem of Levi about extension of meromorphic functions let us prove
a lemma. Let O be an integral domain and M be its field of quotients (field of fractions). In
our applications O will be the ring O(∆) of holomorphic functions in the unit disk and then
M=M(∆) will be the field of meromorphic functions in ∆.

Lemma 1.1. A formal power series

F (λ) =
−1∑

n=−∞
anλ

n ∈ O[[λ]] (1.1)

represents a rational function P (λ)
Q(λ) with P,Q ∈ O[λ] and degQ6N if and only if∣∣∣∣∣∣
a−n1 a−n2 ... a−nN+1

. . ... .
a−n1−N a−n2−N ... a−nN+1−N

∣∣∣∣∣∣= 0 (1.2)

for all (N +1)-tuples n1 < ... < nN+1.

Proof. Indeed, we look for a non-zero polynomial Q(λ) = c0+c1λ+ ...+cNλ
N with coefficients

in O such that F ·P ∈ O[λ]. But this condition means that for every k > 1 one should have

a−kc0+ ...+a−k−NcN = 0. (1.3)

The last means that vectors bk := (a−k,a−k−1, ...,a−k−N ), k ∈ N belong to the hyperplane with
equation (1.3) in the M-linear space MN+1. The latter means that every N +1 of them are
linearly dependent, and this is precisely what tells the condition (1.2).

�
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Theorem 1.3. (E. Levi, [Lv]). Let f be a meromorphic function in R2
1−r,1. Suppose that for

some sequence {zν} of distinct complex numbers converging to zero restrictions fzν := f(·,zν)
meromorphically extend from A1−r,1 to ∆ and that the number of poles counted with multiplicities
of these extensions is uniformly bounded. Then f meromorphically extends to the bidisk ∆2 as
a function of two variables.

Proof. If f ≡ ∞ there is nothing to prove. If f 6≡ ∞ but f(·,0) ≡ ∞ we can multiply it by zd

with an appropriate d. This will not change the number of poles of f(·,zν) for zν 6= 0 and we
can suppose that f(·,0) 6≡ ∞. Remark that the positive part f+(λ,z) :=

∑
n>0an(z)λ

n of the
Laurent expansion of f is already holomorphic in the bidisk. Our task therefore is to extend
f−(λ,z) :=

∑
n<0an(z)λ

n. By Lemma 1.1 applied to the ring C the extendability of f−(λ,zν) to
the disk together with the condition on poles means that for an = an(zν) the determinants (1.2)
vanish. Therefore they vanish identically as functions of z. And therefore, again by Lemma 1.1
but this time applied to the ring O(∆), we have that f−(λ,z) is rational over the field M(∆).
I.e., is meromorphic in ∆2.

�
Example 1.1. The condition on uniform boundedness of poles in Levi’s theorem cannot be removed.

Take a sequence of polynomials Pn(z) =
∏n−1

j=1 (z−1/j) and consider the following function

f(λ,z) =
∞∑

n=1

Pn(z)

n!

1

λn
.

f is holomorphic in C∗×C and for every zν = 1
ν its restriction to ∆×{zν} writes as

f(λ,zν) =
ν∑

n=1

Pn(zν)

n!

1

λn
.

It is meromorphic and has a pole at origin of multiplicity ν. But for every z 6∈ {1, ..., 1ν , ...} the restriction
f(·,z) has essential singularity at zero, i.e., f is not extendable meromorphically to a neighborhood of
the origin as a function of two variables.

Theorem of Levi extends with the same proof to the case of several variables. In the following
theorem by saying that f(·,z) is well defined we mean that A1−r,1×{z} 6⊂ If .

Theorem 1.4. Let f be a meromorphic function in the ring domain Rn+1
1−r,1. Suppose that for z

in some subset A⊂∆n thick at origin restrictions fz := f(·,z) are well defined, meromorphically
extend from A1−r,1 to ∆ and the number of poles counted with multiplicities of these extensions
is uniformly bounded. Then f extends to ∆n+1 as a meromorphic function of n+1 variables.

Remark 1.1. In applications one usually refers to theorems above in a less precise form asking, for
example, that f(·,z) extends to ∆ for z in some non-empty open subset U of ∆n. Or, that this U is
not contained in a countable union of locally closed proper analytic subsets of ∆n. Under these (and
analogous) assumptions it is straightforward to deduce the existence of such N ∈ N and A⊂∆n thick at
some point that f(·,z) extends to ∆ with the number of poles bounded by N for z ∈A.

1.2. Theorem of Hartogs, globalizations. A typical example of the situation described
in Remark 1.1 is the Hartogs-type extension statement, the so called Hartogs’ Lemma. It is
explained on the Fig.1(a). We call a Hartogs figure in Cn+1, n> 1, the following domain

Hn+1
r :=

(
A1−r,1×∆n

)⋃(
∆×∆n

r

)
=Rn+1

1−r,1∪
(
∆×∆n

r

)
. (1.4)

Here ∆n
r stands for the polydisk of radius r > 0 in Cn. As we just explained every holomor-

phic/meromorphic function in Hn+1
r extends to a holomorphic/meromorphic function in ∆n+1.

And one more variation. Let ϕ : ∆̄ → ∆n be a holomorphic mapping continuous up to the
boundary. Denote by C its graph in ∆n+1. Let V n+1

r be a domain in Cn+1 which contains the
ring domain Rn+1

1−r,1 plus a neighborhood of the graph C, a “curved“ Hartogs figure, see Fig.
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Figure 1. Fig.(a) shows the standard Hartogs figure, Fig.(b) a ”curved” one. It should
be underlined that both cases (a) and (b) were treated in [Ht2]. Fig.(c) explains how
Hartogs thought about the Fig.(a) himself: function in question was supposed to be
holomorphic in B×K plus in a neighborhood of ∂B times B′.

1(b). Then every function holomorphic in V n+1
r holomorphically extends to ∆n+1. The simplest

way to prove this is to develop f into Taylor series with center at (λ,ϕ(λ)) and observe that for
|λ| ∼ 1 the radius of convergence (in z direction) is big. This gives an estimate for the coefficients
of the Taylor series, and this estimate is preserved along the graph C by the maximum principle.
To make the things easier remark that we can suppose f to be bounded. Let us state these
results as a theorem.

Theorem 1.5. (Hartogs’ Lemma, F. Hartogs, [Ht2]). Every holomorphic function in Hn+1
r or

V n+1
r extends to a holomorphic function in the unit polydisk ∆n+1.

The same holds for meromorphic functions too, it follows from the theorem above via the
Corollary 1.4 below. The following theorem in the case of holomorphic functions is also stated
in [Ht2]. The first rigorous proof, using the Green formula, was given by S. Bochner in [Bo]
both for holomorphic and meromorphic cases.

Theorem 1.6. (Bochner-Hartogs). Let D be a domain in Cn and K bD a compact in D such
that D\K is connected. Then every holomorphic (resp. meromorphic) function in D\K extends
to a holomorphic (resp. meromorphic) function in D.

Let ρ(z) = ‖z‖2 be the Euclidean distance function in Cn. Fix δ > 0 sufficiently small.
Consider the set T ⊂ R+ of t-s such that the theorem holds for every compact K b D with
connected complement satisfying

i) K ⊂ {ρ < t};
ii) K ⊂Dδ := {z ∈D : dist(z,∂D)> δ}.

T is obviously closed and contains a neighborhood of zero. Indeed, if 0 6∈D there is nothing to
prove. If 0 ∈D then for t > 0 small enough K can be removed by just one Hartogs figure.

K

D

δ

2

3

+

+

.
0

3

2

ε

ε

a)
t

t
t

t
t

1

D

.
0

L

L 0

b)

t

Figure 2. Fig.(a): if t 6 t1 there is nothing to prove, if our compact K is contained
in {ρ < t2+ ε}∩Dδ then the bump K \ {ρ < t2} can removed by appropriately placed
Hartogs figures over the level set {ρ = t2+ ε}. For t = t3 no new problems appear, and
for t = t3 + ε the newly appeared peace of Dδ ∩{ρ < t3 + ε} on the left can be again
easily removed by Hartogs figures. But if one tries to extend a function along a family
of slices as on Fig.(b), there Lt approaches L0, one might get in trouble with monodromy.
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Let us see that T is also open. Let t ∈ T , set Σt :=D∩{ρ= t}. One obviously finds an ε > 0 such
that for every x ∈ Σt, dist(x,∂D) > δ, there exists an imbedding i : ∆n → D with the property
that i(Hn

r ) ⊂D \{ρ > t+ ε} and i(∆n) 3 x. Now let K be a compact in D∩{ρ < t+ ε}. Using
the bumping explained above one extends any holomorphic/meromorphic function from D \K
to (D∩{ρ < t}) \ K̃. Here K̃ is equal to K minus corresponding polydisks (a finite number of

them, in fact). The complement to K̃ is the union of the complement to K and these polydisks,
therefore it is also connected. Theorem follows by taking δ→ 0.

Remark 1.2. A nice proof of the holomorphic case of this theorem, following ideas of L. Ehrenpreis
from [Eh], can be found in [Ho1]. Many more other approaches are spread over the literature. We gave
here the proof ”by bumping” for the following two reasons. First: this way makes possible to get the
needed statement reasonably simply and directly from the Hartogs’ Lemma. Second: this method works
not only for functions but also for other analytic objects and will be repeatedly used along this survey.

1.3. Relation to the Levi and Poincaré problems. Recall that a Riemann domain (D,p)
over a complex manifold X is called locally pseudoconvex over a point z ∈ X if there exists a
Stein neighborhood U 3 z such that all connected components of p−1(U) are Stein. (D,p) is
called locally pseudoconvex over X if it is locally pseudoconvex over every point of X.

Theorem 1.7. (Docquier-Grauert, [DG]). Let (D,p) be a Riemann domain over a Stein manifold
X of dimension n > 2. If every holomorphic imbedding h : Hn

r → D extends to a holomorphic

immersion ĥ : ∆n →D then D is a Stein manifold.

As an obvious corollary from this criterion one gets one theorem of K. Stein: a regular cover
of a Stein manifold is Stein itself. Recall that the locally pseudoconvex envelope of a Riemann
domain (D,p) over a complex manifold X is the smallest locally pseudoconvex domain over X

containing (D,p). Denote it as (D̂, p̂).

Corollary 1.2. Let (D,p) be a domain over a complex manifold X. Then every holomor-

phic/meromorphic function on D extends to a holomorphic/meromorphic function f̂ on D̂.

For the proof of this corollary let us recall the construction of the pseudoconvex envelope
first. Let P denote the set of pseudoconvex domains over X which contain (D,p). This
P is non-empty, it contains (X, Id), and possesses a natural pre-order: (R1,p1) 6 (R2,p2)
if there exists a local homeomorphism ϕ : R1 → R2 commuting with projections. In this
case we say actually that (R2,p2) contains (R1,p1). This pre-order is directed in the sense
that for any given (R1,p1),(R2,p2) ∈ P there exists (R3,p3) such that (R3,p3) 6 (R1,p1) and
(R3,p3) 6 (R2,p2). Such (R3,p3) can be constructed as a fiber product of (R1,p1) with (R2,p2)
over X: R1 ×X R2 := {(x1,x2) ∈ R1 ×R2 : pr1(x1) = p2(x2)}. This product with a natural
projection to X is obviously locally pseudoconvex over X and is smaller than both of (R1,p1)

and (R2,p2). The smallest element of P is our locally pseudoconvex envelope (D̂, p̂) of (D,p).
Now let a holomorphic/meromorphic function f on D be given. Its domain of existence, see
the Cartan-Thullen construction in Theorem 4.1, must be necessarily locally pseudoconvex over
X by Hartogs (resp. Levi) theorem and Docquier-Grauert criterium. Therefore it contains the

pseudoconvex envelope (D̂, p̂) of (D,p). Corollary follows. In the particular case when X is a
Stein manifold the pseudoconvex envelope is actually the envelope of holomorphy.

Corollary 1.3. Let (D,p) be a domain over a Stein manifold X and let (D̂, p̂) be its envelope of

holomorphy. Then every meromorphic function extends to a meromorphic function f̂ on (D̂, p̂).

This gives the solution of the Poincaré problem for domains in Stein manifolds:

Corollary 1.4. Let D be a domain in a Stein manifold, then every meromorphic function in D
can be represented as a quotient of two holomorphic ones.

Indeed, by Corollary 1.3 our meromorphic function f can be extended to a meromorphic
function f̂ on the envelope of holomorphy D̂ of D. D̂ is Stein and therefore we can apply
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Theorem A of Cartan to the sheaf of ideals JP of holomorphic functions vanishing along the
divisor of poles P of f̂ . In particular we can find a global section g of this sheaf, i.e., a
holomorphic function on D̂ vanishing along P with multiplicities not less than those of f̂ . Then
gf̂ is holomorphic. Corollary is proved.

1.4. Levi and Riemann theorems on complex spaces. All complex spaces in this text are
supposed to be reduced, Hausdorff and countable at infinity.

Remark 1.3. Normality, if needed, will be required each time separately. One of the equivalent
definitions of normality says that bounded holomorphic functions extend across proper analytic sets,
i.e., the Riemann extension theorem holds true on such spaces. This obviously implies that on normal
space holomorphic functions extend across analytic sets of codimension two (without the assumption of
boundedness). Let us state the Riemann theorem in a slightly more general form.

Theorem 1.8. Let A be a proper analytic subset of a normal complex space X and f an L2-
bounded holomorphic function on X \A. Then f extends to a holomorphic function on X.

Extension of f across A\SingX, after the application of the Fubini theorem, reduces to a simple
one-dimensional argument. Extension across SingX goes due to the supposed normality of X.
Now let us state one more frequently used version of Levi’s theorem.

Corollary 1.5. Let A an analytic subset of codimension > 2 of a reduced, normal complex space
X. Then every meromorphic function on X \A extends to a meromorphic function on X.

Let f be our function. The problem is local, therefore we can suppose that there exists an
analytic cover c : X → ∆n, see subsection 5.2, n = dimX. Let d be the order of c. We
can suppose that π(A) is contained in the ramification divisor R of c. Indeed, A \ R̃ (here

R̃ := c−1(R) stands for the branching divisor of c), is obviously removable by Theorem 1.4. Let
a1(z), ...,ad(z) be the elementary symmetric functions of the branches of f at c-preimages of z.
They are well defined and meromorphic on ∆n \R. Take any point z ∈ R\ π(A∪ If ). Then
for some neighborhood U of z either f or 1/f is holomorphic in π−1(U). In the former case
symmetric functions a1(z), ...,ad(z) are obviously bounded in U \R and by Riemann theorem
holomorphically extend to U . In the latter case one proves meromorphicity of a1(z), ...,ad(z)
using holomorphicity of 1/f plus obvious algebraic manipulation. Therefore our symmetric
functions meromorphically extend to ∆n \ π(A∪ If ) and, since the last is of codimension at
least two, again by Theorem 1.4 all aj extend to ∆n. Denote by w = [w0 : w1] homogeneous
coordinates in P1 and consider the following analytic set in ∆n×P1

Γ′ := {(z,w) : wd1 +a1(z)wd−11 w0+ ...+ad(z)w
d
0 = 0}. (1.5)

Denote by Γ the irreducible component of the fiber product X×∆n Γ′ which contains the graph
of f over X \A. Γ will be the graph of the desired extension of f to X.

1.5. Separate analyticity and domains of convergence. W. Osgood proved in [Os1] that
a bounded separately holomorphic function in the bidisk is holomorphic. The proof was achieved
by reducing the problem to the case of continuous functions by the means of Schwarz lemma.
In his remarkable paper [Ht1] F. Hartogs removed the condition of boundedness in Osgood’s
theorem and obtained his famous separate analyticity theorem.

Theorem 1.9. (F. Hartogs, [Ht1]). Let f : ∆p×∆q → C be a function of two (vector) complex
variables defined in the unit polydisk ∆p+q, p,q > 1. Suppose that for every z1 ∈∆p the function
f(z1, ·) is holomorphic in ∆q and the same for every z2 ∈∆q. Then f is holomorphic in ∆p+q.

A version stated in the Introduction is clearly equivalent to this one. The proof can be found
in any text book on several complex variables and will be not reproduced here. Let us only say
that in modern texts Theorem 1.9 is deduced from Hartogs’ Lemma 1.5 and Osgood’s theorem.
This was not the way of Hartogs (in fact [Ht1] precedes [Ht2]). His proof is closer in spirit to
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the proof of the following highly non-trivial generalization of Theorem 1.9, which is due to J.
Siciak. For the elements of pluripotential theory see subsection 5.3.

Theorem 1.10. (J. Siciak, [Sc]). Let E and F be a non-pluripolar compacts in ∆p and ∆q

respectively and let f : E×F → C be a function such that f(z1, ·) is holomorphic in ∆q for every
z1 ∈ E, and the same for every z2 ∈ F . Then f holomorphically extends to a neighborhood of
E∗×F ∗, where E∗ (resp. F ∗) is the set of pluriregular points of E (resp. of F ).

We shall treat the separate analyticity properties of meromorphic mappings with values in
general complex spaces in section 12 and Theorem 1.10 will play a key role there. The envelope
of holomorphy of E∗×F ∗ (to which f from Theorem 1.10, in fact, extends) is explicitly described
in [Sc], see Corollary 12.2 in subsection 12.2. For the proof of this result we refer to [JP].

Already in the paper of Cartan and Thullen, see [CT], questions about domains of existence of
holomorphic/meromorphic functions were considered together with properties of domains of their
convergence/normality. The following statement in the holomorphic case follows immediately
from the maximum principle.

Proposition 1.1. Let X be a domain in Cn and let {fk} be a sequence of holomorphic/mero-
morphic functions in X. Denote by D the maximal open subset of X such that {fk} converge
on compacts of D. Then D is pseudoconvex.

Remark 1.4. The case of meromorphic functions is much more delicate. It is, probably, sufficient
to say that it is not obvious what does the convergence of meromorphic functions mean. This will be
discussed in section 11, see Corollary 11.3 there.

1.6. Singularities. One more remarkable result of Hartogs is the following theorem.

Theorem 1.11. (F. Hartogs, [Ht3]). Let S be a non-empty closed subset of the unit polydisk
∆n+1 such that S ⊂∆n×∆1−ε for some ε > 0 and such that there exists a natural k such that
for every z′ ∈ ∆n the set Sz′ := S ∩∆z′ consists of not more than k points. If there exists a
holomorphic function f in ∆n+1 \S such that f doesn’t extend to a neighborhood of any point of
S then S is an analytic subset of ∆n+1.

One also has the same statements with f being meromorphic. Indeed, by Corollary 1.4 we
can represent f = g/h where g,h are holomorphic in ∆n+1\S. Now S must be singular for both
g and h. This theorem of Hartogs was generalized by Oka. Recall that a closed subset S ⊂∆n+1

is called pseudoconcave if ∆n+1 \S is a domain of holomorphy.

Theorem 1.12. (K. Oka, [Ok]). Let S be a pseudoconcave subset of the unit polydisk ∆n+1 such
that S ⊂∆n×∆1−ε for some ε > 0. Set

S := {z ∈∆n : Sz := ({z}×∆)∩S consists of a finite number of points }.
If S is not pluripolar then S is a complex hypersurface in ∆n+1.

For the proof and more statements of such type we refer to the book of Nishino [Ni].

2. Non-standard versions of Levi’s theorem

In this section we shall give a few non standard versions of the Levi’s extension theorem.

2.1. A non-linear version: formulation and example. Let a sequence of holomorphic
functions {ϕk : ∆1+r → ∆}∞k=1 be given such that ϕk converge uniformly on ∆1+r to some
ϕ0 : ∆1+r →∆. We say that such sequence is a test sequence if (ϕk−ϕ0)|∂∆ doesn’t vanish for
k� 0 and

VarArg∂∆(ϕk−ϕ0) stays bounded when k→+∞. (2.1)

Denote by Ck the graph of ϕk in ∆1+r×∆, by C0 the graph of ϕ0. Let f be a meromorphic
function in the ring domain R2

1−r,1+r. Suppose that for every k the restriction f |Ck∩R2
1−r,1+r
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extends to a meromorphic function on the curve Ck and that the number of poles counting with
multiplicities of these extensions is uniformly bounded.

Theorem 2.1. There exists an analytic family of holomorphic graphs {Cα}α∈A, parameterized
by a Banach ball A of infinite dimension, such that:

i) f |Cα∩R2
1−r,1+r

extends to a meromorphic function on Cα for every α ∈ A and the num-

ber of poles counting with multiplicities of these extensions is uniformly bounded.

ii) Moreover, f meromorphically extends as a function of two variables (λ,z) to the
pinched domain P := Int

(⋃
α∈ACα

)
swept by Cα.

C 0

Cz
.
0

a)

v

Cα

Cα 0

b)

Figure 3. Fig. (a) illustrates horizontal disks in Theorems 1.1 and 1.3, and Fig.
(b) the non-linear version of Theorem 2.1. The brighter dashed zone on this picture
represents the ring domain R2

1−r,1+r and curves are the graphs Cα. Around Cα0 , the
graph of ϕ0 = ϕα0 , the analytic family {Cα}α∈A fills in an another (darker) dashed zone,
a pinched domain P. On this picture there is exactly one pinch, the point at which most
of graphs intersect.

Let us discuss the notions of a pinched domain and analytic family, which appear in the context
of Theorem 2.1. By an analytic family of holomorphic mappings from ∆ to ∆ we understand the
quadruple (X ,π,A,Φ) where:

• X is a complex manifold, which is either of finite dimension or a Banach one;

• a holomorphic submersion π : X → A, where A is a positive dimensional complex
(Banach) manifold such that for every α ∈ A the preimage Xα := π−1(α) is a disk;

• a holomorphic map Φ : X → C2 of generic rank 2 such that for every α ∈ A the image
Φ(Xα) = Cα is a graph of a holomorphic function ϕα : ∆→∆. We write ϕ(λ,α) := ϕα(λ).

In our applications A will be always a neighborhood of some α0 and without loss of generally
we may assume for convenience that ϕα0 ≡ 0, i.e., that Cα0 = ∆×{0}. When A is a one-
dimensional disk we say that our family is a complex one-parameter analytic family. Denote
as P̄X ,Φ the image Φ(X ), where (X ,π,∆,Φ) is some complex one-parameter analytic family of
complex disks in ∆2. Point λ0 such that ϕ(λ0,α)≡ 0 as a function of α we call a pinch of P̄X ,Φ
and say that P̄X ,Φ has a pinch at λ0. Let us describe the shape of P̄X ,Φ near a pinch λ0. Since

ϕ(λ0,α) ≡ 0 we can divide it by (λ−λ0)l0 with some (taken to be maximal) l0 > 1. I.e., in a
neighborhood of (λ0,α0) ∈∆×A we can write

ϕ(λ,α) = (λ−λ0)l0ϕ1(λ,α), (2.2)

where ϕ1(λ0,α) 6≡ 0. Set

Φ1 : (λ,α)→ (λ,ϕ1(λ,α)). (2.3)

The image of Φ1 contains a bidisk ∆2
r(λ0,0) of some radius r > 0 centered at (λ0,0). Therefore

with some constant c > 0 one has

P̄X ,Φ ⊃∆2
r(λ0,0)∩{|z|< c|λ−λ0|l0}. (2.4)

Definition 2.1. A pinched domain is an open neighborhood P of ∆̄\Λ, where Λ is a finite set
of points in ∆, such that in a neighborhood of every λ0 ∈ Λ domain P contains

∆2
r(λ0,0)∩{|z|< c|λ−λ0|l0}\{(λ0,0)}. (2.5)
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We shall call l0 the order of the pinch λ0. After shrinking ∆ (in λ-variable) if necessary, we
can suppose that a domain PX ,Φ which corresponds to a complex one-parameter analytic family
(X ,π,A,Φ) has only finite number of pinches, say at λ1, ...,λN of orders l1, ..., lN respectively, and
therefore PX ,Φ := P̄X ,Φ\{λ1, ...,λN} is a pinched domain. Remark that P̄X ,Φ obviously contains
every curve in a neighborhood B of ϕ0 ≡ 0 of the following subspace of finite codimension

{ϕ ∈ Hol(∆,∆) : ord0(ϕ,λj)> lj} ⊂ Hol(∆,∆). (2.6)

Remark 2.1. Therefore, let us make the following precisions: our pinched domains will be always
supposed to have only finitely many pinches and moreover, these pinches do not belong to the corre-
sponding pinched domain by definition. At that point it will be sufficient for us to remark that, as it is
not difficult to see, the extension along one-parameter analytic families is equivalent to that of along of
infinite dimensional ones, and both imply the extension to pinched domains. See [Iv12] for more details.

Example 2.1. Without the condition (2.1) on the sequence {ϕk} the theorem fails to be true. Let the
function f be defined by the following series∑∞

n=1 3
−4n3∏n

j=1

[
z−
(
2
3λ
)j]

λ−n2

zn. (2.7)

Then f is holomorphic in the ring domain R := C∗ ×C, holomorphically extends along every Ck :=

{z =
(
2
3λ
)k}, but there doesn’t exist an analytic family {ϕα}α∈A parameterized by a disk A 3 0, ϕ0 ≡ 0,

such that f |Cα∩(C∗×C) meromorphically extends to Cα for all α ∈ A. The sequence ϕk(λ) =
(
2
3λ
)k

here
converge to ϕ0 ≡ 0 and is not a test sequence. See [Iv12] for more details.

Definition 2.2. Let’s say that our functions {ϕk} or, corresponding graphs {Ck}, are in general
position if for every point λ0 ∈ ∆ there exists a subsequence {ϕkp} such that zeroes of ϕkp −ϕ0

do not accumulate to λ0.

Theorem 2.1 implies the following non-linear Levi-type extension theorem:

Corollary 2.1. If under the conditions of Theorem 2.1 curves {Ck} are in general position then
f extends to a meromorphic function in the bidisk ∆1+r×∆.

Remark 2.2. a) Let us explain the condition of the general position. Take the sequence Ck = {z = 1
kλ}

in C2. Then the function f(λ,z) = e
z
λ is holomorphic in R := C∗×C and extends holomorphically onto

every curve Ck. But it is not holomorphic (even not meromorphic) on C2. It is also holomorphic when
restricted to any curve C = {z = ϕ(λ)} provided ϕ(0) = 0. Therefore the subspaceH0 of ϕ ∈ Hol(∆1+r,∆)
such that f extends along the corresponding curve is of codimension one. In fact this is the general case:
the Banach ball A in Theorem 2.1 appears as a neighborhood of the limit point α0 in the subspace of
finite codimension of a well chosen Banach space of holomorphic functions.

b) In order to prove Corollary 2.1 remark that pinches that appeared along the proof of Theorem 2.1
are limits of zeroes of ϕk. General condition assumption means that for every λ0 ∈ ∆ we can take a
subsequence such that the resulting pinched domain will not have a pinch in λ0. The rest follows.

2.2. Finite dimensional families. Let us discuss the finite dimensional case in Theorem 2.1
first, i.e., when ϕk ad hoc belong to some finite dimensional family A, ex. family of lines
or quadrics. In that case the proof is rather straightforward. To see this denote by L1,2(S1)
the Sobolev space of complex valued functions on the unit circle having their first derivative

in L2. This is a complex Hilbert space with the scalar product (h,g) =
∫ 2π
0 [h(eiθ)ḡ(eiθ) +

h′(eiθ)ḡ′(eiθ)]dθ. Recall that by Sobolev Imbedding Theorem L1,2(S1) ⊂ C
1
2 (S1), where C

1
2 (S1)

is the space of Hölder 1
2 - continuous functions on S1. Denote byH1,2

+ (S1) the subspace of L1,2(S1)
which consists from functions holomorphically extendable to the unit disk ∆. ByH1,2

− (S1) denote
the subspace of functions holomorphically extendable to the complement of the unit disk in the
Riemann sphere P1 and zero at infinity. Observe the following orthogonal decomposition

L1,2(S1) =H1,2
+ (S1)⊕H1,2

− (S1). (2.8)
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We shall consider only the holomorphic case. After shrinking, if necessary, we can suppose
that our function f is holomorphic in a neighborhood of R̄2

1−r,1. Consider the following analytic

mapping F : L1,2(S1)→ L1,2(S1)

F : ϕ(λ)→ f(λ,ϕ(λ)), (2.9)

and consider also the following integral operator F :H1,2
+ (S1)→H1,2

− (S1)

F(ϕ)(λ) =
−1

2πi

∫
S1

f(ζ,ϕ(ζ))−f(λ,ϕ(λ))
ζ−λ

dζ. (2.10)

From the well known facts about the Hilbert transform, see §3 in [Iv12] for example, we get that
f(λ,ϕ(λ)) extends to a holomorphic function in ∆1+r if and only if F(ϕ) = 0. Therefore we are

interested in the zero set A0 of a holomorphic map FA : A → H1,2
− (S1). But the zero set A0

of a holomorphic mapping from a finite dimensional manifold is an analytic set. Since this set
contains a converging sequence {αk} it has positive dimension and therefore contains a complex
disk through α0.

Remark 2.3. a) If Ck are intersections of ∆1+r ×∆ with algebraic curves of bounded degree, then
they are included in a finite dimensional analytic (even algebraic in this case) family.

b) If ϕk(∂∆) ⊂ M , where M is totally real in ∂∆× ∆̄, and have bounded Maslov index then they are
included in a finite dimensional analytic family.

c) If we do not suppose ad hoc that ϕk belong to some finite dimensional analytic family of holomorphic
functions then the argument above is clearly not sufficient. The (well known) problem here is that
a Banach (or, even Hilbert) analytic set has no a priori any analytic structure. The following simple
example is very instructive. Take the following holomorphic map F : l2 → l2⊕ l2

F : {zk}∞k=1 →{{zk(zk−1/k)}⊕{zkzj}j>k} . (2.11)

The zero set of F is a sequence {Zk = (0, ...,0,1/k,0, ...)}k>1 ⊂ l2 together with zero. These Zk-s might
well be ours ϕk-s and therefore we cannot conclude the existence of families in the zero set of our F from
(2.10) at this stage. Example 2.1 has precisely the feature just explained.

d) Let us remark that if {ϕk} are taken from a finite dimensional family then they form a test sequence
(for a generic choice of r), but in general a test sequence doesn’t belong to any finite dimensional family.
Take for example ϕk(λ) =

1
kλ

2+e−kλk.

2.3. Sketch of the proof of Theorem 2.1. Let us explain the main lines of the proof of
Theorem 2.1 in the general case. In the notations of the proof of Theorem 1.3 we can suppose
that ϕ0 ≡ 0, f = f− and the last is holomorphic in A1−ε,1+ε×∆1+2ε. For |λ| ∼ 1 the Taylor
expansion of f writes as

f(λ,z) =
∑∞

n=0
1
n!
∂nf(λ,0)
∂zn zn =

∑∞
n=0An(λ)z

n, (2.12)

and we have the estimates

|An(λ)|= 1
n!

∣∣∣∂nf(λ,0)∂zn

∣∣∣6 C
(1+ε)n , (2.13)

for some constant C, all k ∈ N and all λ ∈ S1 := ∂∆. Under the assumptions of the Theorem we
see that meromorphic extensions fk(λ) of f(λ,ϕk(λ)) have uniformly bounded number of poles
counted with multiplicities. As well as the numbers of zeroes of ϕk are uniformly bounded too.
Up to taking a subsequence we can suppose that:

a) The number of poles of fk-s, counted with multiplicities, is constant, say M , and these
poles converge to the finite set b1, ..., bM ∈∆1−ε with corresponding multiplicities, i.e., some of
b1, ..., bM may coincide.

b) The number of zeroes of ϕk, counted with multiplicities, is also constant, say N and these
zeroes converge to a finite set a1, ...,aN with corresponding multiplicities.



12 Section 2

Step 1. For every k take a Blaschke product Pk having zeroes exactly at poles of fk with
corresponding multiplicities and subtract from {Pk} a converging subsequence with the limit

P0(λ) =
∏M
i=1

λ−bi
1−b̄iλ

. (2.14)

Holomorphic functions gk := Pkfk have uniformly bounded modulus on ∆ and converge to some
g0, which is bounded with modulus by C (a constant from (2.13)). Therefore fk converge on
compacts of ∆\{b1, ..., bM} to a meromorphic function, which is nothing but A0, and it satisfies
the estimate

|A0(λ)|6 CC1
|λ−b1|...|λ−bM | , (2.15)

where C1 =max{ΠMi=1|1− b̄iλ| : |λ|6 1}.
Step 2. Repeating the same argument one gets the estimate

|A1(λ)|6 1
|λ−a1|...|λ−aN ||λ−b1||λ−bN | ·

CC1C2
1+ε (2.16)

for λ ∈∆\{a1, ...,aN , b1, ..., bM}. Here C2 =max{ΠNi=1|1− āiλ| : |λ|6 1}.
Step 3. By induction one proves that An extends to a meromorphic function in ∆ with the
estimate

|An(λ)|6 1∏N
j=1 |λ−aj |n

∏M
j=1 |λ−bj |

· C′

(1+ε)n (2.17)

for λ ∈ ∆\{a1, ...,aN , b1, ..., bM}. Remark that (2.17) means, in particular, that A0, ...,An have
no other poles than a1, ..., bN with corresponding multiplicities.

Estimate (2.17) implies that (2.12) converges in the domain{
(λ,z) ∈∆2 : |z|< c|λ−aj1 |l1 ...|λ−aN1 |lN1

}
\
⋃M
i=1{λ= bi}, (2.18)

for an appropriately chosen c > 0. Here N1 is the number of different aj-s, which are denoted as
aj1 , ...,aN1 having corresponding multiplicities l1, ..., lN1 . In particular we mean here that bi are

different from aj1 for all i, j1. Estimate (2.17) implies also that the extension of f ·
∏M
j=1(λ−bj)

to (2.18) is locally bounded near every vertical disk {λ = bi1} and therefore extends across it
by Riemann extension theorem. We conclude that f extends as a meromorphic function to the
pinched domain

P =
{
(λ,z) ∈∆2 : |z|< c|λ−aj1 |l1 ...|λ−aN1 |lN1

}
, (2.19)

and this proves the part (ii) of Theorem 2.1. For the rest we refer to [Iv12].

2.4. A ”generalized Hartogs’ Lemma“. Let us give one more non-standard version of the
Levi’s extension theorem. It turns out that the statement of Hartogs theorem given on Fig. 1(b)
remains true when ϕ is not necessarily holomorphic. Let ϕ : ∆1+r →∆ be a continuous function
with graph C. And let V be a domain which contains R2

1−r,1+r plus a neighborhood of C.

Theorem 2.2. (E. Chirka, [Ch3]). Every function meromorphic in V meromorphically extends
to ∆2.

This theorem follows from a more general one. Recall that a symplectic form on a real
manifold X is a closed 2-form ω which is non-degenerate at any point on X. In this case X
has even dimension, dimR(X) = 2n, and ωn is a volume form on X. Our principle example of
symplectic forms are Kähler forms on complex manifolds. Let (X,ω) be a symplectic manifold.
A real two-manifold M ⊂ X is called ω-positive if ω|M never vanish. By c1(X) denote the first
Chern class of X, it is uniquely determined by the symplectic structure ω. By c1(X)[M ] denote
its value on M . Recall finally that a rational curve in a complex manifold X is an image of a
non-constant holomorphic map h : P1 →X.

Theorem 2.3. Let M be a ω-positive immersed two-sphere in a disk-convex Kähler surface
(X,ω) having only positive transversal self-intersections and such that c1(X)[M ] > 0. Then for

any neighborhood U of M its envelope of meromorphy (Û ,π) contains a rational curve C such
that c1(X)[C]> 0.
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For the notion of disk-convexity see subsection 6.3. For the moment it is sufficient to note
that every compact complex manifold is disk-convex. In some cases like X = P2 this C is
symplectically isotopic to M . More precisely we mean that there exists an isotopy {Mt}t∈[0,1] of
ω-positive surfaces with transversal self-intersections such that M0 = M and M1 = C. But in
general this is not always the case.

Example 2.2. For k ≥ 1 denote by Hk the projectivization of the bundle Ek = O⊕O(−k)→ P1. Hk

are called Hirzebruch surfaces. Denote by E0 the exceptional curve in Hk and by F a fiber. Note that
E2

0 = −k,F 2 = 0 and E0 ·F = 1. Let C be a smooth, irreducible complex curve in Hk which is not E0.
Then C = nE0+mF in homology. We have that 0≤ C ·E0 =−kn+m, and therefore m≥ kn. Therefore
C2 = −n2k+2nm ≥ 2n2k−n2k = n2k. Now take k = 3 and take E0 ∪Fz1 ∪Fz2 , i.e., the union of E0

with two distinct fibers. Changing intersections by handles near points z1 and z2 we obtain an imbedded
symplectic sphere M with M2 = 1. This M is not isotopic to any smooth rational curve C, because for
such C we should have either C2 ≥ 3 or C2 = 0 and not C2 =M2 = 1.

Let us explain how Theorem 2.2 follows from Theorem 2.3. As it was explained at the
beginning of the proof of Theorem 1.3 we can suppose that f is holomorphic in A1−r,1+r ×∆
and f = f−, i.e., f is holomorphic on (P1 \ ∆̄1−r)×∆. Graph of ϕ can be obviously extended
to a continuous graph M over P1, and, after perturbing M , we find that f is meromorphic
in a neighborhood of a smooth sphere M , which is homologous to P1×{pt} in P1×P1 =: X.
Therefore c1(X)[M ] = 2. Making dilatations along second coordinate we can make M to be
C1-close to P1×{pt} and therefore symplectic. Result follows now from Theorem 2.3.

Example 2.3. Let (X,ω) = (P2,ωFS) be the complex projective plane with the Fubini-Study form and
let M ⊂ P2 be and imbedded symplectic sphere, therefore δ = 0. Recall that the first Chern class c1(P2)
is represented by 3ωFS . Therefore

c1(P2)[M ] =

∫
M

c1(P2) = 3

∫
M

ωFS > 0,

i.e., we find ourselves under the assumptions of Theorem 2.3 and conclude that for every neighborhood
U ⊂M its envelope of meromorphy Û contains an imbedded rational curve C. Since P2 \C is affine and,

in particular, Stein we see that Û = P2. In particular every function meromorphic in a neighborhood of
such M is rational.

Example 2.4. Let X be a ball in C2, ω the standard Euclidean form. Blow up the origin in C2 and

denote by E the exceptional curve. By X̂ denote the blown-up ball X. X̂ is also Kähler, denote by ω0

some Kähler form there. Consider a sufficiently small C1-perturbation of E. This will be a ω0-symplectic
sphere in X̂, denote it by M . Chern class of the normal bundle to M is equal to that of for E and
therefore is −1. So c1(X̂)[M ] = 1 and Theorem 2.3 applies. We got the following result.

Corollary 2.2. The envelope of meromorphy of any neighborhood of M contains E.

One can then blow down the picture to obtain downstairs a sphere M1 the image of M under the
blown-down map. This M1 is homologous to zero, so cannot be symplectic, and for this M1 our Theorem
2.3 cannot be applied.

Remark 2.4. Condition c1(X)[M ] > 0 in the Theorem 2.3 cannot be dropped. In [Nm1] Nemirovski,
using results of Eliashberg-Harlamov and Forstneric, [F], showed that any imbedded complex curve C
with c1(X)[M ]≤ 0 can be perturbed to an imbedded surfaceM which has a basis of Stein neighborhoods.

2.5. Sketch of the proof of Theorem 2.3. Now let us give a sketch of the proof of Theorem
2.3. It will crucially use the Gromov’s theory of pseudoholomorphic curves. An almost complex
structure on a real manifold X is a smooth section J of End(TX) such that J2 ≡−Id. J is said
to be tamed by a symplectic form ω if ω(v,Jv) > 0 for every non-zero v ∈ TX. Let (S,j) be a
complex curve, here j stands for a complex structure on S. A J-holomorphic map is a C1-map
u : (S,j) → (X,J) such that du commutes with the almost complex structures, du ◦ j = J ◦du.
Its image M = u(S) is called a J-complex curve or a J-complex sphere if (S,j) = P1.
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Step 1: Deformation of structures. Let U be a given neighborhood of M . Fix some other
neighborhood U1 ofM which is relatively compact in U . Using ω-positivity ofM we construct a
smooth family {Jt}t∈[0,1] of almost complex structures on X satisfying the following properties:

a) J0 is the given integrable structure on X.
b) For any t ∈ [0,1] one has {x ∈X : Jt(x) 6= J0(x)}b U1.
c) M is J1-holomorphic.
d) All {Jt} are tamed by our Kähler form ω.

Denote by (Û ,π) the envelope of meromorphy of U . We lift then structures Jt to (Û ,π) in

the following way. Having the natural imbedding i : U ↪→ Û we define the lift Ĵt by setting
Ĵt|i(U) := i∗Jt and extend Ĵt outside i(U) as given integrable structure J0 on Û . Again, Ĵt differs

from J0 only in i(U1). With some ambiguity of notations we denote Ĵt still as Jt. i(U1) and
i(U) will be identified with U1 and U in the sequel.

Step 2: Deformation of M as a pseudoholomorphic curve. We construct a “semi-continuous”
family of reduced Jt-complex curves Mt ⊂ Û such that:

a) M1 =M .
b) Each Mt is a union of its components, Mt = ∪iMt,i, and each component Mt,i is a Jt-

complex sphere eventually with singularities. Further, each component Mt,i is defined with
its multiplicity mt,i ∈ N such that for each t one has [Mt] =

∑
imt,i · [Mt,i] in homology. In

particular, for each t there exists a component Mt,i0 satisfying

c1(X)[Mt,i0 ]> 0. (2.20)

c) There are finitely many “critical values” t∗1 = 1> t∗2 > · · ·> t∗m = 0 such in each subinterval
(t∗j+1, t

∗
j ] the number of the componentsMt,i, their homology classes [Mt,i] and their multiplicities

mt,i remain constant.

Remark 2.5. Semi-continuity of the family {Mt}t∈[0,1] means more precisely the following. Mt con-
verges to Mt∗k

when t ↘ t∗k in the sense described below. But then only those components of Mt∗k
are

subject to further deformation which satisfy (2.20).

Step 3: Kontinuitätssatz. Note that Σt =Mt\U1 is a complex curve in Û with boundary on ∂U1,
and Σ1 =∅. Therefore by an appropriate version of the “continuity principle” Σt and therefore
Mt stay in Û . But M0 is holomorphic and satisfies c1(X)[X][M0] > 0 by Step 2. This finishes
the proof.

Let us make few extended remarks with some more indications for the proofs of these steps.
The first step of the proof is a simple topological fact. Steps 2 and 3 turn to be quite technical.
Step 2 has two ingredients: a piece of Fredholm theory in moduli space of pseudoholomorphic
curves and Gromov compactness theorem.

Remark 2.6. Fredholm theory. This part is quite far from the main lines of this survey and we shall
not stop on it, see however §2 in [IS3] for detailed proof. Let us just formulate the final statement. For
a given symplectic manifold (X,ω) we denote by Jω the space of ω-tamed Ck,α-smooth almost complex
structures on X. Further, in the case when (X,ω) is a Kähler manifold and U ⊂X an open set we denote
by J0 the (integrable) complex structure on X and by Jω(U) the subspace of those J ∈ Jω which coincide
with J0 outside U . It is well-known that both Jω and Jω(U) are contractible Banach manifolds.

Theorem 2.4. a) Let (X,ω) be a complex Kähler surface, U ⊂X an open set, [M ] ∈ H2(X,Z) a homology
class representable by a sphere. Then for a generic path h : [0,1]→Jω(U) for every t ∈ [0,1] the structure
Jt := h(t) is regular and the moduli space MJt of Jt-complex spheres in [M ] is a smooth manifold of
expected dimension.

b) If for such a path h(t) and some value t0 ∈ [0,1] the space MJt0
is non-empty and contains a

Jt0-complex curve M0 = u0(S), then for every t sufficiently close to t0 there exists a Jt-complex curve
M = u(S) parameterized by the map u : S→X close to u0 : S→X.
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Let us notice that the both assumptions dimCX = 2 and S ∼= S2 in this theorem are essential: the
assertion is wrong if either dimCX > 2 or if S is a Riemann surface of higher genus. Further, there
is another, hidden condition needed to make Theorem 2.4 meaningful. Namely, we need that one of
the spaces MJt is non-empty. Since this space has expected dimension 2 · (c1(X)[M ]− 1), it must be
non-negative. This explains the origin of the condition c1(X)[M ]> 0 in Theorem 2.3.

The meaning of Theorem 2.4 is that the set of t-s in [0,1] for which we can construct spheres
Mt is open. Now we need to prove that it is also closed. To perform this second part of Step
2 and then Step 3 we need to recall the language, which was used in [IS2] to state the Gromov
compactness theorem. Let us make this very briefly.

Remark 2.7. Stable topology in Gromov compactness theorem.

Definition 2.3. A stable curve over an almost-complex manifold (X,J) is a pair (C,u), where C is a

connected complex nodal curve, possibly with boundary ∂C =
⋃d

i=1 γi, and u : C →X is a J-holomorphic
map which satisfies the following conditions:

1) if Cj is an irreducible component of C biholomorphic to P1 and u(Cj) = {point}, then Cj contains
at least three nodes of C;

2) if Cj is a torus and again u(Cj) = {point} then Cj contains at least one node of C.

Definition 2.4. A connected, oriented real surface with boundary (Σ,∂Σ) parameterizes a complex
nodal curve C if there is a continuous map σ : Σ→ C such that:

1) if a ∈ C is a nodal point then γa = σ−1(a) is a smooth imbedded circle in Σ\∂Σ, and if a 6= b, then
γa∩γb =∅;

2) σ : Σ\
⋃N

i=1 γai → C\{a1, . . . ,aN} is a diffeomorphism. Here a1, . . . ,aN are all the nodes of C.

Let a sequence {Jn} of continuous almost complex structures on X be given which uniformly converge
to a continuous structure J∞.

Definition 2.5. We say that stable Jn-complex curves (Cn,un) converge to a stable J∞-complex curve
(C∞,u∞) in Gromov topology, if all Cn and C∞ are parameterized by the same real surface Σ and there
exist parameterizations σn : Σ→ Cn and σ∞ : Σ→ C∞ such that

i) un ◦σn converges to u∞ ◦σ∞ in C0(Σ,X)-topology;
ii) if {ai} is the set of nodes of C∞ and γi := g−1

∞ (ai) are the corresponding circles in Σ, then on any
compact K b Σ\∪i γi the convergence un ◦σn −→ u∞ ◦σ∞ is L2,p-smooth;

iii) on any compact K b Σ\∪iγi the complex structures σ∗
njn converge to the complex structure σ∗

∞j∞
in C∞-topology.

Here jn and j∞ are complex structures on Cn and C∞ respectively. The following result is the Gromov
compactness theorem, see [Gro].

Theorem 2.5. Let (Cn,un) be a sequence of stable over X Jn-holomorphic curves such that:
a) Jn are of class C0 and are uniformly converging to J ∈ C0;
b) area[un(Cn)]6M for all n;
c) un converge near the boundary.

Then there is a subsequence (Cnk
,unk

) which converges to a J-holomorphic stable over X curve (C∞,u∞).
Moreover, for each boundary component γ there is an imbedding ϕ∞ : Ar → C∞ such that un ◦ϕn →
u∞ ◦ϕ∞ = h∞ on Ar.

For more details and proof we refer to [IS4]. This theorem comes out in deformation of curves
in Step 2 as follows. Since our Jt-complex curves Mt are compact and symplectic and since they
are isotopic on each interval [t∗k, t

∗
k+1) we have that

areaωMt =

∫
Mt

ω

doesn’t change when t → t∗k+1. Therefore Gromov compactness theorem gives us that Mt

converges to some Mt∗k+1
which is Jt∗k+1

-complex but may be reducible.

Discussion of the details on the continuity principle, i.e., the step 3, we shall postpone till
section 8, where a more general statement will naturally come out.
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3. Schwarz reflection principle and its versions

3.1. Reflection of functions and varieties from totally real submanifolds. The formu-
lation of the classical Reflection principle of H. A. Schwarz [Sw1] can be found in any text book
on complex analysis. It obtained further developments along different lines. Let us start with a
slight variation of it. Consider a real analytic totally real submanifold W ⊂ Cn. Without loss of
generality we may suppose that dimRW = n. One can find local holomorphic coordinates in a
neighborhood of a given point p ∈W such that W = Rn in these coordinates. Denote by ∆ the
unit disc in C, by S the unit circle. Let β ⊂ S be a non-empty open subarc of S. Let u : ∆→ Cn
be a holomorphic mapping continuous up to β and such that u(β) ⊂ W . Now the Schwarz
Reflection Principle applies and we get that u holomorphically extends to some neighborhood
V of β by reflection:

u(ζ) :=

{
u(ζ) for ζ ∈ ∆̄∩V,
ū(1/ζ̄) for ζ ∈ V \∆.

(3.1)

It turns out that an analogous statements holds true also in non-integrable case.

Theorem 3.1. Let (X,J) be a real analytic almost complex manifold and W a real analytic
J-totally real submanifold of X. Let u : ∆→X be a J-holomorphic map continuous up to β and
such that u(β)⊂W . Then u extends to a neighborhood of β as a (real analytic) J-holomorphic
map.

In this case there is no reflection like (3.1), since a general almost complex structure doesn’t
admits any local (anti)-holomorphic maps. But the extension result still holds. For the proof
of our Reflection Principle of Theorem 3.1, see [IS7], we need to study not only real analytic
boundary values but also the smooth ones (with finite smoothness). For the method to work we
need the precise regularity and a certain kind of uniqueness of smooth J-complex discs attached
to a J-totally real submanifold. The result obtained is the following

Theorem 3.2. Let u : (∆,β)→ (X,W ) be a J-holomorphic map of class L1,2∩C0(∆∪β), where
W is J-totally real. Then:

(i) for any integer k > 0 and real 0 < α < 1 if J ∈ Ck,α and W ∈ Ck+1,α then u is of class
Ck+1,α on ∆∪β;

(ii) for k > 1 the condition u ∈ L1,2 ∩ C0(∆ ∪ β) and u(β) ⊂ W can be replaced by the

assumption that u(∆) is compact and the cluster set cl(u,β) is contained in W .

Remark 3.1. If J is of class C0 and W of C1 then u ∈ Cα up to β for all 0 < α < 1. This is proved in
[IS5], Lemma 3.1. The rest is done in [IS7].

Let D be a domain in Cn stable under the conjugation map: z→ z̄, and let A be an analytic
set in D \Rn of pure dimension 1. Denote by Ā the image of A under the conjugation.

Theorem 3.3. (H. Alexander, [Ad]). Then intersection of the closure cl(A∪ Ā) with D is an
analytic set in D.

For the proof we refer to [Ad] and [Si3]. The case dimA> 2 is simpler and will be explained
in section 5. Let us mention few open questions in this concern.

1. Let (X,J) be a real analytic almost complex manifold and W a real analytic J-totally real
submanifold of X. Let C+ be J-complex curve in X \W . Does there exists a neighborhood

V of W and a J-complex curve C− in V \W (reflection of C+) such that (C+∪C−)∩V is a
J-complex curve in V ?

2. The following question is a particular case of the previous one. Let C be a J-complex curve
in the complement of a point. Will its closure C̄ be a J-complex curve?
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3.2. Segre varieties and mappings between real analytic hypersurfaces. Another line
of developments can be described as follows. The central problem here is the following. Given
bounded domains D and D′ in Cn with smooth, real analytic boundaries and let f :D→D′ be
a proper holomorphic map (or, even a biholomorphic map). Does f extends to a holomorphic
map between open neighborhoods of D̄ and D̄′? Dimension one case was solved already by
Schwarz, it is explained on the Fig.4. If n> 2 and D, D′ are strictly pseudoconvex C. Fefferman
in [Fe] proved that a biholomorphic map f : D → D′ smoothly extends to the boundary (for
that it is sufficient that ∂D and ∂D′ are of class C∞), and then S. Pinchuk in [Pn] proved, by
inventing the reflection in higher dimensions, that the extended f is actually real analytic. The
weakly pseudoconvex case for general proper holomorphic mappings was resolved affirmatively
in [BR] and [DF]. The general case in dimensions > 3 in the following theorem is still open.

Theorem 3.4. (Diederich-Pinchuk, [DP1].[DP2]). Let D,D′ b Cn be relatively compact domains
in Cn, n> 2, with real analytic boundaries and let f :D→D′ be a proper holomorphic mapping.

i) If n= 2 then f holomorphically extends to a neighborhood of D̄.

ii) If n> 3 then the same as in (i) holds under an additional assumption that f is continuous
up to the boundary.

D D’

.

.

p

p’

f

Figure 4. H.A. Schwarz proved in [Sw2, Sw3] that a conformal mapping f between
simply connected regions D and D′ with real analytic boundaries continuously extends
to the boundary and then his reflection principle from [Sw1], applied locally near p ∈ ∂D
and p′ = f(p) ∈ ∂D′, gives the affirmative answer to the main problem in dimension
one. Continuous extension to the boundary for Jordan boundaries was conjectured by
W. Osgood and proved by C. Carathéodory in [Ca].

A real analytic hypersurface M in a neighborhood of the origin of Cn is a level set of a
real analytic function ρ in a neighborhood U of zero with nowhere vanishing gradient. I.e.,
M = {z ∈ U : ρ(z) = 0} and ∇ρ(z) 6= 0 ∀z ∈ U . We shall usually suppose that 0 ∈ M and
consider a germ (M,0). Sometimes it is convenient to consider ρ as a convergent power series
in (z, z̄). A germ (M,0) is called real algebraic if the defining function ρ can be taken to be a
polynomial. A germ (M,0) is called Levi non-degenerate at zero if the Levi form

Lρ(0) =

(
∂2ρ(0)

∂zk∂z̄j

)
k,j=1,...,n

(3.2)

is non-degenerate. If (M,p) and (M ′,p′) are germs of real hypersurfaces in Cn and Cn′
respec-

tively then by a germ of a holomorphic mapping f : (M,p) → (M ′,p′) we understand a germ

of a holomorphic mapping f : (Cn,p) → (Cn′
,p′) such that f(M) ⊂ M ′. Recall that a proper

holomorphic correspondence between D and D′ is an irreducible analytic subset Γ ⊂ D×D′

such that both projections pr1|Γ : Γ → D and pr2|Γ : Γ → D′ are finite proper mappings. Now
let us state two closely related results.

Theorem 3.5. (S. Webster, [We]). Let f : (M,0) → (M ′,0) be a germ of a biholomorphic
mapping between the germs of a Levi non-degenerate real algebraic hypersurfaces in Cn, n > 2.
Then the graph Γf of f is an open subset of a complex affine subvariety of Cn×Cn.

Theorem 3.6. (R. Shafikov, [Sf]). Let D and D′ two relatively compact, smoothly bounded
domains in Cn with real algebraic boundaries. There exists a proper holomorphic correspondence
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between D and D′ if and only if there exist points p ∈ ∂D and p′ ∈ ∂D′ and a germ of a
biholomorphism f : (M,p)→ (M ′,p′).

Remark 3.2. a) These results reduce the problem of global classification of bounded domains with
real algebraic boundaries to a local one, and this was solved in [CM], also the real analytic case.
b) Correspondences naturally appear in the context of both theorems. Take, for example,

D = {|z|2+ |w|2 < 1} and D′ = {|z′|2+ |w′|4 < 1}.
Mapping f(z′,w′) = (z′,w′2) is a proper holomorphic mapping fromD′ toD which is locally biholomorphic
on D′ \{w′ = 0}. Therefore for any point p ∈D \{w = 0} a germ of the inverse f−1 will be a germ of a
biholomorphism between ∂D and ∂D′ which extends only to a correspondence. Finally:

Theorem 3.7. (Pinchuk-Sukhov, [PS]). Let (M,0) and (M ′,0′) be the germs of real analytic
strictly pseudoconvex hypersurfaces, n′ 6 2n, and let f : (M,0)→ (M ′,0′) be a germ of a smooth
CR-mapping. Then f holomorphically extends to a neighborhood of the origin.

Recall that a smooth function/mapping f : M → C is called CR ( i.e., Cauchy-Riemann),
if it satisfies the Cauchy-Riemann equation in every complex tangential direction. Wether this
statement holds without the assumption n′ 6 2n is still open.

Remark 3.3. The principal tool in the proof of latter three theorems are Segre varieties, introduced
by B. Segre in [Sg1] and reintroduced to the subject by S. Webster in [We]. These are germs of complex
hypersurfaces

Qζ := {z : ρ(z, ζ̄) = 0}, (3.3)

where ρ is a defining function of the germ (M,0). One observes that holomorphic germ f : (M,0) →
(M ′,0′) sends Qζ to Qf(ζ). After that one extends f along Segre varieties first and then using “reflection”
ζ → Qζ both in the source and in the target extends the map. We send an interested reader to surveys
[BER], [DP3] and [Vit] for much more results on this subject.

4. Analytic objects and extensions along pseudoconvex exhaustions

It will convenient to formalize the notion of a ”complex analytic object”, as well as state some
general properties of these objects.

4.1. Analytic objects and maximal extensions. Let us denote by Tlc the category of locally
connected, Hausdorff topological spaces and let T0 be some subcategory of Tlc. About subcategory
T0 we shall assume the following: if X ∈ T0 and if (D,ϕ) is a domain over X then D ∈ T0. In
our applications T0 will be:

• the category of smooth real analytic manifolds R.
• the category of reduced complex spaces C.

Recall that a sheaf of sets over X ∈ Tlc is a triple (S,π,X), where S is a topological space and
π : S →X is a surjective local homeomorphism. By Sx we denote the stalk of S at x ∈X.

Definition 4.1. A category of analytic objects A over T0 is defined by the following data:

AO1) for every X ∈ T0 a sheaf of sets AX over X is specified, we write it as (AX ,πX ,X) in
more details;

AO2) the family {AX : X ∈ T0} is coherent in the sense that for every morphism f : X → Y in
T0 the inverse image f−1AY is a subsheaf of AX .

Recall that the inverse image of a sheaf (AY ,πY ,Y ) under a continuous map f : X → Y is the
fiber product

X×Y AY := {(x,s) ∈X×AY : f(x) = πY (s)}
with a natural projection toX which is obviously a surjective local homeomorphism, i.e., f−1AY

is a sheaf. By saying that f−1AY is a subsheaf of AX we mean as usually that an inclusion
ιf : f

−1AY →AX is specified. We shall ask from ι the following
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AO3) if f :X → Y is a locally homeomorphic morphism in T0 then ιf is bijective.

With some abuse of notations we shall write simply that f−1σ ∈ Γ(f−1(U),AX) for σ ∈
Γ(U,AY ). A good example for the beginning is the category CT of continuous mappings with
values in some fixed topological space T . I.e., CXT is the sheaf of sets of continuous mappings
from X to T . In practice one rather rarely needs to work the whole category A, but only with the
sheaf AX for some given X. The last will be called the sheaf of analytic objects on X. Sections
of AX on some open D ⊂X will be called simply an analytic object on D. We are interested in
maximal domains of existence of a given analytic object or, a given family of analytic objects.
As it is well known this task requires, in general, to consider analytic objects over a given space
X. If AX is a sheaf of analytic objects on X then via the axioms (AO2) and (AO3) for every
domain (D,ϕ) over X we have the sheaf AD ∼= ϕ−1AX and its global sections will be called
analytic objects over X, i.e., an analytic object over X is a triple (D,ϕ,σ) where (D,ϕ) is a
domain over X and σ is a section of ϕ−1AX . Recall that a mapping ψ : (D,ϕ) → (D′,ϕ′) is
called a mapping over X if it commutes with projections, i.e., ϕ′ ◦ψ = ϕ. Such ψ is necessarily
a local homeomorphism.

Remark 4.1. Cartan-Thullen construction, [CT]. Denote by I some non-empty set of indices. A
family of analytic objects (D′,ϕ′,{σ′}i∈I) is an extension of the family (D,ϕ,{σi}i∈I) if there exists a
mapping ψ : D → D′ over X such that for every i ∈ I one has ψ−1σ′

i = σi. Denote by E(D,ϕ,{σi}i∈I)
the category of all extensions of (D,ϕ,{σi}i∈I) with obvious morphisms between extensions. The final

object of this category is called the maximal extension of (D,ϕ,{σi}i∈I) and is denotes as (D̂, ϕ̂,{σ̂i}i∈I).
It is easy to see that the maximal extension, if exists, is unique. Indeed, let (D′,ϕ′,{σ′

i}i∈I) be another

maximal extension and let ψ̂ : D→ D̂, ψ′ : D→ D′ be corresponding mappings over X. By maximality

there exist f ′ : D′ → D̂ and f̂ : D̂ → D′ such that f̂ ◦ ψ̂ = ψ′ and f ′ ◦ψ′ = ψ̂. Take some x ∈ D and let

y = ψ′(x) ∈ D′. Then f ′(y) = (f ′ ◦ψ′)(x) = ψ̂(x) and therefore (f̂ ◦f ′)(y) = (f̂ ◦ ψ̂)(x) = ψ′(x) = y. I.e.,

the set of y ∈ D′ such that (f̂ ◦f ′)(y) = y is not empty. This set is obviously open, because both f̂ and

f ′ are mappings over X. Finally it is obviously closed. Therefore f ′ :D′ → D̂ is a homeomorphism.

Definition 4.2. We shall say that a category A of analytic objects possesses the uniqueness
property (or, satisfies the uniqueness theorem) if for every connected X ∈ T0 and any two sections
σ1, σ2 of AX such that σ1|V = σ2|V for some non-empty open V ⊂X one has σ1 = σ2 on X.

Let us point out that if σ1(x) = σ2(x) for some x ∈X then they are equal in some neighborhood
of x by the very definition of a section of a sheaf. Here one requires more: σ1 and σ2 should
be equal everywhere. Category CT of continuous mappings with values in T doesn’t satisfy
the uniqueness theorem (=uniqueness property). Category of real analytic mappings MT with
values in a real analytic manifold T is a category over R which satisfies the uniqueness theorem.

Theorem 4.1. (Cartan-Thullen). Let A be a category of analytic objects over a category T0 ⊂ Tlc.
Then the following assertions are equivalent:

i) for every X ∈ T0 and every family (D,ϕ,{σi}i∈I) of sections of AX over X there

exists a maximal extension;

ii) for every X ∈ T0 every section of AX over X admits a maximal extension;

iii) category A possesses the uniqueness property;

iv) for every X ∈ T0 the total space of AX is Hausdorff.

Proof. (i) obviously implies (ii) . Let us prove that (ii) implies the uniqueness property, i.e.,
(iii) . Let a connected X ∈ T0, non-empty open V ⊂ X and sections σ1,σ2 ∈ Γ(X,AX) be such
that σ1|V = σ2|V . By assumption there exists a maximal extension (D,ϕ,σ) of (V, Id,σ1|V ) =
(V, Id,σ2|V ). Because of maximality of (D,ϕ,σ) there exist for i = 1,2 locally homeomorphic
mappings ψi : X → D, commuting with projections, such that ψ−1i σ = σi. Connectivity of X

obviously implies that ψ1 = ψ2. Therefore we get that σ1 = ψ−11 σ = ψ−12 σ = σ2. Uniqueness
property is proved.
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Now let us prove that (iii) implies (i) . Fix some domain (D,ϕ) over some X ∈ T0 and some
family {σi}i∈I of sections of AX on D. denote by AX

I the direct product of I copies of AX . The

total space of AX
I we denote with same letter. The base BI of the topology on AX

I is defined as

follows: for an open U ⊂X and a family {σi}i∈I of sections of AX on U set Ũ =
⋃
x∈U

∏
i∈I σi(x).

To check that BI is a base take another open Ṽ =
⋃
x∈V

∏
i∈I τi(x) such that Ṽ ∩ Ũ 6= ∅. This

means that there exists z ∈ V ∩U such that σi(z) = τi(z) for all i ∈ I. Let z ∈W ⊂ V ∩U be some
connected neighborhood of z. By uniqueness property we have that σi|W = τi|W . Therefore

Ṽ ∩ Ũ ⊃ W̃ :=
⋃
x∈W

∏
i∈I σi(x).

The natural projection π :AX
I →X is locally homeomorphic and (D,ϕ,{σi}i∈I)) is naturally

mapped to (AX
I ,π), i.e., there exists a locally homeomorphic map i :D→AX

I commuting with

projections ϕ and π. Let D̂ be the connected component of i(D) in AX
I . It easy to check that

(D̂,π|D̂) is the required maximal extension.
The last item to prove is that the uniqueness property (iii) is equivalent to the separability of

the topology on AX , i.e., to (iv) . Indeed, let σ1(x) 6= σ2(x) for some x ∈X. Take a connected
neighborhood U of x. Then for every y ∈ U we have that σ1(y) 6= σ2(y) by uniqueness. Vice versa,
suppose that uniqueness theorem fails for sections of AX , i.e., there exist σ1 6= σ2 ∈ Γ(X,AX)
such that σ1|V = σ2|V for some open non-empty V ⊂ X. Therefore the set W of x ∈ X such
that σ1(x) = σ2(x) is non-empty and is obviously open. But it is not the whole of X. Take some
y ∈ ∂W , i.e., σ1(y) 6= σ2(y) but every neighborhood of y intersects W , where these sections
coincide. I.e., AX is not Hausdorff. �

4.2. Real and complex analytic objects: examples. Let us adopt the following

Definition 4.3. A category of analytic objects over the category R will be called a category of
real analytic objects. A category of analytic objects over the category C will be called a category
complex analytic objects.

Sections of AX will be called real or complex analytic objects on X. For the time being the
reader could think about the following couple of examples:

• OY is the category of holomorphic maps with values in a complex space Y , MY stays for
the category of meromorphic mappings with values in Y with the usual pull-backs as inverse
transforms in both cases. I.e., OX

Y (resp. MX
Y ) is the sheaf of germs of holomorphic (resp.

meromorphic) mappings from open subsets of X to Y . These categories do satisfy the uniqueness
theorem and therefore for them the maximal extensions do exist.

• The category A of analytic sets, i.e., AX is a sheaf of locally closed analytic sets in X without
taking into account multiplicities. Inclusions ι in these examples are obvious.

• The category Coh of coherent analytic sheaves, i.e., CohX (or, Coh(X) in standard notations)
is the sheaf of sets which elements are coherent analytic sheaves on X. Two sheaves F1 and F2

on X are said to be equal, i.e., represent the same element of CohX if they are isomorphic. In
particular, for a morphism f : X → Y ( i.e., a holomorphic mapping) and a coherent analytic
sheaf F on Y the inclusion is ιf (f

−1F) =OX⊗f−1OY
f−1F , the so called analytic inverse image,

which is coherent if F was such. Categories A and Coh do not satisfy the uniqueness theorem
and therefore maximal extensions for them in general do not exist.

By a q-concave Hartogs figure in Cn we shall understand the following domain

Hn,q
r :=An−q1−r,1×∆q ∪∆n−q×∆q

r. (4.1)

Here Aq1−r,1 := ∆q\∆q
1−r denotes a ”generalized annulus” of dimension q. Note thatHn,n−1

r =Hn
r

in our notations. Correspondingly Hn,n−q
r will be called a q-convex Hartogs figure.

Definition 4.4. We say that a category of complex analytic objects A is a q-Hartogs category (for
some q > 1) if the q-Hartogs-type extension lemma is valid for objects of A, i.e., if the natural

transform, which corresponds to the canonical inclusion Hn,n−q
r ⊂ ∆n is surjective for every
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n > q and any 0< r < 1. In other words this means that every analytic object σ ∈ Γ(Hn,n−q
r ,A)

has an extension σ̃ ∈ Γ(∆n,A).

Remark 4.2. a) Category MP1 is 1-Hartogs (theorem of Levi), while is Coh not. But it has a subcat-
egory of sheaves satisfying the gap-sheaf condition which is 2-Hartogs, see Theorem 14.1. By Theorem
8.1 the category MY for a disk-convex Kähler space Y is 1-Hartogs too.

b) A (singular) holomorphic foliation of codimension d on X is defined by a meromorphic section of
the appropriate Grassmann bundle Gr(TX). The products U ×Gr(TxX) ≡ Gr(TX)|U , where U is a
local chart, are projective. Therefore the 1-Hartogs extension works. Involutibility, being an analytic
condition, is preserved by extension. Uniqueness condition is also obvious. Therefore the category Fd of
codimension d singular holomorphic foliations is 1-Hartogs and possesses maximal extensions.

c) Roots of holomorphic line bundles do satisfy the 1-Hartogs property but do not satisfy the uniqueness
theorem, see section 15.

d) Solutions of a general ( i.e., non-holomorphic) elliptic systems do satisfy uniqueness theorem but are
not necessarily Hartogs in general. We shall not speak about real analytic objects in this text any more.

e) The interested reader may look to the recent survey [McK] and find out an impressive number of
examples of complex analytic objects.

4.3. Extension accross q-concave boundary points. Along our exposition we adopt the
following strategy. First, we look to the model situation: whether a given analytic object can
be extended from a Hartogs figure Hn,q

r of a appropriate concavity to the associated polydisk
∆n? Then we use various ways to deduce from such local statement the global ones. Two such
methods were already explained: the Docquier-Grauert theorem and bumping. Now we want
to discuss one more: extension of analytic objects along the levels of an appropriate exhaustion
functions. Let U be a domain in Cn and ρ a real-valued function on U of class C2.

Definition 4.5. Function ρ is called strongly q-convex at z0 ∈ U if the Levi form Lρ(z), see
(3.2), has at least n− q+1 positive eigenvalues.

We say that ρ is q-convex in U if it is q-convex at every z ∈ U . One is of course interested
not with q-convex functions themselves but with their level sets. In the case when ∇ρ(z) 6= 0
one can always take a composition of h◦ρ with a sufficiently convex growing function h in such
a way that Lh(ρ)(z) will be positive along ∇ρ(z). Therefore q-convexity means that there exists
at least (n− q) positive eigenvalues which correspond to eigenvectors tangent to Σ0 := {ρ = 0}.
Now it is easy to see that if ρ is strongly q-convex at z0 then one can imbed a polydisk i : ∆n → U
in such a way that z0 ∈ i(∆n) and i(Hn,q

r )⊂ {ρ > 0}. Here Hn,q stands for a q-concave Hartogs
figure, see (4.1). The same can be done also when z0 is a critical point of ρ, see Appendix I for
example. The property of being q-convex doesn’t depend on the choice of a coordinate system
and therefore can be translated to real functions on complex manifolds. Moreover it is given
in such a fashion that strong q-convexity is preserved under the restrictions onto a complex
submanifolds, i.e., if ρ is strongly q-convex on X and Y is a complex submanifold of X then
ρ|Y is strongly q-convex on Y . This leads to the following

Definition 4.6. A real-valued function ρ on a complex space X is called strongly q-convex at
x0 ∈X if there exists an open neighborhood U 3 x0 and a holomorphic imbedding h : U → Ũ into
an open subset of some Cn, and a strongly q-convex at h(x0) function ρ̃ on Ũ such that ρ= ρ̃◦h.
Let ρ : X → R be an continuous exhaustion function, i.e., such that for every t ∈ R the lower
level set X−t := {ρ < t} is relatively compact. If such ρ can be taken to be strongly q-convex
we call X q-complete. Let D be a domain in a complex space X and x0 ∈ ∂D. D is said to
be q-concave at x0 if there is a neighborhood U ⊃ x0 and a strongly q-convex at x0 function
ρ : U → R such that D∩U = {x ∈ U : ρ(x)> 0}. We are going to discuss few general principles.

GP 1. If the category A of complex analytic objects is an (n− q)-Hartogs category then analytic
objects from A tend to extend across the q-concave boundary points.
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By saying ”tend to extend“ we mean simply that this is not always true. If X is smooth at
x0 and the analytic object in question satisfies the uniqueness theorem then GP1 is certainly
true. Therefore it holds for holomorphic/meromorphic functions and holomorphic mappings for
example. But, as we shall see in section 15, it turns to be wrong for the roots of holomorphic line
bundles (they do not satisfy the uniqueness theorem). If X is singular at x0 then the situation
becomes even worse. Let E be a curve in P2 of degree 3, i.e., an elliptic curve. Its self-intersection
is 9. Blow up 10 points on E to make its self-intersection negative. Then there exists a 1-convex
(and therefore disk-convex) neighborhood Y of E which can be blown down to normal space X
with one singular point x0, the image of E. A holomorphic inclusion i : X \ {x0} → Y doesn’t
extend to x0 holomorphically despite of the fact that Y is Kähler and doesn’t contain rational
curves. The last follows from Lemma 6.1.

GP 2. If analytic objects from A extend across q-concave boundary points and, in addition, obey
an appropriate uniqueness theorem then they extend along q-convex exhaustions.

By an ”appropriate” uniqueness theorem we mean for example that if σ1,σ2 are two objects
from AU for some neighborhood U of a q-concave point x0 ∈ {ρ= 0} such that σ1|ρ>0 = σ2|ρ>0

then σ1 = σ2. See subsection 5.1 about analytic set for a meaningful example of a such situation.
Now let ρ : X → (a,b) is a proper strongly q-convex exhaustion function and suppose our
object σ is extended to X+

t0
:= {ρ(x) > t0 ∈ (a,b)}. Applying GP1 we extend σ locally across

every boundary point and then, using uniqueness, we can glue these extensions and obtain the
extension of σ to X+

t1
for some t1 < t0.

GP 3. If analytic objects from A extend across 1-concave boundary points in dimension q then
they extend across (n− q)-concave boundary points in dimension n.

This can be seen by placing Hartogs domains appropriately from the pseudoconcave side, see
Appendix I.

4.4. Bumping. Let D be a relatively compact domain in a q-complete complex space X and
let K be a compact in D with connected complement.

GP 4. If the category A of complex analytic objects is (n−q)-Hartogs and satisfies an appropriate
uniqueness theorem then every analytic object σ ∈ Γ(D \K,AX) extends to D.

Remark 4.3. In [Be] it is proved that for every reduced, Hausdorff complex space with countable basis
Morse functions are dense in the space of smooth functions. In particular, if X admits a strongly q-convex
exhaustion function ρ then it can be always supposed to be Morse and, moreover, that for any t ∈ (a,b)
the level set Σt := {ρ(x) = t} contains at most one critical point. The property to be Morse is local and

therefore we can suppose that X is an analytic subset of some domain Ũ in Cn. Let X =X1 ⊃X2 ⊃ ...
be the usual stratification of X by the successive singular loci. Connected components Sα

j of Xα \Xα+1

are called strata of X. {Si
j} form a locally finite system in Ũ and the boundary ∂Si

j of each stratum is

a disjoin union of lower dimensional strata. If x ∈ Sα
j ⊂ ∂Sβ

i then Tx(S
α
j ,S

β
i ) is defined to be the set of

dimSβ
i -dimensional complex planes H through x which are limits of tangent planes TyS

β
i when y ∈ Sβ

i

tends to x. A smooth function ρ on Ũ is called a Morse function on X if its restriction to the positive

dimensional strata is Morse in the standard sense and if for every x ∈ Sα
j ⊂ ∂Sβ

i the restriction dρ(x)|H
doesn’t vanish for every H ∈ Tx(S

α
j ,S

β
i ). Remark that local minima of a Morse function on a complex

space are isolated. This is important for bumping method to work. For example one has the following:

Corollary 4.1. Let D be a domain in a (n− 1)-complete, normal complex space X and let
K bD be a compact with connected complement. Then every meromorphic function f in D\K
extends to a meromorphic function f̃ in D.

Let p1, ...,pM ∈ X be the minima of the exhaustion ρ, i.e., ρ(x) = 0 only for x = p1, ...,pM .
Fix some δ > 0 and let S be the set of s ∈ R+ such that the assertion holds for compacts in
X−s ∩D such that dist(K,∂D) > δ, here X−s := {ρ < s}. S contains a neighborhood of the
origin. Indeed, if p1, ...,pM 6∈ D or, dist(pi,∂D) < δ there is nothing to prove. Otherwise fix
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some pi ∈ D. For s small enough (D,pi) imbeds to (CN ,0). Now extension can be performed

along the level sets of ‖z‖2 as an exhaustion function. S is also obviously closed. To see that
S is open fix some s0 ∈ S. Take some s > s0 and cover Σs := {ρ = s} by open sets {Uj} such
that for every Uj there exists a cover πj : Uj → ∆n as in the Projection Lemma 18.1. Every
restriction f |Uj∩X+

s
extends to a neighborhood of Σs∩Uj . These extensions are univalent because

the eventual ramification divisors do not intersect Σs ∩Uj and therefore are empty. Moreover,
these extensions and coincide one with another due to the uniqueness theorem. I.e., f extends
itself to a neighborhood of Σs∩Uj . For s close enough to s0 we have that Σs0 ∩Dδ ⊂

⋃
jUj for

some finite collection of j-s, here Dδ := {x ∈ D : dist(,∂D) > δ}. Now let K b Dδ ∩Xs be our
compact. By local extension proved above and once more by uniqueness f uniquely extended
to (D \K)∪

⋃
jUj . Therefore s ∈ S. Corollary is proved.

Remark 4.4. This Corollary was recently proved in [MP] by a different method. We shall extend this
corollary to the case of meromorphic mappings and analytic sets, see Corollaries 5.2 and 9.7.

Chapter II. Analytic Sets and Meromorphic Mappings

5. Analytic sets, ramified covers and currents

5.1. Extension properties of analytic sets. An analytic subset in a complex space X is a
closed subset A ⊂ X such that for every point a ∈ A there exists a neighborhood U 3 a and a
finite number of holomorphic functions h1, ...,hk ∈ O(U) such that A = {z ∈ U : h1(z) = ... =
hk(z) = 0}. A locally closed analytic subset of X is a subset A⊂X, which is an analytic subset
of some open subset U of X. Let us start with an example of a non-extendable analytic set.

Example 5.1. Take a smooth, closed Jordan curve γ : [0,1] → ∆ which is not real analytic at any of
its points. Denote by D+ the interior and by D− = P1 \ D̄+ the exterior of γ. Consider the function

r(t) =
√
1−|γ(t)|2. Let g be the solution of the Dirichlet problem on D− with boundary condition

g|γ = lnr. Denote by h the harmonic conjugate to g, h is also smooth on D̄−. Let A′ be the graph
(z,f(z)) of the holomorphic function f = exp(g+ ih) in C2. It is not difficult to see that A′ closes to a
complex curve in P2 \ B̄4. Indeed, let [Z0 : Z1 : Z2] be homogeneous coordinates in P2. In the affine chart
C2 = U0 = {Z0 6= 0} take the standard affine coordinates z1 = Z1/Z0 and z2 = Z2/Z0. We have that
z2 → f(0) when z1 → ∞. Therefore in the affine chart U1 = {Z1 6= 0} we shall have: Z0/Z1 → 0 and
Z2/Z1 → 0 on A′, which means that A=A′∪{0} is an analytic set. We got an analytic subset (a complex
curve, in fact) A ⊂ P2 \ B̄4 which closes to a compact surface with boundary Γ(t) = (γ(t), r(t)) on the
unit sphere. But since the curve Γ is not real analytic at any of its points our A cannot be extended as
an analytic subset to a neighborhood of any point of Γ.

However, if the dimension of an analytic set A ⊂ D under the extension is bigger then the
degree of concavity of the domain D then A extends to a neighborhood of the corresponding
concave point of ∂D. As a model domain consider a q-concave Hartogs figure in Cn defined by
(4.1). One has the following

Theorem 5.1. (W. Rothstein, [Rt2]). Let A be a purely (q+1)-dimensional analytic subset of the
q-concave Hartogs figure Hn,q

r , q > 1. Then A extends uniquely to a purely (q+1)-dimensional

analytic subset Ã of the unit polydisk ∆n.

Example 5.1 shows that this result is precise. It shows that a complex hypersurface A in
Hartogs figure Hn

r = Hn,n−1
r doesn’t necessary extend to ∆n, but it does extend to ∆n from

Hn,n−2
r . The situation with hypersurfaces can be made fairly precise.

Theorem 5.2. (G. Dloussky, [Dl]). Let D be a domain in a Stein manifold, D̃ its envelope of
holomorphy and let A be a complex hypersurface D. Then the envelope of holomorphy of D \A
is either D̃ or, D̃ \ Ã, where Ã is a complex hypersurface extending A.

And more generally:
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Theorem 5.3. (E. Chirka, [Ch2]). Let D be a domain in a Stein manifold, D̃ its envelope of
holomorphy and A a closed pluripolar subset of D. Then the envelope of holomorphy of D\A is

of the form D̃ \ Ã, where Ã is a closed pluripolar (possibly empty) subset of D̃.

Let us give a corollary from the Rothstein’s theorem.

Corollary 5.1. Let D be a domain in Cn and A an analytic subset of D\Rn whose every branch
has dimension > 2. Then Ā∩D is an analytic subset of D.

The proof goes as follows. For every point x ∈ Rn ∩D one can put an 1-concave Hartogs
figure Hn,1

r to D\Rn in such a way that the associated polydisk will contain x, see Lemma 2.20
in [Si3]. The result follows now from Theorem 5.1. The case of dimA = 1 was considered in
section 3. One more result of that type is the following theorem of Thullen-Remmert-Stein.

Theorem 5.4. Let S is an analytic subset in a complex space X of dimension q > 0 and let
G be an open subset of X which contains X \S and intersects each branch of S of dimension
q. Let A be a pure q-dimensional analytic subset of G. Then the closure Ā of A is an analytic
subset of X.

In the case of analytic sets GP 1 and 2 work due to the appropriate mentioned uniqueness
property, see Theorem 8.3 in [ST2] and gives the following.

Theorem 5.5. (W. Rothstein, [Rt2], H. Fujimoto, [Fu1]). Purely (q+1)-dimensional analytic
sets extend across q-concave boundary points on reduced complex spaces. Moreover, they extend
along q-convex exhaustions.

Local extension follows from Theorem 5.1 together with Projection Lemma 18.1. An important
point is that this local extension is unique. After that one can glue the local extensions to obtain
the global one. This implies a result in the spirit of Theorem 1.6 for analytic sets.

Corollary 5.2. Let D be a relatively compact domain in a q-complete, reduced complex space X
and let K be a compact in D with connected complement. Then every purely (q+1)-dimensional
analytic subset of D \K uniquely extends to a purely (q+1)-dimensional analytic subset of D.

The proof goes by bumping similarly to that of Corollary 4.1. We end up with the following
two related results.

Theorem 5.6. (E. Bishop, [Bs1]). Let S be an analytic subset in an open set Ω⊂ Cn and let A
be an analytic subset of Ω\S of locally finite volume near S. Then Ā is an analytic subset of Ω.

Denote by Br the ball of radius r in Cn centered at the origin. Now one deduces the following.

Theorem 5.7. (W. Stoll, [Stl]). A subvariety X in Cn of pure dimension p > 0 is algebraic if
and only if there exists a constant C > 0 such that for every r� 0

vol2p(X ∩Br)6 Cr2p. (5.1)

Indeed, the condition (5.1) means exactly that X regarded as an analytic set in Cn = Pn\Pn−1
has bounded volume with respect to the Fubini-Study metric. For more details and proofs of
the results mentioned in this subsection we refer to [Ch1] and [Si3].

5.2. Extension of analytic covers. Recall that a regular cover is a locally homeomorphic
map c : X̃ →X between Hausdorff topological spaces such that for every x0 ∈X there exists a
neighborhood U0 3 x0 such that its preimage c−1(U0) is at most countable disjoint union of its
connected components Ui and for every i the restriction c|Ui : Ui → U0 is a homeomorphism. As

it is well known (and obvious) if c : X̃ →X is a regular cover then for every path γ : [0,1]→X

and every a ∈ X̃ such that c(a) = γ(0) there exists a unique lift γ̃ of γ starting at a, i.e., a path

γ̃ : [0,1]→ X̃ such that γ̃(0) = a and (c◦ γ̃)(t) = γ(t) for all t ∈ [0,1].
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An unramified analytic cover of complex spaces is by definition a regular cover of normal
complex spaces. One can consider two different natural notions of extension of unramified
covers. Let (X̃,cX ,X) be an unramified cover over X. One says that it extends to an unramified

cover (Ỹ ,cY ,Y ) over Y if there exists a holomorphic imbedding ϕ : X → Y and a holomorphic

imbedding/immersion Φ : X̃ → Ỹ such that the following diagram

X̃
Φ→ ỸycX

ycY

X
ϕ→ Y

(5.2)

is commutative. Depending on whereas Φ is an imbedding or an immersion one gets the different
notions of the extension of covers.

Example 5.2. Take as X = C2 \R2 and as X̃ a d-sheeted cover of X. It cannot be extended over any

point of R2 in the first sense because holomorphic functions on this X̃ do not separate points. But it
obviously extends to a trivial cover (C2, Id,C2) after ”gluing the sheets”.

Definition 5.1. A ramified analytic cover (or, simply an analytic cover) is a triple (X̃,c,X),
where

i) X̃ is a locally compact, Hausdorff topological space, X is a normal complex space;

ii) c : X̃ →X a continuous, surjective, zero-dimensional, proper map for which there

exists a negligible subset R⊂X such that c|X̃\R̃ : X̃ \ R̃ →X \R is a finite unrami-

fied cover, where R̃ := c−1(R);

iii) and such that X̃ \ R̃ is dense in X̃ and R̃ doesn’t separate X̃.

Zero-dimensional means that for every x ∈ X the preimage c−1(x) is discrete. Since c is in
addition proper it is a finite map. A subset R of a normal complex space X is called negligible
if for any neighborhood V of any point of R every bounded holomorphic function on V \R
holomorphically extends to V . R̃ doesn’t separate X̃ if for every point r ∈ R̃ and every connected
neighborhood V 3 r the difference V \R̃ is connected as well. R̃ is called the branching divisor of
the cover, and R the ramification divisor. By the well known theorem of Grauert and Remmert
one knows that X̃ inherits a unique structure of a normal complex space such that c becomes
holomorphic and R̃ analytic. Therefore, R and R̃ are indeed divisors. Different proofs of
Grauert-Remmert theorem can be found in [GR1], [Ni], also in [NS] and [De]. One can remark
that either of the proofs simultaneously proves the removability of codimension two singularities
for analytic covers. Therefore we get the following statement, which was our goal.

Proposition 5.1. Let A be a codimension > 2 analytic subset of a normal complex space Y .
Then any analytic cover X over Y \A uniquely extends to an analytic cover X̃ over the whole

of Y . Moreover X injects to X̃.

More details on the proof can be found in section 3 of [Iv11], where we follow [De].

Example 5.3. Consider as X = P2 \ B̄4 and let A1 ⊂X be an unextendable complex curve constructed
in Example 5.1. A1 cuts the unit sphere by a curve which is a graph of a curve γ1 ⊂ ∆ on the first
coordinate plane, see construction there. Take this γ1 sufficiently close to ∂∆. Do the same over the
second coordinate plane to get another curve A2. X \ (A1∪A2) has homotopy type of C∗ and therefore

we can construct a finite cover X̃ of X ramified over A = A1 ∪A2 of any given degree d. Let c be the
corresponding projection. (X̃,c,X) cannot be extended to any neighborhood of any point of A∩ ∂B4

because, otherwise its ramification curve A would extend to this neighborhood.

5.3. Elements of pluripotential theory. In order to proceed further we need to recall some
generalities on pluripotential theory, for the proofs we mostly refer to [Kl]. Recall that a subset
S ⊂ Cn is called locally pluripolar if for every point s ∈ S there exists a neighborhood U 3 s and
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a plurisubharmonic (psh for short) function u in U , which is not identically equal to −∞, such
that

S∩U ⊂ {x ∈ U : u(x) =−∞}.
S is locally complete pluripolar if in the situation as above S ∩U = {z ∈ U : u(z) = −∞}.
By Josefson’s theorem, see [Kl], every locally pluripolar set is globally pluripolar or, simply,
pluripolar. That means that there exists a psh-function u 6≡ −∞ in Cn such that S ⊂ {z : u(z) =
−∞}. One has also that countable unions of pluripolar sets are pluripolar. Let S be a subset
of an open set Ω⊂ Cn. Consider the following class of functions

U(S,Ω) = {u ∈ P+(Ω) : u|S > 1},

where by P+(Ω) we denote the class of non-negative plurisuperharmonic functions in Ω.

Definition 5.2. The lower regularization w∗ of the function

w(ζ,S,Ω) = inf{u(ζ) : u ∈ U(S,Ω)}

is called a P-measure of S in Ω, i.e.,

w∗(z,S,Ω) = liminf
ζ→z

w(ζ,S,Ω). (5.3)

Note that w∗ is plurisuperharmonic in Ω.

Definition 5.3. A point s0 ∈ Ω is called a locally regular point of S if for all ε > 0 one has
w∗(s0,S∩∆n(s0,ε),∆

n(s0,ε)) = 1. We shall also say that S is locally regular at s0.

Theorem 5.8. (Two Constants Theorem). Let v be plurisubharmonic in Ω such that v|S 6M0

and v|Ω 6M1. Then for z ∈ Ω one has

v 6M0 ·w∗(z)+M1 · [1−w∗(z)]. (5.4)

Indeed, function M1−v
M1−M0

obviously belongs to U(S,Ω) and therefore it should be > than ω∗.

This gives (5.4). We shall repeatedly use the following statement.

Proposition 5.2. Let Ω be a pseudoconvex domain in Cn. If a subset S ⊂ Ω is not locally
regular at all its points then S is pluripolar.

In fact the set {s ∈ S : w∗(s) > w(s)} is negligible and therefore pluripolar, see [Kl]. The
following lemma can be proved by Taylor expansion using (5.4).

Lemma 5.1. Suppose that function f is holomorphic and bounded with modulus by M in ∆n×
∆q
ε for some 0 < ε < 1. Suppose that for s ∈ S ⊂ ∆n the restriction fs = f(s, ·) extends

holomorphically to ∆q and that all these extensions are also bounded with modulus by M . If
s0 ∈ ∆n is a locally regular point of S then for every 0 < R < 1 there exists r > 0 such that f
holomorphically extends to ∆n(s0, r)×∆q(R) and is bounded with modulus by 2M

(1−R)q there.

Denote by (z1,z2) the coordinates in Cn×Cq and write

f(z1,z2) =
∑

m∈Nq am(z1)z
m
2 .

Functions |am| are plurisubharmonic in ∆n and satisfy

|am|6 M
ε|m| on ∆n and |am|6M on S.

Let w∗ be the P-measure of S in ∆n. For a given c < 1 there exists r > 0 such that ω∗(z1) > c
when z1 ∈∆n(s0, r). Theorem 5.8 tells now that for z1 ∈∆n(s0, r) one has

|am(z1)|6M + M
ε|m| (1− c)6 2M,

if c was taken close to 1. The statement of Lemma follows.
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5.4. Positive currents. Denote by Dk,k(Ω) the space of C∞-forms of bidegree (k,k) with
compact support on a complex manifold Ω. ϕ ∈ Dk,k(Ω) is real if ϕ̄ = ϕ. The dual space
Dk,k(Ω) is the space of currents of bidimension (k,k) or, bidegree (n− k,n− k), n = dimCΩ.

T ∈ Dk,k(Ω) is real if
〈
T,ϕ̄

〉
=
〈
T,ϕ

〉
for all ϕ ∈ Dk,k(Ω).

Definition 5.4. A current T ∈ Dk,k(Ω) is called positive if for all ϕ1, ...,ϕk ∈ D1,0(Ω)〈
T,
i

2
ϕ1∧ ϕ̄1∧ ...∧

i

2
ϕk ∧ ϕ̄k

〉
> 0. (5.5)

T is negative if −T is positive.

Positive currents have coefficients measures. Current T is called closed if dT = 0, pluriclosed if
ddcT = 0, plurinegative if ddcT 6 0. We shall have mostly the following two examples in mind.

• Let A be a pure k-dimensional analytic subset in Ω, then the current of integration [A] on A,
which is a closed positive current in Ω of bidimension (k,k), see [Lg], is defined as〈

[A],ϕ
〉
:=

∫
A

ϕ. (5.6)

• Let f : Ω → X be a holomorphic mapping to a complex manifold/space X. Suppose X is
possesses a closed (or, pluriclosed/plurinegative) metric form ω, then f∗ω is a positive closed
(resp. pluriclosed/plurinegative) form on Ω. Moreover, if f has some mild ”singularities“ in Ω,
ex. points of indeterminacy, then f∗ω often extends across these singularities as a closed (resp.
pluriclosed/plurinegative) current.

Let T be a current of dimension k with coefficients measures. Its mass on an open U ⊂ Ω is

‖T‖(U) = sup{|
〈
T,u

〉
| : u ∈ Dk(U), |u(x)|6 1 for all x ∈ U}. (5.7)

Here |u(x)| is the Euclidean norm of the k-covector u(x). If T has locally integrable coefficients
then its mass norm coincides with L1-norm. If T = [A] is a current of integration on analytic
set A then its mass is equal to the volume of A. Let S be a closed subset in Ω. We say that
a current T , defined on Ω\S, has locally finite mass near S if for any open, relatively compact
U b Ω one has ‖T‖(U \S)<∞. For a current T , which has locally finite mass near a closed set

S ⊂ Ω, one denotes by T̃ its trivial extension to Ω. It is defined as follows. Take a sequence of
functions χn ∈ C∞(Ω) such that

• χn ≡ 0 in a neighborhood of S;
• χ↗ 1 uniformly on compacts of Ω\S.

Then T̃ is defined as the limit of χnT . This limit exists and doesn’t depend on the choice of χn,
see [Kl, Lg] for more details. If T was positive on Ω\S its trivial extension stays to be positive.
When S is, in addition, complete pluripolar one can chose χn to be plurisubharmonic, see [El1].

Theorem 5.9. (H. El Mir, [El1]). Let S be a closed, complete pluripolar subset of an open set
Ω⊂ Cn and let T be a positive, closed current on Ω\S such that T has a locally finite mass near

S. Then the trivial extension T̃ of T is a closed positive current on Ω.

An important case when S is an analytic subset of Ω was proved previously by H. Skoda in
[Sk1]. Via the analyticity of upper level sets of Lelong numbers for positive closed currents,
proved by Siu in [Si4], this theorem implies the Theorem 5.6 of Bishop.

Theorem 5.10. (H. El Mir, [El2]). Let S be a closed, complete pluripolar subset of an open set
Ω ⊂ Cn and let T be a positive, plurinegative current on Ω \S such that T has a locally finite
mass near S. Then ddcT has a locally finite mass near S and the residual current R, defined as

R := d̃dcT −ddcT̃ , (5.8)

is closed, positive and supported on S.

In particular T̃ is again plurinegative. If S is compact then the condition on T can be relaxed.
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Theorem 5.11. (K. Dabbek, F. Elkhadra, H. El Mir, [DEM]). Let K be a complete pluripolar
compact in an open set Ω⊂ Cn and let T be a positive, plurinegative current on Ω\K. Then T
has a finite mass near K and therefore the conclusion of Theorem 5.10 holds.

Theorem 5.12. For every 0 < r < 1 there exists a constant Cr such that for every pure
q-dimensional variety A in ∆n one has

vol(A∩∆n
1−r)6 Crvol(A∩Hn,q

r ). (5.9)

When n = 2, q = 1 this was proved by Oka in [Ok], the general case is due to Riemenschnei-
der, see [Rn]. For positive, plurinegative, bidimension (q,q)-currents an analogous Oka-type
inequality was proved by Fornaess and Sibony in [FS]. Namely, if T is such then one has

‖T‖(∆n
1−r)+‖ddcT‖(∆n

1−r)6 Cr‖T‖(Hn,q
r ). (5.10)

We refer to the survey of H. Skoda [Sk2] and lectures of H. El Mir [El2] for much more results
on extension of currents, as well as to the paper [FS] for more details about the Oka-type
inequalities.

6. Extension properties of holomorphic mappings

Along the following sections we shall generalize results on extension of holomorphic and
meromorphic functions to the case of mappings with values in complex spaces. In this section
we would like to describe complex spaces X such that holomorphic mappings with values in X
extend as well as holomorphic functions do.

6.1. Mappings with values in q-complete complex spaces. As it was remarked in Corol-
lary 1.1 holomorphic mappings with values in Stein spaces extend from the Hartogs figure to
the associated polydisk. Remark that by theorem of Narasimhan [Nr] Stein spaces are precisely
1-complete ones. In [IS1] the following generalization of Corollary 1.1 was proved.

Theorem 6.1. Let X be a q-complete complex space. Then every holomorphic mapping f :
Hn,n−q
r →X extends to a holomorphic mapping f̂ : ∆n →X.

The proof uses the result of Barlet, [Ba2], about the existence on q-complete complex spaces
certain ddc-exact strictly positive (q,q)-forms. It should be said that in [IS1] it was proved that

every meromorphic f :Hn,n−q
r →X meromorphically extends to ∆n. But going through the proof

one can observe that if f was supposed to be holomorphic on Hn,n−q
r the extension will stay

holomorphic. In fact the proof becomes much more easier, one only need to use the Rouché
Principle of Theorem 11.2 from section 11.

6.2. Stein neighborhoods of Stein subvarieties and rational curves. One more obser-
vation which can be made from Corollary 1.1 is that finding “big” Stein subsets in X might be
useful for our task of extension of holomorphic mappings with values in X.

Theorem 6.2. (Y.-T. Siu, [Si6]) Let Γ be a Stein subspace of a complex space X. Then there
exists an open U ⊃ Γ which is Stein. If, moreover, Γ and X are smooth then there exists a
neighborhood U ⊃ Γ which is biholomorphic to a neighborhood of the zero section in the normal
bundle NΓ to Γ in X.

For the proof we refer to [Si6] or to [Co] and [Dm1]. Remark that a biholomorphism in
Theorem 6.2, which is proved to be identity on Γ, provides a holomorphic retraction r : U → Γ.
Now let us turn to holomorphic mappings with values in a given complex space X. Remark that
if X contains a rational curve then Hartogs-type extension theorem for holomorphic maps with
values in X fails. Indeed, let

π : C2 \{0}→ P1 π : (z1,z2)→ [z1 : z2] (6.1)
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be the standard projection which sends a point z = (z1,z2) to the line lz passing through z and
the origin. The limit set at zero of this map is the whole P1. Therefore π doesn’t extend to zero.
Let now C = h(P1) be a rational curve in X. Then the composition f = h ◦π : C2 \ {0} → X
doesn’t extend to the origin for the same reasons as π. Our first result, which will be proved
in the next subsection, says that for Kähler X rational curves are the only obstructions for
holomorphic extension. Let us derive a lemma which explains this. Let S is a compact complex
curve in a complex manifold X. We suppose that X is equipped with some distance d compatible
with its topology. Denote by S

′
ε a domain in S which is the interior of the complement to the

ε-neighborhood of a finite number of points p1, ...,pN . We shall always suppose that N > 1 (if
not we just mark some p1 ∈ S) and that all singular points of S are among p1, ...,pN . Recall
that an analytic disk in X is a holomorphic map ϕ of a neighborhood of ∆̄ to X.

Lemma 6.1. Suppose that for every δ > 0 there exists an analytic disk ϕ : ∆̄→X such that:

i) S
′
ε is contained in a δ-neighborhood of ϕ(∆̄);

ii) min{d(x,y) : x ∈ ϕ(∂∆),y ∈ S′
ε}> 2δ;

iii) the intersection of ϕ(∆̄) with the boundary of the δ-neighborhood of S
′
ε is contained

in the δ-neighborhood of the boundary ∂S
′
ε.

Then S is a rational curve.

Indeed, since S
′
ε is Stein we can apply Theorem 6.2 and find a Stein neighborhood U ⊃ S̄

′
ε

with a holomorphic retraction r : U → S
′
ε. We can suppose that U is a δ-neighborhood of S

′
ε for

some δ > 0. Let ϕ : ∆̄→X be an analytic disk satisfying (i) - (iii) . Set D := ϕ−1(U). Conditions

(i) - (iii) imply that r ◦ϕ : D → S
′
ε is proper and surjective. I.e., is a ramified analytic cover.

Let γ be one of the generators of H1(S,Z) and let γ̃ be its lift to D. Then γ̃ is homologous to
some linear combination of boundary components of D. Consequently γ must be homologous
to a cycle in ∂S

′
ε. This shows that H1(S,Z) = 0, i.e., S is a Riemann sphere.

6.3. Holomorphic mappings with values in Kähler spaces. Recall that a complex space
X is called disk-convex if for every compact K ⊂ X there exists another compact K̂ ⊂ X such
that for every analytic disk ϕ : ∆̄ → X with ϕ(∂∆) ⊂ K one has ϕ(∆̄) ⊂ K̂. Every compact
space is obviously disk-convex. As well as every Stein or, holomorphically convex one. We are
prepared to state and prove the following

Theorem 6.3. For a disk-convex Kähler space X the following conditions are equivalent:

i) every holomorphic mapping f :Hn+1
r →X holomorphically extends to ∆n+1;

ii) X doesn’t contain rational curves.

Proof. We need to prove that (ii) ⇒ (i) only. The proof will be done in four steps. For
z = (z1, ...,zn) ∈∆n denote ∆z := {z}×∆. Let U be the maximal open subset of ∆n such that
f holomorphically extends to the Hartogs figure over U

Hn+1
U (r) :=A1−r,1×∆n∪∆×U. (6.2)

Step 1. Vanishing of the homology of Hartogs domains. Let Hc stand for the homology with
compact supports.

Lemma 6.2. For any domain U ⊂∆n one has

Hc
2

(
Hn+1
U (r)

)
= 0. (6.3)

For the proof write the Mayer-Vietoris sequence for the homology groups of the pair of domains
∆×U and A1−r,1×∆n:

...→Hc
2(A1−r,1×U)

β→Hc
2(∆×U)→Hc

2(H
n+1
U (r))→Hc

1(A1−r,1×U)
α→ (6.4)

Hc
1(∆×U)⊕Hc

1(A1−r,1×∆n)→ ....
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Here we used the obvious fact that Hc
2(A1−r,1 ×∆n) = 0. Denote by π1 and π2 the natural

projections of Cn+1 = Cn×C onto the first and second factors respectively. If γ ∈Hc
1(A1−r,1×U)

is such that γ ∼ 0 in ∆×U then π1(γ) ∼ 0 in U . And if γ ∼ 0 in A1−r,1×∆n then π2(γ) ∼ 0
in A1−r,1. Therefore from Künneth formula for the product A1−r,1×U one has for such γ that
γ ∼ 0 in A1−r,1×U . This proves the injectivity of the homomorphism α. The surjectivity of β
is obvious. This gives the result.

For a holomorphic map f :Hn+1
U (r)→ (X,ω) define the following area function

a(z) = areaωf(∆z) =

∫
∆
f |∗∆z

ω, (6.5)

i.e., a(z) is the area of the image of the disk ∆z. In what follows without any additional expla-
nations we shall suppose, after shrinking A1−r,1 if necessary, that f is defined in a neighborhood

of ∆n×A1−r,1 and therefore the formula (6.5) has perfectly sense.

Step 2. Estimate of the area. Suppose we extended f to Hn+1
U (r) for some, taken to be maximal

domain U ⊂∆. If U 6=∆n take some point s0 ∈ ∂U ∩∆n and take a sequence of analytic disks
∆k = ∆×{sk}, sk ∈ U , approaching the disc ∆0 := ∆×{s0}. Let ω̃ := f∗ω be the pull-back of
ω by f . This is a closed (1,1)-form on Hn+1

U (r). Due to Lemma 6.2 and usual duality ω̃ = dγ

for some smooth 1-form γ on Hn+1
U (r). This gives the following estimate of the areas of the

analytic discs Γfk := the graph of f |∆k
in ∆n+1×X:

area[Γfk ] = π+

∫
∆k

ω̃ = π+

∫
∂∆k

γ.

The last quantity obviously stays bounded when k→∞. Bishop compactness theorem tells us
now that some subsequence of graphs {Γfk} (we suppose that it is the sequence itself) converges
to a complex analytic variety Γ of pure dimension one in ∆0×X.

Step 3. The structure of the limit. Γ decomposes as Γ = Γ̂∪Γ0, where Γ0 is the graph of f |∆0

and all irreducible components of Γ̂ are rational curves. This follows from the description of
convergence in Gromov compactness theorem, see Theorem 2.5 and definitions involved there.
But it can be also seen straightforwardly from Lemma 6.1. Therefore all compact components
of Γ are rational curves. Since we do not have them in X we see that Γfk converge to Γ0.

Step 4. Extension to a neighborhood of s0. Take a Stein neighborhood U of Γ0 in ∆n+1 ×X.
Then all Γfk will belong to U for k >> 1. Also some neighborhood of the boundary ∂Γf0 is in
U (after shrinking if necessary). We are exactly in the conditions of Hurwitz Theorem 1.1 as it
was explained at the beginning of this section. Therefore we can extend f to a neighborhood of
s0. Theorem is proved.

6.4. Holomorphic mappings to hyperbolic spaces. For generalities on Kobayashi pseudo-
distance we refer to [Ko]. A complex space X is called Kobayashi hyperbolic (simply hyperbolic
along this text) if the Kobayashi pseudo-distance is actually a distance on X. It that case this
distance is compatible with the given topology of X, denote it as dk(·.·). In the case X = ∆
the Kobayashi distance coincides with the Poincaré distance. It is also obvious from the very
definition of dk that holomorphic mappings are distance decreasing. This implies the following

Proposition 6.1. The family O(∆,X) of holomorphic mappings form the unit disk to a Kobaya-
shi hyperbolic complex space is equicontinuous. If (X,dk) is complete then every bounded sub-
family F ⊂O(∆,X) is relatively compact.

Here by saying that F is bounded we mean that there exists a compact K ⊂ X such that
f(∆)∩K 6=∅ ∀f ∈ F . Mappings with values in complete hyperbolic spaces satisfy the following

Definition 6.1. We say that holomorphic mappings from ∆ to a complex space X satisfy the
disk condition if any sequence {ϕk : ∆ → X} of holomorphic mappings with values in X which
for some 0< r < 1 uniformly converge on A1−r,1 converge uniformly on the whole of ∆.
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The proof follows from the uniform equicontinuity of {ϕk}. This implies the following

Theorem 6.4. Every holomorphic mapping f : Hn+1
r → X, where X is a complete Kobayashi

hyperbolic complex space, extends to a holomorphic mapping f̂ : ∆n+1 →X.

The proof of Theorem 6.3 goes through. Remark that Step 2 is not needed, Step 3 is straight-
forward from the disk-condition.

Remark 6.1. In fact for compact hyperbolic spaces a much stronger extension statement holds true:
every holomorphic mapping f : ∆∗ → X extends to the origin, see [Kw]. This can be viewed as a
characterization of compact Kobayashi hyperbolic manifolds. For complete hyperbolic manifold this is
not true: ∆∗ is complete.

A close class to hyperbolic spaces are spaces with non-positive holomorphic sectional curva-
ture. Let h = hdz⊗ dz̄ be a Hermitian pseudo-metric on the unit disk. “Pseudo“ means that
h> 0 but may vanish somewhere. Metric h has non-positive curvature if

Kh(z) =− 2
h(z)∆lnh(z)6 0 (6.6)

at every z ∈ ∆ such that h(z) > 0. Let furthermore (X,h) be a Hermitian space, i.e., a
complex space with a Hermitian metric h. For a holomorphic mapping f : ∆ → X we get
canonically the induced metric hf = hfdz∧dz̄ on ∆. hf is a non-negative real function, uniquely
determined by f (and h). We say that h has a non-positive holomorphic sectional curvature if
for any holomorphic mapping f : ∆ → X the induced metric hf = hfdz ∧ dz̄ has non-positive
curvature. Corresponding Khf is called the holomorphic curvature of h along the holomorphic
(or, complex) disk f(∆).

Theorem 6.5. (B. Shiffman, [Sh1], P. Griffiths, [Gr]). Let (X,h) be a complete Hermitian space
with non-positive holomorphic sectional curvature. Then every holomorphic mapping f :Hn+1

r →
X extends to a holomorphic mapping f̂ : ∆n+1 →X.

Denote by [z,w] the closed interval in C from z to w, by Sr = ∂∆r the circle of radius r. In
what follows Lh(γ) stands for the length of the curve γ with respect to the pseudo-metric h.
The key point is the following

Lemma 6.3. Let 0< a < b < 1 and c= (b+a)[2πb(b−a)]−1. Let h be a Hermitian pseudo-metric
on ∆ with non-positive curvature. Then for all z,w ∈∆a one has

Lh([z,w])6 c|z−w|Lh(Sb). (6.7)

Proof. Remark that non-positivity of curvature (6.6) means that lnh is subharmonic. Therefore√
h is subharmonic too. By the definition of arc length

Lh(Sb) = b

∫ 2π

0

√
h(beiθ)dθ and Lh([z,w]) = |z−w|

∫ 1

0

√
h(tz+(1− t)w)dt.

For s ∈ ∆̄b by Poisson’s formula we have√
h(s)6 1

2π

∫ 2π

0

(b2−|s|2)
|beiθ−s|2

√
h(beiθ)dθ.

Since obviously (b2−|s|2)|beiθ−s|−2 6 (b+a)/(b−a) for |s|< a we see that

Lh([z,w])6
|z−w|
2π

b+a

b−a

2π∫
0

√
h(beiθ)dθ = cLh(Sb),

as stated. �
From Lemma 6.3 we immediately see that holomorphic mappings with values in a complete

Hermitian manifold of non-positive holomorphic sectional curvature satisfy the disk condition
of Definition 6.1. Theorem 6.5 follows.



32 Section 7

Remark 6.2. As it was explained in section 1 from Docquier-Grauert theorem it follows that holo-
morphic mappings with values in manifolds as in Theorems 6.3, 6.5, 6.4 extend from domains over Stein
manifolds to their envelopes of holomorphy (and moreover to locally pseudoconvex envelopes for the case
of domains over arbitrary manifolds).

7. Cycle space associated with a meromorphic mapping

The remaining part of this chapter will be devoted to the extension of meromorphic mappings.

7.1. Meromorphic mappings. Let D and X be reduced complex spaces. D will be also
always supposed to be normal. By pr1 and pr2 denote the natural projections of the product
D×X onto D and X respectively. Let A be a proper analytic subset of D and f : D \A→ X
be a holomorphic mapping.

Definition 7.1. We say that f defines a meromorphic map from D to X if the closure of the
graph of f is an analytic set Γf in D×X and the restriction pr1|Γf

: Γf →D is proper.

This notion defines the meromorphicity in the sense of Remmert, [R], (other types of mero-
morphicity will be not considered in this text). We shall denote this meromorphic mapping also
as f ( i.e., in the same way as its holomorphic part), and by Γf the graph of either of these
mappings. Projection pr1|Γf

: Γf → D is surjective and maps irreducible components of Γf to
irreducible components of D. The minimal analytic set A such that f is holomorphic on D \A
is called the indeterminacy set of f and will be denoted as If . Since D is normal the set If is of
codimension > 2 and x ∈ If if and only if dim(pr1|Γf

)−1(x)> 0.

Remark 7.1. 1. If V is an irreducible complex subvariety of D, which doesn’t belong entirely to If ,
then the restriction of f to V is the meromorphic map having as the graph the irreducible component of
Γf ∩ (V ×X) which projects to V generically one to one. In particular, this graph is not necessarily the
whole intersection Γf ∩ (V ×X).

2. One more important remark is that if dimD = 1 then every meromorphic map f : D → X is
holomorphic (whatever X is). This follows from the fact that codimIf > 2 and therefore If = ∅ in this
case. As well as if dimD > 2 and dimV = 1 with V 6⊂ If , then the restriction of f to V is holomorphic.

3. The full image of a set L⊂D under f is defined as f [L] := pr2 (Γf ∩ [L×X]). It is probably worth to
notice once more that since D is normal x ∈ If if and only if dimf [x]> 1. This follows from the obvious

observation that If = pr1

(
{(x1,x2) ∈ Γf : dim (x1,x2)pr1|

−1
Γf

(x1)> 1}
)
.

In order to better understand the notion of a meromorphic map let us give the descrip-
tion of meromorphic maps in the case when X is projective. Recall that a complex projective
manifold/algebraic space is a compact complex manifold/space X which admits a holomor-
phic imbedding i : X → PN into a complex projective space for some N . Let us see that a
meromorphic mapping from a domain D with values in PN can be naturally represented by N
meromorphic functions on D. This will be explained in the process of the proof of the following
related fact.

Proposition 7.1. Let f : D → PN be a meromorphic mapping. Then for every point x0 ∈ D
there exists a neighborhood V 3 x0 and holomorphic functions ϕ0, ...,ϕN in V such that

f(z) = [ϕ0(z) : ... : ϕN (z)]. (7.1)

Proof. Denote by [w0 : w1 : ... : wN ] the homogeneous coordinates of PN . Let Uj = {w ∈ PN :
wj 6= 0} and let w0/wj , ...,wN/wj be the affine coordinates in Uj . Set Dj = f−1(Uj). Since U0

is isomorphic to CN the restriction f |D0 :D0 −→ U0 is given by holomorphic functions w1/w0 =
f1(z), ...,wN/w0 = fN (z). The coordinate change in PN shows that f |D0∩Dj : D0 ∩Dj −→ PN

is given by functions w1/w0 = 1/f j(z), ...,wN/w0 = fN (z)/f j(z) which are holomorphic in
Dj . Therefore functions f1, ...,fN are meromorphic on D0∪Dj . This proves that f

1, ...,fN are

meromorphic on
⋃N
j=0Dj =D.
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Remark 7.2. I.e., we proved on this stage that a meromorphic mapping f : D → PN can be globally
represented by N meromorphic functions f1, ...,fN , i.e., they are meromorphic on the whole of D. In
particular meromorphic functions on D are precisely the meromorphic mappings from D to P1.

If f1 ≡ ... ≡ fN ≡ 0 then f(D) ≡ 0 ∈ U0. If not, let f1 6≡ 0. One finds holomorphic functions
hj et gj 0 ≤ j ≤ N in a neighborhood V of a given point x0 ∈ D, gj 6≡ 0 for j = 1, ...,N , such
that

f1 = h1
g1
, ...,fN = hN

gN
.

And therefore gets

f :=
[
1 : h1g1 : ... : hNgN

]
=
[∏N

j=1 gj : h1
∏N
j=2 gj : ... : hN

∏N−1
j=1 gj

]
.

This proves that f can be locally written in the form (7.1) as claimed. �
Remark 7.3. a) If the zero sets of ϕj contain a common divisor then we can divide all ϕj by its
equation and get a representation such that GCD(ϕ1, ...,ϕN ) = 1 in every Ox, x ∈ V . In that case the
indeterminacy set of f is

If ∩V = {z ∈ V : ϕ0(z) = ...= ϕN (z) = 0}. (7.2)

Representation (7.1) satisfying (7.2) will be called reduced.
b) In section 6 we considered an example of a holomorphic mapping (6.1) π : C2\{0}→ P1 which doesn’t
extend to the origin holomorphically. But it is easy to see that π extends to zero meromorphically. Indeed,
if (z1,z2) and [w0 : w1] denote the standard coordinates in C2 and homogeneous coordinates in P1 then
the graph of π in C1×P1 closes to an analytic set which is defined by the equation z2w0−z1w1 = 0.

Now it is clear that Theorem 1.4 gives the following statement.

Corollary 7.1. Let f : Rn+1
1−r,1 → X, n > 1, be a meromorphic mapping to a complex algebraic

space. Suppose that for z in some subset A, which is not contained in a countable union of
locally closed proper analytic subsets, the restriction fz of f to A1−r,1×{z} is well defined and

extends to ∆. Then f extends to a meromorphic mapping f̂ : ∆n+1 →X.

7.2. Boundedness of area and volume, normality of the image space. As one can
suggest from the very definition of a meromorphic mapping f the most interesting information
about it is concentrated in that part of its graph Γf which lies over the indeterminacy set If .
Let us make few remarks on this issue. Given a holomorphic mapping f : D \A→ X between
complex manifolds/spaces, where codimA > 2. By Bishop’s Theorem 5.6 its graph Γf extends
to an analytic subset of D×X (or, equivalently, its closure is analytic) if and only if its volume
is locally bounded near A, i.e., for every compact K ⊂D one has

vol [Γf ∩ (K×X)]<∞. (7.3)

Example 7.1. Consider a Hopf surface X2 := C2\{0}/z ∼ 2z. The natural projection π : C2\{0}→X2

covers X by infinitely many times. In fact every shell 1
2n+1 6 ‖z‖6 1

2n is mapped by π onto X2. Therefore
the volume of the graph of π is not locally bounded near A= {0} and π doesn’t extend meromorphically
to zero.

The remark about local boundedness of volume of a meromorphic map near its indeterminacy
set suggests one possible way to extend them: try to estimate the volume of Γf near the eventual
singularity S. This approach in principle can work only if S is ”reasonably small“. But even in
this case it looks to be problematic as the following example of Shiffman and Taylor shows.

Example 7.2. Let D be the unit ball in Cn, n > 2 and S = {z2 = ... = zn = 0}. Then there exists a
plurisubharmonic function in D, real analytic on D \S such that∫

D(r)\S
(ddcu)n =+∞

for every 0< r < 1.
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Remark that if X is Kähler and ω is a Kähler form on X and if f :D\S→X is holomorphic
then ω̃ := f∗ω is a closed positive (1,1)-current on D \S. If f extends trough S then ω̃ extends
too. In particular, locally there should exist in this case a plurisubharmonic function u such
that ω̃ = ddcu. And now the example above shows what type of difficulties could occur: the
unboundedness of the integral shows that the volume of Γf is not locally finite near S. Details
about this example can be found in [Si5]. In [Si5] this difficulty has been overcome in the Kähler
case by using the analyticity of superlevel sets of Lelong numbers of ω̃ and its powers. Our
approach will be different and will work not only in the case of Kähler targets. Namely, it is not
difficult to show that for Kähler ω the areas of disks

area(f(∆z′)) =

∫
f(∆z′ )

ω =

∫
∆z′

ω̃

z′ = (z1, ...,zn−1) ∈ ∆n−1 are uniformly bounded. Also in Example 7.2 this is true, if one
understands

∫
∆z′

ω̃ as
∫
∆z′

ddcu. Our approach will be based on this observation. The key point

in this approach is Theorem 7.3, see the following section.

Remark 7.4. Now let us briefly discuss our basic assumptions on the source and target spaces of a
meromorphic mapping. The source space, say D, will be always supposed to be normal (and reduced).
The reason can be seen from Corollary 1.5, i.e., this is needed already to extend functions. The image
space will be supposed to be just reduced. But let us note that in the proofs we can always suppose that
X is, in addition, also normal. Indeed, let n : X̃ →X be the normalization of X. n is a holomorphic map
which is bimeromorphic. In addition it is biholomorphic outside of the preimage of the proper analytic
subset N of X of non-normal points of X. Now, let f :D→X be our meromorphic mapping, which we
want to extend to some D̃ ⊃D. If f(D) 6∈ N we can lift it to f̃ :D→ X̃, extend (if possible), and then
pull down the extension obtained. If f(D)⊂N then do the same for X =N . Therefore we can suppose
in the process of proof, if needed, that the target space X is normal.

7.3. Sequences and families of meromorphic disks. Let X be a complex space, equipped
with some Hermitian metric h. By ω we denote, as usually, (1,1)-form canonically associated
with h. Let ω0 be some metric form on D (usually clear from the context). Set ω = ω0+ωh,
this is a metric form on D×X. Let q > 1 be the dimension of D. The volume of the graph Γϕ
of a meromorphic mapping ϕ :D→X is given by

vol(Γϕ) =
∫
Γϕ
ωq =

∫
D(ϕ

∗ωh+ω0)
q. (7.4)

Here by ϕ∗ωh we denote the preimage of ωh under ϕ, i.e., ϕ∗ωh = (pr1)∗pr
∗
2ωh.

Remark 7.5. Let us give the sense to the formula (7.4). The first integral there has perfectly sense
since we are integrating a smooth form over a complex variety. Denote by Iεϕ the ε-neighborhood of the
indeterminacy set Iϕ of ϕ. Then (7.4) shows that the limit

lim
ε→0

∫
D\Īε

ϕ

(
ω0+ϕ

∗ωh

)n
= lim

ε→0

∫
D\Īε

ϕ

n∑
p=0

Cp
nω

n−p
0 ∧ϕ∗ωp

h (7.5)

exists. Therefore all ϕ∗ωp
h are well defined on D as positive currents.

Definition 7.2. By a meromorphic q-disc in a complex space X we shall understand a meromor-
phic mapping ϕ : D → X, where D is a relatively compact domain in some irreducible, normal
complex space of pure dimension q > 1.

We shall mostly suppose that ϕ is defined in a neighborhood of D̄. The case q = 1 is quite
special. In that case meromorphic disk is actually holomorphic, see Remark 7.1. When D = ∆
we called such disk an analytic disk. Recall furthermore that the Hausdorff distance between
two subsets A and B of a metric space (Y,ρ) is a number ρ(A,B) = inf{ε : Aε ⊃ B,Bε ⊃ A}.
Here by Aε we denote the ε-neighborhood of the set A, i.e. Aε = {y ∈ Y : ρ(y,A)< ε}. Now let
{ϕr :D→X} be a sequence of meromorphic mappings.
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Definition 7.3. We shall say that {ϕr} strongly converge on compacts in D to a meromorphic
map ϕ :D→X, if for every relatively compact open D1 bD the graphs Γϕr ∩(D1×X) converge
in the Hausdorff metric on D1×X to the graph Γϕ∩ (D1×X).

We shall write ϕr → ϕ to denote the strong convergence. Later on in section 11 we shall
see that a strongly converging sequence converges in (even a stronger) topology of cycles. In
particular the volumes of Γϕr over compacts in D stay uniformly bounded, see Theorem 11.1.
For the proof of the following lemma we refer to [Iv6], Lemma 2.3.1.

Lemma 7.1. Let {ϕr : D → X} be a sequence of meromorphic q-disks in a complex space X.
Suppose that there exists a compact K ⊂X and a constant C <∞ such that:

a) ϕr(D)⊂K for all r;
b) vol(Γϕr)6 C for all r.

Then there exists a subsequence {ϕrj} such that:
1) the sequence {Γϕrj

} converges in Hausdorff metric to an analytic subset Γ of D×X of

pure dimension q;
2) Γ = Γϕ∪ Γ̂, where Γϕ is the graph of some meromorphic mapping ϕ :D→X and Γ̂ is a

pure q-dimensional analytic subset of D×X such that A := pr1(Γ̂) is a proper analytic
subset of D;

3) ϕrj → ϕ on compacts in D \A;
4) one has

lim
j→∞

vol(Γϕrj
)> vol(Γϕ)+ vol(Γ̂). (7.6)

5) For every 16 p6 dimX−1 there exists a positive constant νp = νp(K,h) such that the
volume of every pure p-dimensional compact analytic subset of X which is contained in K
is not less then νp.

6) Put Γ̂ =
⋃q−1
p=0Γp, where Γp is a union of all irreducible components of Γ̂ such that

dim [pr1(Γp)] = p. Then

vol2q(Γ̂)>
∑q−1

p=0 vol2p(Ap) ·νq−p, (7.7)

where Ap = pr1(Γp).

Now let us turn to the families of meromorphic disks. Let S be a set, and W b Cq an open
subset equipped with the usual Euclidean metric from Cq.

Definition 7.4. By a family of meromorphic q-disks in a complex space X we shall understand
a subset F ⊂ S×W ×X such that, for every s ∈ S the set Fs = F ∩{s}×W ×X is a graph of a
meromorphic mapping of W into X. If S is equipped with topology we shall say that the family
F is continuous at point s0 ∈ S if H− lims→s0 Fs = Fs0.

Here by H− lims→s0 Fs we denote the limit of closed subsets of Fs in the Hausdorff metric
on W ×X. As we already mentioned after Definition 7.3 such continuity is equivalent to the
continuity in the cycle topology of Definition 7.7. F is continuous if it is continuous at each
point of S. IfW0 is open inW then the restriction FW0 is naturally defined as F∩(S×W0×X).
Now let S be a complex space itself.

Definition 7.5. We call a family F meromorphic if the closure F̂ of the set F is an analytic
subset of S×W ×X and the natural projection F̂ → S×W is proper.

Our main statement about meromorphic families Theorem 7.1 concerns with the interaction
of notions of continuity and meromorphicity of families of meromorphic q-disks. Consider a
meromorphic mapping f : V ×W0 −→ X to a reduced complex space X, where V is a domain
in Cp and W0 b W b Cq are domains in Cq, p,q > 1. Let S be some subset of V and s0 ∈ S
some accumulation point of S. Suppose that for each s ∈ S the restriction fs = f |{s}×W0

is well
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defined, i.e., Ws := {s}×W0 6⊂ If , and meromorphically extends toW . We suppose additionally
that there is a compact K ⊂ X such that for all s ∈ S one has fs(W ) ⊂ K. Let, as in Lemma
7.1 denote by νj = νj(K) the minima of volumes of j-dimensional compact analytic subsets
contained in our compact K ⊂X. Fix some W0 bW1 bW and put

ν =min{vol(Aq−j) ·νj : j = 1, . . . , q}, (7.8)

where Aq−j are running over all (q− j)-dimensional analytic subsets of W , intersecting W̄1.
Clearly ν > 0. In the following theorem the volumes of graphs are taken over W .

Theorem 7.1. Suppose that there exists a neighborhood U 3 s0 such that, for all s1,s2 ∈ S∩U
|vol(Γfs1 )− vol(Γfs2 )|< ν/2. (7.9)

If s0 ∈ S is a locally regular point of S then there exists a neighborhood V1 3 s0 in V such, that
f meromorphically extends to V1×W1.

Proof. The proof will be done in three steps.

Step 1. {Γfs} is continuous at s0. Indeed, let sn ∈ S,sn → s0 as n → ∞. Then from (7.9)
we see that vol(Γfsn ) are uniformly bounded and thus by Lemma 7.1 Γfs0 ⊂ (W0×X) extends
to a graph of meromorphic mapping over W . The graph of this extension be also denoted as
Γfs0 . Now if one could find a sequence sn ∈ S,sn −→ s0 as n −→ ∞ such that Γfsn 6−→ Γfs0
in Hausdorff metric, then by Lemma 7.1, using the boundedness of volumes of Γfs , one finds a
subsequence, still denoted as sn such that Γfsn −→ Γ ⊃ Γfs0 , but not equal Γfs0 . But then, by

the relations (7.6) and (7.7) of Lemma 7.1 one has that

lim
n−→∞

vol(Γfsn )> ν+ vol(Γfs0 ),

which contradicts (7.9).
Our aim is to prove now that the family F =

⋃
s∈S Γfs ⊂ S×W0×X extends to a meromorphic

family on V1×W1×X for some neighborhood V1 3 s0.
Step 2. F extends to a neighborhood of {s0}×RegΓfs0 . Fix a point z0 ∈ RegΓfs0 ∩ (W0×X).
Here we consider Γfs0 as analytic space itself. So RegΓfs0 is connected dense subset in Γfs0 and

SingΓfs0 := Γfs0 \RegΓfs0 is a proper analytic subset of Γfs0 . Take a point z1 ∈ RegΓfs0∩(W×X)

and take a path γ : [0,1]−→ RegΓfs0 from z0 to z1. We shall prove that there is a neighborhood

Ω of γ([0,1]) in W ×X and a neighborhood V 3 s0 such that F ∩(V ×Ω) extends to an analytic
set in V ×Ω.

By T denote the set of those t ∈ [0,1] that there exists a neighborhoods Ωt ⊃ γ([0, t]) and
Vt 3 s0 such that F ∩Vt×Ωt extends to an analytic set in Vt×Ωt. Note that T is open and
contains the origin. Now let t0 be the cluster point of T . Find the chart Σ ∼= ∆q×∆n for the
space W ×X in the neighborhood of γ(t0) with coordinates u1, . . . ,uq,v1, . . . ,vn in such a way
that γ(t0) = 0 and Γfs0 ∩Σ = {(u,v) : v = F0(u)} for some holomorphic map F0 : ∆q −→ ∆n.

By the Hausdorff continuity of our family {Γfs} in s0 Γfs ∩Ω = {(u,v) : v = Fs(u)} for s close
to s0, Fs holomorphic and continuously depending on s.

Take t1 ∈ T close to t0, such that γ([0, t1]) ⊂ Σ. We have some neighborhoods Vt1 3 s0,Ωt1 3
γ(t1) such that F extends analytically to Vt1×Ωt1 . Let u1 ∈∆q be such that γ(t1) = (u1,F0(u1)).
Then there is a neighborhood, say ∆q

r(u1), such that Γfs ∩ (Vt1 ×∆q
r(u1)×∆n) is defined by the

equation v = F (u,s), where F (u,s) = Fs(u) : Vt1 ×∆q
r(u1) → ∆n as above. From the condition

of the Lemma we see that for s ∈ S close to s0 F (u,s) extends onto ∆q. So by Lemma 5.1
F (u,s) extends holomorphically to Vt0,ε×∆q

1−ε, where ε is arbitrarily small (Vt0,ε depending on

ε ). But this means that F extends analytically onto Vt0 ×∆q
1−ε×∆n. Thus T is closed and

coincides with [0,1].
We proved in fact that for any compact subsetR⊂ RegΓfs0∩(W1×X) there are neighborhoods

VR 3 s0,ΩR ⊃R such that Γf analytically extend to VR×ΩR.
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Step 3. F is analytic near s0. Cover the set SingΓfs0 ∩ [{s0}× W̄1×X] with a finite number of

open charts of the form 1/2Vα×Ωα, where Vα ∼=∆q and Ωα ∼=∆n, and such that Γfs0 ∩(Vα×Ωα)
is analytic cover of Vα. By Step 1 we can find an open neighborhoods VR 3 s0 and ΩR ⊃ R =
Γfs0 \ [

⋃
α 1/2Vα×Ωα] such that F analytically extends to VR×ΩR.

Fix now some α. All that remained to prove is that Γf analytically extends to V ′α×Vα×Ωα for
some neighborhood of V ′α 3 s0. But this again follows from Lemma 5.1 applied to the coefficients
of polynomials which define the cover Γfs ∩ (Vα×Ωα)→ Vα. Theorem is proved. �
7.4. Cycle space associated with a meromorphic mapping. We shall freely use the results
from the theory of cycle spaces developed by D. Barlet in [Ba1]. Recall that an analytic q-
cycle in a reduced, normal complex space Y is a formal sum Z =

∑
j njZj , where {Zj} is a

locally finite sequence of analytic subsets of pure dimension q and nj are positive integers called
multiplicities of Zj . By |Z| :=

⋃
jZj we denote the support of Z. Set Aq(r,1) = ∆q \∆̄q(r), i.e.,

Aq(r,1) = Aqr,1 in our previous notations. Let X be a reduced, normal complex space equipped

with some Hermitian metric and let a holomorphic mapping f : ∆̄n× Āq(r,1) → X be given.
We shall start with the following space of cycles related to f . Fix some positive constant C and
consider the set Cf,C of all analytic q-cycles Z in Y := ∆n+q×X such that:

(a) Z ∩ [∆n× Āq(r,1)×X] = Γfz ∩ [Āqz(r,1)×X] for some z ∈ ∆n, where Γfz is the graph of
the restriction fz := f |Aq

z(r,1)
. Here Aqz(r,1) := {z}×Aq(r,1). This means, in particular, that

for this z the mapping fz extends meromorphically from Āqz(r,1) to ∆̄q
z := {z}× ∆̄q.

(b) vol(Z)<C and the support |Z| of Z is connected.

We put Cf :=
⋃
C>0Cf,C and we are going to show that Cf is an analytic space of finite

dimension in a neighborhood of each of its points.

Definition 7.6. By a coordinate chart adapted to Z we shall understand an open set V in Y
such that V ∩ |Z| 6= ∅ together with an isomorphism j of V onto a closed subvariety Ṽ in the
neighborhood of ∆̄q× ∆̄k such that j−1(∆̄q×∂∆k)∩|Z|=∅.

We shall denote such a chart as (V,j). The image j(Z) of cycle Z under the isomorphism
j is the image of the underlying analytic set together with multiplicities. Sometimes we shall,
following Barlet, denote: ∆q = U,∆k =B and call the quadruple E = (V,j,U,B) a scale adapted
to Z. If pr : Cq×Ck → Cq is the natural projection, then the restriction pr |j(Z): j(Z) → ∆q is
a branched cover of degree say d. The number k depends on the imbedding dimension of Y (or
X in our case). Sometimes we shall skip j in our notations and consider Z ∩V as an analytic
subset readily in a neighborhood of ∆̄q × ∆̄k such that Z ∩ (∆̄q × ∂∆k) = ∅. The branched
cover pr |Z : Z ∩ (∆q×∆k) → ∆q defines in a natural way a mapping ϕZ : ∆q → Symd(∆k), the
d-th symmetric power of ∆k, by setting ϕZ(z) = (pr |Z)−1(z). This allows to represent a cycle
Z ∩∆q+k with |Z|∩ (∆̄q×∂∆k) =∅ as the graph of a d-valued holomorphic map.

Definition 7.7. The topology defined by parameterizations ϕZ is called the cycle topology.

This defines a metrizable topology on the space of q-cycles in Y , and this topology is equivalent
to the topology of currents: Zr → Z if for any continuous (q,q)-form χ with compact support
one has ∫

Zr

χ→
∫
Z
χ,

see [Fj]. It is also equivalent to the Hausdorff topology under an additional condition of bound-
edness of volumes, i.e., Zr → Z if and only if for every compact K b Y there exists CK > 0
such that vol2q(Zr ∩K) 6 CK and Zr ∩K → Z ∩K with respect to the Hausdorff distance. We

denote the space of q-cycles on Y endowed with the topology described as above by C loc
q (Y ). By

Bq(X) we denote the Barlet space of compact q-cycles in X, i.e., cycles with compact support.
Without loss of generality we suppose that our holomorphic mapping f is defined on ∆n(a)×

Aq(r1, b) with a,b > 1, r1 < r. Now, each Z ∈ Cf can be covered by a finite number of adapted
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neighborhoods (Vα, jα). Such covering we be called an adapted covering. Denote the union
⋃
αVα

by WZ . Taking this covering to be small enough, we can furthermore suppose the following.

(c) If Vα1 ∩Vα2 6=∅, then on every irreducible component of the intersection Z ∩Vα1 ∩Vα2

a point x1 is fixed so that:
(c1) either there exists a polycylindric neighborhood ∆q

1 ⊂∆q of prα1
(jα1(x1)) such that the

chart V12 = j−1α1
(∆q

1×∆q) is adapted to Z and is contained in Vα2, where V12 is given the
same imbedding jα1, here prα is the projection pr which corresponds to the chart Vα;

(c2) or, this is fulfilled for Vα2 instead of Vα1.

(d) For some fixed 1< c < a if y ∈ Vα is such that pr1(y) ∈ ∆̄n(c)×Aq( r+1
2 ,1), then pr1(V̄α)⊂

∆̄n(a+c2 )×Aq(r,1). Here by pr1 : ∆
n+q×X →∆n+q we denote the natural projection.

Case (c1) can be realized when the imbedding dimension of Vα1 is smaller or equal to that of
Vα2 , and (c2) in the opposite case, see [Ba1], pp. 91-92. Let E = (V,j,U,B) be a scale on
the complex space Y . Denote by HY (Ū ,Sym

d(B)) := HolY (Ū ,Sym
d(B)) the Banach analytic

set of all d-sheeted analytic subsets on Ū ×B, contained in j(Y ). As it was told the subsets
WZ together with the topology of uniform convergence on HY (Ū ,Sym

d(B)) define a metrizable
topology on our cycle space Cf , which is equivalent to the topology of currents.

We refer the reader to [Ba1] for the definition of the isotropicity of the family of elements from
HY (Ū ,Sym

d(B)) parameterized by some Banach analytic set S. Space HY (Ū ,Sym
d(B)) can be

endowed by another (more rich) analytic structure. This new analytic space will be denoted

by ĤY (Ū ,Sym
d(B)). The crucial property of this new structure is that the tautological family

ĤY (Ū ,Sym
d(B))×U ′ → Symd(B) is isotropic in HY (Ū

′,Symd(B)) for any relatively compact
polydisk U ′ b U , see [Ba1]. The key point is that for isotropic families {Zs : s ∈ S} parameterized
by Banach analytic sets the following projection changing theorem of Barlet holds.

Theorem 7.2. (D. Barlet, [Ba1]). If the family {Zs : s ∈ S} ⊂ HY (Ū ,Sym
d(B)) is isotropic,

then for any scale E1 = (V1, j1,U1,B1) in U×B adapted to some Zs0, there exists a neighborhood
Us0 of s0 in S such that {Zs : s ∈ Us0} is again isotropic in V1.

This means, in particular, that the mapping s→ Zs∩V1 ⊂HY (Ū1,Sym
d(B1)) is analytic, i.e.,

can be extended to a neighborhood of any s ∈ Us0 . Neighborhood means here a neighborhood
in some complex Banach space where S is defined as an analytic subset. This leads naturally to
the following

Definition 7.8. A family Z of analytic cycles in an open set W ⊂ Y , parameterized by a
Banach analytic set S, is called analytic in a neighborhood of s0 ∈ S if for any scale E adapted
to Zs0 there exists a neighborhood U 3 s0 such that the family {Zs : s ∈ U} is isotropic.

7.5. Analyticity of Cf and construction of Gf . Let f : ∆̄n×Āq(r,1)→X be our map. Take
a cycle Z ∈ Cf and a finite covering (Vα, jα) satisfying conditions (c) and (d). As above, put
WZ =

⋃
Vα. We divide Vα’s into two types.

Type 1. These are Vα as in (d). For them put

Hα :=
⋃
z

{[Γfz ∩ Āqz(r,1)×X]∩Vα} ⊂HY (Ūα,Sym
dα(Bα)). (1.2.1)

The union is taken over all z ∈∆n such that Vα is adapted to Γfz .

Type 2. These are all others. For Vα of this type we put Hα := ĤY (Ūα,Sym
dα(Bα)).

All Hα are open sets in complex Banach analytic subsets and for Vα of the first type they
are of dimension n and smooth. The latter follows from Barlet-Mazet theorem, which tells that
if h : A → S is a holomorphic injection of a finite dimensional analytic set A into a Banach
analytic set S, then h(A) is also an Banach analytic set of finite dimension, see [Mz].

For every irreducible component of Vα ∩Vβ ∩Zl we fix a point xαβl on this component (the
subscript l indicates the component), and a chart Vα∩Vβ ⊃ (Vαβl,ϕαβl) 3 xαβl adapted to this
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component as in (c). Put Hαβl := Ĥ(∆q,Symdαβl(∆p)). In the sequel it will be convenient to

introduce an order on our finite covering {Vα} and write {Vα}Nα=1.
Consider finite products Π(α)Hα and Π(αβl)Hαβl. In the second product we take only triples

with α < β. These are Banach analytic spaces and by the Projection Changing Theorem of
Barlet, for each pair α < β we have two holomorphic mappings Φαβ : Hα → Π(l)H(αβl) and
Ψαβ : Hβ → Π(l)Hαβl. This defines two holomorphic maps Φ,Ψ : Π(α)Hα → Πα<β,lHαβl. The
kernel A of this pair, i.e., the set of h = {hα} with Φ(h) = Ψ(h), consists exactly from analytic
cycles in the neighborhood WZ of Z. This kernel is a Banach analytic set, and moreover the
family A is an analytic family in WZ in the sense of Definition 7.8.

Lemma 7.2. A is an analytic set of finite dimension.

Proof. Take a smaller covering {V ′
α, jα} of Z. Namely, V

′
α = Vα for Vα of the first type and

V
′
α = j−1α (∆q

1−ε×∆k) for the second. In the same manner define H
′
α and H

′
:= ΠαH

′
α. Repeating

the same construction as above we obtain a Banach analytic set A′
. We have a holomorphic

mapping K : A → A′
defined by the restrictions. The differential dK ≡ K of this map is a

compact operator by Montel’s theorem.
Let us show that we also have an inverse analytic map F : A′ → A. The analyticity of F

means more precisely that it should be defined in some neighborhood of A′
in H

′
. For scales

Eα = (Vα,Uα,Bα, jα) of the second type the mapping Fα : A′ → HY (Ūα,Sym
dαBα) is defined

by the isotropicity of the family A′
as in [Ba1]. In particular, this Fα extends analytically to a

neighborhood in H
′
(!) of each point of A′

.

For scales Eα = (Vα,Uα = U
′
α,Bα, jα) of the first type define Fα as follows. Let Y = (Yα)

be some point from H
′
. Using the fact that Hα = H

′
α in this case, we can correctly define

Fα(Y ) := Yα viewed as an element of Hα. This directly defines Fα on the whole H
′
. Analyticity

is also obvious.
Put F := ΠαFα : A′ → A. F is defined and analytic in a neighborhood of each point of A′

.
Observe further that Id−dK ◦dF is Fredholm. Since A′ ⊂ {h ∈ Π(i)H

′
i : (Id−K ◦F )(h) = 0},

we obtain that A′
is an analytic subset in a complex manifold of finite dimension. �

Remark 7.6. a) Isotropicity condition was crucial to get the inverse map F in the proof.

b) If Z was compact cycle then this proof gives the proof of the Douadi’s theorem: the space of compact
analytic cycles is a finite dimensional analytic space in a neighborhood of each of its points. Remark that
in this case one needs to consider only scales of type 2.

Therefore Cf is an analytic space of finite dimension in a neighborhood of each of its points.
Cf,C are open subsets of Cf . Note further that for C1 < C2 the set Cf,C1 is an open subset of
Cf,C2 . This implies that for each irreducible component KC of Cf,C there is a unique irreducible
component K of Cf containing KC and moreover KC is an open subset of K. Of course, in
general the dimension of irreducible components of Cf is not bounded, and in fact the space Cf
is to big. Let us denote by Gf the union of irreducible components of Cf that contain at least
one irreducible cycle or, in other words, a cycle of the form Γfz for some z ∈ ∆n. Denote by
Zf := {Za : a ∈ Cf} the universal family.

Lemma 7.3. 1. Irreducible cycles form an open dense subset G0
f in Gf .

2. The dimension of Gf is not greater than n.

Proof. 1. G0
f is clearly open, this follows immediately from (4) and (6) of Lemma 7.1. Denote

by Ĉf the normalization of Cf and denote by Ẑf the pull-back of the universal family under

the normalization map N : Ĉf → Cf . Consider the following ”forgetting of extra compact

components” mapping Π : Ĉf → Ĉf . Note that each cycle Z ∈ Ĉf can be uniquely represented

as Z = Γfs +ΣNj=1B
j
s , where each Bj

s is a compact analytic q-cycle in ∆q
s(r)×X with connected
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support. Mark those Bj
s , which possess the following property: there is a neighborhood in V of

Z in Ĉf such that every cycle Z1 ∈ V decomposes as Z1 = Ẑ1+B1, where B1 is a compact cycle

in a neighborhood of Bj
s in the Barlet space Bq(X). Our mapping Π : Ĉf → Ĉf sends each cycle

Z to the cycle obtained from this Z by deleting all the marked components. This is clearly an
analytic map. Every irreducible cycle is clearly a fixed point of Π. Thus the set of fixed points
is open in Ĝf ⊂ Ĉf and so contains the whole Ĝf .

Now we shall prove that every fixed point Z of Π is a limit of irreducible cycles. For the sequel
remark that the compositions ψ := p◦ev : Zf →∆n+q and ϕ := pr1 ◦ev◦π−1 : Cf →∆n are well
defined. Here pr1 : ∆

n+q×X → ∆n is one more natural projection and ev : Zf → ∆n+q×X is

the natural evaluation map. Let ϕ(Z) = s ∈∆n and Z = Γfs +ΣNj=1B
j
s . Z being a fixed point of

Π means that in any neighborhood of Z one can find a cycle Z1 such that Z1 = Γfs1 +ΣNj=2B
j
s1 ,

where Bj
s1 are compact cycles close to Bj

s . Observe that every cycle in a neighborhood of Z1 has
the same form, i.e., in its decomposition one has j > 2. This follows from Lemma 7.1. Since Z1

is also a fixed point for Π, we can repeat this procedure N times to obtain finally an irreducible
cycle in a given neighborhood of Z. We conclude that G0

f is dense in Gf .
2. Take an irreducible Z ∈ G0

f ∩Reg (Gf ). Take a neighborhood Z ∈ V ⊂ Reg (Gf ) that consists
from irreducible cycles only. Then ϕ |V : V → ∆n is injective and holomorphic. Therefore
dimGf 6 n. �
Definition 7.9. We shall call the space Gf the cycle space associated to a meromorphic map f .
By Gf,C we shall denote the open subset of Gf consisting of Z with vol(Z)<C.

7.6. Proof of the Main Statement. . Now we are ready to state and prove the main result
of this section, namely Theorem 7.3. From now on we restrict our universal family Zf onto Gf
without changing notations. I.e., now Zf,C := {Za : a ∈ Gf,C}, Zf :=

⋃
C>0Zf,C and π : Zf →Gf

is the natural projection. Zf is a complex space of finite dimension. We have an evaluation map

ev : Zf →∆n+q×X, (7.10)

defined by Za ∈ Zf → Za ⊂ ∆n+q ×X. Evaluation map (7.10) will be used in the proof of
the theorem below. Recall that we suppose that our complex space X is equipped with some
Hermitian metric h.

Theorem 7.3. Let a holomorphic map f : ∆̄n× Āq(r,1)→X into a complex space X be given.
Suppose that:

1) for every z ∈ ∆̄n the restriction fz extends meromorphically to the q-disk ∆̄q
z;

2) the volumes of graphs of these extensions are uniformly bounded;
3) there exists a compact K bX which contains f(∆̄n× Āq(r,1)) and f(∆̄q

z) for all z ∈ ∆̄n.
Then f extends meromorphically to ∆n+q.

Proof. Denote by ν = νq(K) the minimal volume of a compact q-dimensional analytic subsets
in K, ν > 0 by Lemma 7.1. Denote by W the maximal open subset of ∆n such that f extends
meromorphically onto ∆n×Aq(r,1)∪W ×∆q. Set S =∆n \W . Let

Sl = {z ∈ S : vol(Γfz)6 l · ν
2
}. (7.11)

The maximality of W (and thus the minimality of S) and Theorem 7.1 imply that Sl+1 \Sl are
pluripolar and by the Josefson theorem so is S. In particular, W 6= ∅. Consider the analytic
space

Gf,2C0,c := {Z ∈ Gf,2C0 : ‖ϕ(Z)‖< c}, (7.12)

where 0 < c 6 1 is fixed. C0 is taken here such that vol(Γfz) 6 C0 for all z ∈ ∆̄n. Since, by
Lemma 7.3 cycles of the form Γfz are dense in Gf,2C0,1, we have that for every Z ∈ Gf,2C0,1 in
fact vol(ev(Z)) 6 C0. Therefore we see that Ḡf,C0,1∩ϕ−1(∆n(1)) is closed and open in Gf,2C0,1

and in fact coincides with Gf,2C0,1. Closures we take in the cycle space Gf .
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For any c < 1 the set Ḡf,C0,c = ϕ−1(∆̄n(c)) is compact by the Harvey-Shiffman generalization
of Bishop’s theorem. Therefore ϕ : Gf,2C0,1 → ∆n is proper. Therefore ev : Zf → ∆n+q×X is
also proper and by the Remmert proper mapping theorem its image is an analytic set extending
the graph of f . The latter follows from the fact that ϕ(Gf,2C0,1) ⊃ W and therefore in fact
ϕ(Gf,2C0,1) = ∆n(1). �
7.7. Versions of Levi’s theorem. It should be said that Theorem 7.3 will be not always
sufficient for us in this text. Moreover, if one looks on it from the point of view of Levi’s Theorem
1.4 one naturally becomes interested wether it is possible to give a more precise statement. Two
points should be explained here.

First is about boundedness of volumes condition. Of course it is a necessary condition. But
also it is not difficult to see that in the case X = P1 this is exactly the boundedness of poles
counted with multiplicities (remark that winding numbers of f(z1, ·)|∂∆ are fixed). Therefore for
general X it is the boundedness of volumes condition which replaces the boundedness of number
of poles in Levi’s theorem.

Second, in applications one often deals with the situation where a holomorphic map f :
∆n×Aq(r,1)→X extends from Aqz(r,1) to ∆q

z not for all z ∈∆n but only for z in some ”thick”
set S. Recall that a subset S ⊂∆n we call thick at s0 if for any neighborhood U of s0 U ∩S is
not contained in a proper analytic subset of U . In the case of dimension one, i.e., n= 1 the set
S is thick at s0 if and only if S contains a sequence {sn} which converges to s0.

Theorem 7.4. Let f : ∆×Aq1−r,1 → X be a holomorphic map to a reduced complex space

X. Suppose that for a sequence {sn} of points in ∆, converging to the origin the restrictions
fsn := f |Aq

sn
extend meromorphically to ∆q

sn. Suppose in addition that:

1) there exists a compact K bX such that
[⋃∞

n=1 f(∆
q
sn)
]
∪f(∆×Aq1−r,1)⊂K;

2) volumes of graphs Γf |∆sn
are uniformly bounded.

Then there exists an ε > 0 such that f extends as a meromorphic map to ∆(ε)×∆q.

In dimensions starting from two the situation becomes more complicated, the same statement
for f : ∆n×A1−r,1 →X with n> 2 fails to be true as the following example shows, see [Iv5].

Example 7.3. There exists a compact complex 4-fold X4 and holomorphic mapping f : ∆×
∆ 1

2
×A(12 ,1)→X4 such that:

(1) for any s ∈ S = {(z0,z2) ∈ ∆×∆ 1
2
: |z0|2 > |z2|2} the restriction fs = f |As(r,1) extends

holomorphically to ∆s;
(2) for any t > 1 there is a constant Ct < ∞ such that for all s ∈ St = {(z0,z2) ∈ ∆×∆ 1

2
:

|z0|2 > t · |z2|2} one has area(Γfs)6 Ct;
(3) but for all z ∈ ∆2 \ S̄ = {(z0,z2) ∈ ∆×∆ 1

2
: |z0|2 < |z2|2} the inner circle of the

annulus Az(r,1) := {z1 ∈ ∆z : 1 > |z1|2 > r2} consists from essentially singular points of
fz :Az(r,1)→X4, here r2 = |z2|2−|z0|2.

Remark that St in this example is thick at origin. Let us give a condition on X sufficient
to maintain the conclusion of Theorem 7.4 also for n > 2. Denote by ev : Z → X the natural
evaluation map from the universal space Z over Bq(X) to X.

Definition 7.10. Let us say that X has unbounded cycle geometry in dimension q if there exists
a path γ : [0,1[→Bq(X) with vol2q(ev(Zγ(t)))→∞ as t→∞ and ev(Zγ(t))⊂K for all t, where
K is some compact in X.

Theorem 7.5. Let f : ∆n×Aq(r,1) → X be a holomorphic mapping into a normal, reduced
complex space X. Suppose that there is a constant C0 <∞ and a compact K bX such that for
s in some subset S ⊂∆n, which is thick at origin the following holds:

(a) the restrictions fs := f |Aq
s(r,1)

extend meromorphically onto the polydisk ∆q
s, and
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vol(Γfs)6 C0 for all s ∈ S;
(b) f(∆n×Aq(r,1))⊂K and fs(∆

q)⊂K for all s ∈ S.
If X has bounded cycle geometry in dimension q, then there exists a neighborhood W 3 0 in ∆n

and a meromorphic extension of f onto W ×∆q.

We shall use the Theorem 7.5 also in the case when q = 1 (but not only). In this case it
admits a nice refinement. A 1-cycle Z = ΣjnjZj is called rational if all Zj are rational curves,
i.e., an images of the Riemann sphere P1 in X under a non constant holomorphic mappings.
Considering the space of rational cycles R(X) instead of Barlet space B1(X) we can define as
in Definition 7.10 the notion of bounded rational cycle geometry.

Corollary 7.2. Suppose that in the conditions of Theorem 7.5 one has additionally that q = 1.
Then the conclusion of this theorem holds provided X has bounded rational cycle geometry.

Let us give the proofs of Theorems 7.4, 7.5 and of Corollary 7.2.

Case n = 1. Define G0 as the set of all limits {Γfsn ,sn ∈ S,sn → 0}. Consider the union Ĝ0 of
those components of Gf,2C0 that intersect G0. At least one of these components, say K, contains
two points a1 and a2 such that Za1 projects onto ∆q

0 and Za2 projects onto ∆q
s with s 6= 0. This

is so because S contains a sequence converging to zero. Consider the restriction Zf |K of the
universal family to K. This is a complex space of finite dimension. Join the points a1 and a2 by
an analytic disk h : ∆→K, h(0) = a1,h(1/2) = a2. Then the composition ψ = ϕ◦h : ∆→∆ is
not degenerate because ψ(0) = 0 6= s= ψ(1/2). Here ϕ := pr1◦ev◦π−1 : Cf →∆n was defined in
the proof of Lemma 7.3. Map ϕ restricted to Gf will be denoted also as ϕ. Therefore ψ is proper
and obviously such is the map ev : Z |ψ(∆)→ F (Z |ψ(∆)) ⊂∆1+q×X. Therefore ev(Z |ψ(∆)) is
an analytic set in W ×∆q ×X for small enough W extending Γf by the reason of dimension.
This proves Theorem 7.4.

Case n> 2. We shall treat this case in two steps.

Step 1. Fix a point z ∈ ∆n such that ϕ(Gf ) 3 z. Then there exists a relatively compact open
V ⊂ Gf , which contains Gf,C0 such that ϕ(V ) is an analytic variety in some neighborhood W
of z. Indeed, consider the analytic subset ϕ−1(z) in Gf . Every Za with a ∈ ϕ−1(z) has the
form Ba +Γfz , where B is a compact cycle in ∆q

z ×X. Therefore connected components of
ϕ−1(z) parameterize connected and closed subvarieties in Bq(∆q×X). Holomorphicity of f on
∆n×Aq(r,1) and condition (b) of the Theorem 7.5 imply that Ba ⊂ ∆̄q

z×K. So, if ϕ−1(z) had
non compact connected components, this would imply the unboundedness of cycle geometry of
X.

Therefore all connected components of ϕ−1(z) should be compact. Let K denote the union of
connected components of ϕ−1(z) intersecting Gf,C0 . Since K is compact, there obviously exist a
relatively compact open V b Gf containing Gf,C0 and K, and a neighborhood W 3 z such that
ϕ |V : V →W is proper. By the Remmert’s proper mapping theorem. ϕ(V ) ⊂W is an analytic
subset of W .

Step 2. If S is thick at z then there exists a neighborhood W 3 z such that f meromorphically
extends onto W ×∆q. Indeed, since ϕ(V ) ⊃ S ∩W and S is thick at the origin, the first step
implies that ϕ(V )∩W = W . Since V b Gf there exist a constant C s.t. vol{Zs : s ∈ V } 6 C.
This allows to apply the Theorem 7.3 and obtain the extension of f onto W ×∆q. This proves
the Theorem 7.5.

Case q = 1. The limit of a sequence of analytic disks of bounded area is an analytic disk plus a
rational cycle, see Lemma 6.1. Therefore we need to consider only the space of rational cycles
in this case. The rest is obvious. This gives Corollary 7.2. �

7.8. A remark about spaces with bounded cycle geometry. To apply the Theorem 7.5
one needs to check the boundedness of cycle geometry of the space X. We shall do that for a
wide class of complex spaces in Proposition 7.2 below.
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Remark 7.7. We start from the following simple observation:

Every compact complex manifold of dimension q+1 carries a strictly positive (q,q)-form Ωq,q

with ddcΩq,q = 0.

Indeed, either a compact complex manifold carries a ddc-closed strictly positive (q,q)-form or
it carries a bidimension (q+1, q+1)-current T with ddcT > 0 but 6≡ 0. In the case of dimX = q+1
such current is nothing but a nonconstant plurisubharmonic function, which doesn’t exists on
compact X.

a) Let us introduce the class Gq of normal complex spaces, carrying a nondegenerate positive
ddc-closed strictly positive (q,q)-forms. Note that the sequence {Gq} is rather exhaustive: Gq
contains all compact complex manifolds of dimension q+1.

b) Introduce furthermore the class of normal complex spaces P−q which carry a strictly positive

(q,q)-form Ωq,q with ddcΩq,q 6 0. Note that P−q ⊃ Gq.

Proposition 7.2. Let X ∈ P−q and let K be an irreducible component of Bk(X) such that
ev(Z |K) is relatively compact in X. Then:

1) K is compact.

2) If Ωq,q is a ddc-negative (q,q)-form on X, then
∫
Zs

Ωq,q ≡ const for s ∈ K.

3) X has bounded cycle geometry in dimension k.

Proof. 1) Let ev : Z |K→ X be the evaluation map, and let Ωq,q be a strictly positive ddc-
negative (q,q)-form on X. Then

∫
Zs

Ωq,q measures the volume of Zs. Let us prove that the

function v(s) =
∫
Zs

Ωq,q is plurisuperharmonic on K. Take an analytic disk ϕ : ∆→K. Then for
any nonnegative test function ψ on ∆ by Stokes theorem and reasons of bidegree we have

< ψ,∆ϕ∗(v)>=

∫
∆
∆ψ ·

∫
Zϕ(s)

Ωq,q =

∫
Z|ϕ(∆)

ddc(π∗ψ)∧Ωq,q =

=

∫
Z|ϕ(∆)

π∗ψ∧ddcΩq,q 6 0.

Here π : Z |K→ K is the natural projection. So ∆ϕ∗(v) 6 0 for any analytic disk in K in the
sense of distributions. Therefore v is plurisuperharmonic.

Note that by Harvey-Shiffman generalization of Bishop’s theorem v(s) → ∞ as s→ ∂K. So
by the minimum principle v ≡ const and K is compact again by Bishop’s theorem.
2) The same computation shows that

∫
Zs

Ωq,q is plurisuperharmonic for any ddc-negative (q,q)-
form. Since K is proved to be compact, we obtain the statement.
3) Let R be any connected component of Bq(X). Write R =

⋃
jKj , where Kj are irreducible

components. From (1) we have that v is constant on R. So if {Kj} is not finite then R has an
accumulation point s= limsj by Bishop’s theorem, where all sj belong to different components
Kj of R. This contradicts the fact that Bq(X) is a complex space. �
Remark 7.8. Remark that a Kähler spaces obviously have bounded cycle geometry in all dimensions.
Indeed, if ω is Kähler then dωq = 0 for any q.

8. Meromorphic mappings with values in Kähler spaces

8.1. Hartogs-type extension theorem for Kähler spaces. Let h be some Hermitian metric
on a complex manifold X and let ωh be the associated (1,1)-form. Recall that ωh (and h itself)
is called Kähler if dωh = 0. When X is a (reduced) complex space a metric form ω on X is
defined as follows. Let {Uα} be a locally finite, open covering of X such that for every α there
exists a holomorphic imbedding iα : Uα → Vα, where Vα is open in some CN . Then ω|Uα should
be the restriction of a metric form ω̃α in Vα to iα(Uα) i.e., ω|Uα = i∗αω̃α. ω is called Kähler if
every ω̃α is Kähler, i.e., closed. Complex projective space Pn carries the so called Fubini-Study



44 Section 8

form, which in homogeneous coordinates Z = [z0 : ... : zn] writes as dd
c ln‖Z‖2 and is therefore

Kähler. As a result every projective manifold/algebraic space is Kähler. As it was remarked in
Corollary 7.1 every algebraic space possesses the Hartogs extension property for meromorphic
mappings. This can be generalized to the case of Kähler spaces.

Theorem 8.1. Let X be a disk-convex, reduced Kähler space. Then every meromorphic mapping
f :Hn+1

r →X, n> 1, extends to a meromorphic mapping f̂ : ∆n+1 →X.

Proof. As it was explained in Remark 7.4 we can suppose that X is normal.

Step 1. Area function. For z = (z1, ...,zn) ∈ ∆n set ∆z := {z}×∆. Let U be the maximal open
subset of ∆n such that f meromorphically extends to a Hartogs figure over U , i.e., to Hn+1

U (r),
see (6.2). Remark that the area function (6.5) is well defined for z ∈ U such that ∆z is not
entirely contained in the indeterminacy set If of f . As it was explained in Remark 7.1 for such
z the restriction f |∆z is well defined and holomorphic. Set

A′v := {z ∈∆n : ∆z ∩Hn+1
U (r)⊂ If} (8.1)

and call Av :=A′v×∆ the vertical subset of If . It is clear that Av is an analytic subset of Hn+1
U (r)

of codimension > 2 and that A′v itself is a proper analytic subset (of codimension > 2) of ∆n.
Therefore the formula (6.5) has perfectly sense and the integral in the right hand side of it is
finite for every z ∈ U \A′v. We need to prove more: that a(z) is locally bounded in (Ū ∩∆n)\A′v.
Step 2. Vanishing of the cohomology of Hartogs domains. Let us improve Lemma 6.2 and prove
that for any domain U ⊂∆n and any analytic set A in Hn+1

U (r) of codimension > 2 one has

H2
DR

(
Hn+1
U (r)\A

)
= 0, (8.2)

where HDR stands for the de Rham cohomology. Indeed, duality (see [Rh], Théorème 17,
Chapitre IV) it follows from (6.3) that

H2
DR

(
Hn+1
U (r)

)
= 0. (8.3)

Consider the exact sequence

H2
(
Hn+1
U (r)

)
→H2

(
Hn+1
U (r)\A

)
→H3

A

(
Hn+1
U (r)

)
(8.4)

Since A has real codimension at least four we have that Hj
A(C) = 0 for j = 1,2,3 and therefore

the result follows.
Let ω̃ := f∗ω be the pull-back of the Kähler form. It is a smooth closed 2-form onHn+1

U (r)\If .
By (8.2) this form is exact, i.e., there exists a smooth 1-form γ on Hn+1

U (r)\ If such that

dγ = ω̃. (8.5)

Step 3. Extension outside of the vertical analytic set. We shall prove that f meromorphically
extends to ∆n+1 \Av. Take a point s0 ∈ (∂U ∩∆n) \A′v and find a neighborhood V of it such
that V b∆n \Av. Then for z ∈ U ∩V , if V was taken small enough, one has for some constant
C independent of z ∈ V

a(z) =

∫
∆z

ω̃ =

∫
∂∆z

γ 6 C. (8.6)

Boundedness of the cycle geometry of a Kähler space permits us to apply Theorem 7.5 to this
case. Indeed, U is obviously thick at s0. Therefore f extends to W ×∆ for some neighborhood
and the step is proved.

Step 4. Extension across an analytic sets. In the previous step we proved that f holomorphically
extends to ∆n+1 \Av. The last step of the proof used the following Thullen-type meromorphic
extension statement.

Lemma 8.1. Let f : ∆n+1\A→X be a meromorphic mapping into a disk-convex Kähler space,
where A is analytic subset in ∆n+1 of codimension > 2. Then f extends to a meromorphic
mapping f̂ : ∆n+1 →X.
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Take a point s0 ∈A and choose coordinates in a neighborhood U =∆n−1×∆2 of it such that
the restriction πA : A → ∆n−2 of the natural projection π : ∆n−1×∆2 → ∆n−1 is proper (we
suppose that A is of pure codimension two for simplicity). Then the area function a(z) is well
defined for z ∈∆n−1 because Av =∅ now. Repeating Step 3 we extend f to ∆n+1. Lemma and
theorem are proved. �

Let us give a non-linear version of Theorem 8.1 in the spirit of Theorem 2.1. Let’s call a
family {ϕt ∈ Hol(∆1+ε,∆) : t ∈ T} a test family if the exists N ∈ N such that for every pair
s 6= t ∈ T there exists a radius 1− ε/2 < r < 1+ ε/2 such that (ϕs−ϕt)|∂∆r doesn’t vanish and
has winding number 6N . As usual by Ct we denote the graph of ϕt.

Corollary 8.1. Let X be a reduced, disk-convex complex space and f : R2
1−r,1+r → X a mero-

morphic mapping. Suppose that there exists an uncountable test family of holomorphic maps
{ϕt : ∆1+ε → ∆ : t ∈ T} such that f |Ct∩R2

1−r,1+r
holomorphically extends to Ct for every t ∈ T .

Then f extends to a meromorphic mapping from a pinched domain P to X.

For the proof we refer to [Iv12].

8.2. Banach neighborhoods of stable curves. To finish the sketch of the proof of Theorem
2.3 we need to explain a necessary version of a continuity principle, i.e., the step 3. But in order
to do so we shall need first to describe neighborhoods of non-compact curves in stable topology.
This description will allow us to draw analytic families through two sufficiently close curves, see
Proposition 8.1 below.

Let U be an open set in some complex Banach space L.

Definition 8.1. We say that a closed subset M ⊂ U is a Banach analytic set of finite codi-
mension if for every point m ∈ M there exists a neighborhood B of m and an analytic map
F :B→ CN , for some N , such that M∩B = {x ∈B : F (x) = 0}.

As we already know nothing good can be said about Banach analytic sets in general. A
converging sequence of points in l2, see example in Remark 2.3 (c), can be realized as a Hilbert
analytic set. Moreover, every metric compact, e.g., interval [0,1], can be realized as a Banach
analytic set in an appropriate Banach space, see [Rm] p. 33. However, the structure of Banach
analytic sets of finite codimension is pretty nice according to the following theorem, which is due
to Ramis.

Theorem 8.2. Let M⊂ U be a Banach analytic set of finite codimension, 0 ∈M. Then there
is a neighborhood B 3 0 such that M∩B is a finite union of irreducible components Mj, each
of them being a finite ramified cover of a neighborhood of zero in the subspace Lj of L of finite
codimension.

Fix now a complex space X and a stable curve (C0,u0) over X parameterized by a real surface
Σ, see Definition 2.4. The key result we need is the following.

Theorem 8.3. There exist a Banach analytic sets of finite codimension M and C and holomor-
phic maps U : C →X and π : C →M, such that:

a) for any λ ∈ M fiber Cλ := π−1(λ) is a nodal curve parameterized by Σ and Cλ0 = C0 for
some λ0 ∈M;

b) (Cλ,uλ) with uλ := U |Cλ
is a stable curve over X and uλ0 = u0;

c) if (C ′,u′) is sufficiently close to (C0,u0) in Gromov topology, then there exists λ′ ∈M such
that (C ′,u′) = (Cλ′ ,U |λ′).

Proof. Let us sketch the proof of this theorem assuming for simplicity that X is a manifold. Let
(C0,u0) be our stable curve over X. Denote by E the pull-back u∗0TX of the tangent bundle to
X together with natural holomorphic structure on it. We suppose that u0 extends L

1,p-smoothly
onto the boundary of C0 to be able to consider the L1,p-sections of E, here some p > 2 is fixed.
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Cover C0 by a finite family of open sets Ui with boundaries in such a way that intersections
Uij := Ui ∩Uj have piecewise smooth boundaries. In the case when Ui contains a nodal point
it should be a union of two disks. We take Ui sufficiently small to find a coordinate chart Vi
containing u0(Ui).

If Ui is smooth, consider a complex Banach manifold of holomorphic maps H1,p(Ui,Vi) with
a tangent space at u0i = u0 |Ui equal to H1,p(Ui,E), the space of holomorphic L1,p-sections
of E over Ui. If Ui is a neighborhood of a node, we consider a complex Banach manifold of
holomorphic L1,p-maps from A to Vi with tangent space at ui equal to H1,p(Ui,E), the space
of pairs of holomorphic L1,p-sections f1 and f2 over the components A1

0 and A2
0 of the standard

node A0 respectively, such that f1(0) = f2(0).
Denote by Bi open neighborhoods of u0i in these Banach manifolds. Repeat the same con-

struction for Uij , i < j, using as a coordinate chart Vi, and get the Banach manifolds H1,p(Uij ,Vi)
with tangent spaces H1,p(Uij ,E).

Denote by ϕij : Vj → Vi the coordinate change. We can consider the following analytic map
between complex Banach manifolds

Φ : ΠiBi →Πi<jH1,p(Ui,j ,Vi), (Φ({hi}))ij := ϕij(hj)−hi. (8.7)

Zero level set of this map is a Banach analytic set and is by construction some neighborhood
in Gromov topology of (C0,u0) in the space of stable complex curves over X. Denote this
neighborhood by M. Differential dΦu0 of this map at u0 coincides with the differential of Čech
complex

δ :
∑l

i=1H1,p(Ui,E) −→
∑

i<jH1,p(Uij ,E)

δ : (vi)
l
i=1 7−→ (vi−vj)

(8.8)

This differential has the following properties:

i) the image Im(δ) is of finite codimension and closed; more over, Coker (δ) = H1(C0,E)
=H1(Ccomp,E), where Ccomp denotes the union of compact irreducible components of C0;

ii) the kernel Ker (δ) admits a closed complementing.

Denote by T = ImdΦu0 and by S its finite dimensional complement. Let πT be a projection
onto T parallel to S. Implicit function theorem applied to πT ◦Φ tells us that M is contained
in complex Banach manifold N with tangent space at u0 equal to KerdΦ= Kerδ =H1,p(C0,E).
Now our M is a Banach analytic subset of N defined by the equation πS ◦Φ = 0, where πS
is a projection onto finite dimensional vector space S parallel to T . Therefore M is of finite
codimension. �

For more details on the proof we refer to [IS3]. The following proposition is an immediate
corollary of Theorem 8.3 and will be used in the proof of the Continuity principle. Consider
a sequence (Cn,un) of stable curves over a complex manifold X, which converges in Gromov
topology to (C0,u0). We suppose that Cn are smooth, except C0.

Proposition 8.1. There exist a natural N and smooth complex surface C together with a sur-
jective holomorphic map πC : C → ∆ and holomorphic map U : C → X such that the family
{(Cλ,uλ)} with Cλ := π−1C (λ) and uλ := U|Cλ

is a holomorphic family of stable curves over X
joining (CN ,uN ) with (C0,u0). More precisely:
1) For every λ ∈ ∆ Cλ = π−1C (λ) is a connected nodal curve with boundary ∂Cλ and the pair
(Cλ,uλ := U |Cλ

) is a stable curve over X.
2) For λ outside of zero Cλ is connected and smooth.
3) (C0,u0) is our limit and there is λN ∈∆ such that (CλN ,uλN ) = (CN ,uN ).
4) There are open subsets W1, ...,Wm of C such that every Wj is biholomorphic to ∆×Aj, where
Aj is an annulus in C and the following diagrams are commutative

Wj ∼ ∆×Aj
πC ↓ ↓ π∆

∆ = ∆
(8.9)
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Each annulus Cλ∩Wj
∼= {λ}×Aj is adjacent to one boundary component of Cλ, and the number

m of domains Wj is equal to the number of boundary components of every Cλ.

Proof. Let a sequence of stable curves over X converges to (C0,u0). Take a neighborhood M of
(C0,u0) in Gromov topology, which is realized as a Banach analytic set of finite codimension in
Banach ball B. Denote by λ0 the point on M which corresponds to (C0,u0). By the theorem of
Ramis M in the neighborhood of λ0 has finite number of irreducible components. One of them,
denote it as M1 should contain a point λN which corresponds to (CN ,uN ). Further, there is a
closed linear subspace L of B of finite codimension such that M1 is a finite covering of L∩B.
Now one can easily find an analytic disk passing through λ0 and λN . �

8.3. Continnuity Principle. Let U be a domain in a complex manifold X and let Y be a
reduced complex space.

Definition 8.2. An envelope of meromorphy of U relative to Y is a maximal domain (ÛY ,π)

over X, which contains U ( i.e., there exists an imbedding i : U → ÛY with π ◦ i = Id), such that

every meromorphic mapping f : U → Y extends to a meromorphic mapping f̂ : ÛY → Y .

Theorem 8.4. (Continuity Principle-I) Let U be a domain in a complex Hermitian surface (X,ω)

and let (ÛY , π̂) be its envelope of meromorphy relative to a disk-convex Kähler space Y . Let

(Cn,un) be a sequence of smooth curves over ÛY parameterized by the same surface Σ, such that
1) area(un(Cn)) with respect to π∗ω are uniformly bounded;
2) un C1-converges in the neighborhood of ∂Cn;
3) (π ◦un)(Cn) are contained in some compact of U .

Then un(Cn) are contained in some compact of ÛY .

This result can be reformulated in more familiar terms as follows. Let {(Ct,ut)}t∈[0,1] be a
continuous (in the Gromov topology) family of complex curves over X with boundaries, param-
eterized by a unit interval. More precisely, for each t ∈ [0,1[ a smooth Riemann surface with
boundary (Ct,∂Ct) is given together with the holomorphic mapping ut : Ct −→ X, which is
C1-smooth up to the boundary. Note that C1 is not supposed to be smooth, i.e., it can be a
nodal curve. As well as there is no assumption on hove parameterizations depend on t. Suppose
that in the neighborhood V of u0(C0) a meromorphic map f into complex space Y is given.

Definition 8.3. We shall say that mapping f meromorphically extends along the family (Ct,ut)
if for every t ∈ [0,1] a neighborhood Vt of ut(Ct) is given, and given a meromorphic map
ft : Vt −→ Y such that

a) V0 = V and f0 = f ;
b) if Vt1 ∩Vt2 6=∅ then ft1 Vt1∩Vt2

= ft2 Vt1∩Vt2
.

Theorem 8.5. (Continuity principle-II). Let U be a domain in a complex Hermitian surface
(X,ω). Let {(Ct,ut)}t∈[0,1] be a continuous family of complex curves over X with boundaries in
a relatively compact subdomain U1 b U . Suppose also that u0(C0) ⊂ U and that Ct for t ∈ [0,1[
are smooth. Then every meromorphic mapping f : U → Y to a disk-convex Kähler space Y
extends meromorphically along the family (Ct,ut).

The discussion made above leads to the following

Corollary 8.2. If U is a domain in a complex Hermitian surface (X,ω) and {(Ct,ut)} a family
satisfying the conditions of the continuity principle, then this family can be lifted to the envelope
ÛY , i.e., there exists a continuous family {(Ct, ût)} of complex curves in ÛY such that π ◦ ût = ut
for every t.

Of course, the point here is that the map can be extended to the neighborhood of u1(C1),
which is a reducible curve having in general compact components. For further details on the
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proof of the continuity principle we refer to [IS2]. This finishes the proof of Theorem 2.3 and
gives, in fact, the following more general statement.

Theorem 8.6. Let M be a ω-positive immersed two-sphere in a compact Kähler surface (X,ω)
having only positive transversal self-intersections and such that c1(X) · [M ] > 0. Then for any

neighborhood U ofM its envelope of meromorphy (ÛY ,π) of U relative to any disk-convex Kähler
space Y contains a rational curve C such that c1(X) · [C]> 0.

Example 8.1. This example was explained to us by E. Chirka, and it shows that our continuity
principle is not valid when the complex dimension of the manifold X is more then two. Take as X the
total space of the bundle O(−1)⊕O(−1) over P1. Denote an affine coordinate on P1 by z, coordinates
on the fibers by ξ1, ξ2 and η1, η2, such that η1 = zξ1 and η2 = zξ2. Identify P1 with the zero section
of the bundle. Consider meromorphic function f = eξ2/ξ1 . The set of essential singularity of f is
{ξ1 = 0}, which contains the zero section P1. Consider the following sequence of analytic disks Cn in
U := X\{ξ1 = 0}, Cn := {ξ2 = 0, |z| 6 n,ξ1 = z

n}. The limit of this sequence is C0 = P1 ∪∆∞, where
∆∞ := {η2 = 0,z =∞, |η1|6 1} and f doesn’t extend to a neighborhood of this C0.

Let us give one corollary of the continuity principle as an illustration.

Corollary 8.3. Let X be a complex surface with one singular normal point p. Let D be a domain
in X, ∂D 3 p. Suppose there is a sequence (Cn,un) of stable curves over D ⊂ X converging to
(C0,u0) in Gromov topology and such that

a) there is a compact K ⊂D with un(∂Cn)⊂K for all n;
b) p ∈ u0(C0).

Then every meromorphic function from D extends to the neighborhood of p.

9. Pluriclosed metrics and spherical shells

Unlike the Kähler case meromorphic mappings with values in general complex manifolds can
have even point singularities. We already saw such example in the case whenX is a Hopf surface,
see Example 7.1. The singularity set of the projection π there is a point. For more examples
see examples 7.3, 9.2 and 10.1 in this text, as well as §3 in [Iv8].

9.1. Pluriclosed and plurinegative metric forms. It was proved by P. Gauduchon in [Ga]
that every Hermitian metric on every compact complex surface is conformal to such metric h
that its associated (1,1)-form ωh is ddc-closed, i.e., ddcωh = 0.

Definition 9.1. Let h be a Hermitian metric on a complex manifold X and let ωh be the
corresponding (1,1)-form. We call ωh (and h itself) pluriclosed or, ddc-closed, if ddcωh = 0. The
form ωh (and the metric h) is called plurinegative or, ddc-negative, if ddcωh 6 0.

Recall that dc := i
4π (∂̄−∂) and therefore ddc = i

2π∂∂̄, in particular ddc ln |z|2 = δ0. If X is a
complex space we say that a metric form ω is ddc-closed (resp. ddc-negative) if it is locally a
restriction of such a form under the local imbedding of X to CN . Let Ω be a domain in Cn.

Definition 9.2. A subset K ⊂ Ω is called (complete) p-polar if for any a ∈ Ω there exist a
neighborhood V 3 a and coordinates z1, ...,zn in V such that the sets Kz0I

=K∩{zi1 = zi01 , ...,zip =

zi0p} are (complete) pluripolar in the subspaces Vz0i
:= {z ∈ V : zi1 = zi01 , ...,zip = zi0p} for almost

all z0I = (z0i1 , ...,z
0
ip
) ∈ πI(V ), where I runs over a finite set of multi-indices with |I| = p, such

that {(πI)∗ωe}I generates the space of (p,p)-forms. Here πI(z1, ...,zn) = (zi1 , ...,zip) denotes the
projection onto the space of variables (zi1 , ...,zip).

Suppose that K is, in addition, of Hausdorff codimension four. Take a point a ∈ K and a
complex two-dimensional plane P 3 a such that P ∩K is of dimension zero. A sphere S3 = {x ∈
P : ‖x−a‖= ε} with ε > 0 small enough will be called a transverse sphere if S3∩K =∅.
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Theorem 9.1. Let f : Hn+1
r → X be a meromorphic map to a reduced disk-convex complex

space X which admits a plurinegative Hermitian metric form. Then:

i) f extends to a meromorphic map f̂ : ∆n+1\S→X, where S is a closed (n−1)-polar subset
of ∆n+1 of Hausdorff dimension 2n−2;

ii) if, in addition, ω is pluriclosed and S 6=∅, then for every transverse sphere S3 ⊂∆n+1 \S
its image f(S3) is not homologous to zero in X.

Remark 9.1. A (two-dimensional) spherical shell in a complex space X is the image Σ of the standard
sphere S3 ⊂ C2 under a holomorphic map of some neighborhood of S3 into X such that Σ is not
homologous to zero in X. Theorem states that if the singularity set S of our map f is non-empty and
the metric form ω is pluriclosed then X contains spherical shells.

Example 9.1. 1. Let X be the Hopf surface X = (C2 \ {0})/(z ∼ 2z) and f : C2 \ {0} → X be the

canonical projection. The (1,1)-form ω = i
2
(dz,dz)
‖z‖2 := i

2
dz1∧dz̄1+dz2∧dz̄2

‖z‖2 is well defined on X and ddcω = 0.

In this example one easily sees that f is not extendable to zero and that the image of the unit sphere
from C2 is not homologous to zero in X. Note also that ddcf∗ω = ddcω =−c4δ{0}dz∧dz̄, where c4 is the

volume of the unit ball in C2 and δ{0} is the delta-function.

2. In §3.6 of [Iv8] an Example 3.7 of a 4-dimensional compact complex manifold X and a holomorphic
mapping f : B2 \ {sk} → X is constructed, where {sk} is a sequence of points converging to zero, such
that f cannot be meromorphically extended to the neighborhood of any sk. There one finds also Example
3.6 where the singularity set S is of Cantor-type and pluripolar.

Example 9.2. On a Hopf three-fold X = (C3 \{0})/(z ∼ 2z) the analogous metric form ω = i
2
(dz,dz)
‖z‖2 is

no longer pluriclosed but only plurinegative (i.e. ddcω 6 0). Moreover, if we consider ω as a bidimension
(2,2) current, then it will provide us a natural obstruction for the existence of a pluriclosed metric form
on X. For this X the natural projection π : C3 \ {0} → X has singularity of codimension three and X
doesn’t contains spherical shells of dimension two (but it contains a spherical shell of dimension three).

All compact complex surfaces admit pluriclosed Hermitian metric forms, therefore we obtain:

Corollary 9.1. If X is a compact complex surface, then:
(a) every meromorphic map f :Hn+1

r →X extends to ∆n+1 \A, where A is an analytic set
of pure codimension two;

(b) if Ω is a domain on a Stein surface and K b Ω is a compact with connected complement,
then every meromorphic map f : Ω\K →X extends to Ω\{finite set}. If this set is not
empty (respectively, if A from (a) is non-empty), then X contains a spherical shell.

Remark 9.2. The fact that in the case of surfaces the singularity set A is a genuine analytic set requires
some additional (not complicated) considerations. They are given in §3.4 of [Iv8], where also some other
cases when A can be proved to be analytic are discussed.

There is a hope that the surfaces with spherical shells could be classified, as well as surfaces of
class V II0 containing a rational curve. Therefore the following somewhat surprising speculation,
which immediately follows from Corollary 9.1, could be of some interest:

Corollary 9.2. If a compact complex surface X is not ”among the known ones” then for every
domain D in a Stein surface every meromorphic mapping f :D→X is in fact holomorphic and
extends as a holomorphic mapping f̂ : D̂→X of the envelope of holomorphy D̂ of D into X.

At this point let us note that the notion of a spherical shell, as we understand it here, is
different from the notion of global spherical shell from [Ka1] and therefore Corollary 9.2 is indeed
not more than a ”speculation“. A real two-form ω on a complex manifold X is said to ”tame”
the complex structure J if for any non-zero tangent vector v ∈ TX we have ω(v,Jv) > 0. This
is equivalent to the property that the (1,1)-component ω1,1 of ω is strictly positive. Complex
manifolds admitting a closed form, which tames the complex structure, are of special interest.
The class of such manifolds contains all Kähler manifolds. On the other hand, such metric forms
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are ddc-closed. Indeed, if ω = ω2,0+ω1,1+ ω̄2,0 and dω = 0, then ∂ω1,1 = −∂̄ω2,0. Therefore
ddcω1,1 = 2i∂∂̄ω1,1 = 0. So the Main Theorem applies to meromorphic mappings into such
manifolds. In fact, the technique of the proof gives more:

Corollary 9.3. Suppose that a compact complex manifold X admits a strictly positive (1,1)-
form, which is the (1,1)-component of a closed form. Then every meromorphic map f :Hn+1

U (r)→
X extends to ∆n+1.

9.2. Proof in dimension two. Let us outline the proof of the Theorem 9.1, first in dimension
two, i.e., when n= 1.

Step 1. Estimate of the Laplacian. Recall that for an open U ⊂ ∆ we denote by H2
U (r) the

Hartogs figure over U , see (6.2). Let f :H2
r →X be our mapping. Performing dilatations in the

vertical direction we can without loss of generality suppose that f is defined and holomorphic
in a neighborhood of ∆×∂∆.

Lemma 9.1. If the metric form ω on a disk-convex complex space X is plurinegative and U is
maximal open subset of ∆ such that f extends to H2

U (r) then ∂U ∩∆ is complete polar in ∆.

Take a point z0 ∈ ∂U ∩∆. Choose a relatively compact neighborhood V of z0 in ∆. Denote

by T = i
2 t
αβ̄dzα∧dz̄β the plurinegative current f∗ω+ddc‖z‖2. Consider the area function

a(z1) =
i
2 ·
∫
|z2|61 t

22̄(z1,z2)dz2∧dz̄2. (9.1)

The condition that ddcT is negative means that

∂2t11̄

∂z2∂z̄2
+ ∂2t22̄

∂z1∂z̄1
− ∂2t12̄

∂z2∂z̄1
− ∂2t21̄

∂z1∂z̄2
6 0 (9.2)

on H2
U (r). Now we can estimate the Laplacian of a:

∆a(z1) = 2i
∫
|z2|61

∂2t22̄

∂z1∂z̄1
dz2∧dz̄2 6 2i

∫
|z2|61

(
− ∂2t11̄

∂z2∂z̄2
+ ∂2t12̄

∂z2∂z̄1
+ ∂2t21̄

∂z1∂z̄2

)
dz2∧dz̄2 =

= 2i
∫
|z2|=1

∂t11̄

∂z2
dz2+2i

∫
|z2|=1

∂t12̄

∂z̄1
dz̄2−2i

∫
|z2|=1

∂t21̄

∂z1
dz2 = ψ(z1). (9.3)

Inequality (9.3) holds for z1 ∈ V ∩U , but the right hand side ψ is smooth in the whole of V .
This means that the area behaves roughly as a superharmonic function. Let ϕ be a smooth
solution of

∆ϕ= ψ. (9.4)

Set
h := a−ϕ. (9.5)

Denote by E the set of points z0 ∈ ∂U ∩ V such that a(z) → +∞ as z ∈ V,z → z0. Note
that h(z) also tends to +∞ in this case and note that h is harmonic in V \E. For any point
z∞ ∈ [∂U ∩V ]\E we can find a sequence {zn} ⊂ V,zn → z∞ such that a(zn)6 C. By Theorem
7.4 f extends to ∆(ε,z∞)×∆ for some ε > 0. Therefore a(z) must tend to infinity when z→ ∂U
as well as h. By standard argument, see the proof of Lemma 2.4 in [Iv8] for details, this implies
that h is superharmonic on the whole of V and therefore its polar set E has zero Hausdorff
dimension, see [Gl]. Repeating this argument for V = ∆ we get that E is complete polar,
h(z)→+∞ when z→ E and that h is harmonic on ∆\E. Lemma is proved.

Remark 9.3. We can add to E the discrete in ∆\E set of points s1 such that ∆s1 ∩ If 6= ∅. Adding

to h terms − ln |z1−s1|
2 with appropriate coefficients we can insure that the enlarged E is still complete

polar, h = +∞ exactly on E and harmonic elsewhere. Set S1 = E and remark that f is holomorphic on
∆2 \ (S1×∆). Finally remark that for pluriclosed ω (9.3) is an equality.

Step 2. Extension of the current T = f∗ω + ddc||z||2. Interchanging coordinates in C2 and
repeating the Step 1 we see that f holomorphically extends to ∆2 \ (S1×S2), where S1 and S2
are complete polar compacts (after shrinking). Set S = S1×S2, this is a complete pluripolar
compact in ∆2 of Hausdorff dimension zero and f is holomorphic on ∆2 \S.
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Lemma 9.2. T has locally summable coefficients on the whole of ∆2.

Indeed, consider the area function a(z1) as in (9.1). We remarked that h = a− ϕ is su-
perharmonic and obviously 6≡ +∞. Therefore h ∈ L1

loc(∆). Since ϕ is smooth we get that

a ∈ L1
loc(∆). This proves that t2,2̄ ∈ L1

loc(∆
2). Analogously t11̄ ∈ L1

loc(∆
2). Positivity of T means

that t11̄t22̄−|t12̄|2 > 0 and therefore∫
∆2 |t12̄|6

∫
∆2

√
t11̄

√
t22̄ 6

(∫
∆2 t

11̄
)1/2(∫

∆2 t
22̄
)1/2

. (9.6)

Which means that t12̄ ∈ L1
loc(∆

2). Lemma is proved.

T := f∗ω+ddc||z||2 has coefficients in L1
loc(∆

2) and therefore has trivial extension T̃ to ∆2.

Set µT := ddcT̃ − d̃dcT . By Theorem 5.11 µT is a non-positive measure supported on S.

Step 3. Appearance of shells. Suppose that the metric form ω on X is pluriclosed. Take a
relatively compact disc D b ∆ such that ∂D∩S1 = ∅ and set WD := D×∆. Set furthermore

∂0WD := D̄× ∂∆ and W∂D = ∂D× ∆̄. Therefore ∂WD = ∂0WD ∪W∂D. Denote by d̃dca the
smooth by (9.3) extension of ddca from D \S1 to D. From (9.3) we see that

d̃dca=
i

8π
∆adz1∧dz̄1 =

−1

4π

(∫
∂∆

∂t11̄

∂z2
dz2+

∂t12̄

∂z̄1
dz̄2−

∂t21̄

∂z1
dz2

)
dz1∧dz̄1. (9.7)

Lemma 9.3. If ω is pluriclosed then for a relatively compact disk D b∆ such that ∂D∩S1 =∅
one has the following two relations∫

∂WD

dcT =

∫
∂D
dca−

∫
D
d̃dca (9.8)

and ∫
∂WD

dcT =

∫
∂D
dch. (9.9)

Proof. Write 8πdcT = 2i(∂−∂)T = (∂−∂)
[
tαβ̄dzα∧dz̄β

]
=

=
∂t11̄

∂z2
dz2∧dz1∧dz̄1−

∂t11̄

∂z̄2
dz̄2∧dz1∧dz̄1+

∂t12̄

∂z2
dz2∧dz1∧dz̄2−

∂t12̄

∂z̄1
dz̄1∧dz1∧dz̄2+

+
∂t21̄

∂z1
dz1∧dz2∧dz̄1−

∂t21̄

∂z̄2
dz̄2∧dz2∧dz̄1+

∂t22̄

∂z1
dz1∧dz2∧dz̄2−

∂t22̄

∂z̄1
dz̄1∧dz2∧dz̄2. (9.10)

Therefore we get∫
∂0WD

dcT =
1

8π

∫
D

(∫
∂∆

∂t11̄

∂z2
dz2−

∂t11̄

∂z̄2
dz̄2+

∂t12̄

∂z̄1
dz̄2−

∂t21̄

∂z1
dz2

)
dz1∧dz̄1 =−1

2

∫
D
d̃dca−

− 1

8π

∫
D

∫
∂∆

∂t11̄

∂z̄2
dz̄2∧dz1∧dz̄1 =−1

2

∫
D
d̃dca+

1

8π

∫
D

∫
∂∆

∂t11̄

∂z2
dz2∧dz1∧dz̄1. (9.11)

At the same time again from (9.10) we get∫
W∂D

dcT =
1

8π

∫
∂D

∫
∆

∂t12̄

∂z2
dz2∧dz1∧dz̄2−

∂t21̄

∂z̄2
dz̄2∧dz2∧dz̄1+

∂t22̄

∂z1
dz1∧dz2∧dz̄2−

−∂t
22̄

∂z̄1
dz̄1∧dz2∧dz̄2 =

1

8π

∫
∂D

∫
∆
dz2

(
t12̄dz1∧∂z̄2− t21̄dz2∧∂z̄1

)
+

1

8π

2

i

∫
∂D

(∂−∂)a=

=
1

8π

∫
W∂D

d
(
t12̄dz1∧∂z̄2− t21̄dz2∧∂z̄1

)
+
i

4π

∫
∂D

(∂−∂)a= 1

8π

∫
∂(W∂∆)

(
t12̄dz1∧∂z̄2− t21̄dz2∧∂z̄1

)
+

+

∫
∂D
dca=− 1

8π

∫
∂(∂0W )

(
t12̄dz1∧∂z̄2− t21̄dz2∧∂z̄1

)
+

∫
∂D
dca=

∫
∂D
dca−
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− 1

8π

∫
∂0W

d
(
t12̄dz1∧dz̄2− t21̄dz2∧∂z̄1

)
=

∫
∂D
dca+

1

8π

∫
D

∫
∂∆

(
∂t12̄

∂z̄1
dz̄2−

∂t21̄

∂z1
dz2

)
∧dz1∧dz̄1

(9.12)
From (9.11) and (9.12) we get∫

W∂D

dcT +2

∫
∂0WD

dcT =

∫
∂D
dca−

∫
D
d̃dca+

1

8π

∫
D

∫
∂∆

(
∂t11̄

∂z2
dz2−

∂t11̄

∂z̄2
dz̄2

)
∧dz1∧dz̄1+

+
1

8π

∫
D

∫
∂∆

(
∂t12̄

∂z̄1
dz̄2−

∂t21̄

∂z1
dz2

)
∧dz1∧dz̄1 =

∫
∂D
dca−

∫
D
d̃dca+

∫
∂0WD

dcT,

and this gives (9.8). As for (9.9) remark that since h= a−ϕ with

ddcϕ=
i

2π
∂∂ϕ=

i

8π
∆ϕdz1∧dz̄1 =

i

8π
∆adz1∧dz̄1 = d̃dca,

we get ∫
∂D
dch=

∫
∂D
dca−

∫
∂D
dcϕ=

∫
∂D
dca−

∫
D
ddcϕ=

∫
∂D
dca−

∫
D
d̃dca=

∫
∂WD

dcT.

�

Corollary 9.4. Suppose that ω is pluriclosed and that for a relatively compact disk D b∆ such
that ∂D∩S1 =∅ one has ∫

∂WD

dcT = 0. (9.13)

Then f meromorphically extends to WD.

Indeed, denote by µh := ddch the negative measure supported on S1. Using smoothing by
convolution and (9.8) we obtain

µh(D∩S1) =
∫
D
ddch=

∫
∂D
dch=

∫
∂WD

dcT. (9.14)

If the latter is zero, as assumed, we get that h is smooth in D. That means that a is smooth,
i.e., that the area function is bounded near S1. Theorem 7.3 with n= q = 1 gives the extension
of f across S1. Corollary is proved.

Remark 9.4. Now let us explain how do shells appear.

• By Stokes’ formula
∫
∂WD

dcT =
∫
WD

ddcT = µT (WD ∩ S), the latter is a negative measure

supported on the singular set S. Therefore if this integral is non-zero for some WD we can find
a ball B ⊂WD with ∂B∩S =∅ such that

∫
B
dcT 6= 0.

• At the same time
∫
∂B
dcT =

∫
f(∂B)

dcω. If the latter is non-zero this means that f(∂B) 6∼ 0, i.e.,

is a spherical shell in X.

9.3. Proof in all dimensions. We pass to the case n> 2. To extend f from Hn+1
r to ∆n+1 it

is obviously sufficient to extend f from ∆n−1×H2
r to ∆n+1. If, in addition, some singularities

appear they will be of the same nature in both cases. We denote the coordinates in Cn+1 as
z = (z′,zn,zn+1), where z

′ := (z1, ...,zn−1) and set ∆2
z′ := {z′}×∆2. Our problem is local and

it is not difficult to see that after a shrinking and choosing the slope of coordinates (zn,zn+1)
appropriately we can suppose that our f is holomorphic on ∆n−1 ×A1−r,1 ×∆. This implies
that the indeterminacy set Ifz′ of every restriction fz′ := f |{z′}×H2

r
is discrete. Remark also that

If ∩ ({z′}×H2
r ) = Ifz′ .

Step 4. Let us state this step in the form of a lemma.
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Lemma 9.4. Suppose that the metric form ω is plurinegative. Then there exists a closed (n−1)-
polar subset S ⊂ ∆n+1 of Hausdorff dimension 2n− 2 and a holomorphic extension of f to
(∆n−1×∆2)\S such that the current T := f∗ω has locally summable coefficients in a neighborhood

of S. Moreover, ddcT̃ is negative.

Proof. Remark that by Steps 1,2 for every z′ ∈ ∆n−1 the restriction fz′ := f |{z′}×H2
r
holo-

morphically extends to ∆2
z′ \ Sz′ , where Sz′ are closed complete pluripolar subsets in ∆2

z′ of
Hausdorff dimension zero. In addition Sz′ = Sz′,1×Sz′,2 for some complete polar closed subsets
Sz′,1 and Sz′,2 in ∆. We want to prove that f extends to a full-dimensional neighborhood of
every point of ∆2

z′ \Sz′ . Denote by πn : ∆n+1 → ∆n (resp. πn+1 : ∆n+1 → ∆n) the natural
projection πn : (z′,zn,zn+1) → (z′,zn) (resp. πn+1 : (z′,zn,zn+1) → (z′,zn+1)). Take a point
v = (z′,zn,zn+1) such that zn+1 6∈ Sz′,2. Find a point w = (z′,zn,wn+1) ∈ {z′}×H2

r such that
wn+1 6∈ Sz′,2 as well. After that find a domain U b {(z′,zn)}×∆ containing both zn+1 and
wn+1 such that πn+1(U)∩ Sz′,2 = ∅. Remark that f |{z′}×∆×U is holomorphic. By Theorem

15.1 there exists a Stein neighborhood V of the graph Γf |{z′}×∆×U
in ∆n+1×X. Consider the

mapping f̂(z) = (z,f(z)) to the graph. Remark that for ε > 0 small enough we have that

f̂(∆n−1
ε ×∂∆×U) ⊂ V . This follows from holomorphicity of f on ∆n−1×A1−r,1×∆. As well

as for some neighborhood U0 b U of wn+1 we have that f̂(∆n−1
ε ×∆×U0) ⊂ V . This follows

from the fact that {(z′,wn+1)} ×∆ doesn’t intersect If . The standard Hartogs theorem for

holomorphic mappings into Stein spaces, see Corollary 1.1, implies that f̂ , and therefore f itself,
holomorphically extends to a neighborhood ∆n−1

ε ×∆×U of v. By this we extended f to a
neighborhood of ∆n+1 \

⋃
z′∈∆n−1 ∆×Sz′,2.

Now let us repeat the same along coordinate zn. Namely let v = (z′,zn,zn+1) be such that
zn+1 ∈ Sz′,2 but zn 6∈ Sz′,1. Take w = (z′,wn,zn+1) such that wn ∈A1−r,1\Sz′,1. Find U b∆\Sz′,1
biholomorphic to the disk and such that U 3 zn,wn. Take ρ such that ∂∆ρ ∩Sz′,2 = ∅ but
∆ρ 3 zn+1. f is up to now holomorphically extended to ∆n−1

ε ×U ×∂∆ρ. As well as for some
neighborhood U0 b U of wn f is holomorphic in ∆n−1

ε ×U0 ×∆ρ. As above it follows that
f holomorphically extends to a neighborhood ∆n−1

ε ×U ×∆ρ of v. I.e., f is holomorphically
extended to a neighborhood of ∆n+1 \

⋃
z′∈∆n−1 Sz′,1×∆.

This gives the extension of f to a neighborhood, say U , of

∆n+1 \
⋃

z′∈∆n−1

Sz′ . (9.15)

Set S := ∆n+1 \U . This is a closed subset of ∆n+1 such that for every z′ ∈ ∆n−1 one has
S ∩∆2

z′ ⊂ Sz′ , i.e., S is (n− 1)-polar. Taking coordinates (zn,zn+1) with different slopes and
then intersecting the sets S thus obtained we obtain a closed (n− 1)-polar set, call it again S,
which for and open set of complex 2-directions has the property that its intersection with every
2-plain in this direction is of dimension zero. By standard geometric measure theory, see ex.
[Mt], this implies that S is of Hausdorff dimension 2n−2.

Consider now the current T = f∗ω defined on U . Note that T is smooth, positive and
ddcT 6 0 there. By Lemma 9.2 for every z′ ∈ ∆n−1 one has that Tz′ := T |∆2

z′
∈ L1

loc(∆
2
z′)

and consequently every Tz′ extends to a plurinegative current T̃z′ on ∆z′ . Apply (5.10) our

trivial extensions T̃z′ of Tz′ to obtain that the masses ‖T̃z′‖(∆2) are uniformly bounded on z′ on
compacts in ∆n−1. On L1 the mass norm coincides with the L1-norm. So taking the second factor
in ∆n−1×∆2 with different slopes and using Fubini theorem we obtain that T ∈ L1

loc(∆
n−1×∆2).

Denote by T̃ the trivial extension of T . All that is left to prove is that ddcT̃ is negative. It is
enough to show that for any collection L of (n− 1) linear functions {l1, ..., ln−1} the measure

ddcT̃ ∧ i
2∂l1 ∧∂l1 ∧ ...∧

i
2∂ln−1 ∧∂ln−1 is nonpositive, see [Ho2]. Complete these functions to a

coordinate system {z1 = l1, ...,zn−1 = ln−1,zn,zn+1} and note that for almost all collections L

the set ∆2
z′ ∩U ⊃ ∆2

z′ \Sz′ for all z′ ∈ ∆n−1. Therefore T̃ |z′ are plurinegative for all such z′.
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Take a nonnegative function ϕ ∈ D(∆n+1). We have

(n−1)!< ddcT̃ ∧ i

2
∂l1∧∂l1∧ ...∧

i

2
∂ln−1∧∂ln−1,ϕ >=

∫
∆n+1

T̃ ∧ (ddc‖z′‖2)n−1∧ddcϕ=

=

∫
∆n−1

(ddc‖z′‖2)n−1
∫
∆2

(T̃ )z′ ∧ddcϕ=

∫
∆n−1

(ddc‖z′‖2)n−1
∫
∆2

T̃z′ ∧ddcϕ=

=

∫
∆n−1

(ddc‖z′‖2)n−1
∫
∆2

ddc(T̃ )z′ ∧ϕ6 0.

We used here Fubini theorem for L1-functions, the fact that (T̃ )z′ = T̃z′ for currents from L1
loc

that are smooth outside of a suitably situated set S, and finally the plurinegativity of T̃z′ .
Therefore T̃ is plurinegative. Lemma and Step are proved, as well as part (i) of the theorem.
�
Step 5. The case of a pluriclosed metric form. Let U denotes now the maximal open subset of
∆n+1 such that f meromorph8ically extends to U . Set this time S = ∆n+1 \V . We have that
for every z′ ∈∆n−1 one has S ∩∆2

z′ ⊂ Sz′ , and the latter is closed, complete polar of Hausdorff
dimension zero for every z′ ∈ ∆n−1. Fix a point a ∈ S and suppose that there is a transversal
sphere S3 = {x ∈ P : ‖x−a‖= ε} on some two-plane P through a such that f(S3) is homologous
to zero in X. We shall prove that in this case f meromorphically extends to a neighborhood of
a. Write W = Bn−1×B2 for some neighborhood of this point such that (B̄n+1×∂B2)∩S = ∅
and for every z

′ ∈Bn−1 one has f(∂B2
z′)∼ 0.

Lemma 9.5. Suppose that the metric form w on X is pluriclosed and for all z′ ∈Bn−1 f(∂B2
z′)∼

0 in X. Then:
i) ddcT̃ = 0 in the sense of distributions.

ii) There exists a (1,0)-current γ in W , smooth in W \S, such that T̃ = i(∂γ̄− ∂̄γ).

The proof will be omitted, see however Lemma 2.8 in [Iv8]. Finally we have the following

Lemma 9.6. If T̃ is pluriclosed, then the volumes Γf ′z ∩B
2
z ×X are uniformly bounded for

z ∈Bn−1
r and f extends meromorphically onto W .

Proof. Find γ1,0 for T̃ as in Lemma 9.5. Smoothing by convolutions we still have T̃ε =
i(∂γ̄1,0ε − ∂̄γ1,0ε ). Then for z′ ∈Bn−1 and Rz′ :=R∩B2

z′ we have:

vol(Γfz′ ) =

∫
B2

z′\Rz′

S2 = lim
ε↘0

∫
B2

z′\Rz′

T̃ 2
ε 6 lim

ε↘0

∫
B2

z′

R̃2
ε = lim

ε↘0

∫
B2

z′

i2(∂γ̄1,0ε − ∂̄γ1,0ε )2 6

6 lim
ε↘0

∫
B2

z′

i2d(γ̄1,0ε −γ1,0ε )∧d(γ̄1,0ε −γ1,0ε ) = lim
ε↘0

∫
∂B2

z′

i2(γ̄1,0ε −γ1,0ε )∧d(γ̄1,0ε −γ1,0ε ) =

=

∫
∂B2

z′

i2(γ̄1,0−γ1,0)∧d(γ̄1,0−γ1,0)6 const.

In the first inequality we used the positivity of T . In the second – the fact that −i2∂̄γ̄1,0ε ∧∂γ1,0ε
is positive and ∂̄γ̄1,0ε ∧ ∂̄γ̄1,0ε = 0. Finally γ1,0ε → γ1,0 on B̄n−1×∂B2, since γ1,0 is smooth there.
This gives the required bound for vol(Γfz′ ) =

∫
B2

z′\Az′
S2.

Theorem 7.3 (with q = 2) gives us now the extension of f onto W ∼= Bn−1×B2. We proved
that if the singularity set S of f is non-empty then X contains spherical shells. Theorem 9.1 is
proved. �
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9.4. Proof of Corollary 9.3, Kähler fibrations. Let us now prove Corollary 9.3. Namely,
we suppose that the metric form ω on our space X is the (1,1)-component of some closed real
two-form ω0, i.e., that there is a (2,0)-form ω2,0 such that ω0 = ω2,0+ω+ω̄2,0 and dω0 = 0. As we
remarked before stating Corollary 9.3 such ω is obviously ddc-closed. Therefore the machinery
of the proof of Theorem 9.1 applies to this case. Therefore our mapping f can be extended
meromorphically to ∆n+1\A, where A is either empty or is (n−1)-polar of transverse Hausdorff
dimension zero.

Suppose A 6=∅. Take a point a ∈A with a neighborhood W 3 a biholomorphic to Bn−1×B2

and such that π |Â∩W : Bn−1×B2 → Bn−1 is proper. Here Â = A∪ I(f) is the union of A with

the set of points of indeterminacy of f . Let us prove that ddcT̃ = 0 in W , where T = f∗ω on
∆n+1\Â. From Lemma 9.5 we see that all we must prove is that

∫
∂B2

z′
dcT̃ε = 0 for all z′ ∈Bn−1.

Indeed, let T 0 = f∗ω0 and T 2,0 = f∗ω2,0 on ∆n+1 \ Â. Then, since dT 0 = dcT 0 = 0, one has:∫
∂B2

z′

dcT̃ε =

∫
∂B2

z′

dc(T̃ε−T 0
ε ) =

∫
∂B2

z′

dc(−T̃ 2,0
ε − T̄ 2,0

ε ).

Take a cut-off function η with support in a neighborhood of B2
z′ . Then∫

∂B2
z′

dcT̃ 2,0
ε =

∫
∂B2

z′

dc(ηT̃ 2,0)ε =

∫
B2

z′

ddc(ηT̃ 2,0)ε = 0 (2.5.2)

by the reasons of bidegree. So T̃ is pluriclosed on W and we can extend f onto the whole W
using Lemma 9.6. Corollary 9.3 is proved.

Let us give a corollary from this result. Recall that a complex deformation of a compact
complex manifold X is a complex manifold X together with a proper surjective holomorphic
map pr : X → ∆ od rank one with connected fibers and such that the fiber X0 over zero is
biholomorphic to X. From [Hi] one knows that if X0 is Kähler this doesn’t implies that the
neighboring fibers Xt are Kähler.

Corollary 9.5. Let pr : X → Y be a complex deformation over a compact complex manifold of
dimension n > 2 with compact Kähler fibers. Let S ⊂ Y be a closed subset such that Y \S is
Stein/or admits an (n− 1)-convex exhaustion. Then any meromorphic section of pr : X → Y ,
defined in a neighborhood of S extends to a meromorphic section over the whole of Y .

Remark 9.5. There is no assumption on how the Kähler metrics on fibers depend on the point on the
base. Of course the total space X don’t need to be Kähler and even locally Kähler.

Proof. Step 1. Every point y ∈ Y has a neighborhood U such that XU = pr−1(U) possesses a
Hermitian metric such that its Kähler form ωU is a (1,1)-component of a closed form.

To see this take a coordinate neighborhood U 3 y such that XU is diffeomorphic to U ×Xy.
Let pr1 : U ×Xy : Xy be the projection onto the second factor. Let ωy be a Kähler form on Xy.
Consider the following 1-form on XU : ωU = pr∗ddc|z|2 + pr∗1ωy, where z is the vector of local
coordinates on U . ωU is d-closed. Its (1,1)-component is positive for U small enough, since ωy
is positive on Xy.

Let ρ be a strictly plurisubharmonic Morse exhaustion function on the Stein manifold W :=
Y \S. Set Wt = {y ∈W : ρ(y) > t}. Given a meromorphic section v on the neighborhood of S.
Then v is defined on some Wt. The set T of t such that v meromorphically extends onto Wt is
non-empty and close.

Step 2. T is open. Let t ∈ T , then v is well defined and meromorphic on Wt. Set St = {y ∈
W : ρ(y) = t}. Fix a point y0 ∈ St. Take a neighborhood U of y0 and form ωU as in the
Step 1. If y0 is a regular point of St then there exists a Hartogs figure H ⊂ Wt such that the
corresponding polydisk D 3 y0. By Corollary 9.3 the meromorphic mapping v : H → D×Xy0
can be meromorphically extended to D and we are done.
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If y0 is a critical point of St we can still apply Corollary 9.3 appropriately placing a Hartogs
figure near the critical point of a strictly plurisubharmonic Morse function. Therefore v extends
to Wt for all t and Corollary is proved. �
Definition 9.3. We say that a complex space X possesses a holomorphic (resp. meromorphic)
extension property if every holomorphic (resp. meromorphic) mapping f :Hn

r →X holomorphi-
cally (resp. meromorphically) extends to ∆n.

By Docquier-Grauert Theorem 1.7 for such X every holomorphic/meromorphic mapping from
a domain D in Stein manifold with values in X holomorphically/meromorphically extends to

the envelope of holomorphy D̂ of D.

Corollary 9.6. Let Xt be a complex deformation of a compact Kähler manifold X0. Then for
t∼ 0 Xt possesses a meromorphic extension property.

Indeed, Step 1 in the proof of the Corollary 9.5 tells us that for t ∼ 0 the fiber Xt admits a
Hermitian metric such that its associated form is a (1,1)-component of a closed form. Therefore
Corollary 9.3 applies to Xt.

In concern with the material of this chapter let us ask a few questions.

Question 1. Suppose all Xt for t 6= 0 possed meromorphic extension property. Does X0

possesses it as well? And in other direction: if X0 possesses a mer. ext. prop. does Xt possesses
it for t close to zero?

Conjecture 1. Let f : ∆k
∗ →X be a meromorphic mapping from a punctured polydisk, k > 2,

to a compact complex space X. Suppose that volf(∆k
∗) < ∞. Prove that f meromorphically

extends to zero.

Conjecture 2. Let f : ∆k+1
∗ → X be a meromorphic map from punctured (k+1)-disk into a

compact complex space of dimension k+1, k > 1. Prove that volf(Akr,1) =O(log
k+1
k (1r )).

It is likely that one can say more about the singularity set A of the extended mapping in
Theorems 9.1 and 10.2.

Question 2. Let X is a compact complex manifold carrying a pluriclosed metric form, and let
f : H3

r → X is a meromorphic mapping. Let S is a minimal closed subset of ∆3 such that f
extends onto ∆3 \S. If S 6=∅ then each connected component of S should be a complex curve.

For a general complex manifold X without special metrics the answer to the last question can
be negative, see examples in the last section of [Iv8].

9.5. Extension of meromorphic correspondences along (n− 1)-convex exhaustions.
Let a meromorphic map f : D → Y be given, where Y is a reduced complex space and D
is a domain in a reduced, normal complex space X which is (n− 1)-concave at some point
x0 ∈ ∂D. Let π : (U,x0) → (∆n,0) is a projection as in the Projection Lemma 18.1. Denote
by d the branching number of π. The composition f ◦π−1 defines in a natural way a d-valued
meromorphic correspondence between Hn,n−1

r and X.

Definition 9.4. A d-valued meromorphic correspondence between complex spaces H and X is
an irreducible analytic subset Z ⊂H×X such that the restriction pr1 |Z of the natural projection
onto the first factor to Z is proper, surjective and generically d - to - one. More generally a
k-dimensional, k > 0, meromorphic correspondence is a dimD+k-dimensional analytic set Γ in
D×X such that the restriction pr1|Γ : Γ→D is proper.

Therefore the extension of f to a neighborhood of x0 is equivalent to the extension of Z from
Hn,n−1
r to the associated polydisk. Indeed, suppose that Z extends to ∆n. Then Z ◦π extends

to a correspondence Z̃ on U . Denote by f̃ the irreducible component of Z̃ which contains the
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graph of f . If f̃ is not singlevalued then it should have a non-empty branching divisor B. But
B ∩D = ∅, contradiction. It is clear that if f was also a correspondence it will produce no
additional complications in the question of extending it to a neighborhood of x0. So our task is
to understand how far the problem of extending of correspondences goes from the problem of
extension of mappings. Let Z be a d-valued meromorphic correspondence between the Hartogs
figure H and X. Z defines in a natural way a mapping fZ : H → Symd(X), the symmetric
power of X of degree d. Clearly the extension of Z to ∆n is equivalent to the extension of fZ
to ∆n. If X was, for example, a Kähler space, then Symd(X) is a Kähler space by [V]. So,
meromorphic correspondences with values in Kähler manifolds are extendable through pseudo-
concave boundary points. In fact in [V] it is proved that the Barlet space Bk(X) of k-dimensional
compact cycles of a Kähler space X is Kähler again. This implies the extendability also of
meromorphic correspondences with values in Kähler spaces.

Corollary 9.7. Let f : D → Y be a meromorphic correspondence (of any dimension) from a
domain D in a normal complex space X to a disk-convex reduced Kähler space Y . Suppose that
D is (n−1)-concave at x0 ∈ ∂D, n= dimD. Then f extends as a meromorphic correspondence
to a neighborhood of x0 in X.

This implies also a Bochner-Hartogs-type statement in the spirit of Theorem 1.6.

Corollary 9.8. Let X be a normal, (n−1)-complete complex space (n= dimX), D a relatively
compact domain in X and K b D a compact in D such that D \K is connected. Then every
meromorphic correspondence between D \K and a disk-convex Kähler space Y can be extended
as a meromorphic correspondence to D.

The proof is literally the same as for meromorphic functions, see Corollary 4.1. For the manifolds
and spaces carrying a pluriclosed metric form, this is no longer the case, even if they do not
contain spherical shells. The following example is constructed in [Iv8], see Example 3.5 there.

Example 9.3. There exists a compact complex (elliptic) surface Y such that:
(a) every meromorphic map f :H2

r → Y extends meromorphically to ∆2;
(b) but there exists a two-valued meromorphic correspondence Z between C2

∗
and Y that cannot be extended to the origin.

The point here is that Sym2Y may contain a spherical shell even if Y contains none.

Chapter III. Applications

10. Coverings of compact complex manifolds

Let us apply the extension results of preceding sections to the case when our mapping f :D→
X is a regular cover, see subsection 5.2. To give an immediate idea of the type of applications
we have in mind let’s state the following well known fact.

Corollary 10.1. Let D be a bounded domain in Cn which regularly covers a compact complex
manifold X. Then D is a domain of holomorphy.

Proof follows immediately from Theorem 6.4 and Docquier-Grauert criterium of Theorem 1.7.
Indeed, since D is Kobayashi hyperbolic so is also the manifold X. Remark that by theorem of
Siegel, see [Sg2], such X is projective, in particular Kähler. Our first question will be if one can
remove the assumption on D to be bounded?

10.1. Coverings of Kähler manifolds.

Corollary 10.2. Let D be a domain over a Stein manifold which regularly covers a compact
Kähler manifold X. Then D is Stein.
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Denote as c : D → X the covering map. Let us remark that our X cannot contain rational
curves. Indeed, let h : P1 → C ⊂ X be a rational curve. Then c−1 ◦h is well defined, because
of simple connectivity of P1. This gives a rational curve in D, contradiction. To prove that D
is Hartogs convex take any locally biholomorphic map h : Hn

r → D. Then c ◦ h extends to a

locally biholomorphic map ĥ : ∆n →X by Theorem 6.3. Now we can lift ĥ back and obtain an
extension h̃ of h to ∆n. Corollary is proved. More generally one has the following.

Corollary 10.3. Let (D,π) be a domain over a complex manifold Y which regularly covers a
compact Kähler manifold X. Then (D,π) is locally pseudoconvex over Y .

Proof. Let again c : D → X be the covering map. Take a point y0 ∈ Y and let B0 be a
coordinate ball around y0. Denote by {Bi}i>1 the set of all connected components of π−1(B0).
We need to establish the Hartogs convexity of every Bi. In order to do this take a holomorphic
imbedding h : Hn

r → B1 and, applying Theorem 8.1, extend the composition c ◦ h of h with

the cover map c : D → X to the polydisk ∆n, i.e., to a meromorphic map h̃ : ∆n → X. The
simple connectivity of ∆n \ Ih̃ together with the fact that c :D→X is a regular covering gives
us a locally biholomorphic extension of h to ∆n \ Ih̃ as a mapping with values in B1. We want
to prove that Ih̃ is empty. If this is not the case take a smooth point a on Ih̃ and a small
polydisk U = ∆n with center at a and reduce our situation to the following. There exists a
locally biholomorphic map h : ∆n \∆n−k×{0}→B1, k > 2, such that:

i) h0 := π ◦h extends to a holomorphic imbedding of ∆n to B0;

ii) h̃ := c◦h extends meromorphically to ∆n with Ih̃ =∆n−k×{0};
iii) a fortiori h is an imbedding on ∆n \∆n−k×{0}.
Items (i) and (iii) hold true because π and h are locally biholomorphic, therefore one just

needs to take U small enough. Take a resolution of c ◦h, i.e., a complex manifold E together
with proper holomorphic surjection p : E → ∆n which is biholomorphic over ∆n \∆n−k×{0}
and such that the lift ĥ := h̃ ◦ p is holomorphic. Using h and (iii) we can attach E to B1, i.e.,
Z := E∪D is what is called a local modification of D along a locally closed center h(∆n−k×{0}).
Denote by c̃ : Z → X the holomorphic map obtained this way. Take a point b ∈ E and find
a point c ∈ D such that c̃(b) = c̃(c) =: p. Take a path γ : [0,1] → Z such that γ(0) = c and
γ(1) = b. Then the path β := c̃(γ) is closed. It can be lifted by c−1 to D with initial value c.

But then it cannot reach b, contradiction. I.e., Ih̃ is empty. This means that h̃ is holomorphic
on ∆n and therefore h takes values in B1 on the whole of ∆n. The Hartogs convexity of B1 is
proved. Therefore D is locally pseudoconvex. �
Remark 10.1. a) In Corollary 10.3 the condition on X to be compact Kähler can be weakened to that
of being of class C, i.e., bimeromorphic to a compact Kähler manifold. Indeed, all that we need for the
proof is the extendability of meromorphic mappings, and this property is bimeromorphically invariant.

b) In these corollaries we do exploit the fact that a regular cover is locally biholomorphic, but not in
a point of extending it. Only in some additional (easy) speculations. Now let us indicate that in some
cases the fact that a covering map is not an arbitrary holomorphic map but it is locally biholomorphic can
be used also in the difficult part of extending it.

Definition 10.1. Recall that a complex manifold X is called infinitesimally homogeneous if the
global sections of its tangent bundle generate the tangent space at each point.

All parallelizable manifolds are infinitesimally homogeneous, as well as all Stein manifolds and
all complex homogeneous spaces under an action of a real Lee group. Every Riemann domain
(D,π) over an infinitesimally homogeneous manifold is infinitesimally homogeneous itself. Let
(D,π) be such a domain over an infinitesimally homogeneous X.

Theorem 10.1. Let X be a compact, infinitesimally homogeneous, Kähler manifold. Then
every locally biholomorphic mapping f :D→X from a domain D over a complex manifold into
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X extends to a locally biholomorphic mapping f̂ : D̂→X of the pseudoconvex envelope D̂ of D
into X.

For the proof we refer to [McK] or [Iv9], the last survey contains more results about the
extension of equidimensional mappings. In particular every locally biholomorphic mapping from
a domain D in complex manifold Y to Pn extends to a locally biholomorphic mapping of the
pseudoconvex envelope D̂ of D to Pn. This was earlier proved in [Iv1] together with some more
results on extension of locally biholomorphic mappings in [Iv2].

10.2. Weak convexity of covers of non-Kähler manifolds. Consider the case when X
is a compact complex surface regularly covered by some domain D ⊂ M . We can apply then
Corollary 9.1 and get the following

Corollary 10.4. D is either locally pseudoconvex or, equal to a locally pseudoconvex domain
minus a discrete set. In the latter case X contains a spherical shell.

When dimension is > 3 the following example of Kato 10.1 shows that one cannot expect that
the covering domain of a compact complex manifold is pseudoconvex minus some ”small“ set.

Example 10.1. (M. Kato, [Ka2]). Namely Kato had constructed a compact three-fold X, which is a
quotient of D = {[z0 : . . . : z3] ∈ P3 : |z0|2+ |z1|2 < |z2|2+ |z3|2} by a co-compact properly discontinuous
subgroup G ⊂ PGL(4,C). Denote by π : D → X the natural projection. Consider the hyperplane
P = {z ∈ P3 : z0 = 0} ∼= P2. Then D∩P = P2 \ B̄2, here B2 is a ball {|z1|2 > |z2|2+ |z3|2} in P2. Therefore
π |D∩P : P2 \ B̄2 →X cannot be extended to a neighborhood of any point on ∂B2.

However one can get some minimal convexity. Following the approach of [IS5] let us sketch
the proof of the following:

Theorem 10.2. Let X be a compact complex manifold of dimension n > 2. Then every holo-
morphic map f : Hn,1

r → X with zero-dimensional fibers extends meromorphically to ∆n \S,
where S is a zero-dimensional complete pluripolar set. If S is non-empty then for every ball B
with center s ∈ S such that ∂B ∩S = ∅ its image f(∂B) is not homologous to zero in X, i.e.,
f(∂B) is a spherical shell (of dimension n) in X.

Remark 10.2. a) More generally in this theorem one can suppose that X is of any dimension but
carries a strictly positive ddc-closed (n−1,n−1)-form.

b) A spherical shell of dimension n in complex manifold/space X is an image Σ of the unit sphere
S2n−1 ⊂ Cn under a meromorphic map h from a neighborhood of S2n−1 into X such that Σ = h(S2n−1)
is not homologous to zero in X.

Proof. The proof can be achieved by induction on the dimension n. Case n+ 1 = 2 is a
particular case of Theorem 9.1. Let f :Hn+1,1

r →X be given.

Step 1. Reductions. For s ∈ ∆ set Ans := An1−r,1×{s} ⊂ Hn+1,1
r . Changing coordinates, as it s

explained in [IS5] Lemma 5, we can without loss of generality assume that:

a) f is non-degenerate and holomorphic on a neighborhood of An1−r,1×∆;

b) for all s ∈∆ Ans contains no curves contracted by f to a point;

c) for all s ∈∆ there do not exist non-empty disjoint open V1,V2 ⊂Ans with f(V1) = f(V2).

Denote by U the biggest open subset of ∆ such that f can be meromorphically extended onto
the Hartogs domain

HU (r) :=
[
An1−r,1×∆

]
∪
[
∆n×U

]
.

Let ω be a strictly positive (n,n)-form on X with ddcω = 0. For s ∈ U set

µ(s) =

∫
∆n

s

f∗ω. (10.1)
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Step 2. The function µ is positive and smooth on U . Moreover, it s Laplacian smoothly extends
onto the whole disk ∆. Proof is the same as in Step 1 of the proof of Theorem 9.1. For the case
n= 2 see also Lemma 6 from [IS5].

Step 3. We give it in the form of a lemma.

Lemma 10.1. Suppose that f is as above (in particular non-degenerate) and that there exists
a sequence {sk} ∈ U converging to s0 ∈∆ such that µ(sk) is bounded. Then:

1) f0 := f |An
s0

meromorphically extends to ∆n
s0;

2) the volumes of the graphs Γfsk are uniformly bounded in k;

3) f meromorphically extends to ∆n×U0 for some neighborhood U0 of s0.

The proof of this lemma is based on Theorem 7.5 with q = n. The main point is to bound the
volumes of graphs. The latter can be achieved similarly to the proof of an analogous Lemma 7
from [IS5].

Perturbing slightly the slope of coordinates (z2, ...,zn+1) we extend f as a holomorphic, zero-
dimensional map to ∆n+1 \S, where S is an 1-polar closed subset of ∆n+1 of zero Hausdorff
dimension.

Step 4. ∂U ∩∆ is complete polar. The proof of this statement is quite similar to the proof of
steps 2-3 of Theorem 9.1, see however pp. 705-706 in [IS5] for more details.

�

Corollary 10.5. The universal cover Ṽ of a compact complex n-fold V is weakly (n−1)-convex

in the following sense: every meromorphic mapping f : Hn,1
r → Ṽ extends to ∆n unless V

contains an n-dimensional spherical shell.

Theorem 10.2 just given is stated in [IS5] as Proposition 12 and its proof follows the lines of
the proof of the main result of that paper:

Theorem 10.3. Every meromorphic map f : H3,1(r) → X, where X is a three-dimensional
compact complex manifold, extends to a meromorphic map from ∆3 \ S to X, where S is a
closed complete pluripolar subset of Hausdorff dimension zero. Moreover, if S 6= ∅, then for
every transversal sphere S5 in ∆3 \S its image f(S5) is not homologous to zero in X. I.e. if
S 6=∅ then X should contain a 3-dimensional spherical shell.

Theorems 9.1, 10.2 and 10.3 suggest the following conjecture. In subsection 7.8 we introduced
the class Gq of reduced complex spaces possessing a strictly positive ddc-closed (q,q)-form.

Conjecture 3. We conjecture that every meromorphic map f : Hn,n−q(r) → X, where X ∈ Gq
and is disk-convex in dimension q (e. compact), extends to a meromorphic map from ∆n\S to X,
where S is a closed (n−q−1)-polar subset of transverse Hausdorff dimension zero. Moreover, if
S 6=∅, then for every transversal sphere S2q+1 in ∆n\S its image f(S2q+1) is not homologous to
zero in X. I.e. if S 6=∅ then X should contain a (q+1)-dimensional spherical shell. Moreover,
we think that S, if non-empty, should be an analytic set of pure codimension q+1 or, at worst,
an at most countable union of analytic sets of pure codimension q+1.

Theorem 9.1 proves this conjecture in the case q = 1, Theorem 10.3 for the case q = 2, both
except conjectured analyticity of the singular set S. General case looks to be quite technical.
The main difficulty lies in the fact that it is impossible in general to make the reductions (a)-(c)
as above (or, as in §1 from [IS5]). Note that reductions (d)-(e) from §1 of [IS5]can be achieved
in all dimensions. A part of these reductions is the following theorem proved in [Cha].

Theorem 10.4. Let f :Hn
r → X be a degenerate meromorphic mapping to a compact complex

space. Then f extends to ∆n.
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10.3. Coverings by ”large“ domains in complex projective space. To stay within a
reasonable generality we shall restrict ourselves in this subsection with subdomains of Pn which
cover compact complex manifolds (this includes also subdomains of Cn ⊂ Pn). However many
statements have an obvious meaning (reformulation) in the case of domains in general complex
manifolds. Locally pseudoconvex domains over both Cn and Pn are Stein (with one exception:
Pn itself). They can cover both Kähler and non-Kähler manifolds. An example of Stein domain
covering a non-Kähler compact manifold is any Inoue surface with b2 = 0. Their universal cover
is C×H, where H is the upper half-plane of C. A domain D ⊂ Pn is said to be ”large“ if its
complement Λ := Pn \D is ”small“ in some sense. Different authors give different sense to the
notion of being ”small“, see [Ka3, La], and therefore we shall reserve ourselves from giving a
precise definition.

Let’s start from the remark that if Λ 6= ∅ then its Hausdorff n-dimensional (resp. (n− 1)-
dimensional) measure is non-zero if n is even (resp. odd), see [La]. In P2 or P3 this means the
same: h2(Λ)> 0. Both cases is easy to realize by examples. We have the following statement.

Proposition 10.1. Suppose a domain D ⊂ P3 covers a compact complex threefold X.

Case 1. If the complement Λ = P3 \D is locally a finite union of two-dimensional submanifolds,
then Λ is a union of finitely many complex lines.

Case 2. If the complement Λ = P3\D is locally a finite union of three-dimensional submanifolds,
then Λ is foliated by complex lines.

Proof. Take a point p on the limit set Λ and find a point q ∈D and a sequence of automorphisms
γn ⊂ Γ such that γn(q) → p. Here Γ is a subgroup of Aut(D) such that D/Γ = X. Due to the
Hausdorff dimension condition on Λ there exists a line l 3 q such that l∩Λ =∅. Then γn(l) will
converge to a line in Λ passing through p. �
Remark 10.3. In [Ka3] an example of Λ of dimension 3 in P3 is constructed.

11. Sets of normality of families of meromorphic mappings

Questions of extension of meromorphic mappings come closely together with questions about
their convergence and separate analyticity. Along the following two sections shall say more
about these issues.

11.1. Strong convergence of meromorphic mappings. When working with sequences of
meromorphic functions and, more generally, mappings one finds himself bounded to consider
several notions of their convergence. It occurs that pseudoconvexity or not of domains of con-
vergence/normality in the case of meromorphic mappings crucially depends on the type of con-
vergence one is looking for. Let us describe the ways one can define what does it means that a
sequence {fk} of meromorphic mappings between complex manifolds/spaces D and X converge
to a meromorphic mapping f : D → X. The only condition that one is supposed to respect
is that for holomorphic mappings our notion of convergence should coincide with the uniform
convergence on compacts in D. The latter is denoted as fk ⇒ f . The most obvious notion of
convergence was already used and called strong convergence, see Definition 7.3. It turns that
strong convergence is even stronger that it is postulated in its definition.

Theorem 11.1. If fk strongly converge to f then for every compact K b D the volumes
Γfk ∩ (K×X) are uniformly bounded and therefore Γfk converge to Γf in the topology of cycles.

For the proof we refer to [IN]. Here is one more nice feature of the strong convergence.

Theorem 11.2. (Rouché’s principle). Let a sequence of meromorphic mappings {fk} between
normal complex spaces D and X strongly converge on compacts in D to a meromorphic map f .
Then:

(a) If f is holomorphic then for any relatively compact open subset D1 ⊂D all
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restrictions fk |D1 are holomorphic for k big enough, and fk ⇒ f .
(b) If {fk} are holomorphic then f is also holomorphic and fk ⇒ f .

For the proof we refer to [Iv7]. Strong convergence has also some disadvantages. For example
domains of strong convergence and strong normality are quite arbitrary. We shall explain this
in more details. Let F be a family of meromorphic mappings from a normal complex space D
to a disk-convex reduced complex space X.

Definition 11.1. The set of normality of F is the maximal open subset of D, we shall denote
it as NF , such that F is relatively compact on NF . If F = {fk} is a sequence then the set
of convergence of F , denote as CF , is the maximal open subset of D such that fk converge on
compacts of this subset.

To be relatively compact in this definition means that from every sequence of elements of F
one can extract a converging on compacts subsequence. The sense of convergence (strong or
other, see below) should be each time specified.

Example 11.1. a) Let X be P3 blown up in one point. Then for every open subset D of C2 one
can find a sequence of holomorphic mappings of C2 to X with D as its set of strong normality. To
see this, let (w1,w2,w3) be coordinates of the affine part of P3. We suppose that the blown-up point
is zero in these coordinates. For a = (a1,a2) 6= (0,0) and n ∈ N define a mapping fn,a : C2 → X by
(w1,w2,w3) = (z1 − a1,z2 − a2,1/n). If one takes A to be the set of all points in C2 \ D̄ with rational
coordinates, then F = {fn,a : n ∈ N,a ∈A} will be the family with NF =D in the strong sense.
b) Let X be a Hopf three-fold X := C3\{0}/z ∼ 2z. Denote by π : C3\{0}→X the canonical projection.
Let D b C2 be any bounded domain. Take a sequence {an} ⊂ D accumulating to every point on ∂D.
Let gn : C2 → C3 be defined as gn(z) = (z−an,1/n). Set fn := π ◦ gn. Then the set of strong normality
of F = {fn} has D as one of its connected components.

11.2. Weak convergence. Let D and X be reduced complex spaces, D normal, and let {fk} ⊂
M(D,X) be a sequence of meromorphic mappings.

Definition 11.2. We say that fk converge weakly to f ∈M(D,X) (w-converge) if there exists
an analytic subset A in D of codimension at least two such that fk converge strongly to f on
compacts in D \A.

If in Example 11.1 (b) one takes a converging to zero sequence {an} then corresponding fn
will converge on compacts of C2\{0} but the limit will not extend to zero meromorphically. I.e.,
fn will not converge weakly in any neighborhood of the origin. If one does the same in Example
11.1 (a) then fn will converge (but only weakly).

Remark 11.1. fk converge weakly to f if and only if for every compact of D\If all fk are holomorphic
in a neighborhood of this compact for k big enough and uniformly converge there to f as holomorphic
mappings. Indeed, let A be the minimal analytic set of codimension > 2 such that fk converge strongly to
f on D\A. Then A must be contained in If because if there exists a point a ∈A\If then f is holomorphic
in some neighborhood V 3 a and then, by the Rouché Principle fk for k� 1 are holomorphic on compacts
in V \A and converge uniformly (on compacts) to f there. From here and the fact that codimA> 2 one
easily gets that fk are holomorphic on compacts on the whole of V and converge to f uniformly.

Now let us turn to the sets of weak convergence/normality. Sets of strong normality obvi-
ously are well defined, i.e., they do exist. The existence of sets of weak normality follows from
Remark 11.1, see however the proof of Corollary 1.2.1(a) in [Iv7]. Domains of weak conver-
gence/normality of meromorphic mappings turn to be pseudoconvex for a large class of target
manifolds (unlike to the case of strong convergence). This follows from the ”mutual propagation
principle” of the following theorem.

Theorem 11.3. Let D be a domain in a Stein manifold D̂ such that D̂ is an envelope of
holomorphy of D and let fk : D̂ → X be a weakly converging on D sequence of meromorphic
mappings with values in a disk-convex complex space X. Then:
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(a) If the weak limit f on fk meromorphically extends from D to D̂ then fk weakly

converge to f on the whole of D̂.

(b) If, in addition, the space X carries a pluriclosed metric form then the weak limit

f of fk meromorphically extends to D̂ and then the part (a) applies.

For the proof we refer to [Iv7]. As a result the sets of weak normality are locally pseudoconvex
provided the target is disk-convex and carries ddc-closed metric form. Namely we have the
following

Corollary 11.1. Let F ⊂ M(D,X) be a family of meromorphic mappings from a complex
manifold D to a disk-convex space X which carries ddc-closed metric form. Then the set of
weak normality NF of F is pseudoconvex. If F = {fk} is a sequence then the set of its weak
convergence is pseudoconvex.

The proof of this corollary clearly follows from Theorem 11.3.

11.3. Gamma convergence. Let again {fk} be a sequence of meromorphic mappings between
complex spaces D and X. Let f ∈M(D,X) be a meromorphic map.

Definition 11.3. We say that fk Γ-converge to f if:

i) there exists an analytic subset A⊂D such that fk strongly converge to f on
compacts of D \A;
ii) for every divisor H in X, such that f(D) 6⊂H and every compact K bD
the volumes of f∗kH ∩K counted with multiplicities are uniformly bounded for k� 1.

Remark 11.2. This notion is weaker than weak convergence because A can have components of codi-
mension one. It might be convenient to add to A the indeterminacy set of f and then, see Remark 11.1,
fk will converge to f uniformly on compacts of D \A as holomorphic mappings. Condition (ii) is also
satisfied for a weakly converging sequence, because divisors f∗H extend from D\A to D and if they have
bounded volume on compacts of D\A then the same is true on compacts of D. All this obviously follows
from the ingredients involved in the proof of Bishop’s compactness theorem, see [St].

Example 11.2. a) Consider the following sequence of holomorphic mappings fk : ∆→ P1:

fk : z→
[
1 : 1+

1

z
+ ...+

1

zkk!

]
=

[
zk : zk+zk−1+ ...+

1

k!

]
. (11.1)

It is clear that fk converge on compacts of ∆ \ {0} to f(z) = [1 : e
1
z ] but, as it is clear from the second

expression in (11.1), the preimage counting with multiplicities of the divisor H = {Z0 = 0} is k[0] (here
[Z0 : Z1] are homogeneous coordinates in P1), i.e., has unbounded volume. And indeed, this sequence
should not be considered as converging one, because its limit is not holomorphic on ∆.

b) Set fk(z) = [z : z− 1
k ] : ∆→ P1. This sequence clearly converges to the constant map f(z) = [z : z] =

[1 : 1] on compacts of ∆ \ {0}. Moreover, the preimage of any divisor H = {P (z0,z1) = 0} 6⊃ fk(∆) is
{z ∈∆ : P (z,z− 1

k ) = 0}, i.e., is a set of points, uniformly bounded in number counting with multiplicities.
Therefore this sequence Γ-converge (but doesn’t converge weakly).

Example 11.3. Consider the following sequence of meromorphic functions on ∆2 ( i.e., meromorphic
mappings to P1):

fk(z1,z2) = [z1 : 2
−kzk2 ].

The limit map is constant f(z) = [1 : 0]. fk converge to f strongly (uniformly in fact) on compacts of
∆2 \{z1 = 0}. If [Z0 : Z1] are homogeneous coordinates in P1 then the preimage of the divisor [Z1 = 0] is
k[z2 = 0], i.e., this sequence doesn’t converge even in Γ-sense.

Remark 11.3. Examples 11.2 and 11.3 are examples of sequences converging outside of an analytic set
of codimension one, which are not Γ-converging. In the first case the limit doesn’t extend to the whole
source, in the second it does. Convergence of meromorphic mappings of this type was introduced and
studied by Rutishauser in [Ru].
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If in Definition 11.1 the underlying convergence is the Γ-convergence we get the corresponding
notions of a convergence/normality set. Let us conclude this general discussion with the following

Proposition 11.1. Let X be a disk-convex complex space carrying a pluriclosed metric form.
Then the sets of Γ-convergence/normality of meromorphic mappings with values in X are locally
pseudoconvex.

For the proof we refer to [IN].

Remark 11.4. Strong convergence (or s-convergence) will be denoted by fk → f , weak one (or w-

convergence) as fk ⇀ f , and Γ-convergence as fk
Γ−→ f . Note that in the second and third definitions we

impose that the limit f is defined and meromorphic on the whole of D if, even, the convergence takes
place only on some part of D. In the first case the limit exists on the whole of D automatically, see once
more Example 11.1 in concern with this.

11.4. Convergence of meromorphic functions. For the better understanding of these no-
tions of convergence let us give their description in the case when X is projective, i.e., imbeds
into PN for some N . In that special case the notions of convergence listed above permit an
explicit analytic description as follows. Every meromorphic mapping f with values in PN can
be locally represented as (7.1) and its indeterminacy set If is then given as in (7.2). One has
the following.

Theorem 11.4. Let {fk} be a sequence of meromorphic mappings from a complex manifold D
to PN . Then:

i) fk
Γ−→ f if and only if for any point x0 ∈D there exists a neighborhood V 3 x0, reduced

representations fk = [f0k : ... : fNk ] and not necessarily reduced representation f = [f0 :

... : fN ] such that for every 06 j 6N the sequence f jk converge to f j uniformly on V ;

ii) fk⇀f if and only if fk
Γ−→ f and the limit representation f = [f0 : ... : fN ] is reduced;

iii) fk → f if and only if fk⇀f and corresponding non-pluripolar Monge-Ampère masses
converge, i.e., for every 16 p6 n= dimD one has(

ddc ‖z‖2
)n−p

∧
(
ddc ln‖fk‖2

)p
→
(
ddc ‖z‖2

)n−p
∧
(
ddc ln‖f‖2

)p
(11.2)

weakly on compacts in D.

Here in (11.2) we suppose that V =∆n, z,...,zn are standard coordinates and ‖f‖2 = |f0|2+
...+ |fN |2, i.e., ddc ln‖f‖2 is the pullback of the Fubini-Study form by f . Non-pluripolar MA

mass of ln‖f‖2 of order p here means∫
D\Zf

(
ddc ‖z‖2

)n−p
∧
(
ddc ln‖f‖2

)p
, (11.3)

where Zf is the analytic sets of common zeroes of f0, ...,fN . If this couple has ho common
divisors then Zf = If . For the proof of this theorem we refer to [IN].

Remark 11.5. a) Reducibility or not of the limit representation f = [f0 : ... : fN ] in this theorem
doesn’t depend on the choice of converging representations fk = [f0k : ... : fNk ], provided they are taken to
be reduced (the last can be assumed always). Indeed, any other reduced representation of fk has the form
fk = [gkf

0
k : ... : gkf

N
k ], where gk is holomorphic and nowhere zero. If the newly chosen representations

converge to some representation of f then gk must converge, say to g and this g is nowhere zero by
Rouché’s theorem. Therefore the obtained representation of the limit is f = [gf0 : ... : gfN ] and it is
reduced if and only if f = [f0 : ... : fN ] was reduced.

Let us make the following remark. Let ωFS be the Fubini-Study form on PN . For a holomor-
phic map f : ∆̄→ CN (we suppose f to be defined in a neighborhood of the closure ∆̄), the area
of f(∆) with respect to the Fubini-Study form is
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areaFSf(∆) =

∫
∆
f∗ωFS . (11.4)

Denote by Z = (Z0, ...,ZN ) coordinates in CN+1 and let π : CN+1 \ {0} → PN be the standard
projection. Consider the following singular (1,1)-form on CN+1

ω0 = ddc ln‖Z‖2 . (11.5)

Lemma 11.1. For a holomorphic lift F = (f0, ...,fN ) : ∆̄ → CN+1 of f : ∆̄ → PN ( i.e.,
f = π ◦F ) such that F |∂∆ doesn’t vanishes one has

areaFSf(∆) =

∫
∂∆
dc ln‖F‖2−NF . (11.6)

Here NF is the number of zeroes of F counted with multiplicities.

This readily follows from the King’s residue formula, see [Kg], but we shall give a simple direct
proof. By the very definition of the Fubini-Study form one has π∗ωFS = ω0. And therefore in a
neighborhood of a point a ∈∆ such that F (a) 6= 0 one has that f∗ωFS = F ∗ω0. As the result

areaFSf(∆) =

∫
∆
f∗ωFS =

∫
∆\ZF

F ∗ω0, (11.7)

where ZF := {z1, ...,zk} is the set of zeroes of F , i.e., such zl that f
j(zl) = 0 for all j = 0, ...,N .

Let nl be the multiplicity of zero zl. Then F (z) = (z−zi)nl(g0(z), ...,gN (z)), where at least one
of gj-s is not zero at zl. We have that

ddc ln‖F‖2 = nlδzl +dd
c ln‖G‖2 ,

where G(z) = (g0(z), ...,gN (z)). Therefore ddc ln‖G‖2 is an extension of F ∗ω0 to zl. The rest
obviously follows from the Stokes formula.

Let us observe the following immediate corollary from this lemma.

Corollary 11.2. Let fk :D→ PN be a Γ-converging sequence of meromorphic mappings and let
L be a divisor in D such that fk converge uniformly on compacts of D \L. Let V ∼= ∆n−1×∆
be a chart adapted to L and to the limit M of f∗kH0, where H0 = [Z0 = 0]. Then the areas of

the analytic discs fk(∆z′ ) are uniformly bounded in z
′ ∈∆n−1 and k ∈ N.

Indeed, let (z
′
,zn) be coordinates in ∆n−1 ×∆. Denote by Fk = (f0k , ...,f

N
k ) lifts of fk to

CN+1. Consider restrictions fk|∆
z
′ . Due to the fact that our chart is adapted to M = limf∗kH0

we have that f0k doesn’t vanishes on ∂∆z
′ for k � 1 and, since it is also adapted to L the lifts

Fk = (f0k , ...,f
N
k ) converge in a neighborhood of ∂∆z

′ . By (11.6) we have

areaFSfk(∆z′ )6
∫
∂∆

z
′

dc ln‖Fk‖2 6 c, (11.8)

i.e., the areas are uniformly bounded for z
′ ∈∆n−1 and all k.

Now let us discuss the convergence of meromorphic functions. Meromorphic functions on a
complex manifold D are exactly the meromorphic mappings from D to P1. I.e., all our previous
results and notions are applicable to this case. Therefore we can summarize as follows.

Corollary 11.3. Volumes of graphs of Γ-converging sequence of meromorphic functions are
uniformly bounded on compacts. If a sequence {fk} of meromorphic functions converges weakly
then it converges strongly. Domains of convergence/normality of meromorphic functions are
pseudoconvex for all types of convergence: weak=strong and gamma.
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Indeed, let f be the gamma limit of fk. Inequality (11.8) implies that in an appropriately

chosen local coordinates (z
′
,zn) one has

vol(Γfk|∆n ) =

∫
∆n

(ddc||z||2)n+
∫
∆n

(ddc||z||2)n−1∧f∗kωFS 6
∫
∆n

(ddc||z||2)n+

+

∫
∆n−1

(ddc||z||2)n−1
∫
∂∆

z
′

dc ln‖Fk‖2 6 const. (11.9)

Therefore after going to a subsequence we get that the Hausdorff limit Γ̂ := limΓfk is a purely
n-dimensional analytic subset of D×P1. We claim that if fk converge to f weakly then, in fact,
limΓfk = Γf . If not take any irreducible component Γ of this limit different from Γf . Denote
by γ its projection to D. γ is a proper analytic set of codimension at least two D. But then
Γ should be contained in γ × P1 and the last analytic set is of dimension dimD− 1. This is
impossible, because all components of limΓfk are of pure dimension dimD. Therefore γ =∅ and
limΓfk = Γf . The rest follows from Theorem 11.3 and Proposition 11.1.

11.5. Behavior of volumes of graphs under weak and gamma convergence. Let us
discuss the following question: suppose meromorphic mappings fk : D → X converge in some
sense to a meromorphic map f , what can be said about the behavior of volumes of graphs of fk
over compacts in D? If fk converge to f strongly then, as it was remarked in Theorem 11.1, for
every relative compact V bD we have that

vol(Γfk|V )→ vol(Γf |V ). (11.10)

When fk converges only weakly one cannot, of course expect anything like (11.10). At most
what one can expect is that volumes of Γfk stay bounded over compacts in D and converge to
the volume of Γf plus volumes of exceptional components. I.e., the question is if for a weakly
converging sequence {fk} one has that for every relatively compact open V b D there exists a
constant CV such that

vol(Γfk|V )6 CV for all k. (11.11)

This turns to be wrong in general, the following example was communicated to us by A.
Rashkovski, see more details in [IN].

Example 11.4. There exists a sequence εk ↘ 0 such that holomorphic mappings fk : B3 → P3 defined
as

fk : (z1,z2,z3)→ [z1 : z1−εk : z2 : z
k
3 ] (11.12)

converge weakly to f(z) = [z1 : z1 : z2 : 0] on compacts of the unit ball B3 ⊂ C3, but the volumes of
graphs of fk over the ball B3(1/2) of radius 1/2 diverge. In fact

vol(Γfk)∩ (B3(1/2)×P3)> k. (11.13)

Remark 11.6. Remark that this example has the source and image manifolds of dimension three.

1. A one dimensional manifold X either properly imbeds to Cn (when X is noncompact) or is projective
and therefore imbeds to Pn. In both cases by Theorem 11.4 we have convergence of reduced represen-
tations to a, may be non-reduced representation of the limit. And then the estimate (11.9) applies and
gives the uniform bound on volumes.

2. If the dimension n of the source D is 2 the boundedness of volumes of graphs of a weakly converging
sequence is automatic. This can be seen at least in two ways.

First, in projective case this readily follows from the following formula of King, see [Kg]:

d
[
dc ln(‖f‖2)∧ddc ln(‖f‖2)

]
= χD\If

[(
ddc ln(‖f‖2)

)2]
−
∑
j

nj [Zj ] , (11.14)

provided If has pure codimension two. Zj are irreducible components (branches) of the indeterminacy set
If of f . If it has branches of higher codimension then around these branches a higher order non-pluripolar
masses can be expressed in a similar way. Now if fk weakly converge to f formula (11.14) immediately
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gives a uniform bound of corresponding MA masses (even together with that concentrated on pluripolar
sets Ifk). If n= 2 then that’s all we need.

3. Second, using Skoda potentials, or Green functions, as it was done in [Iv7] Theorem 2, one can
bound non-pluripolar Monge-Ampère masses of order two also in the case of weakly converging sequence
with values in disk-convex Kähler X. This observation implies that if X is disk-convex Kähler and
dimD = 2 then the volumes of graphs of weakly converging sequences of meromorphic mappings D→X
are uniformly bounded over compacts in D.

Moreover, it was proved in [Ne] that volumes of weakly converging sequence are bounded also in the
case when X is any compact complex surface. The proof uses Kaähler case separately and then the fact
that a non-Kähler surface has only finitely many rational curves.

Remark 11.7. Let us remark that there is one more important case when the volumes of graphs
of weakly (even Γ) converging sequence necessarily stay bounded: namely when {fk} is a Γ-converging
sequence of meromorphic mappings between projective manifolds X and Y . Indeed the volumes of graphs
Γfk are uniformly bounded as it is straightforward from Besout theorem.

11.6. Rational connectivity of the exceptional components of the limit. Strong con-
vergence obviously implies the weak one:

s-convergence =⇒ w-convergence. (11.15)

We want to understand what obstructs a weakly converging sequence to converge strongly. The
problem is that by Theorem 11.1 the volumes of graphs of a strongly converging sequence are
uniformly bounded over compacts in the source. As we saw starting from dimension three the
volumes of graphs of a weakly converging sequence can diverge to infinity over compacts of D.
Nevertheless for a sequence Γfk of weakly converging meromorphic graphs we can consider the

Hausdorff limit Γ̂ (its always exists after taking a subsequence). Set Γ := Γ̂\Γf , where Γf is the

graph of the limit map f , and call Γ a bubble. For a ∈ pr1(Γ) set Γa := pr2(pr
−1
1 (a)∩Γ). The

following theorem describes the structure of the bubble.

Theorem 11.5. Let X be a disk-convex manifold carrying a ddc-closed metric form and let
fk : D → X be a weakly converging sequence of meromorphic mappings. Then for every point
a ∈ pr1(Γ) the fiber Γa is rationally connected.

Here by saying that a closed subset Γa of a complex manifold is rationally connected we mean
that every two distinct points p,q ∈ Γa can be connected by a chain of rational curves in Γa,
i.e., by a connected union C =

⋃
jCj of finitely many rational curves, each entirely contained in

Γa. For the proof of Theorem 11.5 we refer to [IN].

12. Separate analyticity and Rothstein-type theorems

12.1. A Rothstein-type extension theorem. Let us start with the following Rothstein-type
statement.

Theorem 12.1. Let V ⊂ Cp and W0 b W b Cq be domains, p,q > 1, and let E be a non-
pluripolar subset of V . Let furthermore a meromorphic mapping f : V ×W0 →X with values in
a reduced complex space X be given. Suppose that for every z ∈E the restriction fz := f |{z}×W0

is well defined and extends meromorphically to Wz := {z}×W . Then for every domain W ′ such
that W0 bW ′ bW there exists a pluripolar subset E′ ⊂ E such that f meromorphically extends
to a neighborhood of V ×W0∪ (E \E′)×W ′.

Proof. Fix some W̃ such that W ′ b W̃ bW . For every z ∈ E the restriction fz is well defined

and extends meromorphically to W̃ . Fix some compact exhaustion K1 b ... b Kn b ... of X.
Denote by En the set of those z ∈ E that fz(W̃ ) ⊂ Kn. Since

⋃
nEn = E we see that starting

from some n0 all En are not pluripolar. If we shall prove that for n> n0 there exists a pluripolar
E′n and an extension of f to a neighborhood of V ×W0∪(En\E′n)×W ′, then f will be extended
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to a neighborhood of V ×W0 ∪ (E \E′)×W ′, where E′ = ∪nE′n. The latter is pluripolar by
Josefson’s theorem. Therefore we may additionally suppose that there exists a compact K bX
such that fz(W̃ ) ⊂ K for all z ∈ E. Take ν as in (7.8) before Theorem 7.1 for ours W ′ b W̃
and K. Let R be the maximal open subset of E such that f extends to a neighborhood of
V ×W0∪R×W ′. Set S = E \R. Define furthermore

Sk = {z ∈ S : vol(Γfz)6 k
ν

2
},

where graphs are taken over W̃ . Note that by Lemma 7.1 Sk are closed and they are increasing.
Also

⋃
k>1Sk = S. By Theorem 7.1 and maximality of R = E \S the sets Sk+1 \Sk are not

locally regular at any of their points. Therefore the sets S1,S2 \S1, ... are pluripolar and so is S.
Theorem is proved. �
Remark 12.1. This theorem is proved in [Iv6], Corollary 2.5.1. We reproduce it here because in [Iv6]
it was mistakenly stated that one can take W ′ =W . This is not true in general.

We have the following obvious corollary from Theorem 12.1.

Corollary 12.1. If in the conditions of the Theorem 12.1 the complex space X possess the
meromorphic extension property then:

i) one can take E′ = E \E∗, where E∗ is a set of pluriregular points of E; also W ′ =W in
this case, i.e., f extends meromorphically to a neighborhood of V ×W0∪E∗×W ;

ii) if, in addition, if E = V then f extends meromorphically to V ×W .

Indeed, f in this case extends to the envelope of holomorphy of the neighborhood of V ×W0∪
(E \E′)×W ′, which is obviously a neighborhood of V ×W0 ∪E∗×W ′. Taking an increasing
exhaustion W0 bW1 b ... of W and applying the result consecutively for every Wn on the place
of W ′ we get the result.

12.2. Separate analyticity of meromorphic mappings and the radius of meromorphy.
Let us turn now to the separate meromorphicity. The following statement for holomorphic
functions is due to J. Siciak, see [Sc].

Theorem 12.2. Let E and F be a non-pluripolar subsets in domains V b Cp and W b Cq
respectively, p,q > 1, and let G be some pluripolar subset of V ×W . Let further some mapping
f : E×F \G→X to a complex space X be given. Suppose that:

i) for every z ∈ E, such that {z}×F 6⊂ G the restriction fz := f |{z}×F is well defined and
meromorphically extends to {z}×W ;

ii) for every w ∈ F , such that E×{w} 6⊂G the restriction fw := f |E×{w} is well defined and
meromorphically extends to V ×{w}.

Then for every V ′ b V , W ′ b W there exist pluripolar subsets E′ ⊂ E, F ′ ⊂ F and a
meromorphic extension f̃ of f to some neighborhood of (E \E′)×W ′∪V ′× (F \F ′).

Proof. As in the proof of Theorem 12.1 without loss of generality we can suppose that fz

extends to W̃ for some W b W̃ and for all z ∈ E such that {z}×F 6⊂ G. Moreover, we can

suppose that there exists a compact K ⊂ X such that fz(W̃ ) ⊂ K for all z ∈ E. The same for

fw-s: they can supposed to be meromorphic on Ṽ for some V b Ṽ , the same for all w ∈ F , such
that E×{w} 6⊂G. Let us prove first that there exists a point Z0 = (z0,w0) ∈E×F such that f
holomorphically extends to a neighborhood of Z0. Set

Ek = {z ∈ E : vol(Γfz)6 k
ν

2
},

where ν is defined for W b W̃ and K as in (7.8). Since E is not pluripolar, there exists k
and z1 ∈ Ek+1 \Ek such that Ek+1 \Ek is locally regular at z1. The same reasoning as at the
beginning of the proof of Theorem 7.1 shows that the family {Γfz : z ∈ Ek+1 \Ek} is continuous
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in a neighborhood of z1. Take a point w0 ∈W such that fz1 is holomorphic in a neighborhood
of w0. Remark that this w0 can be taken to be a locally regular point of Fl+1 \Fl for some l,
where

Fl = {w ∈ F : vol(Γfw)6 k
ν

2
.

ν should be taken to satisfy (7.8) also for V ′ b V andK. From Hausdorff continuity of the family
Γfz in a neighborhood of z1 we get immediately that all fz are holomorphic in a neighborhood
of w0 for z ∈ Ek+1 \Ek close to z1, see the Rouché Principle of Theorem 11.2. Find a point
z0 ∈ Ek+1\Ek close to z1 where fw0 is holomorphic. Now the separate analyticity Theorem 1.10
for functions tells us that the point Z0 = (z0,w0) is such as needed. To end the proof apply two
times coordinatewise the Rothstein-type Theorem 12.1. �

Corollary 12.2. Suppose that under the conditions of Theorem 12.2 the space X possesses the
meromorphic extension property. Then:

i) one can take E\E′ = E∗, F \F ′ = F ∗ and W ′ = V , W ′ =W , and moreover, a neighborhood
ΩE,F to which every such f extends depends only on E and F and is equal to

ΩE,F = {(z1,z2) ∈ V ×W : w∗(z1,E
∗,V )+w∗(z2,F

∗,W )> 1}. (12.1)

ii) if, in addition, E = V and F =W then f extends meromorphically to V ×W .

The reason is that the envelope of holomorphy of any neighborhood of E∗×F ∗ contains this
ΩE,F , see [Sc], Theorem 7.1. It should be said however that if the target space X doesn’t possess
a mer. ext. prop. then the ”excluded“ pluripolar set E′ (and F ′) in both Theorems 12.1 and
12.2 can be bigger than E \E∗ (resp. than F \F ∗). The most striking in this respect is the
following example.

Example 12.1. (A. Hirschowitz, [Hr]). There exists a compact complex surface X (of class VII)
and a holomorphic mapping f : ∆2 \ {0} → X such that for any complex curve C 3 0 the restriction
f |C\{0} holomorphically extends to 0, but f doesn’t extend meromorphically to a neighborhood of the
origin. Here by saying that f |C\{0} holomorphically extends to 0 one means that for a local injective
parametrization j : (∆,0) → (C,0) the composition f ◦ j extends to 0. This example shows that one can
have E = E∗ =∆ in our theorems but with non-empty E′, (namely E′ = {0} in this case). This example
also shows (and this was the primary reason for constructing it) that the meromorphicity in the sense of
Stoll (not considered in this text) is different from the meromorphicity in the sense of Remmert (which
we adapt here). For Kähler targets these notions coincide, Siu, [Si5].

We end up with the two following statements.

Theorem 12.3. (B. Shiffman, [Sh3]). Let E be a set of full measure in ∆n and let f : E → X
be a mapping with values in a reduced complex space X such that for almost every coordinate
disk ∆ the restriction of f to ∆∩E extends to ∆ as a holomorphic map with values in X. If the
space X possesses the meromorphic extension property then f meromorphically extends to ∆n.

The proof can be achieved along the similar arguments as presented in this section. Let Ω
be an open subset of C and D a connected open neighborhood of the origin in C. Let f be a
meromorphic mapping from Ω×D to a reduced complex space X. For z ∈ Ω define the radius
of meromorphy rf (z) of f to be the supremum of all r such that f meromorphically extends to
a neighborhood of {z}×∆r.

Corollary 12.3. If the space X possesses the meromorphic extension property (ex. X is disk-
convex Kähler) then function ln 1

rf (z)
is subharmonic in Ω.

The proof is the same as that of Proposition 1.4 from [Si3] and will be omitted. Remark that
both Theorem 12.3 and Corollary 12.3 apply when X is disk-convex Kähler due to Theorem 8.1.
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Remark 12.2. Our treatment of separate analyticity is rather short. For the case of functions much
more results can be found in the book [JP]. The case of mappings deserves a more detailed description
which, we hope, will be given elsewhere. For the time being let us underline that our approach to the
separate analyticity is based on the following three main ingredients: Theorem 1.10 of Siciak, Theorem of
Josefson and Theorem 7.1. The main point is that the mer. ext. property on the image space X occurs
to be ”almost not needed”. What is lost is just a pluripolar set.

12.3. Increasing the dimension of the source manifold. Let us discuss one interesting
purely meromorphic phenomena.

Definition 12.1. We say that holomorphic (resp. meromorphic) mappings with values in re-
duced complex space X are:

i) Hartogs (n,q)-extendable if every holomorphic (resp. meromorphic) map from Hn,q(r) to
X extends holomorphically (resp. meromorphically) to ∆n;

ii) Thullen (n,q)-extendable if for any closed pluripolar subset S of ∆q every holomorphic
(resp. meromorphic) map from

Tn,qr (S) := ∆n−q× (∆q \S)∪ (∆n−q
r ×∆q) (12.2)

to X extends holomorphically (resp. meromorphically) to ∆n.

Note that Hartogs (n,q)-extendibility obviously implies the Thullen-type one. Vice versa is not

true. Take the example of Kato 10.1 and let f : T 2,1
r (S)→X be some meromorphic map. While

f : T 2,1
r (S) is simply-connected we can consider the lift F = π−1 ◦f : f : T 2,1

r (S)→D ⊂ P3. By a
Thullen-type extension theorem for meromorphic functions F extends to ∆2. But F (∆2)∩∂D =
∅ because one cannot touch ∂D by a bidisk. Thus π ◦F gives an extension of f to ∆2.

1. Remark that an appropriate Thullen-type extendibility is sufficient for Corollary 12.1.
2. If holomorphic mappings with values inX are Hartogs (n,q)-extendable then they are Hartogs
(n′, q′)-extendable for all (n′, q′) with either n′ > n or q′ > q. The proof is straightforward and
is given in Lemmas 2.2.1 and 2.2.2 of [Iv6]. In particular the category OX for such X is (n−q)-
Hartogs.
3. Meromorphic case is surprisingly different. We refer to [Iv6] for the following example which
shows that meromorphic Hartogs (2,1)-extendability doesn’t imply Hartogs (3,1)-extendability!

Example 12.2. There exists a compact complex three-fold X such that:

(a) For every domain D in C2 every meromorphic mapping f :D −→X extends to a meromorphic

mapping f̂ : D̂ −→X. Here D̂ stands for the envelope of holomorphy of D.

(b) But there exists a meromorphic mapping F : B3 \{0} −→X from punctured 3-ball to X which
does not extend to the origin.

13. Vanishing cycles in holomorphic foliations and foliated shells

In the present section we shall explain a certain ”non-parametric” variation of previous results,
a certain mélange of techniques from section 9 and subsections 8.2, 8.3 of section 8. The outcome
will be then applied to holomorphic foliations by curves.

13.1. Holomorphic fibrations and generalized Hartogs figures. Let us start from a par-
ticular holomorphic foliations by curves, the so called fibrations by curves, i.e., triples (W,π,V )
where W and V are complex manifolds of dimensions dimW = dimV +1 and π : W → V is a
surjective holomorphic submersion with connected fibers. For z ∈ V denote by Wz = π−1(z) the
corresponding fiber. A holomorphic mapping f : (W,π,V )→ (W ′,π′,V ′) is said to be a foliated
immersion if it is an immersion and sends leaves to leaves. By saying this we mean that there
exists a holomorphic map fv : V → V ′ such that for all z ∈ V one has f(Wz)⊂W

′

fv(z)
.
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Definition 13.1. A generalized Hartogs figure is a quadruple (W,π,U,V ), where W and V are
complex manifolds, U an open subset of V and π : W → V is a holomorphic submersion such
that:

i) for all z ∈ V \U the fiber Wz is diffeomorphic to an annulus;
ii) for z ∈ U the fiber Wz is diffeomorphic to a disk.

Remark 13.1. a) Generalized Hartogs figures are fibrations of a special type: they are concave in the
most näıve and clear sense. Manifold W has a distinguished part of the boundary formed by the outer
boundaries ∂0Wz of annuli Wz. We shall suppose that W is smooth up to this part of its boundary and
denote it by ∂0W , i.e., ∂0W = ∪z∈V ∂0Wz. Projection π is also supposed to be smooth up to ∂0W and
therefore π : ∂W0 → V is a circle fibration. For z ∈ U the outer boundary ∂0Wz is actually the boundary
of the disc Wz.

b) The standard Hartogs figure Hn+1
r = (∆n×A1−r,1) ∪ (∆n

r ×∆) carries a natural vertical fibration
Lv, (or horizontal in one presents it as in (1.4)). Leaves Lv

z′ are discs ∆ if ||z′|| < r and annuli for
r 6 ||z′||< 1+r. Here z′ = (z1, ...,zn) and || · || is the polydisk-norm in Cn. Remark now that (Hn+1

r ,Lv)
fits, of course, into the Definition 13.1 with V =∆n, U =∆n

r and π being the restriction of the canonical
“vertical” projection Cn+1 → Cn to Hn+1

r .

c) Let P := ∆2 be the unit bicylinder in C2 and B = ∂P its boundary. For some 0 < ε < 1 let
Br = {z ∈ C2 : 1− r < max{|z1|, |z2|} < 1+ r} be a shell around B. Denote by π : C2 → C the canonical
projection π(z) = z1 onto the first coordinate of C2. Note that Br is foliated by π over the disc ∆1+r of
radius 1+r. Denote this foliation by Lv and call it a vertical foliation. Its leaves Lv

z1 := π−1(z1) are discs

∆1+r if 1− r < |z1|< 1+ r and are annuli A1−r,1+r := ∆1+r \ ∆̄1−r if |z1|6 1− r.

Definition 13.2. The pair (Br,Lv) will be called the standard foliated shell.

Note that the standard foliated shell is also a generalized Hartogs figure. Namely it can be viewed as
(Br,π,A1−r,1+r,∆1+r).

d) The difference between the generalized and the standard Hartogs figures can be understood from the
example explained on the Figure 5. Namely the following can happen.

Example 13.1. There exists a generalized Hartogs figure W over a disc ( i.e., both ∅ 6= U ⊂ V
are discs in C) with the following property: whenever a holomorphic foliated imbedding h : (z1,z2) →
(h1(z1),h2(z1,z2)) of H = H2

r into W is given such that h1(0) = z0 ∈ U then necessarily h1(∆) ⊂ U
(whatever r > 0 is).

z0 π
UV

W
H

WU

0 z

z

1

2

Figure 5. On the left is the standard Hartogs figure imbedded into a generalized
Hartogs figure W constructed in [CI]. Every attempt to imbed H2

r into this W will
look like this picture: if the fiber over the origin in H2

r is mapped to a fiber over some
point z0 ∈ U then the image of H2

r will newer leave W |U . The standard foliated shell on
the right is foliated by discs and annuli over the disc ∆1+r. In particular, (Br,Lv) is a
generalized Hartogs figure.

Definition 13.3. If U = ∅ we call (W,π,∅,V ) trivial, if U = V we call (W,π,V,V ) complete
and in the latter case often denote it as (W,π,V ).

The standard Hartogs figure is newer trivial by definition, i.e., it is commonly accepted that
always ε > 0. Let D be a non-empty open subset of V . Set W |D = π−1(D) and consider it also
as a generalized Hartogs figure (W |D,π|D,D∩U,D), a subfigure of (W,π,U,V ).
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13.2. An unparametrized version of Levi’s theorem. The following notion comes back to
[Ti], see also [Bl]. Let X be a complex space and f :A1−r,1 →X be a holomorphic immersion.

Definition 13.4. We say that f extends to ∆ after a reparametrization if for some δ > 0
there exists an imbedding h : A1−δ,1 → A1−r,1 sending ∂∆ to ∂∆ and preserving the canonical
orientation of ∂∆, such that f ◦h holomorphically extends to ∆.

It is clear that such h, if it exists, should be holomorphic. We shall use also the following
form of this notion. Let γ be a simple oriented loop on a bordered Riemann surface W . The
latter should be viewed simply as a collar adjacent to γ. Let f : W → X be a holomorphic

immersion. Suppose that there exist a Riemann surface W̃ , which is a bordered disc with
boundary γ̃ (canonically oriented), and a biholomorphic mapping h from a collar adjacent to γ̃
to W (smooth up to the boundaries) and sending γ̃ onto γ, preserving orientations, such that

the composition f ◦h holomorphically extends to the disc W̃ . Then we shall say that f extends

to the disc W̃ after a reparametrization. If such W̃ , γ̃ and h do exist but are not specified we
shall say simply that f holomorphically extends to a disk after a reparametrization. In the sequel
we shall consider only the case when f is a generic injection (i.e. injective outside of a finite
set). Then its extension after reparametrization, which we also require to be a generic injection,
is unique (if exists). Uniqueness means here up to a biholomorphic automorphism of the disc.
Now let’s turn to the families of immersions.

Definition 13.5. A holomorphic mapping f : (W,π,V ) → X of a fibration (W,π,V ) into a
complex space X is called generically injective if for all z ∈ V outside of a proper analytic subset
A⊂ V the restriction fz := f |Wz is a generic injection.

Note that we do not ask f to be generically injective itself but only its restrictions onto generic
fibers. Actually f may not even be an immersion. However in most cases mappings appearing
in this text will be both immersions and generic injections. We shall also need a corresponding
notion for the meromorphic case.

Definition 13.6. A meromorphic mapping f :W →X between complex spaces is a meromorphic
immersion if it is an immersion outside of its indeterminacy set If . If, moreover, (W,π,V ) is a
holomorphic fibration then a meromorphic mapping f is called generically injective if f |Wz is a
generic injection for z outside of a proper analytic subset of V .

Let a holomorphic generic injection f : (W,π,U,V ) → X of a generalized Hartogs figure into

a complex space X be given and let Û be some open subset of V containing U .

Definition 13.7. We say that f extends to the Hartogs figure (W̃ ,π, Û ,V ) after a respirometric-

tion if there exists a foliated biholomorphism of trivial figures h : (∂0W̃ ,π,∅,V )→ (∂0W,π,∅,V )

such that f ◦h extends to a generically injective meromorphic map f̃ : (W̃ ,π, Û ,V )→X.

Remark that if f extends as a meromorphic map being a generic injection on (W,π,U,V ) with
U 6= ∅ then its extension will be automatically a generic injection. However in the definition
above we do not exclude the case when U =∅.

Theorem 13.1. Let f : (W,π,∅,V )→X be a generically injective holomorphic map of a trivial
Hartogs figure into a complex space X. Suppose that dimV = 1 and that for some sequence
zn → z0 ∈ V restrictions f |Wzn

: Wzn → X holomorphically extend as generic injections to a

discs W̃zn after a reparametrization. Suppose additionally that:

i) f̃ |
W̃zn

(W̃zn) stay in some compact of X;

ii) area
(
f̃ |
W̃zn

(W̃zn)
)
are uniformly bounded.

Then there exists a neighborhood D 3 z0 such that f extends meromorphically onto a figure

(W̃ ,π,D,V ) after a reparametrization. Moreover, the extension f̃ is a generically injective
meromorphic map.
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Proof. Remark that the statement (ii) in this theorem doesn’t depend on a particular choice

of metric. Writing f̃ |
W̃zn

here we mean that for every n a reparametrization map hzn : ∂W̃zn →
∂Wzn is given such that f̃ |

∂W̃zn
:= f |∂Wzn

◦hzn extends generically injectively and holomorphi-

cally to the disc W̃zn .

Set f̃n = f̃ |
W̃zn

and consider (W̃zn , f̃n) as complex discs over X in the sense of Definition 2.3,

parameterized by a fixed disc Σ. Applying Theorem 2.5 we can find a subsequence from (W̃zn , f̃n)

that converges in the sense of Definition 2.5 to a stable curve (W̃0, f̃0) over X, parameterized

again by Σ. Be careful, this W̃0 may have compact components. Denote by C the space of discs

over X which are close to (W̃0, f̃0) and which are reparametrizations of restrictions f |Wz near
the boundary, here z are close to z0.

Cover W̃0 as in the proof of Theorem 8.3 by open sets Uj in such a way that:

1) All Uj are either discs, annuli or pants. The boundary annulus is one of them, denote it as
Uj0). This covering has the property that each intersecting pair Ui,Uj intersects by an annulus
denoted as Ui,j .

2) For each j, except j0, consider a Banach analytic space (manifold if X was a manifold) Hj

of holomorphic maps from Uj to X. For j0 take as Hj0 the space {f |∂Wz : z in a neighborhood
of z0}. This is a one dimensional space of holomorphic maps from Uj0 to X. ∂Wz stays here
for an annulus adjacent to ∂0Wz, which is naturally identified with Uj0 .

3) The same type Banach analytic spaces Hi,j of holomorphic maps Ui,j →X for intersecting
Ui and Uj are considered.

Denote by C the Banach analytic set Φ−1(0), where Φ is the “gluing” holomorphic map
constructed in the same way as in (8.7). We can repeat now the argument of Douady, i.e.,
Lemma 7.2, and get that C is finite dimensional analytic set. In fact it is clearly of dimension

not more than one. But since it contains the sequence (W̃zn , f̃n) its dimension is actually one.
Therefore C is a usual analytic set by Barlet-Mazet theorem, [Mz], i.e., is a complex curve in
our case. Restriction C → W is an analytic map and it is proper (!), because nondegenerate
analytic maps between complex curves are always proper. Therefore its image is the whole of
W. We get an extension f̃z for all z close to z0 as a family by a tautological map f̃ : W̃ → X.
Here W̃ is a tautological family of discs over W. �

13.3. Vanishing ends in singular holomorphic foliations by curves. One of the ways to
define a singular holomorphic foliation by curves L on a complex manifold X is the following.
Take a sufficiently fine open covering {Ωα} of X. Then L will be defined by the nonvanishing
identically holomorphic vector fields vα ∈ O(Ωα,TX) which are related on a non-empty intersec-
tions Ωα,β := Ωα∩Ωβ as vα = hα,βvβ . Here hα,β ∈ O∗(Ωα,β). After dividing by common factors
one immediately sees that the singular set of L, which is defined as SingL := {z : vα(z) = 0},
is an analytic subset of X of codimension at least two. Set X

reg
:= X \ SingL. For a point

z 6∈ SingL the leaf L0
z through z is, by definition, the leaf of the smooth foliation Lreg

:= L|Xreg .
If z ∈ SingL then leaves through z are not defined, i.e., a stationary point is not considered as
being a trajectory. The pair (X,L) is called a foliated manifold or a foliated pair.

Remark 13.2. This notion requires a certain justification. Let A be an analytic set in a complex
manifold X of codimension > 2 and let a smooth holomorphic foliation by curves L on X \A be given.
The latter is understood classically as being defined by “flowboxes“: every point in X \A possesses
a ”foliated” neighborhood (a flowbox) where leaves of L are plaques {z1 = c1, ...,zn−1 = cn−1}, n =
dimCX. Then for every point a ∈ A there exists a neighborhood Ω 3 a and a holomorphic vector field
v on Ω whose trajectories on Ω \A are the leaves of L|Ω\A. Indeed, L naturally indices a holomorphic
mapping τ : X \A → P (TX) which sends z to the tangent TzLz ∈ P (TzX). By Corollary 7.1 τ
extends to a meromorphic mapping τ̂ : X → P (TX). Take a neighborhood Ω 3 a such that TX|Ω is
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generated by ∂z1 , ...,∂zn for some local coordinates (z1, ...,zn). Let w = [w1 : ... : wn] be the induced
homogeneous coordinates on fibers P (TzX), z ∈ Ω. Write τ̂ in these coordinates as in Proposition 7.1,
i.e., τ̂(z) = (z, [τ1(z) : ... : τn(z)], where τj are holomorphic in Ω and without common factors. Now
v := τ1∂z1 + ...+ τn∂zn is our vector field.

Example 13.2. Let v = P (x,y)∂/∂x +Q(x,y)∂/∂y be a complex vector field on C2 with polynomial
coefficients. Trajectories of v define a holomorphic foliation L, which naturally extends to the complex
projective plane P2. Vice versa, every holomorphic foliation on P2 is defined as the set of trajectories of
a polynomial vector field starting from an appropriately chosen affine chart.

Let (X,L) be a foliated manifold. Take a point z0 ∈ X
reg

and denote by L0
z0 the leaf of Lreg

passing through z0. Take a local transverse to Lreg
hypersurface D through z0, i.e., a complex

hypersurface in some neighborhood of z0 in X
reg

which is everywhere transverse to the leaves of
Lreg

. The domain

L0
D :=

⋃
z∈D

Lz (13.1)

we shall call a Poincaré domain of L over the transversalis D. Furthermore recall that a parabolic
end of L0

z0 is a closed subset E ⊂ L0
z0 which is biholomorphic to the closed punctured disc

∆̄∗ = {ζ ∈ C : 0 < |ζ| ≤ 1}. By ∂E we shall denote the biholomorphic image of the circle
{|ζ| = 1}, the outer boundary of the end E. Foliation L may have a nontrivial holonomy along
∂E, which can be finite or infinite. Consider the case when holonomy is finite. Recall what
does that mean. Take a local transversalis D through some point in ∂E, call it again z0. If one
takes a point z ∈D close to z0 and travels on L0

z along the path γz close to γz0 = ∂E then one
certainly hits D in a neighborhood of z0 by a point g(z). This defines a local biholomorphism
g : (D,z0) → (D,z0) which generates a subgroup < g > of the group Bihol(D,z0) of local
biholomorphisms of D fixing z0. We suppose that < g > is finite, i.e., gd = Id for some d ≥ 1
and this d is always taken to be the minimal satisfying this property. This d is called the order
of the holonomy of L along ∂E.

Lemma 13.1. Let E ⊂ L0
z0 be a parabolic end with holonomy of order d. Then for a sufficiently

small r > 0 there exists a foliated holomorphic immersion f : ∆n×A1−r,1+r →L0
D such that:

i) f({0}×A1−r,1+r)⊂ L0
z0 and the restriction f |{0}×A1−r,1+r

: {0}×A1−r,1+r →L0
z0 is a regular

cover of order d, i.e., covers d-times some imbedded annulus in L0
z0 and f({0}×∂∆) = d ·∂E.

ii) For all z ∈ ∆n outside a proper analytic subset A ⊂ ∆n the restriction f |{z}×A1−ε,1+ε
:

{z}×A1−r,1+r →Lz is an imbedding.

For the proof we refer to Lemma 3.1 in [Iv10]. As we see from item (ii) our f is a generic
injection of the trivial Hartogs figure ∆n×A1−ε,1+ε over a polydisk in the sense of Definition
13.5 and results of the previous subsection are applicable to such f .

Definition 13.8. A parabolic end E is called a vanishing end of order d if:
i) the holonomy of L along ∂E is finite of order d≥ 1;
ii) the generic injection f : ∆n ×A1−r,1+r → L0

D, constructed above, extends as a foliated

meromorphic immersion f̃ : W̃ → X from a complete Hartogs figure (W̃ ,π,∆n) over ∆n to X
after a reparametrization;

iii) the intersection of W̃0 := π−1(0) with the set of points of indeterminacy If̃ of f̃ consists

of a single point a ∈ W̃0.

The point q = f̃ |
W̃0

(a) will be called the endpoint of the vanishing end E (or of the leaf L0
z).

Following Brunella, see [Br3], we add all vanishing endpoints to the leaf L0
z0 and call the curve

obtained a completed leaf through z0. Completed leaf will be denoted as Lz0 . For each z ∈ D

take a holonomy cover L̂0
z of the leaf L0

z. Recall that a holonomy cover of L0
z is a cover with

respect to the holonomy subgroup Hol(z,L0
z) of the fundamental group π(z,L0

z). That means
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that in the construction of L̂0
z two pathes γ1,γ2 from z to some w ∈ L0

z define the same point of

L̂0
z if and only if γ1 ◦γ−12 ∈ Hol(z,L0

z), i.e., if the holonomy along γ1 ◦γ−12 is trivial. Set

L̂0
D =

⋃
z∈D

L̂0
z. (13.2)

This set has the natural structure of a complex manifold together with the natural projection
π : L̂0

D →D which sends L̂0
z to z. It admits also the natural locally biholomorphic foliated map

p : L̂0
D → L0

D ⊂ X0 which sends L̂0
z to L0

z with p|L̂0z : L̂0
z → L0

z being the canonical holonomy

covering map. Call L̂0
D the holonomy covering Poincaré domain of L overD or, shorter, a holonomy

Poincaré domain.

Vanishing ends of L̂0
z are defined similarly to that of L0

z. Let E be a parabolic end of L̂0
z0

Take f : ∆n×A1−ε,1+ε → L̂0
D such that:

i) f : ∆n×A1−r,1+r → L̂0
D is an imbedding;

ii) f({0}×∂∆) = ∂E (note that d= 1 in this case).

The only difference that now f takes values in L̂0
D and f is an imbedding. The last is because

the holonomy of the foliation L̂0 on L̂0
D is trivial.

Definition 13.9. E is called a vanishing end of L̂0
z0 if h = p ◦ f extends to a meromorphic

foliated immersion h̃ : W̃ →X after a reparametrization (not f itself as in Definition 13.8) and

W̃0 intersects the indeterminacy set Ih̃ of h̃ by exactly one point.

The union of L̂0
z with all its vanishing endpoints equipped with an obvious complex structure

will be denoted as L̂z. We shall call it also a completed holonomy covering leaf of the leaf L0
z.

Set L̂D :=
⋃
z∈D L̂z and call it the completed holonomy Poincaré domain over D.

Lemma 13.2. i) The completed holonomy Poincaré domain possesses the natural structure of

a foliated complex manifold with foliation given by the natural projection π : L̂D →D defined as
above by π(L̂z) = z.

ii) The natural foliated holomorphic immersion p : L̂0
D →L0

D extends to a meromorphic foliated

immersion p : L̂D →X and its restrictions p|L̂z : L̂z →Lz are ramified at vanishing ends.

For the proof we refer to Lemma 3.2 in [Iv10].

Remark 13.3. Cover pz0 : L̂z0 → Lz0 is an orbifold cover in the sense that its ramification index at
point a depends only on b := pz0(a). This is also an unbounded cover in the sense that for every a
there exists a disc-neighborhood V 3 b such that p−1

z0 (V ) is a disjoint union of discs Wj with centers aj ,
preimages of b, such that every restriction pz0 |Wj :Wj → V is a proper cover ramified over b.

13.4. Vanishing cycles and simultaneous uniformization. Now let us give the definition
of a vanishing cycle in a singular holomorphic foliation by curves. A cycle in L0

z is by definition

a closed path (a loop) γ : [0,1]→L0
z. Let γ̂ : [0,1]→ L̂0

z be a cycle in L̂0
z which is not homotopic

to zero in L̂0
z.

Definition 13.10. We say that γ̂ is a vanishing cycle if for some sequence zn → z there exist
loops γ̂n in L̂0

zn uniformly converging to γ̂ which are homotopic to zero in the corresponding

leaves L̂zn.
(a) We say that γ̂ is an algebraic vanishing cycle if γ is not homotopic to zero in L̂0

z but is

homotopic to zero in the completed leaf L̂z.
(b) If γ̂ is not homotopic to zero also in L̂z we call it an essential vanishing cycle.
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Remark 13.4. There is an analogy (rather deep in fact) between algebraic/essential vanishing cycles
and poles/essential singularities of meromorphic functions. Really, pole of a meromorphic function f
becomes a regular point if one completes C to P1 and considers f as a holomorphic mapping into the
latter manifold. However, an essential singular point remains a singularity of f also after this operation.
The same happens with cycles. For the moment let us say the following.

a) Suppose Lsing

= ∅, i.e., if L has no singularities. In that case classically a cycle γ ⊂ Lz is called a
vanishing cycle if the following two conditions hold:

• γ is not homotopic to zero in Lz;

• there exist a sequence of points zn → z and a sequence of loops γn : [0,1] → Lzn such that γn
uniformly converge to γ and each γn is homotopic to zero in Lzn .

In the smooth case every vanishing cycle is an essential vanishing cycle, more precisely projects to a
vanishing cycle under the holonomy covering map L̂z →Lz. Let us explain this in more details. In that
case vanishing ends do not exist and, in particular, pz0 : L̂z0 →Lz0 is an unramified cover. Let γ0 ⊂ Lz0

be a vanishing cycle and γn ⊂ Lzn be cycles homotopic to zero and converging to γ0. All γn lift to

cycles γ̂n ⊂ L̂zn converging to the lift γ̂0 ⊂ L̂z0 of γ0. All γ̂n are homotopic to zero. But γ̂0 cannot be

homotopic to zero. Therefore we get a vanishing cycle γ̂0 in L̂z0 . Vice verse, let γ̂0 and γ̂n be as above
in the holonomy covering leaves. Then γ̂n project to cycles homotopic to zero in corresponding leaves.
But γ̂0 project to some γ0 which cannot be homotopic to zero because in the latter case its lift γ̂0 (as lift
of any curve homotopic to zero) should be homotopic to zero itself. Therefore γ0 is a vanishing cycle in
Lz0 .
b) Algebraic vanishing cycles in the leaf L̂0

z can be removed ( i.e., one can make these cycles homotopic

to zero) by adding to L̂0
z vanishing ends.

c) It is known also (it follows from [Br3]) that if X is Kähler, then all vanishing cycles (of any L) are
algebraic. It follows also from a more general statement of Corollary 13.1.
d) Now the necessity of considering generalized Hartogs figures comes (once more) from the simple
observation that: every vanishing cycle produces a natural generalized (or topological) Hartogs figure
around it, see the sketch of the proof of Theorem 13.2 below.
e) Classically vanishing cycles became the object of study in foliation theory since the seminal paper of
Novikov [N], where he used them to produce a compact leaf in every smooth foliation by surfaces on S3,
see also [H].

Further, for z ∈D denote by L̃z the universal cover of the completed holonomy leaf L̂z. I.e.,
we take the orbifold universal cover of Lz, see Remark 13.3. On the union

L̃D =
⋃
z∈D

L̃z (13.3)

one defines a natural topology in the following way. An element of L̃D is a path γ in some leaf
L̂z starting from z and ending at some point w ∈ L̂z. γ and γ

′
define the same point if their

ends coincide and they are homotopic (inside L̂z) with ends fixed. A neighborhood of γ ⊂ L̂z in
L̃D is the set of pathes γ′-s in the leaves L̂z′ with z′ close to z which are themselves close to γ.
γ′ “close” to γ is understood here as closed in the topology of uniform convergence in the space
C([0,1],X) of continuous mappings from [0,1] to X.

Definition 13.11. L̃D with the topology just described is called the universal covering Poincaré
domain of L over D.

The natural projection π : L̂D → D lifts to π : L̃D → D (and will be denoted with the same

letter). There is a distinguished section σ : D→ L̃D sending z to z. The mapping p : L̂D → X

lifts to L̃D and stays to be a meromorphic foliated immersion p̃ : L̃D →X in the sense that it is
a foliated immersion outside of its indeterminacy set.

Due to the eventual presence of essential vanishing cycles the natural topology on the covering
cylinder might be not Hausdorff. Let us explain this in more details. Non-separability of the
natural topology on L̃D means that:
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• there exist z ∈ D and w ∈ L̂z and two pathes γ1,γ2 from z to w such that γ1 ◦ γ−1
2 is not

homotopic to zero in L̂z;
• there exist some sequence zn → z in D, some sequence wn ∈ L̂zn converging to w, some sequences
of pathes γn1 and γn2 from zn to wn each converging uniformly to γ1 and γ2 such that γn1 ◦(γn2 )−1

are homotopic to zero in Lzn .

And that exactly means that γ1◦γ−12 is an essential vanishing cycle. Vice verse, if γ : [0,1]→ L̂z
is an essential vanishing cycle starting and ending at z, then γ and the trivial path β ≡ z
represent two non-separable points in L̃D.

Remark 13.5. This explains that apart from the question of existence of compact leaves vanishing
cycles come into a play as obstructions to the simultaneous uniformization of leaves. Indeed, take a
transversalis D to the leaves of L. As we just explained a leaf Lz ⊂ LD containing a vanishing cycle
exists if and only if the natural topology of L̃D is not separable ( i.e., is not Hausdorff). Separability of L̃D

means that the leaves of L which cut D can be simultaneously uniformized. Therefore a vanishing cycle
in some leaf Lz ⊂ LD is an obstruction to such simultaneous uniformization. L is called uniformizable if
for any transversalis D the Poincaré domain LD can be uniformized. Therefore L is uniformizable if and
only if it doesn’t contain a vanishing cycle in any of its leaves. This explains one more reason for the
interest in studying vanishing cycles.

13.5. Vanishing cycles and foliated shells. We approach the main goal in this section,
which consists in showing that a vanishing cycle in a holomorphic foliation by curves generates
a very rich complex geometric object: a foliated shell. Let (X,L) be a foliated manifold and
let h : (Br,Lv) → (X,L) be a foliated holomorphic immersion of the standard foliated shell into
(X,L). We suppose in addition that h takes its values in X

reg
. An immersion between two

foliated manifolds is called foliated if it sends leaves to leaves. Denote by Σ the image of the
boundary B under h.

Definition 13.12. The image h(Br) is called a foliated shell in (X,L) if:
i) immersion h is a generic injection, i.e., is such that for all z1 ∈∆1+r except of a

finite set the restriction h|Lvz1 : {z1}×A1−r,1+r →X is an imbedding;

ii) Σ is not homologous to zero in X.

Roughly speaking condition (i) means that h is (much) better than simply an immersion. The
main point is of course the condition (ii) , see Fig. 5.

Example 13.3. The reader should think about the Hopf surface H2 = C2 \ {0}/z ∼ 2z. The same
vertical foliation Lv is invariant under the action z ∼ 2z and therefore projects to a foliation L on
H2. Let h : C2 \ {0} → H2 be the canonical projection. It obviously induces a “foliated inclusion”
h : (Br,Lv)→ (H2,L). Σ = h(B) is of course not homologous to zero in H2.

We call a (1,1)-form ω on X a taming form for L if ω|L > 0. Foliations admitting a pluriclosed
taming form we shall call pluritamed. Our result is the following.

Theorem 13.2. Let (X,L) be a disc-convex foliated manifold which admits a ddc-closed taming
form and let z0 ∈X reg

be a point. Then the following statements are equivalent:
i) The leaf L̂z0 contains an essential vanishing cycle.
ii) For every transversal D 3 z0 there exists an imbedded disc z0 ∈∆⊂D such that

L0
∆ :=

⋃
z∈∆

L0
z

contains a foliated shell.

Remark 13.6. a) Statement (ii) means that the mapping h : Br → X, which “supports” the foliated
shell in X, takes values in the cylinder LD, but Σ = h(B) is not homologous to zero in the whole of X!

b) A transversalis D is irrelevant in this theorem: if Lz contains a vanishing cycle then (ii) is true for
every transversalis D 3 z.
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c) Let us stress here that X may contain a two-dimensional shell, but it may not be a foliated shell for the
given foliation L. A simple example is the elliptic fibration on the same Hopf surface H2. This fibration
doesn’t admit a foliated shell, while H2 itself does contain a two-dimensional shell.

d) In the process of the proof of Theorem 13.2 one can establish the following useful characterization of
shells:

Proposition 13.1. Let w be a ddc-closed taming form for L. A holomorphic foliated immersion
h :Br →X represents a foliated shell if and only if it is a generic injection and∫

B
dc(h∗ω) 6= 0. (13.4)

I.e., not only h(B) is not homologous to zero in X but, moreover, the distinguished closed
3-form dcω doesn’t vanish on h(B). From Proposition 13.1 we immediately obtain the following:

Corollary 13.1. If the taming form ω of the foliation L is d-closed then L has no vanishing
cycles.

The meaning of Theorem 13.2 is that a topological property of (X,L) to contain a vanishing
cycle is equivalent to a complex geometric (even analytic) property to contain a foliated shell.
The last is very restrictive as the following corollary shows.

Corollary 13.2. Let X be a compact complex surface and L a (singular) holomorphic foliation
by curves such that some leaf Lz of L contains a vanishing cycle γ. Then:

i) either X is a modification of a Hopf surface and Lz is an elliptic curve;

ii) or, X is a modification of a Kato surface and the closure of Lz is a rational curve.

13.6. Sketch of the proof of Theorem 13.2. Let us briefly outline the main ingredients of
the proof. We start with (i) ⇒ (ii) .

Step 1. This step is purely topological. One proves that if the leaf L̂z0 contains an essential
vanishing cycle then it also contains an imbedded essential vanishing cycle γ̂0, see Lemma 3.4
in [Iv10]. This means simply that γ̂ : S1 → L̂z0 is an imbedding. Fix a transversalis D 3 z0.

Using the fact that for some z ∈ D close to z0 there exists an imbedded loop γ̂z ⊂ L̂0
z which

bounds a disk in L̂z, one easily constructs a generalized Hartogs figure (W,π,U,V ) where V is
a domain in D which contains both z0 and z, U a neighborhood of z in D, W is an appropriate
open subset of L̂D and π is the restriction to W of the natural projection L̂D →D.
Step 2. Restrict the holonomy covering projection p : L̂D → X to W . Remark that on W
projection p is a holomorphic foliated immersion by construction. Indeed, W can be taken away
from vanishing ends. Now using Theorem 13.1 on the place of Theorem 7.4 one can prove the
following non-parametric version of Theorem 9.1.

Theorem 13.3. Let (X,L) be a disk-convex foliated manifold admitting a pluriclosed taming
form ω and let f : (W,π,U,V ) → (X,L) be a generically injective foliated holomorphic map
from a non-trivial generalized Hartogs figure ( i.e., U 6= ∅) to X. Then f extends after a

reparametrization to a foliated meromorphic map f̃ : (W̃ \ S,π,V ) → (X,L) of the complete
generalized Hartogs figure minus a proper closed subset S to X. Moreover this S, if non-empty,
has the following structure. For every point s ∈ S there exists a coordinate neighborhood D =
∆n−1×∆×∆ of s with coordinates z = (z′,zn,zn+1) such that s= 0 in these coordinates and:

i) the restriction to S ∩D of the natural projection πD : (z′,zn,zn+1) → z′ is proper and for
every z′ ∈∆n−1 the intersection Sz′ := ∆2

z′ ∩S is non-empty;

ii) the restriction to D of the projection π : W̃ → V coincides with the natural projection
πn : (z′,zn,zn+1) → (z′,zn) and for every z′ ∈ ∆n−1 the set Sz′,1 := πn(S) ∩ ({z′} ×∆) is
complete polar of Hausdorff dimension zero;

iii) moreover, f(∂∆2
z′) is not homologous to zero in X, i.e., is a foliated shell.
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By this theorem p extends after a reparametrization to W̃ \S, where W̃ is a complete Hartogs
figure over V and S is locally of the form S = ∪z′∈∆n−1Sz′ , where Sz′ =

⋃
zn∈Sz′,1

Sz′,zn with

Sz′,1 being closed complete polar compact in ∆ for every z′ and Sz′,zn compacts in ∆ for every
zn ∈ Sz′,1.
Step 3. z0 = (z′0,z

′
n,z
′
n+1) must belong to S1 :=

⋃
z′ Sz′,1, otherwise γ̂

0 would bound a disc. I.e.,

S1 and therefore S is non-empty. By item (iii) of Theorem 13.3 this gives a shell f(∂∆2
z′0
) in X

and this shell is naturally foliated.
Step 4. The implication (ii) ⇒ (i) is slightly simpler. The mapping h : (Br,Lv)→ (X0,L), which
defines a foliated shell in a pluritamed foliated manifold extends to P r \

⋃
z1∈S1

Sz1 , where P
r is

the r-neighborhood of the polydisk, and S1 is as above. S1 must be non-empty because h gives
a shell. Let 0 ∈ S1. Then one proves that h sends {0}× (∆ \S0) to the leaf which contains an
essential vanishing cycle. For more details we send the interested reader to [Iv10].

Chapter IV. Holomorphic Bundles and Coherent Analytic Sheaves

14. Holomorphic bundles and coherent analytic sheaves

14.1. Generalities on extensions of bundles and sheaves. Let us discuss now the extension
properties of holomorphic bundles and, more generally, coherent analytic sheaves.

1. Let D ⊂ D̃ be domains in a complex manifold (or, a normal complex space) X and let N be
a holomorphic bundle (resp. a coherent analytic sheaf) on D. One says that N extends from

D to D̃ if there exists a holomorphic bundle Ñ (resp. a coherent analytic sheaf) on D̃ and an

isomorphism ϕ : Ñ |D →N of bundles (resp. of sheaves).

2. If N is a line bundle then it extends as a bundle if and only if it extends as a coherent

analytic sheaf. The way to see this is to pass to the second dual Ñ ∗∗ of the extended sheaf,

which is reflexive. And then apply Lemma 26 from [Fri] to conclude that Ñ ∗∗ is locally free,
i.e., is a bundle extension of N .

3. The feature mentioned in the previous item is specific for line bundles. The rank two
subbundle N ⊂ O3 over C3 \ {0} with the stalk Nz = {w : w1z1+w2z2+w3z3 = 0} extends to
the origin as a coherent sheaf but not as a bundle.

4a. Let a holomorphic bundle F be defined on a domain X+
t∗ in a complex manifold X (ex.

X+
t∗ = {ρ > t∗} the upper level set of some exhaustion function), and let U be another domain

such that U ∩X+
t∗ is non-empty and connected. If F|U∩X+

t∗
is trivial then F extends to X+

t∗ ∪U .

Indeed, one can use the trivialization, say ϕ : F|U∩X+
t∗

→ Cr × (U ∩X+
t∗), r = rkF , to glue F

with the trivial bundle Cr×U on U .

4b. At the same time if F is trivializable on a subdomain U1 ⊂ U ∩X+
t∗ then it might be not

sufficient to make such a gluing. Simply because the trivialization ϕ need not to extend to
U ∩X+

t∗ in general.

4c. If there are two such domains U1 and U2 and, in addition, U1 ∩U2 and U1 ∩U2 ∩X+
t∗ are

connected and if F i denotes the extensions of F onto Ui ∪X+
t∗ as on the Fig. 6 left, then

we get a transition function ϕ12 : U1 ∩U2 ∩X+
t∗ → Gl(r,C). In order that F i glue together

to a holomorphic bundle on U1 ∪U2 ∪X+
t∗ it is necessary and sufficient that ϕ12 extends to a

non-degenerate Gl(r,C)-function on U1 ∩U2. This last condition need not to be satisfied in
general.

5. Finally let us consider a very instructive example.

Example 14.1. Consider the line bundle F on the punctured bidisk ∆̌2 given by the transition function

e
1

z1z2 . Blow up the origin and denote by P1 the exceptional divisor. Cover P1 by two bidisks U1 and
U2 as on the Figure 6 right. Then F|Uj\P1 is trivial for j = 1,2 (every holomorphic bundle on ∆× ∆̌ is

trivial) and therefore extends to ∆̌2 ∪Uj as a holomorphic line bundle Fj . But the transition function
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Σt*

t*

U

U

1

2

+X

U

U1

2

P 1

Figure 6. The transition function ϕ12 between F1
t∗ and F2

t∗ is defined only in U1 ∩
U2∩U+

t∗ - dashed zone on the left of picture. But it should be defined on U1∩U2. Since
the envelope of holomorphy of U1∩U2∩U+

t∗ is much smaller then U1∩U2 the extension
of ϕ12 to U1 ∩U2 is not automatic, i.e., cannot be achieved via the classical Hartogs
theorem. The transition function ϕ12 between F1 and F2 on the right is defined only in
(U1∩U2)\P1. But it should be defined on U1∩U2 in order for F to extend.

between F1 and F2 doesn’t extend though P1∩U1∩U2 and therefore F doesn’t extend to the blown up
bidisk. And it shouldn’t, because otherwise its direct image would extend F downstairs, and this is not
the case. In particular, we see that a Hartogs extension property fails for holomorphic bundles. But this
is not the only problem with them: uniqueness property also fails to be true, because all bundles of the
same rank are locally isomorphic to the trivial one.

14.2. Gap-sheaves and extension of coherent analytic sheaves. Let F be a coherent
analytic sheaf on a complex space X.

Definition 14.1. For a non-negative integer d the d-th absolute gap-sheaf F [d] of F is defined
by the presheaf

U → ind. lim
A∈Ad(U)

Γ(U \A,F). (14.1)

Here A runs over the directed set Ad(U) analytic subsets of U of dimension 6 d.

In other words a section σ ∈ Γ(U,F [d]) is a collection of sections σi ∈ Γ(Ui \Ai,F) for some
locally finite open covering {Ui} of U and some analytic subsets Ai ⊂ Ui of dimensions 6 d such
that σi|(Ui\Ai)∩(Uj\Aj) = σj |(Ui\Ai)∩(Uj\Aj) for all i, j.

Theorem 14.1. (Y.-T.Siu, [Si1]). Let F be a coherent analytic sheaf on the ring domain Rn,2r :=

∆n−2×A2
r,1, n> 3, such that F [n−2] = F . Suppose that for every t in some thick subset T ⊂∆n−2

the restriction F(t) of F to {t}×A2
r,1 extends to a coherent analytic sheaf on {t}×∆2. Then F

extends to a coherent analytic sheaf F̃ on ∆n such that F̃ [n−2] = F̃ .

Remark 14.1. a) Remark that a locally free sheaf obviously satisfies the gap-sheaf condition of this
theorem and therefore extends (but not necessarily as a free sheaf) to the associated polydisk. A line
bundle of course extends as a bundle. To be thick in this theorem means that T is not contained in a
countable union of proper locally closed analytic subsets.

b) Theorem 14.1 contains as a special case the statement of the extendability of bundles/sheaves with
gap conditions from the (n−2)-concave Hartogs domain Hn,n−2

r to the associated polydisk.

Let us give the proof of this theorem for a very particular an easy case of line bundles. First
of all one can easily classify the line bundles on the two-dimensional annulus A2

r,R := ∆2
R \ ∆̄2

r ,

here 0< r < R are fixed. For this cover A2
r,R by two Stein subsets

U1 := ∆R×Ar,R and U2 :=Ar,R×∆R.

Let L be a holomorphic line bundle on A2
r,R. Since restrictions L|Ui are holomorphically trivial

our bundle L is completely determined by its transition function f : U1,2 → C∗. Here U12 :=
U1 ∩ U2 = Ar,R ×Ar,R. Furthermore, since H1(A2

r,R,Z) = H2(A2
r,R,Z) = 0 we get in the

exponential sequence the following exact part

0→H1(A2
r,R,O)→H1(A2

r,R,O∗)→ 0.
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This means that holomorphic line bundles on A2
r,R are precisely the exponents of classes from

H1(A2
r,R). The last group can be easily computed if one takes into account that our covering

{U1,U2} is acyclic. Let g be a holomorphic function in Ar,R×Ar,R. One obviously finds gi ∈
O(Ui) such that

g(z)−g1(z)+g2(z) =
∑
k,l>0

akl

zk1z
l
2

=: gL(z).

Therefore our bundle L is uniquely defined by the transition function

fL(z) = egL(z) = e

∑
k,l>0

akl
zk1 zl2 , (14.2)

where series
∑

k,l>0
akl
zk1 z

l
2
converge in the annulus (P\ ∆̄r)× (P\ ∆̄r).

Now let L be a holomorphic line bundle on Rn,2r . It is uniquely determined by its transition
function fL ∈ O∗(∆n−2×Ar,1×Ar,1). This function writes as

f(z′′,zn−1,zn) = e

∑
k,l>0

akl(z
′′)

zkn−1z
l
n ,

with akl holomorphically depending on z′′ = (z1, ..., zn−2). F(t) extends to {t}×∆2 if and only
if akl(t) = 0 for all k, l > 0. Since the set T of such t-s is not analytic by the assumption of the
theorem we conclude that all akl ≡ 0. I.e. L is trivial and therefore extends to ∆n.

Remark 14.2. The role of the gap condition. In general, when F is a sheaf the conclusion of the
Theorem 14.1 fails to be true without the condition on the gap-sheaf. Take a curve A constructed in
Example 5.1 and imbed it together with P2 to P3 in a canonical way as P2 = {z3 = 0} ⊂ P3. Then A will
be attached to the boundary of the unit ball B6 ⊂ C3 ⊂ P3 and will be not extendable to a neighborhood
of any point on A∩∂B6. Let JA be the ideal sheaf of A and let FA :=O/JA be the quotient sheaf. Then
FA obviously doesn’t extend to a neighborhood of any point on A∩ ∂B6 as a coherent analytic sheaf.

Remark that FA fails to satisfy the gap-condition of Theorem 14.1 because F [1]
A = 0 6= FA.

Now let us turn to subsheaves.

Definition 14.2. Let X be a complex space, F a coherent sheaf on X, and G ⊂ F a coherent
subsheaf. The d-th relative gap-sheaf of G in F is the sheaf G[d],F associated with the presheaf

U 7→
{
s ∈ Γ(U,F) : s|U\A ∈ Γ(U\A,G) for some analytic subset A⊂ U of dimA≤ d

}
.

Therefore local sections of G[d],F are local sections of G defined outside analytic sets of dimen-
sion ≤ d which extend as sections of F .

Theorem 14.2. (Siu-Trautmann, [ST1]). Let F be a coherent sheaf on ∆n and G a coherent
subsheaf of F|

Rn,2
r

such that G[n−2],F = G. Assume that there exists a thick subset T ⊂ ∆n−2

such that for every t ∈ T the sheaf Im(G|{t}×A2
r,1

→F|{t}×A2
r,1
) extends to a coherent subsheaf of

F|{s}×∆2. Then G extends to ∆n as a coherent analytic subsheaf G̃ of F , such that G̃[n−2],F = G̃.

For the proof of Theorems 14.1 and 14.2 we refer to the book [Si3]. For the proof of the
following result we refer to the book [ST2], see Theorem 10.4.3. Let X be a reduced complex
space and let ρ :X → R+ be a proper strongly (n−2)-convex function. Set X+

c = {ρ > c}.

Theorem 14.3. Let F be a coherent analytic sheaf on X and let G be a coherent analytic
subsheaf of F|X+

c
which satisfies the relative (n−2)-gap condition: G[n−2]F = G. Then G extends

to X as a coherent analytic subsheaf of F satisfying G[n−2]F = G.

Let us sketch the proof of the analogous statement in absolute case.

Theorem 14.4. Let F be a coherent analytic sheaf on X+
c satisfying F [n−2] = F . Then F

uniquely extends to a coherent analytic sheaf F̃ on X satisfying F̃ [n−2] = F̃ .
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Proof. Let x0 be an (n−2)-concave boundary point and π : (U,x0)→ (V,0) as in the Projection

Lemma 18.1. The direct image π∗F is a coherent analytic sheaf on i(Hn,n−2
r ) by Grauert’s

theorem, and it obviously satisfies the gap sheaf condition. Therefore by Theorem 14.1 extends

to a coherent analytic sheaf π̃∗F on V = i(∆n). Denote by G := π∗π̃∗F the analytic inverse

image of π̃∗F . This is a coherent analytic sheaf, see §9.6 in [Dm2], which admits a natural
epimorphism m : G|

π−1(i(Hn,n−2
r ))

→ F . This epimorphism extends to {ρ > 0}∩U , where ρ is

the strongly (n−2)-convex function in question. Denote by K the kernel of m. K is a coherent
analytic subsheaf of G satisfying the relative gap-sheaf condition and therefore it extends to a
neighborhood of x0 by Theorem 14.3 as a coherent analytic sheaf K̃. The quotient sheaf G/K̃
will be the desired extension of F . �
Remark 14.3. Theorems 14.1, 14.2, 14.3 and 14.4 hold for (sub)-sheaves satisfying the d-th (relative)-
gap condition across d-concave boundaries for 0 6 d 6 n−2. See the quoted sources. It is worth noting
that when F is the locally free sheaf of rank one then its extension will be the line bundle as well.

14.3. Slicing and separate extension of holomorphic vector bundles. Let us give one
separate analyticity result for holomorphic vector bundles. Denote coordinates in the polydisk
∆n = ∆n−1×∆ as (w1, . . . ,wn−1,z), where w = (w1, . . . ,wn−1) are coordinates in ∆n−1. By a
(n−k)-index we understand a multi-index I = (i1, . . . , in−k) such that 1≤ i1 < · · ·< in−k ≤ n−1.
For such I we denote by πI : ∆n−1 → ∆n−k the projection (w1, . . . ,wn−1) 7→ (wi1 , . . . ,win−k

),

and by ∆k−1
I,v the slice π−1I (v) for v ∈∆n−k. Let A = Aρ,1 ⊂∆ be an annulus, E a holomorphic

vector bundle over A, and E1,E2 two extensions of E over ∆. The latter means that we have

fixed isomorphisms ϕi : Ei|A
∼=−→ E, i= 1,2. We say that extensions E1,E2 coincide if the spaces

of sections ϕ1[O(∆,E1)] and ϕ2[O(∆,E2)] coincide, considered as the subspaces of O(A,E).

Example 14.2. Let A = A 1
2 ,1

. Take E = A×C, this is the total space of the trivial bundle O on

A. For every k > 1 and every p ∈ ∆ 1
2
consider the bundle Ek,p whose sheaf of sections is O(k[p]), i.e.,

the sheaf of holomorphic in ∆ \ {p} functions having at p a pole of order at most k. Every Ek,p is an
extension of E, but they are all distinct.

Theorem 14.5. Let E be a holomorphic vector bundle over ∆n−1×A, n ≥ 3 and let for every

(n− k)-index I ⊂ {1, ...,n− 1} and every v ∈ ∆n−k a holomorphic extension ẼI,v of E|∆k−1
I,v ×A

to ∆k−1
I,v ×∆ be given. Suppose that there exists a set W ∗ ⊂∆n−1 of full measure such that for

every w ∈W ∗ and any two (n−k)-indices I1 6= I2 we have that for v1 := πI1(w) and v2 := πI2(w)

extensions ẼI1,v1 and ẼI2,v2 restricted to {w}×∆ coincide. Then there exists an extension of

E to the polydisk as a coherent analytic sheaf Ẽ , such that for every (n−k)-index I and almost

every v ∈∆n−k the restriction Ẽ |∆k−1
I,v ×∆

is the sheaf of holomorphic sections of ẼI,v. Moreover,

the singular set of Ẽ is an analytic subset of ∆n of codimension > k.

A special case of this statement can be found in §3 of [She2]. The proof of the general case
will appear in [She3].

15. Levi flat hypersurfaces and roots of holomorphic line bundles

In this section we shall discuss a quite specific question about extension of roots of holomorphic
line bundles. As a motivation for this question we refer to the paper [Oh] of T. Ohsawa, where
extension of roots is related to the existence of real analytic Levi flat hypersurfaces in some
(like Pn, n > 2) compact complex manifolds. In particular, Corollary 15.1 below implies the
non-existence of real analytic Levi flat hypersurfaces in Pn for n > 3 and shows that for n = 2
there is a specific obstruction for this method to work. It should be said that the case n > 3 is
not new and is contained in a more general result of [LN].

Let N be a holomorphic line bundle on a (non compact) complex manifold X. Suppose that
X admits a strongly (n−1)-convex exhaustion function ρ. Suppose that for some t∗ ∈ ρ(X) and
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some k ∈ N our N admits a k-th root F on X+
t∗ := {ρ > t∗}. I.e., F is a holomorphic line bundle

on X+
t∗ such that F⊗k is isomorphic to N|X+

t∗
. Denote by rt∗ : F⊗k →N|X+

t∗
some isomorphism.

We want to extend F to a neighborhood of Σt∗ and then to the whole of X together with rt∗ .

15.1. Extension of roots. Following [Iv11] let us describe the obstructions to the extension
of roots. Fix a point x0 ∈ Σt∗ and take a polydisk neighborhood V 3 x0. Set V + := V ∩X+

t∗ .
Since N|V is trivial its restriction to V + is trivial too. Therefore c1(N|V +) = 0. Since kc1(F) =
c1(N|V +) we get that c1(F) = 0. Holomorphic line bundles with vanishing Chern class on an
(arbitrary) complex manifold V + are described by the following exact sequence

0→ Z→H0(V +,O)
exp−→H0(V +,O∗) δ−→H1(V +,Z) i−→H0,1(V +)→ Pic0(V +)→ 0. (15.1)

Here i : H1(V +,Z) → H0,1(V +) is the composition of H1(V +,Z) → H1(V +,O) with the
Dolbeault isomorphism D : H1(V +,O) → H0,1(V +). Pic0(V +) appears here as the kernel of
the map c1 from the group H1(V +,O∗) of all holomorphic line bundles on X to H2(V +,Z). I.e.,
Pic0(V +) is exactly the group of holomorphic line bundles on V + with vanishing first Chern
class, that is, topologically trivial ones. The arrow H0,1(V +) → Pic0(V +) is the composition
of the inverse to the Dolbeault isomorphism D−1 :H0,1(V +)→H1(V +,O) and the exponential
map exp :H1(V +,O)→H1(V +,O∗). If the map

H0(V +,O)
exp−→H0(V +,O∗)

is surjective then (15.1) writes as

0→H1(V +,Z) i−→H0,1(V +)→ Pic0(V +)→ 0, (15.2)

which means that
Pic0(V +)∼=H0,1(V +)/H1(V +,Z). (15.3)

This is the case for example if all holomorphic functions on V + are constant or, all holomorphic
functions from V + extend to some simply connected V ⊃ V + and this is exactly our case: all
holomorphic functions from V + = V ∩X+

t∗ extend to a neighborhood of V + ∩Σt∗ by Hartogs’
Lemma. Remark furthermore that in our concrete situation the only case when V + is not simply
connected is when ρ is strictly (n− 1)-convex with index at x0 equal to 2n− 2, the maximal
possible value. In that case H1(V

+,Z) = Z. Fix a generator C of H1(V
+,Z) and a cohomology

class A ∈ H1(V +,Z) such that 〈A,C〉 = 1. Set B := i(A), where i : H1(V +,Z) → H0,1(V +)
is from (15.2) as above. For 0 6 l < k denote by Fk(l) the holomorphic line bundle which
corresponds to l

kB under the isomorphism (15.3), Fk(0) is trivial.

Theorem 15.1. Let ρ : X → R be a strongly (n− 1)-convex exhaustion function on a complex
manifold X and let N be a holomorphic line bundle on X. Suppose that for some t∗ ∈ ρ(X) the
restriction N|X+

t∗
admits a k-th root F . Then:

i) F extends to a k-th root of N to a neighborhood of Σt∗ provided all points on Σt are either
smooth, or strongly q-convex with q 6 n−2, or strictly (n−1)-convex with index of the critical
point less then 2n−2;

ii) if Σt∗ is strictly (n−1)-convex at some critical point c ∈ Uj∩Σt∗ of index 2n−2 then either
F extends to a neighborhood of c to a k-th root of N or there exist a neighborhood V of c such
that F|V + is isomorphic to some Fk(l) with 16 l < k there.

Proof. i) In all cases collected in the first part V + := V ∩X+
t∗ is connected and simply connected

as well (by Morse Lemma). Therefore Pic(V +) = H0,1(V +). If ω represents F in H0,1(V +)
then kω represents N|V + . Since kω = 0 we obtain that ω = 0. Let us glue the local extensions
obtained. Cover Σt∗ by a finite number of such coordinate neighborhoods Uj that:

i) Each Uj is biholomorphic to a polydisk ∆n and Uj ∩X+
t∗ are connected;

ii) the associated Hartogs figures Hn
ε are contained in Uj ∩X+

t∗ ;
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iii) the double Uij := Ui∩Uj and triple Uijk := Ui∩Uj∩Uk intersections are connected, simply

connected and moreover, Uij ∩X+
t∗ and Uijk ∩X+

t∗ are connected and simply connected as well.

Extend Ft∗ through all of them, i.e., get line bundles F j
t∗ over Vj :=X+

t∗∪Uj - extensions of Ft∗ .
We need to prove that these extensions match together, i.e., that transition functions extend

from Ui∩Uj∩X+
t∗ to Ui∩Uj for all Ui∩Uj 6= 0. Denote by ϕj : F j

t∗ |X+
t∗
→Ft∗ the corresponding iso-

morphisms. Then we get the transition functions ϕij = ϕ−1i ◦ϕj : F j
t∗ |Ui∩Uj∩X+

t∗
→F i

t∗ |Ui∩Uj∩X+
t∗
.

As it was said already, we need to extend ϕij onto Ui∩Uj and this is not automatic as it was ex-

plained on the Fig. 6. Denote by ψj :N|Vj → (F j
t∗)
⊗k the isomorphisms, obtained as extensions

of the isomorphism ψt∗ :N|U+
t∗
→F⊗kt∗ . From the diagram

N|Ui∩Uj∩X+
t∗

tr−→ N|Ui∩Uj∩X+
t∗yψj

yψi

(F j
t∗ |Ui∩Uj∩X+

t∗
)⊗k

ϕ⊗k
ij−→ (F i

t∗ |Ui∩Uj∩X+
t∗
)⊗k

(15.4)

we see that ϕ⊗kij = ψi ◦ψ−1j on Ui ∩Uj ∩X+
t∗ . But ψj (resp. ψi) is defined over Uj (resp. Ui)

and tr is a transition map of a globally existing bundle N , therefore ψi ◦ tr ◦ψ−1j is defined over

Ui∩Uj extending ϕ⊗kij . But then ϕij also extends onto Ui∩Uj as a k-th root on an extendable
non-vanishing function on a simply connected domain. It is easy to see that the cocycle condition
for the extended transition maps will be preserved. Indeed, it is satisfied on Uijk∩X+

t∗ , so it will
be satisfied on Uijk too. The case is proved.

ii) Let the index be 2n−2. By considerations as above for a cohomology class ω ∈H0,1(V +)
representing F we have that kω ∈ H1(V +,Z), i.e., it is nothing but l

kB for some integer

16 l < k. Bundle which corresponds to l
kB we denoted as Fk(l). This finishes the proof.

�

Remark 15.1. Case q 6 n− 2 in the theorem above is also served by the much more general
Theorem 14.1 of Siu. But in the particular case of the roots of line bundles we prefer for the
readers convenience to give an uniform approach which serves all cases.

Corollary 15.1. Let ρ :X → R be a strongly (n−1)-convex exhaustion function on a complex
manifold X without critical points of index 2n−2 and let N be a holomorphic line bundle on X.
Suppose that for some t0 ∈ ρ(X) the restriction N|X+

t0

admits a k-th root F . Then F extends to

the whole of X as a k-th root of N .

Proof. Let r : F⊗k → N|X+
t0

be some isomorphism. Denote by T the set of points t on the

interval ρ(X) such that the pair (F , r) extends to X+
t . T is non-empty, it contains t0.

T is open. Indeed, let (F , r) be extended to X+
t∗ . By Theorem 15.1 our pair extends to a

neighborhood of Σt∗ because we forbid the case (ii) . Therefore our “analytic object“ (F , r)
extends to X+

t′ for some t′ < t.

T is closed. By saying that F extends to X+
t as a k-th root Ft of N , we mean the following:

a) Holomorphic line bundles Ft1 on X+
t1

are defined for all t1 > t together with isomorphisms

ψt1 :N|X+
t1

→F⊗kt1 .

b) For all pairs t1 > t2 > t the bundle Ft2 is an extension of Ft1 , i.e., an isomorphism
ϕt1t2 : Ft2 |X+

t1

→Ft1 is given, and these isomorphisms satisfy:

b)1 ϕt1t1 = Id;

b)2 ϕt1t2 ◦ϕt2t3 = ϕt1t3 for t1 > t2 > t3.
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c) Isomorphisms ψt1 and ϕt1t2 are natural in the sense that for every pair t1 > t2 > t the
following diagram is commutative:

N|X
t+2

rt1t2−→ N|X
t+1yψt2

yψt1

F⊗kt2
ϕ⊗k
t1t2−→ F⊗kt1 .

(15.5)

Here rt1t2 : N|X
t+2

→ N|X
t+1

is the natural restriction operator of the globally existing bundle

N .
Now suppose that for every t > t∗ the bundle F extends onto X+

t as a k-th root Ft of N . We
define the presheaf Ft∗ on X+

t∗ as the projective limit of Ft-s for t > t∗:

Ft∗ := lim
←−

Ft. (15.6)

A section σ of Ft∗ over an open set V ⊂ X+
t∗ is a product

∏
t>t∗ σt of sections σt of Ft over

V ∩X+
t such that ϕt1t2(σt2) = σt1 for every pair t1 > t2 > t∗. Restriction map for W ⊂ V in Ft∗

is
∏
t>t∗ σt →

∏
t>t∗ σt|W∩U+

t
, which is correctly defined.

It is easy to see that the presheaf, so defined, is actually a sheaf and that this sheaf is
locally free of rank one. Isomorphisms ϕtt∗ : Ft∗ |Xt → Ft for t > t∗ are naturally defined as
ϕtt∗(

∏
t>t∗ σt) = σt. For t= t∗ we set ϕt∗t∗ = Id.

Take some t1 > t∗. It is not difficult now to see that ψt1 : N|X+
t1

→ F⊗kt1 extends to an

isomorphism ψt∗ :N|X+
t∗
→F⊗kt∗ and the following diagram is commutative:

N|X+
t∗

rt1t∗−→ N|X+
t1yψt∗

yψt1

F⊗kt∗
ϕ⊗k
t1t

∗
−→ F⊗kt1 .

(15.7)

The proof goes by continuity: for, if ψt1 is already extended to ψt, then take the composition

(ϕ−1tt∗ )
⊗k◦ψt :N|Xt →F⊗kt∗ |Xt . It is an analytic morphism of sheaves and in local chats it is given

by holomorphic functions. Therefore it can be extended through a pseudoconcave boundary.

15.2. Extension of roots across the contractible analytic sets. The complement to a
Levi flat hypersurface could be not exactly Stein but only 1-convex. In this case one theorem of
Grauert tells us that the only reason for such component of the complement not to be exhausted
by a strictly psh-function is that it can contain a contractible analytic set. It turns not to be
a problem in our case. Recall that a compact analytic set E in a normal complex space X
is called contractible if there exists a normal complex space Y , a compact analytic set A in
Y of codimension at least two and a holomorphic map (a contraction) c : X → Y which is a
biholomorphism between X \E and Y \A. If A is zero dimensional one calls E exceptional.

Theorem 15.2. Let E be a contractible analytic set in a normal complex space X and let N be
a holomorphic line bundle on X. Suppose N admits a k-th root F on X \E. Then F extends

to a holomorphic line bundle F̃ on the whole of X. Moreover, F̃⊗k doesn’t depend on k.

Remark 15.2. a) The extension F̃ of F can fail to be a k-th root of N on E. Let X be the blown-up
C2 at origin and E be the exceptional curve. Set N := [E]. By the adjunction formula N|E is the normal
bundle of the imbedding E ⊂X i.e., is OE(−1). At the same time N|X\E is trivial and as such admits

a trivial root F =O on X \E = C2 \{0}, and this F is a root of N|X\E of any given degree k ∈ N. But
N doesn’t have roots of any degree k > 1 on E.

b) At the same time Theorem 15.2 means that N|X\E can be (differently) extended to a line bundle, say

Ñ on X, having the extension F̃ of F as its k-th root. And, moreover, Ñ is the same for all k. I.e., we
can once forever modify N on the contractible set and make all roots of N , which one can take on X \E,
to extend onto the whole of X as roots of the modified bundle.
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c) Note that according to our definition of a contractible set all compact analytic sets of codimension at
least two are contractible. For them, in fact, more is true, see Lemma 15.1: F extends to a k-th root of

N (and not of some other Ñ ).

The key point in the proof is the following statement.

Lemma 15.1. Let X be a normal complex space and A a codimension two analytic subset of
X. Let a holomorphic line bundle N over X be given. Suppose that N|X\A admits a k-th root
F . Then F extends as a k-th root of N onto the whole of X.

For the proof we refer to [Iv11]. Let now c : X → Y be the contraction. Lemma 15.1 is now
applicable to the direct images of c∗F|X\E and c∗N|X\E . Both are holomorphic line bundles
on Y \A. The second one extends onto Y as a coherent analytic sheaf by the Theorem about
direct image sheaves of Grauert. Therefore it extends onto Y as a holomorphic line bundle.
Denote this extension (with some abuse of notation) as c∗N . By Lemma 15.1 c∗F extends as a
holomorphic line bundle onto Y and stays there to be a k-th root of c∗N . Denote by c∗F this
extension. Now c∗c∗F will be an extension of F to X, which is a k-th root of c∗c∗N , and the
last is an extension of N|X\E onto X. Theorem is proved.

Let us remark that the Thullen-type extension theorem for roots of holomorphic line bundles
also holds true. For the proof of the following statement we refer to [Iv11].

Theorem 15.3. Let Y be an analytic set in a connected complex manifold X and let G be a
domain in X, which contains X \Y and which intersects every irreducible component of Y of
codimension one. Let N be a holomorphic line bundle on X such that it admits a k-th root F
on G. Then F extends to a holomorphic line bundle onto the whole of X and stays there to be
a k-th root of N .

16. Thullen-type extension of bundles with constraints on curvature

Certain analytic objects which do not possess a Hartogs-type extension property nevertheless
do possess a weaker one, the so called Thullen-type, see Definition 12.1. In this section we shall
describe few sufficient conditions on holomorphic vector bundle which imply a Thullen-type
extension for them.

16.1. Limit holonomy and Sobolev extension of unitary connections. Let E be a
complex vector bundle over a manifold X, ∇ a connection in E, i.e., a complex linear mapping
∇ : Γ(E) → Λ1 ⊗ Γ(E) which satisfies the Leibnitz rule: ∇(fe) = df ⊗ e+ f∇e for every
smooth function f and every section e. Let γ : [0,1] → X be a piece wisely smooth path and
x0 := γ(0), x1 := γ(1) be its ends. Then the ∇-parallel transport along γ is a linear operator
τγ : Ex0 → Ex1 between the fibers over the end points of γ. If γ is closed, γ(0) = γ(1), then τγ
is an endomorphism of the fiber Ex0 .

Definition 16.1. The conjugacy class of the ∇-parallel transport along a closed path γ is called
the holonomy of the connection ∇ along γ and is denoted by ηγ.

It is known that ηγ is independent of the choice of the point on the closed path γ. If E is
equipped with a Hermitian metric 〈·, ·〉 and ∇ is a unitary connection, i.e., ∇〈e,h〉 = 〈∇e,h〉+
〈e,∇h〉 for any e,h ∈ Γ(E), then the parallel transport τγ : Ex0 → Ex1 is a unitary operator.
Therefore in the unitary case we consider the holonomy ηγ as a conjugacy class of unitary
matrices, i.e., a conjugacy class in the unitary group U(k) where k is the rank of E. Such
a conjugacy class is determined by its eigenvalues. The convergence ην −→ η∞ of conjugacy
classes of unitary matrices is understood as the convergence of the sets of eigenvalues counted
with multiplicities. Or, equivalently, as existence of representatives Aν ∈U(k) of the classes ην
such that the Aν converge. In this case the limit matrix A∞ = limAν is a representative of the
limit class η∞ = limην .
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The following result was proved in [SS] in the case of dimRX = 4 and rankCE = 2, and in
[She1] in the general case. Let Y be the unit ball in Rm−2, m≥ 2, and let B be the unit ball in
Rm. Set B̌ := B\Y and identify Y with Y ×{0} ⊂ B. Suppose that E is a smooth Hermitian
vector bundle of rank m over B̌ equipped with a unitary connection ∇. Denote by F∇ the
curvature of ∇, by γy,r the circle of radius r in the disc {y}×∆, and by ηy,r the holonomy of ∇
along γy,r.

Theorem 16.1. a) (Existence of the limit holonomy). Assume that the curvature F∇ is locally
integrable near Y . Then there exists a subset Y ∗ ⊂ Y of full measure such that the limit
lim
r→0

ηy,r =: ηy,0 exists for every y from Y ∗.

b) (Constancy of the limit holonomy). Assume that the curvature F∇ is locally square integrable
near Y . Then there exists a subset Y ∗ ⊂ Y of full measure and the conjugacy class η∗ such that
for every y from Y ∗ the limit lim

r→0
ηy,r exists and equals η∗.

Remark 16.1. Moreover, under the conditions of part (b) of this theorem the following is proved in

[She1]. Let U,Ũ ⊂B be open subsets containing Y and Φ : U → Ũ a C1-diffeomorphism mapping Y onto

Y , and η̃y,r the holonomy of the connection ∇̃ := Φ∗∇ along γy,r. Then exists a subset Ỹ ∗ ⊂ Y of full

measure such that for every y from Ỹ ∗ the limit lim
r→0

η̃y,r exists and equals the same class η∗. This means

that the limit holonomy stays invariant under the coordinate changes and is therefore well defined when
Y is a real codimension two submanifold of a real manifold X.

Definition 16.2. In the situation (b) of the theorem above the conjugacy class η∗ is called the
limit holonomy of the connection ∇ around the submanifold Y . We say that the limit holonomy
is trivial if the conjugacy class η∗ consists of the identity matrix.

Let Bt be the ball of radius t, set B̌t :=Bt\Y . We have the following result on local structure
of connections with a given limit holonomy, for its proof we refer to [She1].

Theorem 16.2. (V. Shevchishin, [She1]). There exists a constant ε > 0, depending on n ≥ 4,
m = rankCE, and a constant Cp < ∞ depending on n, m and n/2 ≤ p < ∞ such that the
following holds. Let (E,h,∇) be a smooth Hermitian vector bundle with a unitary connection
over B̌. Assume that ‖F∇‖Lm/2(B) < ε that the limit holonomy of ∇ around Y is trivial. Then

there exists a flat unitary connection ∇[ in the bundle E over B̌ 1
2
such that the End(E)-valued

1-form A :=∇−∇[ satisfies the following a priori estimate

‖A‖Lp(B 1
2
)+
∥∥∥∇[A

∥∥∥
Lp(B 1

2
)
≤ Cp · ‖F∇‖Lp(B) . (16.1)

In addition the holonomy of ∇[ around Y is also trivial.

Let us make some remarks about this theorem. It means in other words that one can find a
unitary frame ξ of E in B̌ 1

2
such that ∇[ = d in this frame, ∇= d+A, and (16.1) reads as

‖A‖L1,p(B 1
2
) ≤ Cp · ‖F∇‖Lp(B) . (16.2)

Furthermore, the Lp-norm of a two-form Fα,βdx
α∧dxβ is defined as

‖F‖pLp(B) =

∫
B

∑
α,β

|Fα,β |2
p/2

. (16.3)

Lm/2-norm is conformally invariant in the following sense. Let τt :B→B be a contraction, i.e.,
τtx= tx, 0< t < 1. The one easily checks that

‖F‖Lm/2(Bt)
= ‖τ∗t F‖Lm/2(B) . (16.4)
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Now the theorem implies that the unitary connection extends in the Sobolev sense to the whole
of B.

16.2. Thullen-type extension theorem for holomorphic bundles with L2-bounds on
curvature. Let X be a complex manifold of dimCX := n≥ 2, Y ⊂X either an analytic subset
of X or, a C1-submanifold of real codimension 2, and G ⊂ X an open set which contains X\Y
and intersects each irreducible component of Y of pure codimension 1 or resp. each connected
component of Y . Set Y ′ := Y \G. Recall that a Chern connection on a holomorphic Hermitian
bundle E on a complex manifold is the unique connection which preserves both holomorphic
and Hermitian structures of E. The former means that the (0,1)-component of the connection
form A in holomorphic frame satisfies the following integrability condition

∂A0,1+A0,1∧A0,1 = 0. (16.5)

Theorem 16.3. (V. Shevchishin, [She2]). Let (E,h) a holomorphic Hermitian vector bundle
over G. Assume that the curvature F∇ of the Chern connection ∇ is locally L2-integrable in
a neighborhood of each point y on Y . Then E extends to X as a reflexive sheaf E . Moreover,
if the curvature F∇ is locally Lp-integrable for some p ≥ 2, then the singular set Sing (E ) has
complex codimension at least [p]+1 in X.

In particular, in complex dimension two E extends as a bundle. And more generally, if
F∇ ∈ Lnloc(X), then E again extends as a bundle. We describe main steps of the proof indicating
the techniques lying behind, referring to [She2] for the complete proof. It follows from the
“Thullen-type” structure of the singular set Y ′ = Y \G that the limit holonomy of the Chern
connection ∇ in E is trivial.

Step 1. Consider first the special case when the curvature is Lnloc-integrable. In this situation
Theorem 16.2 provides that for every point y on Y there exists a neighborhood V ⊂ X of y
biholomorphic to the unit ball B ⊂ Cn and frame ξ of E in V \Y such that the connection
form A of ∇ in the frame ξ is L1,n-regular and its (0,1)-component A0,1 fulfills the integrability

condition (16.5). Remark that Sobolev imbedding, which reads in Cn = R2n as L1,p
loc ⊂ L

2np
2n−p ,

gives L1,n
loc ⊂ L2n

loc, and therefore if A ∈ L1,n
loc then A∧A ∈ Lnloc.

Step 2. Non-linear matrix-valued Dolbeault lemma. Let V ⊂X be an open set and ξ the unitary
frame of E in V \Y constructed in the previous step. Set k := rank(E). Then every local frame
η of E in an open set W ⊂ V \Y has the form η = ξ ·g for some unique Mat(k,C)-valued function
g in W . Such a frame η is holomorphic if and only if g satisfies the equation ∂g+A0,1g = 0.
The latter equation can be written as g−1 ·∂g =−A0,1.

Theorem 16.4. Let Γ be a L2n-integrable Mat(k,C)-valued (0,1)-form in the unit ball B in Cn
which satisfies the condition

∂Γ+Γ∧Γ = 0

in the sense of distributions. Then there exists Mat(k,C)-valued function g in B such that both

g and g−1 are L1,p
loc-regular for every p < 2n, and such that g is a solution of the equation

∂g+Γ ·g = 0.

Moreover, if g1,g2 are two matrix-valued functions with this property, then g2 = g1 ·h for some
holomorphic Mat(k,C)-valued function in B.

Applying this result to Γ = A0,1 we obtain the assertion of Theorem 16.3 in the case when
the curvature F is Lnloc-integrable for n = dimCX. Moreover, E in this case extends as a

bundle, and the sheaf of holomorphic sections of the extended bundle Ẽ admits the following
characterization: for every 2≤ p <∞

O(U,Ẽ) = {s ∈ O(U\Y,E) : s ∈ Lploc(U,E)}.
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Or, in another words, let η = ξ · g be the holomorphic frame obtained in this theorem. Write
η = (η1, ...,ηk) and define an extension of E through Y as (Ok,ϕ), where ϕ :Ok|B̌ → E is defined
as

ϕ : (f1, ...,fk)→ (f1η1, ...,fkηk).

Step 3. Slicing and separate extension. Assume that the curvature F is locally Lp-integrable for
some 2 ≤ p < n = dimCX. Take maximal integer k ≤ p. Consider a polydisk ∆n in X and
represent it as the product ∆k×∆n−k. For v in the second factor ∆n−k we set ∆k

v := ∆k×{v} ⊂
∆k×∆n−k. We imagine ∆n to be “sliced” in the polydisks ∆k

v . This induces a slicing of the
singular set with slices Yv := Y ∩∆k

v . On each ∆k
v we have the slice of the bundle Ev := E|∆k

v\Yv
equipped with the induced Hermitian metric and Chern connection whose curvature is the
restriction of the total curvature F . By Fubini’s theorem, for almost all v ∈∆n−k the curvature
is Lk-integrable on ∆k

v . The limit holonomy of the restricted bundles Ev = E|∆k
v\Yv around

the corresponding singular set Yv is trivial for almost all v. By the previous step, for almost
all v ∈ ∆n−k the bundle Ev extends holomorphically from ∆k

v\Yv to ∆k
v . One can show that

holomorphic sections of those extensions are those holomorphic sections of Ev over ∆
k
v\Yv which

are locally Lq-integrable for some fixed 2 ≤ q <∞. In this situation Theorem 3.1 in [She2] or,
Theorem 14.3 of this survey, ensures the assertion of Theorem 16.3 with the following description

of the extension Ẽ : for every 2≤ p <∞ and every open set U ⊂X as in Theorem 16.3 one has

Ẽ (U) =
{
s ∈ O(U\Y,E) : s is Lploc-integrable on almost all k-discs in U

}
.

16.3. Holomorphic bundles with semipositive curvature. Let X be a complex manifold
of dimension n≥ 2, Y ⊂X an analytic subset, and G⊂X an open set containing X\Y meeting
each irreducible component of Y of codimension 1. Let E be a holomorphic vector bundle over
a complex manifold X. E is called Nakano positive if it carries a Hermitian metric with positive
semidefinite curvature form, see definition below.

Theorem 16.5. Let (E,h) a holomorphic Hermitian vector bundle over G with Nakano positive

curvature. Then E admits an extension to X as a reflexive coherent sheaf Ẽ . Moreover, every

local section of Ẽ over an open set U bX is L2
loc-integrable with respect to h in U .

Proof. We follow main ideas of the paper [Si2]. Since the original proof in this paper is very
brief we shall try to present a more detailed demonstration.

Step 1. Bochner-Nakano identity. Let X be a complex manifold of dimension n equipped with
a Kähler metric with the Kähler form ω. In local coordinates, if ω has a representation ω =
Im(hω) =

i
2

∑
hjkdzj ∧dz̄k, then the metric is given by hω =

∑
hjkdzj⊗dz̄k. We use the metric

hω to define the volume form dV = ωn

n! on X and the Hodge operator ∗. As usually, [A,B]
denotes the commutator A ◦B−B ◦A of linear operators. Further, for an operator S between
Hermitian vector spaces or bundles we denote by S∗ its adjoint operator and by S its complex
conjugate if the latter is well-defined. The Hodge-Lefschetz operators L= Lω and Λ = Λω on the
spaces of (p,q)-forms are defined by Lω(α) := α∧ω and Λω(α) := ∗(Lω(∗α)), so that Λω = L∗ω.

Now let (E,hE) be a holomorphic Hermitian vector bundle on X. We denote by ∇E the
operator of the Chern connection in E and by DE : Ak(X,E) → Ak+1(X,E) its extension

to E-valued differential forms. Set D1,0
E =: ∂E , D

0,1
E =: ∂E , and let ∂∗E , ∂

∗
E be the adjoint

operators. Notice that the curvature of the Chern connection in (E,hE) can be computed by
FE := D2

E = ∂E∂E +∂E∂E . Besides, we introduce the Laplace operators ∆′E := ∂E∂
∗
E +∂∗E∂E ,

and ∆′′E := ∂E∂
∗
E+∂

∗
E∂E . The following formula is known as the Bochner-Nakano identity.

Lemma 16.1. Assume that the metric given by ω is Kähler. Then

∆′′E =∆′E+[iFE ,Λ] (16.6)
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The proof, see [Na], is the same as the classical equality ∆′ =∆′′ of the ∂- and ∂-Laplacians on
the (p,q)-forms on Kähler manifolds which is a special case of 16.6 with (E,h) being the trivial
bundle O equipped with the standard metric. First, one proves the Hodge identities

[∂
∗
E ,L] = i∂E , [∂∗E ,L] =−i∂E ,

[∂E ,Λ] = i∂∗E , [∂∗E ,Λ] =−i∂∗E ,
and then substitute them in the definitions of ∆′E and ∆′′E . The rest of calculation is the same

as in the classical case, with the difference that now we have ∂E∂E + ∂E∂E = FE instead of
∂∂+∂∂ = 0. We refer to [Dm2], Ch.VII for the generalizations to the non-Kähler case.

Step 2. Positivity of the curvature of holomorphic Hermitian bundles. Recall that a holomorphic
Hermitian bundle (E,h) with the curvature FE on a complex manifold X is Nakano positive if
for every section v of the bundle T 1,0X⊗E one has 〈iFE(v),v〉 ≥ 0.

For a Kähler manifold (X,ω) and a holomorphic Hermitian vector bundle (E,hE) denote by
L2
(p,q)(X,E) the space of L2-integrable E-valued (p,q)-form on X with the usual norm

‖u‖2L2
(p,q)

(X,E,h) = ‖u‖2L2
(p,q)

:=

∫
X
〈u,u〉dV.

Lemma 16.2. Let (X,ω) be a Kähler complex manifold of dimension n, (E,h) a holomorphic
Hermitian vector bundle on X, and F its curvature. Then the Hermitian form

u,v 7→
∫
X i〈[F,Λ]u,v

〉
dV (16.7)

on the space of smooth (n,1)-forms with compact support is semi-positive if and only if the bundle
(E,h) is Nakano positive. Furthermore, let ϕ be a strictly psh function such that i∂∂ϕ ≥ c ·ω
with some constant c > 0. Define the new metric hϕ := e−ϕh on E and let Fϕ be the curvature
of (E,hϕ). Then ∫

X

〈
[iFϕ,Λ]u,u

〉
dV ≥ c · ‖u‖2L2(X) (16.8)

for every u ∈ L2
n,q(X,E,h) and every 1≤ q ≤ n.

Step 3. Solving with estimates the ∂-equation with values in a positive bundle.

Theorem 16.6. Let X be a Stein manifold of dimension n, ω a Kähler form on X, (E,h) a
Nakano-positive holomorphic Hermitian vector bundle, and ϕ a strictly PSH function such that
i∂∂ϕ ≥ c ·ω with some constant c > 0. Set hϕ := e−ϕh. Then for every 1 ≤ q ≤ n and every

u ∈ L2
n,q(X,E,hϕ) such that ∂u= 0 in the weak sense there exists v ∈ L2

n,q−1(X,E,hϕ) such that

∂Ev = u and ∂
∗
Ev = 0 in the weak sense and

c · ‖v‖2L2
n,q−1(X,E,hϕ)

≤ ‖u‖2L2
n,q(X,E,hϕ)

.

In the case when the metric on X is complete and E is the trivial bundle O this result is
the core of Hörmander’s L2-theory, see [Ho1]. The generalization to the case of vector bundle
was obtained by Nakano [Na]. An important improvement of the L2-method, allowing to treat
the case of non-complete metric, was obtained by Demailly [Dm3]. The idea of the proof is as
follows. Take a new Kähler form ω̂ on X such that the corresponding metric is complete. Then
for every ε > 0 the metric defined by the Kähler form ωε := ω+ε · ω̂ is also complete. Denote by
‖·‖L2

n,q(X,ωε,E,h)
the L2-norm with respect to the metric given by the Kähler form ωε. Then for

every ε > 0 one has
‖u‖L2

n,q(X,ωε,E,h)
≤ ‖u‖L2

n,q(X,ω,E,h)
.

So by the “usual” Hörmander’s L2-theory, for every ε > 0 there exists vε ∈ L2
n,q−1(X,ωε,E,h)

with
c · ‖vε‖2L2

n,q−1(X,ωε,E,h)
≤ ‖u‖2L2

n,q(X,ωε,E,h)
≤ ‖u‖2L2

n,q(X,E,h)
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which satisfies the equations ∂Evε = u and (∂E)
∗
εvε = 0 (where (∂E)

∗
ε is the operator adjoint to

∂E with respect to the metric given by ωε). Finally, take a sequence εν decreasing to 0. Then
some subsequence of the sequence vεν converges to a desired solution v ∈ L2

n,q−1(X,E,h) with
the properties stated in the theorem.

Step 4. Finding local sections L2-bounded near singularity. Consider the following situation. Let
X be a Stein manifold of dimension n with a Kähler form ω, Y ⊂ X an analytic set of pure
codimension 1, G⊂X an open set which contains X\Y , (E,h) a holomorphic Hermitian bundle
of rank m over G with Nakano positive curvature. Finally. let V b X be a relatively compact
Stein domain, denote by V the closure of V in X.

Theorem 16.7. Let p ∈ V ∩G be a point. Assume that there exists a non-constant holomorphic
function f on X which is vanishing at p and non-zero on Y \G. Then there exist holomorphic
sections s1, . . . ,sm ∈ O(V ∩G,E) which are L2-integrable in V and which generate the basis of
the fiber of E at the point p.

Proof. The proof follows the ideas of [Si2]. Let det(TX) = Λn(TX) be the anti-canonical
bundle, hdet ,ω the metric on det(TX) induced by Kähler metric on X, and Fdet ,ω the cor-

responding curvature. Find a smooth real function ψ such that i∂∂ψ ≥ iFdet ,ω and set

hdet ,ψ := hdet ,ω ·e−ψ. Then the holomorphic Hermitian line bundle (det(TX),hdet ,ψ) is positive.
Now define (E′,h′) := (E,h)⊗ (det(TX),hdet ,ψ). Then (E′,h′) is a Nakano-positive bundle over
G such that E′⊗Λn,0X ∼= E. In particular, holomorphic sections of E′⊗Λn,0X are holomorphic
sections of E, and we can use Step 3 to construct such sections.

Let Z ⊂X be the zero set of the function f . Then Z is Stein and lies in G. So by the theorem
of Siu [Si6] Z admits a Stein neighborhood in U . Fix a smooth cut-off function χ on X which
is identically 1 in some smaller neighborhood of Z and whose support supp(χ) lies in U .

Since U is Stein, every fiber of the bundle E is generated by global holomorphic sections. Take
any vector v in the fiber Ep of this bundle at the point p and let s∗ ∈ O(U,E) be a holomorphic

section in U such that s∗(p) = v. We claim that α := f−1 ·∂χ ·s∗ is L2-integrable in V . To show
this let us observe that the set V ∩ supp(χ) is a compact set lies in U ⊂ G. Consequently, the
vector valued form ∂χ ·s∗ is L2-integrable in V . Further, the set V ∩ supp(∂χ) is also compact,
and hence the function |f | achieves its minimum at some point q. This minimum can not be 0,
since otherwise f would vanish at q and q would lie on the set Z, in contradiction to the fact that
χ is identically 1 in some neighborhood of Z and hence supp(∂χ)∩Z =∅. Consequently, f−1 is
uniformly bounded on V ∩supp(∂χ) and so α= f−1 ·∂χ·s∗ is L2-integrable in V as asserted. Due
to the isomorphism E′⊗Λn,0X ∼= E, we can write the L2-integrability as α ∈ L2

0,1(V \Y,E,ω) =
L2
n,1(V \Y,E′,ω). Further, since f is non-vanishing in V ∩ supp(∂χ) α= f−1 ·∂χ ·s∗ is ∂-closed,

∂α = 0. Now by Theorem 16.6, α = ∂ψ for some ψ ∈ L2
n,0(V \Y,E′,ω) = L2(V \Y,E,ω).

Consequently, ∂(χ·s∗−f ·ψ) = 0. This means that χ·s∗−f ·ψ =: s is a holomorphic section of E
over V \Y which is L2-integrable. By Riemann’s extension theorem, s extends holomorphically
to the set V ∩G.

Next, recall that χ is identically 1 in a neighborhood of the point p. It follows that in a
neighborhood of p the form α = f−1 ·∂χ · s∗ = ∂ψ vanishes identically, and so ψ is holomorphic
near p. Thus s(p) = χ(p) · s∗(p)− f(p) ·ψ(p) = 1 · s∗(p)− 0 ·ψ(p) = s∗(p) = v. This means that
s(z) is a L2-integrable holomorphic section of E in V ∩G which takes the prescribed value v at
the point p. This implies Theorem 16.7 and subsequently Theorem 16.5. �

17. Plateau problem, extension from the boundary and fillings

17.1. Complex Plateau problem. We follow [Dh1]. Recall that a subset Γ ⊂ Rn is called
m-rectifiable if Γ is an image of a bounded set B ⊂ Rm under a Lipschitz continuous map
f : B → Rn. Γ is called (Hm,m)-rectifiable if Hm(Γ) < ∞ and there exists at most countable
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collection of m-rectifiable compacts Kj ⊂ Rn such that Hm(Γ\∪iKi) = 0. Here Hm stands for
the m-Hausdorff measure in Rn. In particular, the current [Γ] of integration over such Γ is well
defined. Such currents are called (Hm,m)-rectifiable. We say that a compact Γ⊂ Rn is of class
Am if Γ is (Hm,m)-rectifiable and its tangent cone at Hm-almost all points is an m-dimensional
subspace of Rn. Recall that the tangent cone to Γ at x is

Tan(Γ,x) := {v ∈ Rn : ∀ε > 0,∃y ∈ Γ,∃c > 0 such that |y−x|< ε and |v− c(y−x)|< ε}.

Note that a connected, compact in Rn of finite length is of class A1, see Lemma 1.3 in [Dh1].
An (H2p−1,2p− 1)-rectifiable current Γ in Cn is called maximally complex if it is a sum of

currents of bidimensions (p,p−1) and (p−1,p). In other words if Γ annihilates all (k,2p−1−k)-
forms except for k = p,p−1. If Γ is a C1-manifold this means that its tangents at all points are
maximally complex subspaces of Cn. A holomorphic p-chain in Cn \Γ is by definition a locally
finite linear combination A with integer coefficients of pure p-dimensional analytic subsets of
Cn \Γ. If this chain has locally bounded 2p-dimensional volume in Cn it defines a (p,p)-current
[A] in Cn. If, in addition ∂[A] = [Γ] in the sense of currents then we say that [Γ] bounds [A].

Theorem 17.1. (T.-C. Dinh, [Dh1].) Let [Γ] be a closed current in Cn with compact support Γ
of class A2p−1. Then the following holds.

i) If p = 1 then [Γ] bounds a holomorphic 1-chain if and only if it satisfies the moment
condition, i.e., ∫

Γ
ω = 0 (17.1)

for every polynomial 1-form in Cn.
ii) If p> 2 then [Γ] bounds a holomorphic p-chain if and only if [Γ] is maximally complex.

The proof of this theorem goes roughly as follows. First one proves the part (i) and then cuts
Γ by subspaces of dimension n−p+1. From maximal complexity of [Γ] one deduces that these
slices satisfy the moment condition (17.1). This permits to prove that they bound holomorphic
1-chains. Their union form then the needed holomorphic p-chain which solves the boundary
problem. Let us give more details.

Step 1. The statement of this step is contained in the following lemma, see the corresponding
Slicing Lemma 1.4 in [Dh1].

Lemma 17.1. Let Γ be a compact of class A2p−1 in Cn. Then for almost all orthogonal projec-
tions Π : Cn → Cp−1 and almost all x ∈ Cp−1 the tangent cone Tan

(
Γ∩Π−1(x),y

)
is a real line

for H1-almost all y ∈ Γ∩Π−1(x) and therefore Γ∩Π−1(x) is of class A1.

Step 2. Let Π be a projection satisfying the conclusion of the previous step. By < [Γ],Π,x >
denote the corresponding slice current.

Lemma 17.2. If [Γ] is maximally complex then for almost all x the slices < [Γ],Π,x > satisfy
the moment condition (17.1).

The case when Γ is a maximally complex, compact C1-submanifold of Cn is due to Harvey
and Lawson, [HL]. We send the interested reader to the lectures [Ha] for the detailed exposition
of this case and to [Dh1] for the proof of Theorem 17.1. Using the techniques developed in [Dh1]
the following statement was proved in [KS2].

Theorem 17.2. Let X be a q-complete complex manifold and [Γ] a closed, maximally complex
current in X of dimension 2p− 1 with compact support of class A2p−1. If p > q+1 then [Γ]
bounds a unique holomorphic p-chain.
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17.2. Extension from the boundary. In [Bo] apart of Theorem 1.6 also the following state-
ment was proved.

Theorem 17.3. Let D be a smoothly bounded relatively compact domain in Cn, n > 2. Then
every CR-function on ∂D extends to a holomorphic function in D.

Theorem 17.2 implies the following corollary in the spirit of Bochner’s result.

Corollary 17.1. Let D be a smoothly bounded, relatively compact domain with connected bound-
ary in an (n−1)-complete complex space X, n = dimX > 2. Them every CR-function extends
to a holomorphic function in D.

Indeed, it is sufficient to solve the Plato problem for the graph of the function in question.
Let D be a smoothly bounded domain in a Stein manifold X of dimension n > 2. A compact
K b ∂D is called removable if every CR-function on ∂D \K extends to a holomorphic function
in D.

Theorem 17.4. (G. Lupacciolu [Lu], J.-P. Rosay - E.L. Stout [RS]). In the situation as above the
following conditions are equivalent:

i) K is removable;
ii) K is O(D̄)-convex if n= 2 or H0,1(X \K) = 0 if n> 3;

iii) H0,1
Φ (X \K) = 0, if n> 3.

Here O(D̄) := C(D̄)∩O(D) and H0,1
Φ stands for the cohomology group with compact supports.

We refer to [CS2] for details and much more results in this direction.

17.3. Filling by disks a neighborhood of a CR-submanifold. All considerations in this
subsection will be purely local. I.e., we shall consider the germs of smooth real submanifolds in
Cn. A submanifold of Cn is called a Cauchy-Riemann submanifold, CR-submanifold for short,
if the dimension of its complex tangent T cxM := TxM ∩ i(TxM) is independent of x ∈ M . An
analytic disk ϕ : ∆̄ → Cn (we suppose here that ϕ is smooth up to the boundary) is said to be
attached toM if ϕ(∂∆)⊂M . The pioneering result in this direction was obtained by E. Bishop.
Let (M,0) be a germ of a CR-submanifold in (Cn,0). Choose coordinates in such a way that
T c0M = Cm×{0n−m}.

Theorem 17.5. (E. Bishop, [Bs2]). For every sufficiently small analytic disk ϕ : ∆̄→ Cm such
that ϕ(1) = 0m there exists an analytic disk Φ= (ϕ,ψ) attached to M and such that Φ(1) = 0.

These disks are commonly called Bishop’s disks. Using Bishop’s disks several remarkable
results were obtained since. Let us mention only one of them.

Theorem 17.6. (J.-M. Trépreau, [Tr]). Let M be a germ of a real hypersurface in Cn, n > 2.
Assume that there doesn’t exist a germ of complex hypersurface in M through 0. Then all
CR-functions on M holomorphically extend to the same one-sided neighborhood of M .

This result is obtained by filling this one-sided neighborhood by Bishop’s disks. We send the
interested reader to the survey [Tu] of A. Tumanov for the questions of one sided extensions of
CR-functions and extensions to the wedges from hypersurfaces and also from submanifolds of
higher codimension.

17.4. Fillings holes in complex manifolds. A 1-corona is a pair (X,ρ), whereX is a complex
manifold and ρ : X → (t1, t2) is a proper strictly plurisubharmonic function. Possibilities
t1 = −∞ and t2 = +∞ are not excluded. One also says that X has a concave end or a hole,
here n> 2 always. If t1 =−∞ one says that X has a hyperconcave end. A completion of X is a
normal Stein space X̂ with finitely many singular points and an imbedding i :X → X̂ such that
for t1 < t∗ < t2 the set (

X̂ \ i(X)
)
∪ i({ρ6 c}) (17.2)
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is a compact. One also says that X̂ fills in a hole in X.

Theorem 17.7. (H. Rossi, [Ro]). If the dimension of the 1-corona is > 3 then it always admits
a Stein completion.

For n = 2 this is not longer true. Take a double covering of D− from Example 5.1 to get a
counter example. However the following statement was proved in [DM].

Theorem 17.8. (T.-C. Dinh, G. Marinescu, [DM]). A hyperconcave end can be always completed
also in dimension two.

It was proved in [BL] that a 1-corona can be completed if and only if the vector spaceH1(X,O)
is Hausdorff, only if statement actually was proved in [AV]. In other words the space of ∂-exact
C∞0,1-forms should be closed in C∞-topology. If dimension is > 3 then H1(X,O) is even finite
dimensional by Andreotti-Grauert theorem.

Conjecture 4. One can introduce the object called q-corona requesting ρ : X → (t1, t2) to
be proper and strongly q-convex. It is conjectured in [Si7] that q-corona can be also completed
provided dimX > q+2.

18. Appendix I. Placements of Hartogs figures

Along this survey we used several times in certain way imbedded Hartogs figures. Let us give
more details on this issue.

18.1. Normal form of a strictly q-convex function. Let ρ :X → R be a real valued function
on a complex manifold. It will be supposed in the sequel to be Morse and all perturbations will
be supposed to be small enough in C2-norm in order for ρ to stay Morse. Function ρ is called
strictly q-convex at x0 if the Levi form Lρ,x0 of ρ at x0 has exactly n−q+1 positive eigenvalues,
here 1 6 q 6 n. Our considerations will be local and therefore we suppose that ρ is defined in
a coordinate chart centered at zero with ρ(0) = 0 and 0 is a non-degenerate critical point of ρ.
Let z = (z1, ...,zn) be the corresponding local coordinates. Then ρ writes as

ρ(z) = 2ReHρ,0(z)+Lρ,0(z)+o(‖z‖2) (18.1)

in a neighborhood of the origin. Here

Hz
ρ,0[z] :=

n∑
k,l=1

∂2ρ(0)

∂zk∂zl
zkzl and Lzρ,0[z] :=

n∑
k,l=1

∂2ρ(0)

∂zk∂z̄l
zkz̄l

the complex Hessian and the Levi form of ρ at the origin respectively. Under a complex linear
change of coordinates z = Uζ they undergo the change as follows

Hζ
ρ,0 = U tHz

ρ,0U and Lζρ,0 = U tLzρ,0Ū .

In the C-vector space Tx0X consider the non-degenerate Hermitian form g, which in the basis
∂
∂z

:= { ∂
∂z1

, ..., ∂
∂zn

} is given by g(v,w) = vtLzρ,0w̄. By the well known theorem there exists a

basis η1, ...,ηn in which g is diagonal of the form In,q := [−1, ...,−1︸ ︷︷ ︸
q−1

,1, ...,1︸ ︷︷ ︸
n−q+1

]. Let ζ = (ζ1, ..., ζn)

be coordinates centered at x0 such that ∂
∂ζk

= ηk for k = 1, ...,n. In these coordinated Lζρ,x0 will

have the diagonal form as above.

Remark 18.1. In general, if a strongly q-convex function ρ is not (q − 1)-convex the diagonalized
Levi form will look as follows {0, ...,0︸ ︷︷ ︸

1...s

,−1, ...,−1︸ ︷︷ ︸
s+1...q−1

,1, ...,1︸ ︷︷ ︸
q...n

}. Assuming that our coordinate chart is the

unit ball B1 take a cut-off function ϕ, which is 1 on [0,1/3] and zero on [2/3,1], and consider ρ̃(z) :=
ρ(z)− εϕ(‖z‖)(|z1|2 + ...+ |zs|2). For ε > 0 sufficiently small we shall have that ρ̃ 6 ρ, ρ̃ close to ρ in
C2-norm on B1, and equal to ρ on B1 \B2/3. Therefore we can replace ρ by ρ̃ globally on X and extend
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our analytic object along the level sets of ρ̃. Remark that this ρ̃ is strictly q-convex at x0 and that x0 is
the only its critical point in B1. Rescailing variables z1, ...,zs we rewrite our function as follows

ρ̃(z) = 2Hρ,0(z)−
q−1∑
k=1

|zk|2+
n∑

k=q

|zk|2+o(‖z‖2). (18.2)

By a separate unitary changes in z
′
:= (z1, ...,zn−q) and z

′′
:= (zq, ...,zn) we bring our strictly q-convex

function to the normal form

ρ(z) =−
q−1∑
k=1

ak(z
2
k+ z̄

2
k)+

n∑
l=q

al(z
2
l + z̄

2
l )+2ReH(z

′
,z

′′
)−||z

′
||2+ ||z

′′
||2+o(‖z‖2), (18.3)

where one can make ak,al > 0 and the “mixed part” has the form

H(z
′
,z

′′
) =

q−1,n∑
k=1,l=q

ak,lzkzl.

Remark that further simplification of the quadratic part is not possible, i.e., one cannot get reed from

the mixed terms, see Theorem 4.5.15 in [HJ]. After that, setting ρ̂(z) := ρ̃(z)−ϕ(‖z‖ε )o(‖z‖2) with ε > 0

small enough, we obtain a new function close to ρ̂ in C2-norm, which coincides with ρ̂ in Bε\B2ε/3 and is
a quadratic polynomial in Bε/3. Therefore one often can suppose that ρ has only the nice critical points,
which means that ρ near such x0 is equal to its quadratic part. We shall assume this from now on, i.e.,
we shall write

ρ(z) =−
q−1∑
k=1

ak(z
2
k+ z̄

2
k)+

n∑
l=q

al(z
2
l + z̄

2
l )+2ReH(z

′
,z

′′
)−||z

′
||2+ ||z

′′
||2. (18.4)

18.2. Hartogs figures near q-concave boundaries: smooth case. If q = 1, i.e., our ρ is
strictly plurisubharmonic we can obviously transform (18.4) to

ρ(z) =
s∑

k=1

(x2k−εky2k)+
n∑

k=s+1

(x2k+εky
2
k), (18.5)

where 0< εk < 1 for k = 1, ...,s and 0< εk 6 1 for k = s+1, ...,n. Here s is he Morse index of ρ
at x0. Consider the case of maximal index s= n. The slope of the cone

∑n
k=1(x

2
k−εky2k) = 0 is

bigger than 1 (this reflects strict plurisubharmonicity), and can be made arbitrarily big as it is
explained on the Fig.7. There U+ := {ρ > 0} and Σ0 := {ρ= 0}. For positive parameters t and

.
0

U+

x

Σ
~

0

Σ 0

y

. 0

Σ 0

y ~

U
~ +

x

Figure 7. Σ0 on the left is the zero level of ρ. It can be deformed to Σ̃0 := {ρ̃ = 0}
by perturbing ρ to ρ̃ appropriately in such a way that the slope becomes bigger. Then,
after rescailing and cutting off the term o(‖z‖2) one gets the cone with bigger slope. If
the analytic object in question extends across smooth 1-convex boundaries one can using
this procedure extend it to U ∩ (Cn \Rn) for some neighborhood of the origin U .
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τ consider the quadric

Rt,τ := {z ∈K2 : (z1+ t)
2+z22 + ...+z

2
n = τ2}. (18.6)

Remark that R0,τ lies in U+ and moves to the left when t increases, see the Fig.8. Cutting each
Rt,τ along an ε-neighborhood of the real demi-hyperplane {x2 = 0,x1 6 −t} one gets the discs
Dt,τ . From them it is not difficult to construct a Hartogs figure in U+ such that the associated
polydisk contains the origin, see Appendix in [Iv11] for more details.

0

2

1

D

R
x

x

y

0

Σ

U
+

,0t

t,0

0

2

1

D

x

x

y

R t,

0
.

2 t A

Σ

U
+

t,t

t0

Figure 8. When t runs along an appropriate interval in R discs Dt,τ move as on this
picture. One can complexify t to get a one-parameter holomorphic family of disks for t
in a complex neighborhood of that interval. Remark that boundaries of Dt,τ stay in U+,
while interiors sweep a neighborhood of the origin.

If x0 is a strictly q-convex point then the picture as on Fig.8 depends on the parameter z
′

(R-linearly) and one can imbed Hn−q+1,1 to U+∩Cn−q+1

z′′
as in strictly pseudoconvex case and

then multiply it by ∆q
ε with ε > 0 small enough. This product contains a (biholomorphic image

of a) Hartogs figure Hn,q
r such that the associated polydiks contains the origin.

18.3. Hartogs figures near Rn. To put a polydisk near Rn in Cn, n > 2, one realizes Rn as
the Shilov boundary of the polydisk by exponential map

exp : (z1, ..., zn)→ (eiz1 , ...,eizn),

and then touches the convex set ∆̄n at 1= (1, ...,1) = e(0) by the hyperplane L with the equation

z1+ ...+zn = n.

Remark that L∩ ∆̄n = {1}. Remark also that exp is biholomorphic on the cube K = (−π,π)2n
and set V = exp(K). Take an (n− 1)-disk ∆n−1 on L centered at 1 and an 1-disk ∆ in the
orthogonal complement L⊥ such that ∆n−1×∆ ⊂ V . All what is left is to take a sufficiently
small subdisk δ in ∆∩{Re(z1+ ...+zn)> 0}. Then for r > 0 small enough the Hartogs figure

Hn,1
r :=

(
∆n−1 \ ∆̄n−1

1−r
)
×∆∪

(
∆n−1× δ

)
will be the needed one. See [Si3], Lemma 2.20 for more details.

18.4. Hartogs figures near q-concave boundaries: singular case. In general we have the
following powerful technical statement.

Lemma 18.1. (Projection Lemma). If x0 is a q-concave point of ∂D, q 6 n− 1, then one can
find a neighborhood U 3 x0 and a finite, proper holomorphic map π : (U,x0)→ (∆n,0) such that
π(U ∩D) contains the q-concave Hartogs figure Hn,q

r for some r > 0.

For q = n−1 this was proved in [Fu1], see Lemma 5.2, for the case of general any 16 q 6 n−1
we refer to Theorem 8.4 in [ST2].
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19. Appendix II. Historical notes

These notes are not exhaustive, they only give a complementary information to that what is contained
in the corresponding chapters and sections of the main body of this survey.

Chapter I.

1. Theorem 1.1 should be in my opinion attributed to A. Hurwitz, who in his talk on the 1st ICM
remarked, see [Hw] p.104, that an analytic function of several complex variables cannot possess isolated
singularities “as one can easily prove with the help of generalized Laurent theorem”. And this is exactly
the proof we gave. Hartogs figures with corresponding statement known as Hartogs’ Lemma appeared in
[Ht2], where the Theorem 1.6 is also stated. The proof however goes as on Fig. 2 (b). Another attempt
to derive this theorem from Hartogs’ Lemma was made in the lectures of W. Osgood [Os2], but, in my
opinion his arguments are even less convincing than that of Hartogs. Therefore it is generally recognized
that Hartogs proved Theorem 1.6 for the case when D and K are round balls and the first proof of the
general statement belongs to S. Bochner. At the same time the proof we gave in this text shows that
nevertheless Theorem 1.6 directly and reasonably obviously follows from the Hartogs’ Lemma.

Theorem 1.3 was proved by E. Levi in [Lv] and the proof we gave is that of Levi. Holomorphicity of
bounded separately analytic functions was proved by W. Osgood in [Os1]. F. Hartogs in [Ht1] removed the
boundedness condition. Non-trivial and far reaching “cross“ version of separate analyticity of Theorem
1.10 is due to J. Siciak. Poincaré problem (more precisely the weak Poincaré problem) of Corollary 1.4
was proved for domains in Stein manifolds in [KS1]. For D = C2 the statement was obtained in [P2] in a
stronger form: the corresponding entire functions can be chosen to have relatively prime germs at every
point. In this stronger form theorem doesn’t hold already for domains in C2, an example can be found
in [Ni].

2. A non-linear version of Levi’s theorem, i.e., Theorem 2.1 was obtained in [Iv12]. In the case when
{Ct}t∈T are non-horizontal straight disks, i.e., intersections of lines with ∆2, Corollary 2.1 is due to
T.-C. Dinh, see [Dh2] Corollaire 1. Again for straight disks and Kähler manifolds in the image Corollary
2.1 was obtained by F. Sarkis in [Sr]. Theorem 2.3 was proved in [IS1, IS2] answering a question of A.
Vitushkin. The method of construction of envelopes, which is used here is based on the Gromov’s theory
of pseudoholomorphic curves, [Gro]. The formulation of the ”local version” of Theorem 2.3, i.e., Theorem
2.2 was proposed by A. Domrin (see Introduction in [Ch3]) as a sort of test question for Theorem 2.3
and was proved by E. Chirka in [Ch3] following the methods of [IS1] but in a more simple way using the
Vekua theory. He called it ”a generalized Hartogs’ Lemma”. Answering the question, posed by Chirka,
J.-P. Rosay in [Rs] constructed an example showing that a ”generalized Hartogs’ Lemma” doesn’t hold
in C3. Another approach to envelopes, based on Seiberg-Witten theory, was proposed by S. Nemirovski
in [Nm2].

3. Reflection principle is due to H.A. Schwarz, see [Sw1]. For non-integrable structures the statements
of Theorems 3.1 and 3.2 were obtained in [IS7]. Segre varieties were introduced by B. Segre in [Sg1] and
first used for the task of extension by S. Webster in [We].

4-5. Construction used in the proof of Theorem 4.1 is due to H. Cartan and P. Thullen, [CT]. The
notion of q-convexity on complex spaces was introduced by W. Rothstein in [Rt2].

6. Theorem 6.3 was proved in [Iv3]. Theorem 6.5 was conjectured by S.-S. Chern in [Che] and proved
independently by B. Shiffman in [Sh1] and P. Griffiths in [Gr].

Chapter II.

7-8-9-10. Theorem 7.1 was proved in [Iv6]. Cycle space theory was developed by D. Barlet in [Ba1].
The necessary adaption for meromorphic mappings was done in [Iv8]. Theorem 8.1 was proved in [Iv4]
answering the conjecture of Griffiths from [Gr]. The Thullen-type case, i.e., Lemma 8.1 was proved
earlier by Y.-T. Siu in [Si5] by a different method. Nonlinear version, i.e., Corollary 8.1 was proved in
[Iv12]. Continuity Principle of Theorem 8.2 was proved in [IS1, IS2]. Theorem 9.1 was proved in [Iv8].

Chapter III.

11. Corollary 10.2 was conjectured in [CH] and proved in [Iv4] (in fact it follows already from the result
of [Iv3], i.e., from Theorem 6.3 of this text).

12. Domains of convergence of holomorphic/meromorphic functions where, probably, for the first time
considered by G. Julia in [J] and then by Cartan and Thullen in [CT] and W. Saxer in [Sa] simultaneously
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with their domains of existence. In particular in [J] and [CT] it was proved that these domains are (in
some sense) pseudoconvex. Later domains of convergence of meromorphic functions were studied in [Ru].
In these early papers convergence was understood as convergence of holomorphic functions/mappings,
i.e., outside of the union of the indeterminacy sets. The same notion is used in many of recent papers.
Three types of convergence which were discussed in this text were introduced in [Iv7], were the Rouché
Principle of Theorem 11.2 and Propagation principle of Theorem 11.3 where proved. Convergence of
meromorphic mappings with values in Pn as in the part (i) of Theorem 11.4 was introduced and studied
by Fujimoto in [Fu2], who called it meromorphic, or m-convergence. Theorems 11.4 and 11.5 were proved
in [IN]. Example 11.4 was proposed to us by A. Rashkovski and published in [IN].

13. In the case of X = C, i.e., for holomorphic functions Corollary 12.1 (ii) is due to F. Hartogs, [Ht1],
in the case of X = P1, i.e., for meromorphic functions to W. Rothstein, see [Rt1]. Separate analyticity
in the form of Corollary 12.2 (ii) is due to the same authors for holomorphic (resp. meromorphic) cases.
Theorem 12.2 for meromorphic functions is due to M. Kazaryan, see [Kz]. Rothstein-type Theorem 12.1
for holomorphic mappings is due to B. Shiffman, see [Sh2]. Theorem 12.2 for holomorphic mappings to
manifolds with hol. ext. prop was proved in [Al], using approach of B. Shiffman. Theorems 12.1 and
12.2 as they are stated here were proved in [Iv6], see Corollaries 2.5.1 and 2.5.3 respectively.

14. Theorem 13.1 was proved in [Iv9], Example 13.1 was constructed in [CI] and it shows the necessity of
modifying the notion of a vanishing end, which belongs to M. Brunella, see discussion before the Theorem
3.1 in [Br3]. The necessary modification was undertaken in [Br1], where for this task a certain version of
unparametrized Hartogs-type extension lemma was proved. Corollary 13.2 was independently obtained
in [Br2] and [Iv9].

Chapter IV

15-16-17-18. For the historical notes on extensions of sheaves we refer to the Historical Notes in [ST2].
The idea to use extensions of roots of holomorphic line bundles was proposed by T. Ohsawa in [Oh].
Results of section 15 were obtained in [Iv11]. A special case of Theorem 14.5 was proved in [She1], a
general case will appear in [She3]. Results of subsection 16.1 were obtained in [She2], Theorem 16.3 was
proved in [She1]. The idea of the proof of Theorem 16.5 belongs to Y.-T. Siu, see [Si2], the necessary L2-
estimate of Theorem 16.6 was obtained using Hörmander theory by J.-P. Demailly in [Dm3]. A complete
proof, sketched here, will appear in [She3]. Conjecture 4 can be found in [Si7].
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(1980).
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