Cubic forms and complex 3-folds

Ch. Okonek *
A. Van de Ven ${ }^{* *}$

*

Mathematisches Institut
Universität Zürich
Winterthurer Straße 190
8001 Zürich

**

Department of Mathematics
University of Leiden
Wassenaarseweg 80
2333 AL Leiden
The Netherlands

Schweiz

Max-Planck-Institut für Mathematik
Gottfried-Claren-Straße 26
53225 Bonn
Germany
ermany

Cubic forms and complex 3-folds

Ch. Okonek *
A. Van de Ven ${ }^{* *}$

Mathematisches Institut
Universität Zürich
Winterthurer Straße 190
8001 Zürich

Schweiz
**
Department of Mathematics
University of Leiden
Wassenaarseweg 80
2333 AL Leiden
The Netherlands

Max-Planck-Institut für Mathematik
Gottfried-Claren-Straße 26
53225 Bonn
Germany

Cubic forms and complex 3-folds

Ch. Okonek (Zürich), A. Van de Ven (Leiden)

Introduction

1. Topological classification of certain 6-manifolds
1.1 Homeomorphism types and C^{∞}-structures
1.2 Homotopy types
2. Topological realization of cubic forms
2.1 Cohomology rings of 6-manifolds
2.2 Homotopy types with a given cohomology ring
3. Algebra and arithmetic of cubic forms
3.1 Algebraic properties of cubic forms
3.2 The GIT quotient $S^{3} H_{\mathbf{c}}^{\vee} / S L\left(H_{\mathbf{c}}\right)$
3.3 Arithmetical aspects

4. Invariants of complex 3 -folds

4.1 Chern numbers of almost complex structures
4.2 Standard constructions
4.3 Examples of 1 -connected non-Kählerian 3-folds
5. Complex 3 -folds with small b_{2}
5.13 -folds with $b_{2}=1$
5.23 -folds with $b_{2}=2$
5.33 -folds with $b_{2} \geq 3$

References

Introduction

Nowadays, complex or algebraic manifolds are classified by Kodaira dimension. This classification is natural and fruitful, but in the complex case another point of view is possible. In this approach one starts with a topological or differentiable manifold X and asks for all complex or algebraic structures on X. Though this more traditional way of thinking can't. replace the classification by Kodaira dimension, it remains useful and attractive and it has led to a number of wellknown if not famous problems. It suffices to recall Severi's problem: find all complex structures on \mathbb{P}^{2}, considered as a topological 4 -manifold, or the same question asked for $S^{2} \times S^{2}$ seen either as a topological or a differentiable manifold. For complex dimension 2 the work of Freedman on the topology of 4 -folds as well as the work of Donaldson and many of his followers of course put this point of view very much at the centre of attention $[\mathrm{O} / \mathrm{V}],[\mathrm{F} / \mathrm{M}]$.

In the past decades progress on the Kodaira classification for dimension 3 has been enormous ($[\mathrm{Mo}],[\mathrm{K} / \mathrm{M} / \mathrm{M}]$, [Kol]), but the same can't be said about the relations between the topological and differentiable structures of 6 -manifolds and the complex or algebraic structures they admit.

Let us restrict ourselves to the simplest case, the case of compact, orienled, simply-connected 6 -manifolds without torsion. Their topological classification was carried out by Wall and Jupp ([W], [J]), who also determined which of them admit a differentiable structure, and for these showed that the differentiable classification coincides with the topological classification. This does not hold for the homotopy classification; in many cases there are even infinitely many homeomorphism classes of one and the same homotopy type. Apart of course from Stiefel-Whitney classes, Pontrjagin class and triangulation class the essential invariant is the cup form $H^{2}(X, \mathbb{Z}) \times H^{2}(X, \mathbb{Z}) \times H^{2}(X, \mathbb{Z}) \rightarrow H^{6}(X, \mathbb{Z})(\cong \mathbb{Z})$. It is not difficult to characterize those forms which arise as cup forms of a 6 -fold in question (below), but it remains very difficult to classify cubic forms up to $G L(\mathbb{Z})$ equivalence. Relatively few results are known in this direction, even for the lowest ranks.

The corresponding 4 -folds are the simply connected ones, i.e. the 4 folds occuring in the work of Freedman and most of the papers of the Donaldson school. Here the crucial invariant is a unimodular form on $H^{2}(X, \mathbb{Z})$, namely the cup form $H^{2}(X, \mathbb{Z}) \times H^{2}(X, \mathbb{Z}) \rightarrow H^{4}(X, \mathbb{Z})$. For differentiable manifolds this form completely determines the homeomor-
phism type (this also holds in the topological case if the cupform is even, whereas for odd forms there are two homeomorphism types), but by no means for the diffeomorphism type. So considering the relation betwcen the homotopy, the topological and the differential classification there is a big difference between dimensions 4 and 6 . The next question: which topological 4 -folds carry a complex structure, is equivalent to asking which unimodular, \mathbb{Z}-valued symmetric bilinear forms are realisable by complex or algebraic surfaces. It is related to the well-known inequality $c_{1}^{2} \leq 3 c_{2}$ and has been solved to a considerable extent.

Though in the case of 6 -folds the corresponding question about the realisability of cubic forms is definitely weaker than the question which 6 -folds carry a complex or algebraic structure, it still remains of much interest. In the second half of this paper we say something about algebra and arithmetic of cubic forms and consider the apparently largely untouched question of the realisability of complex forms by complex manifolds. A part from a considerable number of examples some conditions for Kähler manifolds are given. And to show how few 6 -folds of the type in question actually carry Kähler structures, we add a theorem about, Kähler structures on the set of 6 -folds with $b_{2}=1, b_{3} \leq$ constant and $w_{2} \neq 0$.

The first part of this paper surveys the results of Wall and Jupp referred to before, and deals with the homotopy classification. By putting together (for the first time?) all this in a rather systematic way we hope to contribute to the knowledge of complex 3 -folds from a topological point of view.
Acknowledgements: We would like to thank the following mathematicians for very helpful remarks and suggestions: F. Grunewald, G. Harder, F. Hirzebruch, and R. Schulze-Pillot. We also want to acknowledge support by the Science project "Geometry of Algebraic Varieties" SCI-0398-C(A); by the Max-Planck-Institut für Mathematik in Bonn, and by the Schweizer Nationalfond (Nr. 21-36111.92).

1. Topological classification of certain 6-manifolds

The topological classification of 1 -connected, closed, oriented, 6 -dimensional manifolds has been developed in a sequence of papers by C.T.C. Wall [W], P. Jupp [J], and A. Žubr [Z1], [Z2], [Z3]. Roughly speaking, their main result is that the topological classification of these 6 -manifolds is equivalent to the arithmetic classification of certain systems of invariants naturally associated with them.
The aim of this section is to review these results and to reformulate the arithmetic classification problem in a way which makes it accessible to further investigation.

1.1 Homeomorphism types and C^{∞}-structures

Let X be a closed, oriented, 6 -dimensional topological manifold; we assume that X is 1 -connected with torsion-free homology. The basic invariants of X are [J]:
i) $H^{2}(X, \mathbb{Z})$, a finitely generated free abelian group;
ii) $b_{3}(X)=r k_{\mathbf{z}} H^{3}(X, \mathbb{Z})$, a natural number which is even since $H^{3}(X$, $\mathbb{Z})$ admits a non-degenerate symplectic form;
iii) $F_{X}: H^{2}(X, \mathbb{Z}) \otimes H^{2}(X, \mathbb{Z}) \otimes H^{2}(X, \mathbb{Z}) \rightarrow \mathbb{Z}$, a symmetric trilinear form given by the cup-product evaluated on the orientation class;
iv) $p_{1}(X) \in H^{4}(X, \mathbb{Z})$, the first Pontrjagin class which is always integral because the inclusion of $B O$ in $B T O P$ induces an isomorphism $H^{4}(B T O P, \mathbb{Z}) \rightarrow H^{4}(B O, \mathbb{Z})[J] ;$
v) $w_{2}(X) \in H^{2}\left(X, \mathbb{Z}_{/ 2}\right)$, the second Stiefel-Whitney class; $w_{2}(X)$ is determined by the Steenrod square $S q^{2}: H^{4}\left(X, \mathbb{Z}_{/ 2}\right) \rightarrow H^{6}\left(X, \mathbb{Z}_{/ 2}\right)$, $S q^{2}(\xi)=w_{2}(X) \cdot \xi \quad \forall \xi \in H^{4}\left(X, \mathbb{Z} /{ }_{2}\right)\{W] ;$
vi) $\tau(X) \in H^{4}\left(X, \mathbb{Z}_{/ 2}\right)$, the triangulation class which is the obstruction to lifting the stable tangent bundle of Y to a $P L$ bundle [J].

These invariants satisfy one fundamental relation
(*) $\quad W^{3} \equiv\left(p_{1}(X)+T\right) \cdot W(\bmod 48)$
for all integral classes $W \in H^{2}(X, \mathbb{Z}), T \in H^{4}(X, \mathbb{Z})$ with $\bar{W} \equiv w_{2}(X)(\bmod$ 2), $\bar{T} \equiv \tau(x)(\bmod 2)$.

For smooth manifolds (*) is simply the \hat{A}-integrality theorem of A. Borel and F. Hirzebruch $[B / H]$, whereas for topological manifolds additional surgery arguments are necessary [J].
In the sequel we shall use Poincaré duality to identify $H^{4}(X, \mathbb{Z})$ with $\operatorname{Hom}_{\mathbf{Z}}\left(H^{2}(X, \mathbb{Z}), \mathbb{Z}\right)$, so that $p_{1}(X)$ can be considered as a linear form on $H^{2}(X, \mathbb{Z})$, and we will write $x \cdot y \cdot z$ instead of $F_{X}(x \otimes y \otimes z)$ for elements $x, y, z \in H^{2}(X, \mathbb{Z})$.

Definition 1: A system of invariants is a 6-tuple (r, H, w, τ, F, p) consisting of a non-negative integer r, a finitely generated free abelian group H, elements $w \in H / 2 H$ and $\tau \in H^{\vee} / 2 H^{v}$, a symmetric trilinear form $F \in S^{3} H^{\vee}$, and a linear form $p \in H^{\vee}$. The system (H, r, w, τ, F, p) is admissible iff for every $W \in H$ and $T \in H^{\vee}$ with $\bar{W} \equiv w(\bmod 2)$ and $\bar{T} \equiv \tau(\bmod 2)$ the follwing congruence holds:
$(*) \quad W^{3} \equiv(p+24 T)(W)(\bmod 48)$.
Two systems of invariants (H, r, w, τ, F, p) and $\left(H^{\prime}, r^{\prime}, w^{\prime}, \tau^{\prime}, F^{\prime}, p^{\prime}\right)$ are equivalent iff $r=r^{\prime}$, and there exists an isomorphism $\alpha: H \rightarrow H^{\prime}$ such that:
$\alpha(w)=w^{\prime}, \alpha^{*}\left(\tau^{\prime}\right)=\tau, \alpha^{*}\left(F^{\prime}\right)=F, \alpha^{*}\left(p^{\prime}\right)=p$.
The main classification result can now be formulated in the following way:
Theorem 1 (Jupp): The assignment $X \mapsto\left(\frac{b_{3}(X)}{2}, H^{2}(X, \mathbb{Z}), w_{2}(X), \tau(X)\right.$, $\left.F_{X}, p_{1}(X)\right)$ induces a $1-1$ correspondence between oriented homeomorphism classes of 1-connected, closed, oriented, 6-dimensional topological manifolds with torsion-free homology, and equivalence classes of admissible systems of invariants.
Furthermore, a topological manifold X as above admits a C^{∞}-structure if and only if the triangulation class $\tau(X)$ vanishes; the C^{∞}-structure is then unique.

Remark 1: The classification theorem is due to C.T.C. Wall in the special case of differentiable spin-manifolds [W]; the final form above was obtained by P. Jupp [J].
A. $\breve{Z} u b r$ generalized Wall's result in another direction; he proved a classification theorem for 1 -connected, smooth spin-manifolds with not necessarily torsion-free homology [Z 1$]$; in two further papers [Z 2$],[\mathrm{Z} 3]$ he also obtains P. Jupp's classification, and he asserts in addition, that algebraic isomorphisms of systems of invariants can always be realized by orientation preserving homeomorphisms (diffeomorphisms in the smooth case).

Note that the first invariant $\frac{b_{3}(X)}{2}$ of the system is completely independent of the remaining invariants, so that the following splitting theorem holds:

Corollary 1: Every. 1-connected, closed, oriented, 6-dimensional, topological (differentiable) manifold X with torsion-free homology admits a topological (differentiable) splitting $X=X_{0} \sharp \frac{b_{3}(X)}{2}\left(S^{3} \times S^{3}\right)$ as a connected sum of a core X_{0} with $b_{3}\left(X_{0}\right)=0$, and $\frac{b_{3}(X)}{2}$ copies of $S^{3} \times S^{3}$. The oriented homeomorphism (diffeomorphism) type of X_{0} is unique.

Example 1: The 1 -connected, closed, oriented 6 -manifolds X with $H_{2}(X, \mathbb{Z})=0$ are S^{6} and the connected sums $S^{3} \times S^{3}$ of $r \geq 1$ copies of $S^{3} \times S^{3}[S m]$.

1.2 Homotopy types

In order to describe the homotopy classification of the 6 -manifolds above, we need some more preparations.
Let (H, F) be a pair consisting of a finitely generated free abelian group H, and a symmetric trilinear form F; consider the following subgroup of $H^{\vee} / 48 H^{\mathrm{v}}$:
$U_{F}:=\left\{l \in H^{\vee} / 48 H^{\vee} \mid \exists u \in H\right.$ with $\left.l(x) \equiv 24 u^{2} \cdot x(\bmod 48) \quad \forall x \in H\right\}$.
If (H^{\prime}, F^{\prime}) is another such pair, and $a: H \rightarrow H^{\prime}$ an isomorphism with $\alpha^{*}\left(F^{\prime}\right)=F$, then there is an induced isomorphism

$$
\alpha^{*}: H^{\sim} / 48 H^{v} / U_{F}^{\prime} \rightarrow H^{\vee} /_{48 H^{\vee}} / U_{F}
$$

of the quotients. Denote the class of a linear form $l \in H^{\vee}$ in the quotient $H^{\vee} / 48 H^{\vee} / U_{F}$ by [l].

Definition 2: Two systems of invariants (r, H, w, τ, F, p) and ($r^{\prime}, H^{\prime}, w^{\prime}$, $\tau^{\prime}, F^{\prime}, p^{\prime}$) are weakly equivalent iff $r=r^{\prime}$, and there exists an isomorphism $\alpha: H \rightarrow H^{\prime}$ sucht that:
$\alpha(w)=w^{\prime}, \alpha^{*}\left(F^{\prime}\right)=F$, and $\alpha^{*}\left[p^{\prime}+24 T^{\prime}\right]=[p+24 T]$ for all $T \in H^{\vee}, T^{\prime} \in$ H^{N} with $\bar{T} \equiv \tau(\bmod 2), \bar{T}^{\prime} \equiv \tau^{\prime}(\bmod 2)$.

With this definition we can phrase the homotopy classification in the following way:

Theorem 2 (足ubr): The assignment $X \rightarrow\left(\frac{b_{3}(X)}{2}, H^{2}(X, \mathbb{Z}), w_{2}(X), \tau(X)\right.$, $F_{X}, p_{1}(X)$) induces a $1-1$ correspondence between oriented homotopy classes of 1-connected, closed, oriented, 6-dimensional topological manifolds
with torsion-free homology and weak equivalence classes of admissible systems of invariants.

Remark 2: Z̆ubr's theorem corrects and generalizes the homotopy classification in the papers by Wall [W] and Jupp [J]; he also treats manifolds with not, necessarily torsion-free homology, and states without proof that, algebraic isomorphisms of weak equivalence classes of systems of invariants. are always realizable by orientation preserving homotopy equivalences $[\mathrm{Z} 3]$.

Example 2: Manifolds with $b_{2}(X)=1$.
Let. X be a 1 -connected, closed oriented, 6 -dimensional manifold with $H_{2}(X, \mathbb{Z}) \cong \mathbb{Z}$. Splitting off possible copies of $S^{3} \times S^{3}$ we may assume $b_{3}(X)=0$. Choosing a \mathbb{Z}-basis of $I^{2}(X, \mathbb{Z})$ we see that systems of invariants can be identified with 4-tuples ($\bar{W}, \bar{T}, d, p) \in \mathbb{Z} / 2 \times \mathbb{Z} / 2 \times \mathbb{Z} \times \mathbb{Z}$ where the 'degree' d corresponds to the cubic form. Such a 4 -tuple is admissible iff $d(2 x+W)^{3} \equiv(p+24 T) \cdot(2 x+W)(\bmod 48)$ holds for every integer x. This is equivalent to $p \equiv 4 d(\bmod 24)$ if $\overline{W^{\prime}}=0$, and to $p \equiv d+24 T(\bmod 48)$ with $d \equiv 0(\bmod 2)$ if $\bar{W} \neq 0$.
Two admissible 4-tuples (\bar{W}, \bar{T}, d, p) and ($\bar{W}^{\prime}, \bar{T}^{\prime}, d^{\prime}, p^{\prime}$) are equivalent iff $\bar{W}^{\prime}=\bar{W}, \bar{T}^{\prime}=\bar{T}$ and $\left(d^{\prime}, p^{\prime}\right)= \pm(d, p)$. Taking the degree d non-negative, we find:

Proposition 1: There is a 1-1 correspondence between oriented homeomorphism types of cores X_{0} with $b_{2}\left(X_{0}\right)=1$, and 4 -tuples (\bar{W}, \bar{T}, d, p), normalized so that $d \geq 0$, and $p \geq 0$ if $d=0$, which satisfy $p \equiv 4 d(\bmod 24)$ if $\bar{W}=0$, and $d \equiv 0(\bmod 2), p \equiv d+24 T(\bmod 48)$ if $\bar{W} \neq 0$.

In order to classify the associated homotopy types we first have to determine the subgroup U_{F} associated to a given cubic form F. By definition we find $U_{F}=0$ if $d \equiv 0(\bmod 2), U_{F}=\mathbb{E} / 2$ if $d \equiv 1(\bmod 2)$. Two normalized 4tuples ($\overline{W^{\prime}}, \bar{T}, d, p$) and ($\bar{W}^{\prime}, \bar{T}^{\prime}, d^{\prime}, p^{\prime}$) are weakly equivalent iff $d^{\prime}=d, \overline{W^{\prime}}=$ \bar{W}, and $p+24 T \equiv p^{\prime}+24 T^{\prime}(\bmod 48)$ if $d \equiv 0(\bmod 2), p \equiv p^{\prime}(\bmod 24)$ if $d \equiv 1(\bmod 2)$.
Putting everything together, we find a single oriented homotopy type for every odd degree $d \geq 0$, which is necessarily spin, and 3 oriented homotopy types for every even degree $d \geq 0$; one of these 3 types has $\bar{W} \neq 0$, the other two are spin, and they are distinguished by $p+24 T(\bmod 48)$ i.e. $p \equiv 4 d(\bmod 48)$, or $p \equiv 4 d+24(\bmod 48)$.

2. Realization of cubic forms

In the previous section the (homotopy) topological classification of 1 connected, closed, oriented, 6 -dimensional manifolds with torsion-free homology has been transformed into an arithmetical moduli problem: to describe the sets of (weak) equivalence classes of admissible systems of invariants. In this section we begin to investigate the latter problem; we give a simple criterion for the realizability of cubic forms by smooth manifolds, and we describe, at least in principle, the classification of homotopy types of manifolds with a given cohomology ring.

2.1 Cohomology rings of 6-manifolds

Let (r, H, w, τ, F, p) be a system of invariants as in section 1 ; recall that it is admissible iff for every $W \in H, T \in H^{\vee}$ with $\bar{W}=w(\bmod 2), \bar{T} \equiv$ $\tau(\bmod 2)$ the following congruence holds:
$(*) \quad W^{3} \equiv(p+24 T)(W)(\bmod 48)$.
Lemma 1: (r, H, w, τ, F, p) is admissible if and only if.there exist $W_{\circ} \in H, T_{\circ} \in H^{\vee}$ with $\bar{W}_{\circ} \equiv w(\bmod 2), \bar{T}_{\circ} \equiv \tau(\bmod 2)$, such that
i) $W_{0}^{3} \equiv\left(p+24 T_{0}\right)\left(W_{0}\right)(\bmod 48)$
ii) $p(x) \equiv 4 x^{3}+6 x^{2} W_{\circ}+3 x W_{\circ}^{2}(\bmod 24) \forall x \in H$.

Proof: Obvious since the set of integral lifts of w is a coset $W_{o}+2 H$.
Definition 3: Let $F \in S^{3} H^{\vee}$ be a symmetric trilinear form on a finitely generated free abelian group H. An element $W \in H$ is characteristic for F iff

$$
(* *) \quad x \cdot y \cdot(x+y+W) \equiv 0(\bmod 2) \forall x, y \in H
$$

Lemma 2: $W \in H$ is a characteristic element for $F \in S^{3} H^{\vee}$ if and only if the function $l_{W}: H \rightarrow \mathbb{Z}, l_{W}(x):=4 x^{3}+6 x^{2} W+3 x W^{2}$ is linear in x modulo 24.

Proof: $l_{W}(x+y)=l_{W}(x)+l_{W}(y)+12\left(x^{2} y+x y^{2}+x y W\right)$, whence the assertion.

The existence of characteristic elements is a necessary and sufficient condition for a cubic form $F \in S^{3} H^{\vee}$ to be realizable by a manifold. In fact, we have:

Proposition 2: A given cubic form $F \in S^{3} H^{\vee}$ on a finitely generated free abelian group H is realizable as cup-form of a 1 -connected, closed, oriented, 6 -dimensional manifold with torsion-free homology if and only if it possesses a characteristic element.
Proof: If (r, H, w, τ, F, p) is an admissible system of invariants, and $W_{\circ} \in H$ any integral lift of w, then we have
$p(x) \equiv 4 x^{3}+6 x^{2} W_{\circ}+3 x W_{\circ}^{2}(\bmod 24) \forall x \in H$. i.e. the function $l_{w_{0}}: H \rightarrow \mathbb{Z}$ is linear modulo 24, and W_{o} is therefore characteristic for F. Conversely, suppose $W_{\circ} \in H$ is a characteristic element for a cubic form $F \in S^{3} H^{v}$; let $w:=\bar{W}_{\circ}(\bmod 2), r:=0$.
By the main lemma we have to construct linear forms $p, T \in H^{\vee}$, such that
i) $W_{\circ}^{3} \equiv(p+24 T)\left(W_{\circ}\right)(\bmod 48)$
ii) $p(x) \equiv 4 x^{3}+6 x^{2} W_{\circ}+3 x W_{0}^{2}(\bmod 24) \forall x \in H$.

The function $l_{W_{0}}: H \rightarrow \mathbb{Z}, l_{W_{0}}(x)=4 x^{3}+6 x^{2} W_{\circ}+3 x W_{o}^{2}$ is linear modulo 24 since W_{o} is a characteristic element for F; we therefore choose a linear form $p_{\circ} \in H^{\vee}$ with $p_{\circ}(x) \equiv l_{W_{0}}(x)(\bmod 24) \forall x \in H$. Substituting $x=W_{\circ}$ we find $p_{0}\left(W_{0}\right) \equiv 13 W_{0}^{3}(\bmod 24)$; but since W_{0} is characteristic we have $W_{\circ}^{3} \equiv 0(\bmod 2)$, thus $p_{\circ}\left(W_{\circ}\right) \equiv W_{\circ}^{3}(\bmod 24)$. Write $p_{0}\left(W_{\circ}\right)=W_{\circ}^{3}+24 k$ for some $k \in \mathbb{Z}$.
case 1) $k \equiv 0(\bmod 2):$ define $p:=p_{0}, T:=0$.
case 2) $k \equiv 1(\bmod 2):$ we must find a linear form $T_{0} \in H^{\vee}$ with $T_{0}\left(W_{0}\right) \equiv$ $1(\bmod 2)$; clearly this can be done if and only if W_{\circ} is not divisible by 2. If W_{0} were divisible by $2, W_{\mathrm{o}}=2 V_{0}$ for some $V_{0} \in H$, then $2 p_{0}\left(V_{0}\right)=$ $p_{\mathrm{o}}\left(W_{\circ}\right)=W_{\mathrm{o}}^{3}+24 k=8 V_{\mathrm{o}}^{3}+24 k$ would give $p_{\circ}\left(V_{\circ}\right)=4 V_{\mathrm{o}}^{3}+12 k$; then, using $p_{\mathrm{o}}\left(V_{\mathrm{o}}\right) \equiv 4 V_{\mathrm{o}}^{3}+6 V_{\mathrm{o}}^{2} W_{\mathrm{o}}+3 V_{\mathrm{o}} W_{\mathrm{o}}^{2} \equiv 4 V_{0}^{3}(\bmod 24)$ we would find $k \equiv 0(\bmod 2)$, which is not the case by assumption.
This shows that $F \in S^{3} H^{\vee}$ is realizable by a topological manifold with Pontrjagin class p_{\circ} and non-vanishing triangulation obstruction $\tau_{\circ}:=\bar{T}_{\circ}$ $(\bmod 2)$. In order to realize F by a smooth manifold, one can take $p:=$ $p_{\circ}+24 T_{\circ}$, and $\tau:=0$.

Remark 3: The topological counterpart of the existence of a characteristic element for a given cubic form $F \in S^{3} H^{\vee}$ is the existence of a mod-2 Steenrod-algebra structure, which is a necessary condition for a ring to be a cohomology ring.

The existence and the classification of characteristic elements for a given cubic form is essentially a linear algebra problem over $\mathbb{Z} / 2$. To see this, let
$F \in S^{3} H^{\vee}$ be a fixed cubic form on a finitely generated free abelian group H. Associated with F we have a linear map $F^{t}: H \rightarrow S^{2} H^{\vee}$ sending an element $h \in H$ to the bilinear form $F^{t}(h)$: $H \otimes H \rightarrow \mathbb{Z},(x, y) \rightarrow x \cdot y \cdot h$. Let $\bar{H}:=H /{ }_{2 H}, \bar{F} \in S^{3} \bar{H}^{\vee}$ be the reductions of H and F modulo 2, and let $-: H \rightarrow \bar{H}$ be the natural epimorphism. The symmetric trilinear form \bar{F} on the $\mathbb{Z} / 2^{\text {-module }} \bar{H}$ defines a natural symmetric bilinear form $q_{F} \in S^{2} \bar{H}^{\vee}$ given by $q_{F}(\bar{x}, \bar{y}):=\bar{x} \cdot \bar{y} \cdot(\bar{x}+\bar{y})$.

Lemma 3: $F \in S^{3} H^{\vee}$ admits characteristic elements if and only if $4 \bar{F}$ lies in the image of $\bar{F}^{t} \in \operatorname{Hom}_{\Sigma}\left(H, S^{2} \bar{H}^{\vee}\right)$. The set of all characteristic elements for F is a coset of the form $W_{0}+\operatorname{Ker}\left(\bar{F}^{t}\right)$.
Proof: W_{\circ} is characteristic for F if and only if $\varphi_{\bar{F}}=\bar{F}^{t}\left(W_{\circ}\right)$.
In terms of a \mathbb{Z}-basis $\left\{e_{1}, \ldots, e_{b}\right\}$ for H the condition $q_{\bar{F}} \in \operatorname{lm}\left(\bar{F}^{t}\right)$ translates into a simple rank condition over $\mathbb{Z} / 2$: the $\mathbb{Z} / 2$-rank of the $b \times\binom{ b+1}{2}$ matrix A representing \bar{F}^{t} must be equal to the $\mathbb{Z} / /^{\text {-rank }}$ of the matrix A extended by the column $\left(\bar{e}_{i} \cdot \bar{e}_{j} \cdot\left(\bar{e}_{i}+\bar{\epsilon}_{j}\right)\right)_{1 \leq i \leq j \leq b}$

Example 3: Let $H=\mathbb{Z} e_{1} \oplus \mathbb{E}_{e_{2}}$ be free of rank $2, F \in S^{3} H^{\vee}$ given by $e_{1}^{3}=a, e_{1}^{2} e_{2}=b, e_{1} e_{2}^{2}=c, e_{2}^{3}=d$ with $a, b, c, d \in \mathbb{Z}$. The rank condition becomes

$$
r k_{2}\left[\begin{array}{cc}
\bar{a} & \bar{b} \\
\bar{c} & \bar{d} \\
\bar{b} & \bar{c}
\end{array}\right]=r k_{2}\left[\begin{array}{ccc}
\bar{a} & \bar{b} & \overline{0} \\
\bar{c} & \bar{d} & \overline{0} \\
\bar{b} & \bar{c} & \overline{b+c}
\end{array}\right]
$$

2.2 Homotopy types with a given cohomology ring

Our next task is to describe the set of oriented homotopy types of 1 connected, closed, oriented, 6 -dimensional manifolds with a fixed torsionfree cohomology ring.
From Z̆ubr's classification theorem we know that in algebraic terms this means the following: fix a non-negative integer r_{0}, a finitely generated free abelian group H_{\circ}, and a symmetric trilinear form $F_{\circ} \in S^{3} H_{\circ}^{\vee}$ which admits characteristic elements.
Let $\mathcal{M}\left(r_{\mathrm{o}}, H_{\mathrm{o}}, F_{\mathrm{o}}\right)$ be the set of 1 -connected, closed, oriented, 6 -dimensional manifolds X with $b_{3}(X)=2 r_{0}$, such that there exists an isomorphism $\alpha: H_{0} \rightarrow H^{2}(X, \mathbb{Z})$ with $\alpha^{*} F_{X}=F_{0}$. Denote by Aut $\left(F_{0}\right)$ the subgroup of \mathbb{Z}-isomorphisms of H_{0} which leave $F_{\mathrm{o}} \in S^{3} H_{\mathrm{o}}^{\vee}$ invariant; Aut $\left(F_{\mathrm{o}}\right)$ acts on pairs $(w,[l]) \in \bar{H}_{0} \times H_{\circ}^{\vee} / 48 H_{o}^{\vee} / U_{F_{0}}$ in a natural way:

$$
\gamma \cdot(w,[l]):=\left(\gamma(w),\left(\gamma^{-1}\right)^{*}[l]\right) .
$$

Let $\operatorname{Aut}\left(F_{0}\right) \backslash \bar{H}_{0} \times H_{o}^{\vee} / 48 H_{o}^{v} / U_{F_{0}}$ be the set of $\operatorname{Aut}\left(F_{0}\right)$-orbits.
A manifold X in $\mathcal{M}\left(r_{0}, I_{0}, F_{0}\right)$ and an isomorphism $\alpha: H_{o} \rightarrow H^{2}(X, \mathbb{Z})$ with $\alpha^{*} F_{X}=F_{\circ}$ yields a well-defined $\operatorname{Aut}\left(F_{0}\right)$-orbit: $\left(\alpha^{-1}\left(w_{2}(X)\right), \alpha^{*}\left[p_{1}\right.\right.$ $(X)+24 T])\left(\right.$ modulo $\left.\operatorname{Aut}\left(F_{0}\right)\right)$, where $T \in H^{4}(X, \mathbb{Z})$ is an arbitrary integral lifting of $\tau(X) \in H^{4}(X, \mathbb{Z} / 2)$.
The set of oreinted homotopy types $\mathcal{M}\left(r_{0}, H_{0} . F_{0}\right) / \simeq$ of manifolds in $\mathcal{M}\left(r_{0}\right.$, H_{0}, F_{0}) can now be described in the following way:

Proposition 3: The assignment $X \mapsto\left(\alpha^{-1}\left(u_{2}(X)\right), \alpha^{*}\left[p_{1}(X)+24 T\right]\right)$ (modulo $\operatorname{Aut}\left(F_{\circ}\right)$) defines an injection
$I: \mathcal{M}\left(r_{\mathrm{o}}, H_{o}, F_{\mathrm{o}}\right)_{\simeq} \rightarrow \operatorname{Aut}\left(F_{0}\right) \backslash \bar{H}_{0} \times H_{\mathrm{o}}^{\vee} / 48 H_{0}^{\vee} / U_{F_{0}}$.
Proof: Suppose X and X^{\prime} are manifolds in $\mathcal{M}\left(r_{0}, H_{0}, F_{0}\right), \alpha: H_{0} \rightarrow$ $H^{2}(X, \mathbb{Z})$ and $\alpha^{\prime}: H_{\circ} \rightarrow H^{2}\left(X^{\prime}, \mathbb{Z}\right)$ isomorphisms with $\alpha^{*} F_{X}=F_{\circ}$ and $\left(\alpha^{\prime}\right)^{=} F_{X^{\prime}}=F_{0} . X$ and X^{\prime} have the same image under I iff there exists an automorphism $\gamma \in \operatorname{Aut}\left(F_{0}\right)$ with $\gamma \alpha^{-1}\left(w_{2}(X)\right)=\left(\alpha^{\prime}\right)^{-1} w_{2}\left(X^{\prime}\right)$ and $\left(\gamma^{-1}\right)^{*} \alpha^{*}\left[p_{1}(X)+24 T\right]=\left(\alpha^{\prime}\right)^{*}\left[p_{1}\left(X^{\prime}\right)+24 T^{\prime}\right]$. Consider $\beta:=\alpha \circ \gamma \circ \alpha^{-1}:$ $H^{2}(X, \mathbb{Z}) \rightarrow H^{2}\left(X^{\prime}, \mathbb{Z}\right) ; \beta$ is obviously an isomorphism with $\beta^{*} F_{X^{\prime}}=$ $\dot{F}_{X}^{\prime}, \beta w_{2}(X)=w_{2}\left(X^{\prime}\right)$, and $\beta^{*}\left[p_{1}\left(X^{\prime}\right)+24 T^{\prime}\right]=\left[p_{1}(X)+24 T\right]$; but this means that the systems of invariant.s associated with X and X^{\prime} are weakly equivalent, and therefore X and X^{\prime} oriented homotopy equivalent.

A complete description of the set $\mathcal{M}\left(r_{0}, H_{0}, F_{0}\right) / \simeq$ i.e. of the image of I is only possible if the automorphism group $\operatorname{Aut}\left(F_{\circ}\right)$ is known; this can be a serious problem, but we will see that the 'general' automorphism group is finite (and usually small), so that the next proposition gives a reasonable estimate for the number of elements in $\mathcal{M}\left(r_{0}, H_{0}, F_{0}\right) / \simeq$:

Proposition 4: Fix $r_{0} \in \mathbb{N}$, a finitely generated free abelian group H_{0}, and a symmetric trilinear form $F_{0} \in S^{3} H_{0}^{\vee}$ which admits characteristic elements. Set $b:=r k_{\mathbf{z}} H_{0}, s:=r k_{\mathbf{z}_{2}}\left(\vec{F}_{0}^{t}\right)$, and let $t:=r k_{\mathbf{z}_{/ 2}}\left(\cdot \bar{F}_{0}\right)$ be the $\mathbb{Z}_{/ 2}$-rank of the $\mathbb{Z}_{/ 2}$-linear square map $\bar{F}_{0}: \bar{H}_{0} \rightarrow \bar{H}_{0}^{\vee}$ sending $\bar{u} \in \bar{H}_{\circ}$ to $\bar{u}^{2} \in \bar{H}_{0}^{\vee}$. Then $\mathcal{M}\left(r_{0}, H_{0}, F_{0}\right) / \simeq$ contains at most $2^{2 b-s-t}$ elements.
Proof: Fix any admissible system of invariants ($r_{0}, H_{0}, w_{0}, \tau_{0}, F_{0}, p_{0}$) for a manifold in $\mathcal{M}\left(r_{0}, H_{0}, F_{\mathrm{o}}\right)$. Given ($r_{\mathrm{o}}, H_{0}, F_{\mathrm{o}}$), we know from the last lemma that the possible elements w_{0} form a coset of $\operatorname{Ker}\left(\bar{F}_{\mathrm{o}}^{t}\right)$ in \bar{H}_{o}, so that there exist precisely 2^{b-s} such elements. It remains to count the classes
$[l] \in H_{\mathrm{o}}^{\vee} / 48 H_{\mathrm{o}}^{\vee} / U_{F_{0}}$, such that the $\operatorname{Aut}\left(F_{\mathrm{o}}\right)$-orbit of $\left(w_{\mathrm{o}},\left[p_{\mathrm{o}}+24 T_{\mathrm{o}}+l\right]\right)$ lies in the image of I .
To understand the latter condition we fix integral liftings $W_{0}, \in H_{0}, T_{0} \in$ H_{o}^{\vee} of w_{o} and τ_{o} satisfying the admissibility conditions
i) $W_{o}^{3} \equiv\left(p_{o}+24 T_{o}\right)\left(W_{0}\right)(\bmod 48)$
ii) $p_{0}(x) \equiv 4 x^{3}+6 x^{2} W_{\circ}+3 x W_{\circ}^{2}(\bmod 24) \forall x \in H_{0}$.

Clearly the $\operatorname{Aut}\left(F_{0}\right)$-orbit of $\left(w_{0},\left[p_{0}+247_{0}+l\right]\right)$ lies in the image of I if and only if
i') $W_{\circ}^{3} \equiv\left(p_{\mathrm{o}}+24 T_{\mathrm{o}}+l\right)\left(W_{\circ}\right)(\bmod 48)$,
ii') $\left(p_{\mathrm{o}}+l\right)(x) \equiv 4 x^{3}+6 x^{2} W_{\circ}^{\prime}+3 x W_{0}^{2}(\bmod 24) \forall x \in H_{0}$,
which is equivalent to $l\left(W_{\circ}\right) \equiv 0(\bmod 48)$, and $l \equiv 0\left(\bmod 24 H_{\mathrm{o}}^{\vee}\right)$ because of i) and ii).
Now, by definition of the subgroup $U_{F_{0}} \subset H_{0}^{\vee} / 48 H_{0}^{\vee}$ we have the following commutative diagram with exact rows and columns:

$$
\begin{aligned}
& \begin{array}{cc}
\operatorname{Ker}\left(\bar{F}_{0}\right) & 0 \\
\downarrow & \downarrow
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ccc}
0 \rightarrow H_{0}^{\vee} / 2 H_{o}^{\vee} & \xrightarrow{24} \quad H_{0}^{\vee} / 48 H_{0}^{\vee} & \rightarrow H_{0}^{\vee} / 24 H_{0}^{\vee} \rightarrow 0 \\
\downarrow & & \downarrow \\
0 \rightarrow \text { Coker }\left(\bar{F}_{0}\right) & \rightarrow H_{0}^{\vee} / 48 H_{\circ}^{\vee} / U_{F_{0}} & \rightarrow H_{0}^{\vee} / 24 H_{0}^{\vee} \rightarrow 0 \\
\downarrow & \downarrow \\
0 & 0 &
\end{array}
\end{aligned}
$$

The number of elements $[l] \in H_{\mathrm{o}}^{\vee} / 48 H_{0}^{\vee} / U_{F_{0}}$ to be counted coincides therefore with the cardinality of the kernel of the map $\operatorname{ev}\left(w_{0}\right): \operatorname{Coker}\left(\cdot F_{0}\right) \rightarrow \mathbb{Z}_{/ 2}$ induced by evaluation in w_{0}. This is number is at most $2^{b-t}\left(2^{b-t-1}\right.$ if $w_{0} \neq 0$ and $t \neq b)$.

Corollary 2: If the $\mathbb{E}_{/_{2}}-r a n k s=r k_{z_{/ 2}}\left(\cdot \bar{F}_{0}\right)$ is maximal, then $\mathcal{M}\left(r_{0}, H_{0}\right.$, $\left.F_{0}\right) / \simeq$ contains at most one class.
Proof: Suppose $\bar{F}_{\mathrm{o}}: \bar{H}_{\mathrm{o}} \rightarrow \bar{H}_{\mathrm{o}}^{\vee}$ is surjective; then $\bar{F}_{\mathrm{o}}^{t}: \bar{H}_{\circ} \rightarrow S^{2} \bar{H}_{\mathrm{o}}^{\vee}$ must have a trivial kernel, since $\bar{h} \bar{x}^{2}=0$ for all $\bar{x} \in \bar{H}_{0}$ implies $\bar{h}=0$ if every linear form is a square. But this means $s=t=b$, so that $\mathcal{M}\left(r_{\mathrm{o}}, H_{\mathrm{o}}, F_{\mathrm{o}}\right) / \simeq$ has at most one element.

Example 4: Let $H_{0}:=\mathbb{Z} e_{1} \oplus \mathbb{Z} e_{2}, e_{1}^{3}=a, e_{1}^{2} e_{2}=b, e_{1} e_{2}^{2}=c, e_{2}^{3}=d$. If $\bar{b} \equiv \bar{c}(\bmod 2)$, and $\bar{a} \bar{d}-\bar{b} \bar{c} \equiv 1(\bmod 2)$, then $\mathcal{M}\left(r_{\circ}, H_{\circ}, F_{\circ}\right) / \simeq$ contains precisely one class for every $r_{0} \geq 0$.

3. Algebra and arithmetic of cubic forms

Let. H be a finitely generated free \mathbb{Z}-module of rank b. In this section we want to study algebraic and arithmetic properties of symmetric trilinear forms $F \in S^{3} H^{\vee}$ on H which admit characteristic elements; ultimately we would like to describe the classification of those forms under the action of the general linear group $G L(H)$, i.e. we like to investigate (part of) the quotient $S^{3} H^{v} / G L(H)$.
From what we have said in sections 1 . and 2., this is clearly equivalent to classifying the cohomology rings of 1 -connected, closed, oriented, 6 dimensional manifolds without torsion, and with $b_{2}=b, b_{3}=0$. Furthermore, up to finite indeterminancy, this is also equivalent to classifying the homotopy types of these manifolds.
The proper setiting for this arithmetic moduli problem can be found in C. Seshadri's paper [S]; here we investigate only its set-theoretic aspects. Let $H_{\mathbb{C}}:=H \otimes_{\mathbf{z}} \mathbb{C}$ be the complexification of H, and let $S^{3} H_{\mathbf{C}}^{\vee} / S L\left(H_{\mathbb{C}}\right)$ be the GIT quotient of the reductive group $S L\left(H_{\mathbb{C}}\right)$. We obtain a natural $\operatorname{map} c: S^{3} H^{\vee} / S L(H) \rightarrow S^{3} H_{\mathbb{C}}^{\vee} / S L\left(H_{\mathbb{C}}\right)$, which allows us to break up the problem into three parts: the description of the quotient $S^{3} H_{\mathbf{C}}^{\vee} / S L\left(H_{\mathbb{C}}\right)$, the investigation of the fibers of c, and the study of the remaining $\mathbb{Z} / 2^{-}$ action on $S^{3} H^{\vee} / S L(H)$ which is induced by the choice of an arbitrary automorphism $A_{0} \in G L(H)$ of determinant $\operatorname{det} A_{0}=-1$.

3.1 Algebraic properties of cubic forms

Let $H_{\mathbf{C}}=H \otimes_{\mathbf{z}} \mathbb{C}$ be as above, and denote by $\mathbb{C}\left[H_{\mathbf{C}}\right]_{3}$ the space of homogeneous polynomials of degree 3 on H_{C}. There exists a linear polarization operator Pol : $\mathbb{C}\left[H_{\mathbf{C}}\right]_{3} \rightarrow S^{3} H_{\mathbb{C}}^{\vee}$, sending a homogeneous cubic polynomial $f \in \mathbb{C}\left[H_{\mathbb{C}}\right]_{3}$ to the symmetric trilinear form $F=\operatorname{Pol}(f) \in$ $S^{3} H_{\mathbb{C}}^{\vee}$ which is related to f by the identity $F(h, h, h)=6 f(h)$. We will usually not distinguish between a cubic polynomial f and its associated form $F=\operatorname{Pol}(f)$. On $S^{3} H_{\mathbf{C}}^{\vee}$ there exists a polynomial function $\Delta: S^{3} H_{\mathbf{C}}^{\vee}$ $\rightarrow \mathbb{C}$, the discriminant, which is homogeneous of degree $b \cdot 2^{b-1}$, and vanishes
in a form F if and only if the associated cubic hypersuface $(f)_{\circ} \subset \mathbb{P}\left(H_{\mathbb{C}}\right)$ has a singular point; Δ can be defined over \mathbb{Z} and is clearly invariant under the natural action of $G L\left(H_{\mathbb{C}}\right)$.

Remark 4: Of course, a discriminant function Δ exists for forms of arbitrary degree d ; in the general case Δ is homogeneous of degree $b \cdot(d-1)^{b-1}$ on $S^{d} H_{\mathbb{C}}^{\vee}$.

Proposition 5: Fix a symmetric trilinear form $F \in S^{3} H_{\mathbb{C}}^{\vee}$ and an ele-. $m \in n t h \in H_{\mathbb{C}} \backslash\{0\}$ with $f(h)=0$. The associated point $<h>\in \mathbb{P}\left(H_{\mathbb{C}}\right)$ is a singular point of the cubic hypersurface $(f)_{\circ} \subset \mathbb{P}\left(H_{\mathbf{C}}\right)$ if and only if the linear form $h^{2} \in H_{\mathbf{C}}^{\vee}$ is zero. The existence of at least one such point is equivalent to the vanishing of the discriminant.
Proof: From $f(h+t v)=f(h)+3 t h^{2} \cdot v+3 t^{2} h \cdot v^{2}+t^{3} v^{3}$ for every $v \in H_{\mathbb{C}}, t \in \mathbb{C}$ we find $\left.\frac{d}{d t}\right|_{0} f(h+t v)=3 h^{2} \cdot v$, i.e. $h^{2} \in H_{\mathbb{C}}^{\vee}$ defines the differential of f in h.

Remark 5: \mathbb{Q}-rational points in $(f) \circ \subset \mathbb{P}\left(H_{\approx}\right)$, and \mathbb{Q}-rational singularities of $(f)_{0}$ have geometric significance if the cubic f is defined by the cupform of a 6 -manifold X. In fact, integral classes $h \in H^{2}(X, \mathbb{Z})$ correspond to homotopy classes of maps to $\mathbb{P}_{\mathbb{C}}^{3}$; such a map factors over $\mathbb{P}_{\mathbb{C}}^{2} \subset \mathbb{P}_{\mathbb{C}}^{3}$ if and only if $h^{3}=0$; if it factors over $\mathbb{P}_{\mathbb{C}}^{1} \subset \mathbb{P}_{\mathbb{C}}^{3}$, then clearly $h^{2}=0$. The converse will probably not always be true since, in general, the cohomolgy ring does not determine the homotopy type.

In addition to the invariant discriminant $\Delta(f)$ of a polynomial f, we will also need a fundamental covariant H_{f}, the Hessian of f. Let $F \ddot{=}$ $\operatorname{Pol}(f) \in S^{3} H_{\mathbb{C}}^{\vee}$ be the polarization of $f \in \mathbb{C}\left[H_{\mathbf{C}}\right]_{3}$; the Hessian of f can then be defined as the composition $H_{f}: H_{\mathbf{C}} \xrightarrow{F^{v}} S^{2} H_{\mathbf{C}}^{\vee} \xrightarrow{\text { disc }} \mathbb{C}$, i.e. H_{f} is the homogeneous polynomial function of degree b on $H_{\mathbf{C}}$ given by $H_{f}(h)=\operatorname{disc}\left(F^{t}(h)\right)$. In terms of linear coordinates ξ_{1}, \cdots, ξ_{b} on H one finds the more familiar expression $H_{f}=\operatorname{det}\left(\frac{\partial^{2}}{\partial \xi_{i} \partial \xi_{j}} f\right)$.

Proposition 6: Let $F \in S^{3} H_{\mathbb{C}}^{\vee}$ be a symmetric trilinear form. The Hessian of F is identically zero if and only if there exist no element $h \in H_{\mathbb{C}}$ for which the map $h: H_{\mathbf{C}} \rightarrow H_{\mathbf{C}}^{\vee}$ is an isomorphism.

Proof: H_{f} is identically zero if and only if the symmetric bilinear forms $F^{t}(h) \in S^{2} H_{\mathbf{C}}^{\vee}$ are degenerate for every $h \in H_{\mathbb{C}}$. But this means that none of the maps $\cdot h: H_{\mathbb{C}} \rightarrow H_{\mathbb{C}}^{\vee}$ is an isomorphism.

Corollary 3: Let $F \in S^{3} H_{\mathbb{C}}^{\vee}$ be a form whose associated map $F^{t}: H_{\mathbb{C}} \rightarrow$ $S^{2} H_{\mathbb{C}}^{\vee}$ is not injective. Then we have $H_{f}=0$.
Proof: Let $k \in \operatorname{Ker}\left(F^{t}\right)$ be a non-zero element, and consider an arbitrary element $h \in H_{\mathbb{C}}$. By definition of k we have $F(k, h, v)=0$ for all $v \in H_{\mathbb{C}}$, i.e. $k \cdot h \in H_{⿷}^{\vee}$ is zero.

Remark 6: It is not difficult to show that F^{t} is not injective if and only if there exists a proper quotient $\bar{H}_{\mathcal{C}}$ of H_{c}, and a form $\bar{F} \in S^{3} \bar{H}_{\mathbf{c}}^{v}$ whose pull-back to $H_{\mathbb{C}}$ is the given form F. This means that the Hessians of cubic polynomials $f \in \mathbb{C}\left[H_{C}\right]_{3}$ which 'do not depend on all variables' are automatically zero.
The converse holds for forms in $b \leq 4$ variables, but not in general $[G / N]$.

3.2 The GIT quotient $S^{3} H_{\mathbb{C}}^{\vee} / S L\left(H_{\mathrm{C}}\right)$

Let $V:=S^{3} H_{\mathbf{C}}^{\vee}$ be the vector space of complex cubic forms. The reductive group $G:=S L\left(H_{\mathbb{C}}\right)$ acts rationally on V, and therefore has a finitely generated ring $\mathbb{C}[V]^{G}$ of invariants $[\mathrm{H}]$. The inclusion $\mathbb{C}[V]^{G} \subset \mathbb{C}[V]$ induces a regular map $\pi: V \rightarrow V / G$ onto the affine variety V / G with coordinate ring $\mathbb{C}[V]^{G}$. It is well known that π is a categorical quotient, which is G-closed and G-separating, so that V / G parametrizes precisely the closed G-orbits in V. Recall that a point $v \in V$ is semi-stable if $o \notin \overline{G \cdot v}$, and that v is stable if $G \cdot v$ is closed in V and the isotropy group C_{v} is finite [M/F]. Denote the G-invariant, open subsets of semistable (stable) points in V by $V^{s s}\left(V^{s}\right)$.
The complement $V \backslash V^{s s}=\pi^{-1}(\pi(0))$ consists of 'Nullformen', i.e. forms for which all polynomial invariants vanish. The open subset of stable points, which includes in particular all non-singular forms, has a geometric quotient, given by the restricted map $\pi \mid V^{s}: V^{s} \rightarrow \pi\left(V^{s}\right)$.

Remark 7: Let $A_{\mathrm{o}} \in G L(H)$ be a fixed automorphism of determinant $\operatorname{det} A_{0}=-1$, e.g. $A_{0}=-i d_{H}$ if b is odd. A_{0} induces a $\mathbb{Z}_{/ 2}$-action on $S^{3} H^{\vee} /_{S L(H)}$ and on $S^{3} H_{\mathrm{c}}^{\vee} /_{S L\left(H_{\mathrm{C}}\right)}$, for which the map c is equivariant. Let $\hat{G} \subset G L\left(H_{\mathbb{C}}\right)$ be the semi-direct product of $S L\left(H_{\mathrm{C}}\right)$ and $\mathbb{Z} /_{2}$ generated by A_{o} and $S L\left(H_{\mathbf{c}}\right)$. The invariant ring $\mathbb{C}[V]^{\dot{G}}$ has an important topological interpretation: it consists of all polynomial invariants of complex cohomology rings of 1 -connected, closed, oriented 6 -dimensional manifolds with torsion-free homology.

Example 5: Binary cubics ($b=2$)
Choose linear coordinates X, Y on $H_{\mathbf{c}}$, and write a cubic polynomial $f \in$ $\mathbb{C}[X, Y]_{3}$ in the form $f=a_{0} X^{3}+3 a_{1} X^{2} Y+3 a_{2} X Y^{2}+a_{3} Y^{3}$.
We use $a_{0}, a_{1}, a_{2}, a_{3}$ as coordinate's on $S^{3} H_{己}^{\vee}$, so that $\mathbb{C}\left[S^{3} H_{\mathbb{C}}^{\vee}\right]=\mathbb{C}\left[a_{0}\right.$, $\left.a_{1}, a_{2}, a_{3}\right]$. The discriminant $\Delta(f)$ of f is a homogeneous polynomial of degree 4 in the coefficients $a_{0}, a_{1}, a_{2}, a_{4}$, explicitly given by $\Delta(f)=a_{0}^{2} a_{3}^{2}-$ $3 a_{1}^{2} a_{2}^{2}-6 a_{0} a_{1} a_{2} a_{3}+4 a_{0} a_{2}^{3}+4 a_{1}^{3} a_{3}$.
The discriminant generates the ring of $S L\left(H_{c}\right)$-invariants, $\mathbb{C}\left[S^{3} H_{\mathbf{C}}^{\vee}\right]^{S L\left(H_{\mathrm{c}}\right)}$ $=\mathbb{C}[\Delta]$, and it is easy to see that Δ is also $\mathbb{Z} / 2$-invariant. A cubic form f is stable if and only if it is semistable, if and only if it is non-singular [N]. The cone of nullforms $\pi^{-1}(\pi(0))$ is the affine hypersurface $(\Delta)_{\circ} \subset S^{3} H_{\mathbb{C}}^{\vee}$; it has a nice geometric interpretation in terms of the Hessian. The Hessian of the cubic f is the quadratic form $H_{f}=6^{2}\left[\left(a_{0} a_{2}-a_{1}^{2}\right) X^{2}+\left(a_{0} a_{3}-a_{1} a_{2}\right) X Y+\right.$ $\left.\left(a_{1} a_{3}-a_{2}^{2}\right) Y^{2}\right]$. The set of forms f with vanishing Hessians H_{f} form the affine cone over the rational normal curve in $\mathbb{P}\left(S^{3} H_{\mathbb{C}}^{\vee}\right)$; the hypersurface of nullforms is the cone over the tangential scroll of this curve. There are 4 different types of $S L\left(H_{\mathbf{C}}\right)$-orbits in $S^{3} H_{\mathbb{C}}^{\vee}$, represented by the normal forms $X Y(X+\lambda Y), X^{2} Y, X^{3}, 0$. The first type is stable, the others are nullforms, the orbits of X^{3} and 0 have vanishing Hessians.

Example 6: Ternary cubics ($\mathrm{b}=3$)
The ring of $S L\left(H_{\mathrm{C}}\right)$-invariants of ternary cubics is a weighted polynomial ring in 2 variables, $\mathbb{C}\left[S^{3} H_{\mathbb{C}}^{\vee}\right]^{S L\left(H_{\mathrm{c}}\right)}=\mathbb{C}[S, T]$ whose generators S, T have been found by S. Aronhold [A]. S is a homogeneous polynomial of degree 4 in the coefficients of a cubic f, T is homogeneous of degree 6 , both polynomials are $\mathbb{Z} / 2$-invariant. For a cubic of the form $f=a X^{3}+$ $b Y^{3}+c Z^{3}+6 d X Y Z, S$ and T are given by $S=4 d\left(d^{3}-a b c\right)$ and $T=$ $8 d^{6}+20 a b c\left(d^{3}-a b c\right)$ respectively $[P]$. The general formulae, which take two pages to write down, can be found in the book of Sturmfels [St]. The discriminant of a form f is homogeneous of degree 12 in the coefficients of f; in terms of Aronhold's invariants S, T it is simply given by $\Delta=S^{3}-T^{2}$. We obtain the following overall picture: The GIT quotient for ternary cubics is an affine plane A^{2} with coordinates S, T. The complement $\mathbf{A}^{2} \backslash$ $(\Delta)_{0}$ of the discriminant curve is the geometric quotient of stable cubics. The π-fibers over a point $(S, T) \neq(0,0)$ on the discriminant curve $(\Delta)_{0}$ consist of 3 types of $S L\left(H_{\mathbb{C}}\right)$-orbits: nodal cubics with normal form $X^{3}+$ $Y^{3}+6 \alpha X Y Z$, reducible cubics formed by a smooth conic and a transversal line (normal form: $X^{3}+6 \alpha X Y Z$), and cubics consisting of three lines in general position (normal form: $6 \alpha X Y Z$); these cubics are proberly semistable for $\alpha \neq 0$ with Aronhold invariants $S=4 \alpha^{4}, T=8 \alpha^{6}$. The fiber of π over 0 contains 6 orbits with normal forms $Y^{-2} Z-X^{-3}, Y\left(X^{2}-Y Z\right), X Y(X+$
$\left.Y^{\prime}\right), X^{2} Y^{\prime}, X^{3}$, and 0 , of which the last 4 types have vanishing Hessians. For more details we refer to H . Kraft's book [Kr].

Remark 8: The natural \mathbb{C}^{*}-action $f \rightarrow \lambda \cdot f$ on cubic forms induces a weighted action on the GIT quotient $S^{3} H_{\mathbb{C}}^{\vee} / S L\left(H_{\mathbb{C}}\right), \lambda \cdot(S, T)=\left(\lambda^{4} S, \lambda^{6} T\right)$. The associated weighted projective space $\mathbb{P}^{1}(4,6)$ with homogeneous coordinates $\langle S, T\rangle$ is the good quotient for semi-stable plane cubic curves. Its affine part $\mathbb{P}^{1} \backslash(\Delta)_{\text {o }}$ is the moduli space of genus-1 curves. The $P G L\left(H_{\mathbf{c}}\right)$-invariant $J:=\frac{S^{3}}{\Delta}$ gives the J-invariant of the corresponding curve.

3.3 Arithmetical aspects

Let $c: S^{3} H^{\vee} / S L(H) \rightarrow S^{3} H_{c}^{\vee} / S L(H)$ be the map which associated to the $S L(H)$-orbit $<F>$ of a symmetric trilinear form $F \in S^{3} H^{\vee}$ the $S L\left(H_{\mathbf{c}}\right)$ orbit $<F>_{\mathbf{c}}$ of its complexification. The c-fiber over $<F>_{\mathbb{C}}$ can be identified with the subset $\left(S L\left(H_{\mathrm{C}}\right) \cdot F \cap S^{3} H^{\vee}\right) / S L^{\prime}(H)$ of $S^{3} H^{\vee} / S L(H)$. C. Jordan has shown that these subsets are finite provided the cubic form $f \in \mathbb{C}\left[H_{\mathbf{c}}\right]_{3}$ associated to F has a non-vanishing discriminant [J1]. Jordan's original proof, which is only two pages long, is somewhat hard to follow. The following theorem of A. Borel and Harish-Chandra provides, however, a vast generalization of Jordan's finiteness result:

Theorem 3 (Borel/Harish-Chandra): Let G be a reductive \mathbb{Q}-group, $\Gamma \subset G$ an arithmetic subgroup, $\xi: G \rightarrow G L(V)$ a \mathbb{Q}-morphism, and $L \subset V$ a Γ-invariant sublattice of $V_{\mathbb{Q}}$. If $v \in V$ has a closed G-orbit in V, then $G_{\nu} \cap L / \Gamma$ is a finite set.
Proof: [B]

Corollary 4: Let $F \in S^{3} H^{\vee}$ be a symmetric trilinear form on H. If the $S L\left(H_{\mathbf{c}}\right)$-orbit of F in $S^{3} H_{\mathbf{C}}^{\vee}$ is closed, then the fiber $c^{-1}\left(<F>_{\mathbb{C}}\right)$ over $<F\rangle_{\mathbb{C}}$ is finite.

To check whether a $S L\left(H_{\mathbf{C}}\right)$-orbit $S L\left(H_{\mathbf{C}}\right) \cdot F$ is closed in $S^{3} H_{\mathbf{C}}^{\mathbf{V}}$, one has a generalization of the Hilbert-criterion [Kr]: $S L\left(H_{\mathbf{C}}\right) \cdot F$ is closed in $S^{3} H_{\mathbf{C}}^{\mathbf{V}}$ if and only if for every 1-parameter subgroup $\lambda: \mathbb{C}^{*} \rightarrow S L\left(H_{\mathbb{C}}\right)$, for which $\lim _{t \rightarrow 0} \lambda(t) \cdot F$ exist in $S^{3} H_{\mathbf{C}}^{\vee}$, this limit is already contained in $S L\left(H_{\mathbf{C}}\right) \cdot F$. A sufficient condition for $S L\left(H_{\mathrm{C}}\right) \cdot F$ to be closed follows from another result of C. Jordan [J2]:

Theorem 4 (Jordan): Let $f \in \mathbb{C}\left[H_{\mathcal{C}}\right]_{d}$ be a homogeneous polynomial of degree $d \geq 3$. If its discriminant $\Delta(f)$ is non-zero, then f has a finite isotropy group $S L\left(H_{\mathbf{C}}\right)_{f}$.

Corollary 5: Let $F \in S^{3} H^{\vee}$ be a form whose associated cubic polynomial $f \in \mathbb{C}\left[H_{\mathbb{C}}\right]_{3}$ has $\Delta(f) \neq 0$. Then $S L\left(H_{\mathcal{C}}\right) \cdot F$ is closed in $S^{3} H_{\mathbb{C}}^{\vee}$.
Proof: Standard arguments, cf. [Bo].
Remark 9: Closedness of the $S L\left(H_{\varepsilon}\right)$-orbit of F is only: a sufficient condition for the finiteness of the fiber $c^{-1}(\langle F\rangle)$. There exist other finiteness theorems for special types of forms, like e.g. forms which decompose into linear factors.
Some of these results are surveyed in volume III of L. Dickson's book [D].
We say that two forms $F, F^{\prime} \in S^{3} H^{\vee}$ belong to the same (proper) equivalence class if they lie in the same $(S L(H)$-) $G L(H)$-orbit. The group $\mathbb{Z}_{/ 2}=G L(H) / S L(H)$ acts on the set $S^{3} H^{\vee} / S L(H)$ of proper classes, and the quotient becomes the orbit space $S^{3} H^{\vee} / G L(H)$.
The $\mathbb{E} / 2$-action is not free in general, but for finiteness properties this plays no rôle.

Example 7: Binary cubics
Let H be a free \mathbb{Z}-module of rank $b=2$. There exist only finitely many classes of symmetric trilinear forms $F \in S^{3} H^{\vee}$ with a given non-zero discriminant Δ. Of course, Δ must be integral, and a square modulo 4, in order to be realizable by an integral form. For some small values of $\Delta \neq 0$ the number of classes is known. Results in this direction go back to a paper by F. Arndt [A]; his tables have been rearranged by A. Cayley [Cay]. It should certainly be possible to go much further using modern computers.

Example 8: Ternary cubics

Let H be a free \mathbb{Z}-module of rank 3 with coordinates X, Y, Z. The cubic polynomials with closed $S L\left(H_{\mathbf{C}}\right)$-orbits are the non-singular cubics, and the polynomials in the orbits of $6 \alpha X Y Z$ for all $\alpha \in \mathbb{C}$.
The number of integral classes in these orbits is therefore finite. We have, however, an even stronger finiteness theorem for stable ternary cubics:

Proposition 7: Let H be a free \mathbb{Z}-module of rank 9. There exist only finitely many classes of symmetric trilinear forms $F \in S^{3} H^{\vee}$ with a fixed discriminant $\Delta \neq 0$.

Proof: In terms of Arnhold's invariants S and T, Δ is given by $\Delta=S^{3}-T^{2}$. By a theorem of C . Siegel [Si], the diophantine equation $S^{3}-T^{2}=\Delta$ has only finitely many integral solution (S, T) for any integer $\Delta \neq 0$. For each of these solutions the corresponding point in $S^{3} H_{\mathbf{C}}^{\vee} / S L\left(H_{\mathbb{C}}\right)$ lies outside of the discriminant curve, so that the π-fiber over it is a closed $S L\left(H_{\mathbf{c}}\right)$-orbit. The finiteness of the class number then follows from the Borel/HarischChandra theorem.

A famous special case of Siegel's theorem is Bachet's equation $S^{3}-T^{2}=2$; it has only the two obvious solutions $(3, \pm 5)$.

Remark 10: To get. finiteness result.s for ternary cubic forms it is not sufficient to fix the J-invariant (instead of the discriminant): The forms $f_{m}=X^{3}+X Z^{2}+Z^{3}+m Y^{2} Z, m \in \mathbb{Z} \backslash\{0\}$, all have the same J-invariant, but they are not equivalent, even over \mathbb{Q}, since they have bad reduction at different primes $p \mid m$.

4. Invariants of complex 3-folds

In this section we begin to investigate the topology of 1 -connected, compact, complex 3 -folds. After a brief discussion of the possible systems of Chern numbers of almost complex 6 -manifolds, we study the behaviour of the topological invariants of complex 3 -folds under certain standard constructions, like e.g. branched coverings, or blow-ups of points and curves. Then we describe some interesting examples of 1-connected, non-Kählerian 3 -folds, including a new construction method which generalizes the CalabiEckmann manifolds. These examples will be needed in the next section in order to realizes complex types of cubic forms as cup-forms of complex 3 -folds.

4.1 Chern numbers of almost complex structures

Let X be a closed, oriented, 6 -dimensional differentiable manifold. The tangent bundle of X is induced by a classifying map $t_{X}: X \rightarrow B S O(6)$ which is unique up to homotopy. By an almost complex structure on X we mean the homotopy class $\left[\tilde{t}_{X}\right]$ of a lifting $\tilde{t}_{X}: X \rightarrow B U(3)$ of t_{X} to $B U(3)$.

Proposition 8: Every closed, oriented, 6-dimensional C^{∞}-manifold X without 2-torsion in $H^{3}(X, \mathbb{Z})$ admits an almost complex structure. There
is a 1-1 correspondence between almost complex structures on X and integral lifts $W \in H^{2}(X, \mathbb{Z})$ of $w_{2}(X)$. The Chern classes c_{i} of the almost complex manifold (X, W) are given by $c_{1}=W, c_{2}=\frac{1}{2}\left(W^{2}-p_{1}(X)\right)$.
Proof: (cf.[W]). The obstructions against lifting t_{X} to $B U(3)$ lie in the cohomology groups $H^{i+1}\left(X, \pi_{i}(S O(6) / U(3)), i=0,1, \ldots, 5\right.$. Since $S O(6) / U(3)=\mathbb{P}^{3}$ has only one nontrivial homotopy group $\pi_{2}(S O(6) / U(3))$ $\cong \mathbb{Z}$ in dimensions $i \leq 5$, there is in fact only one obstruction $o\left(t_{X}\right) \in$ $H^{3}(X, \mathbb{Z})$, and this obstruction can be identified with the image of $w_{2}(X)$ under the Bockstein homomorphism $3: H^{2}\left(X, \mathbb{Z}_{/ 2}\right) \rightarrow H^{3}(X, \mathbb{Z})$. Since $H^{3}(X, \mathbb{Z})$ has no 2 -torsion by assumption, $\beta w_{2}(X)$ must be equal to zero, so that X has at least one almost complex structure $\left[\hat{t}_{X}\right] \in[X, B U(3)]$. Standard homotopy arguments show now that the map, which asigns to an almost complex structure $\left[\hat{t}_{X}\right]$ its first Chern class $\tilde{i}_{X}^{*} c_{1}$, induces a 1-1 correspondence between integral lifts $W \in H^{2}(X, \mathbb{Z})$ of $w_{2}(X)$ and homotopy classes of liftings of $\left[t_{X}\right]$ to $B U(3)$.
The second Chern class c_{2} of the almost complex manifold (X, W) is determined by $W^{2}-2 c_{2}=p_{1}(X)$.

The Chern numbers $c_{1}^{3}, c_{1} c_{2}, c_{3}$ of an almost complex manifold X of real dimension 6 satisfy the following congruences: $c_{1}^{3} \equiv 0(\bmod 2), c_{1} c_{2} \equiv$ $0(\bmod 24), c_{3} \equiv 0(\bmod 2)$. Conversely, given a triple (a, b, c) of integers $a \equiv 0(\bmod 2), b \equiv 0(\bmod 24)$, and $c \equiv 0(\bmod 2)$, there always exist an almost complex manifold X of dimension 6 with Chern mumbers $c_{1}^{3}=$ $a, c_{1} c_{2}=b, c_{3}=c$.
It is not totally clear, however, that one can find a connected manifold X with prescribed Chern numbers [H1].

Proposition 9: Every tripel $(a, b, c) \in \mathbb{Z}^{\oplus 3}$ satisfying $a \equiv 0(\bmod 2), b \equiv$ $0(\bmod 24), c \equiv 0(\bmod 2)$ is realizable as the Chern numbers of an almost complex 6-manifold.
Proof: Consider the complete intersection $V(f, g) \subset \mathbb{P}^{5}$ defined by the polynomials $f(z)=z_{0}^{2}+z_{1}^{2}+2 z_{2}^{2}-z_{3}^{2}-z_{4}^{2}-2 z_{5}^{2}$, and $g(z)=z_{0}^{4}+z_{1}^{4}+$ $2 z_{2}^{4}-z_{3}^{4}-z_{4}^{4}-2 z_{5}^{4}$ [We]. $V(f, g)$ is a singular 3 -fold with 90 ordinary double points, and every small resolution V of these nodes is a (not neccessarily projective) Calabi-Yau 3 -fold with Euler number 4. Suppose now that a prescribed triple $(a, b, c) \in \mathbb{Z}^{\oplus 3}$ is realized by a possibly disconnected almost complex manifold $X=\coprod_{i \in I} X_{i}$. If we form the connected sum $X^{\prime}=\sharp_{i \in I} X_{i}$, we obtain a connected almost complex manifold X^{\prime} with Chern numbers $c_{1}^{3}=a, c_{1} c_{2}=b$, but with $c_{3}=c-2(|I|-1)$. If $|I|>1$ take the connected sum of X^{\prime} with $|I|-1$ copies of the complex
manifold V. Since V is Calabi-Yau, the Chern numbers c_{1}^{3} and $c_{1} c_{2}$ remain unchanged, whereas the Euler number of $X^{\prime}{ }_{||| |-1} V$ becomes $c_{3}=c$.

Remark 11: The above argument has been suggested by F. Hirzebruch after talk at the MPI, in which one of us had sketched a less geometric proof of the proposition.

There is another question which is related to the result above: Fix a closed, oriented, 6 -dimensional differentiable manifold X. Which pairs (a, b) of integers with $a \equiv 0(\bmod 2)$ and $b \equiv 0(\bmod 24)$ occur as Chern numbers c_{1}^{3} and $c_{1} c_{2}$ of almost complex structures on X. and in how many ways? For manifolds with $b_{2}(X)=1$ the Chern numbers determine the almost complex structure. For manifolds with $b_{2}>1$ this is no longer true. It is possible to construct infinitely many distinct almost complex structures with the same Chern numbers on a hypersurface of bidegree $(3,3)$ in $\mathbb{P}^{2} \times \mathbb{P}^{2}$.

An almost complex structure $\left[\bar{t}_{X}\right]$ on a differentiable 6 -manifold X is said to be integrable if \tilde{l}_{X} is homotopic to the classifying map of a complex 3 -fold. We are not aware of any example of an almost complex 6 -manifold which is known not be integrable. On the other hand, it is also unknown whether or not the Chern numbers $c_{1}^{3}, c_{1} c_{2}$ of integrable almost complex manifold are topological invariants. The following remark might therefore be of some interest:

Proposition 10: If the Chern numbers of complex 3 -folds are topological invariants, then there exist almost complex structures which are not integrable.
Proof: Consider a closed, oriented differentiable 6 -manifold X without $\ddot{2}$ torsion in $H^{3}(X, \mathbb{Z})$. Fix any almost complex structure on X with first Chern class $W \in H^{2}(X, \mathbb{Z})$.
Every element $x \in H^{2}(X, \mathbb{Z})$ defines a new almost complex structure on X with first Chern class $W+2 x$, and it is easy to see that these two almost complex structures have the same Chern numbers if and only if x satisfies the equations $p_{1}(X) \cdot x=0$, and $3 W^{2} \cdot x+6 W^{\prime} \cdot x^{2}+4 x^{3}=0$.
Suppose now (X, W) is integrable, $p_{1}(X) \neq 0$, and choose $x \in H^{2}(X, \mathbb{Z})$ such that $p_{1}(X) \cdot x \neq 0$. Then clearly, either none of the almost complex manifolds $(X, W+2 x)$ is integrable, or the Chern numbers of complex 3 -folds are not topologically invariant.

Remark 12: It is very likely that there exist non-integrable almost complex structures on manifolds X as above, but probably this is hard to
prove. It is also not unlikely that the Chern numbers of complex 3 -folds are not topological invariants. A possible way to check this would be, to rum a computer search for 3 -folds given by certain standard constructions.

4.2 Standard constructions

For later use we investigate the topological invariants of complex 3 -fold which cati be obtained by certain simple standard constructions like complete intersections, simple cyclic coverings, blow-ups of points and curves, and projective bundles.

Proposition 11: (Libgober/Wood): Let $X \subset \mathbb{P}^{3+r}$ be a smooth complete intersection of multidegree $\underline{d}=\left(d_{1}, \ldots, d_{r}\right)$. Choose a normalized basis $c \in H^{2}(X, \mathbb{Z})$, and let $\varepsilon \in H^{4}(X, \mathbb{Z})$ be defined by $\varepsilon(e)=1$. Then the invariants of X are:
$F_{X}(x e)=d x^{3}$ where $d=\prod_{i=1}^{r} d_{i}, w_{2}(X) \equiv\left(4+r-\sum_{i=1}^{r} d_{i}\right) e$,
$p_{1}(X)=d\left(4+r-\sum_{i=1}^{r} d_{i}^{2}\right) \varepsilon$, and
$b_{3}(X)=4-\frac{d}{6}\left[\left(4+r-\sum_{i=1}^{r} d_{i}\right)^{3}-3\left(4+r-\sum_{i=1}^{r} d_{i}\right)\left(4+r-\sum_{i=1}^{r} d_{i}^{2}\right)+\right.$ $\left.2\left(4+r-\sum_{i=1}^{r} d_{i}^{3}\right)\right]$.
Proof: [L/W].
Proposition 12: Let X be a smooth, 1 -connected, complex projective 3fold, and let $\pi: X^{\prime} \rightarrow X$ be a simple cyclic covering of degree d branched along a non-singular ample divisor $B \in\left|L^{\otimes d}\right| \cdot X^{\prime}$ is smooth, projective, 1 -connected, and $\pi^{*}: H^{2}(X, \mathbb{Z}) \rightarrow H^{2}\left(X^{\prime}, \mathbb{Z}\right)$ is an isomorphism. The invariants of X and X^{\prime} are related by the formulae:
$\left(\pi^{*}\right)^{*} F_{X^{\prime}}=d F_{X}, w_{2}\left(X^{\prime}\right)-\pi^{*} w_{2}(X) \equiv(d-1) \pi^{*} c_{1}(L)$,
$p_{1}\left(X^{\prime}\right)-\pi^{*} p_{1}(X)=(1-d)(1+d) \pi^{*} c_{1}(L)^{2}$, and $b_{3}\left(X^{\prime}\right)=d b_{3}(X)+(d-1)\left(b_{2}(B)-2 b_{2}(X)\right)$.
Proof: X^{\prime} is clearly smooth and projective. By a theorem of M. Cornalba $\pi: X^{\prime} \rightarrow X$ is a 3 -equivalence, i.e. $\pi_{*}: \pi_{i}\left(X^{\prime}\right) \rightarrow \pi_{i}(X)$ is bijective for $i \leq 2$, and surjective for $i=3[C o] . X^{\prime}$ is therefore 1-connected, and $\pi^{*}: H^{2}(X, \mathbb{Z}) \rightarrow H^{2}\left(X^{\prime}, \mathbb{Z}\right)$ is an isomorphism. The relation between $F_{X^{\prime}}$ and F_{X} is obvious, whereas the formula for $b_{3}\left(X^{\prime}\right)$ follows from $\pi_{1}(B)=\{1\}$ and standard properties of Euler numbers.
In order to calculate $w_{2}\left(X^{\prime}\right)$ and $p_{1}\left(X^{\prime}\right)$ we compute the Chern classes of $X^{\prime}: c_{1}\left(X^{\prime}\right)-\pi^{*} c_{1}(X)=(1-d) \pi^{*} c_{1}(L), c_{2}\left(X^{\prime}\right)-\pi^{*} c_{2}(X)=(1-$ d) $\pi^{*}\left[c_{1}(X) c_{1}(L)-d c_{1}(L)^{2}\right]$.

The latter formulae follow from the description of X^{\prime} as a divisor in the total space of the line bundle L.

Example 9: Let X be a d-fold, simple cyclic covering of \mathbb{P}^{3} branched along a smooth surface $B \subset \mathbb{P}^{3}$ of degree $d l, l \geq 1$. Let $e \in H^{2}(X, \mathbb{Z})$ correspond to the preimage of a plane in \mathbb{P}^{3}. The invariants of X are then given by: $F_{X}(x e)=d x^{3}, w_{2}(X) \equiv(4+(1-d) l) e, p_{1}(X)=d[4+(1-d)(1+$ d) $\left.l^{2}\right] \varepsilon(\varepsilon(e)=1), b_{3}(X)=(d-1)\left(d^{2} l^{2}-4 d l+6\right) d l$.

Proposition 13: Let $\sigma: \hat{X} \rightarrow X$ be the blow-up of a complcx 3-fold X in a point, and let $e \in H^{2}(\hat{X}, \mathbb{Z})$ be the class of the exceptional divisor. The invariants of \hat{X} and X are related by the following formulae:
$F_{\dot{X}}\left(\sigma^{*} h+x c\right)=F_{X}(h)+x^{3}$ for every $h \in H^{2}(X, \mathbb{Z}), x \in \mathbb{Z}, w_{2}(\hat{X})=$ $\sigma^{*} w_{2}(X), p_{1}(\hat{X})=\sigma^{*} p_{1}(X)+4\left(e^{2}-\sigma^{*} c_{1}(X) \cdot e\right), b_{3}(\hat{X})=b_{3}(X)$.
Proof: Standard arguments, see $[\mathrm{G} / \mathrm{H}]$. The Chern classes are related by $c_{1}(\hat{X})=\sigma^{*} c_{1}(X)-2 e, c_{2}(\hat{X})=\sigma^{*} c_{2}(X)$.

Proposition 14: Let $\sigma: \hat{X} \rightarrow X$ be the blow-up of a complex 3-fold X along a smooth curve C of genus g, and let $e \in H^{2}(\dot{X}, \mathbb{Z})$ be the class of the exceptional divisor. The invariants of \hat{X} and X are related by:
$F_{\dot{X}}\left(\sigma^{*} h+x e\right)=F_{X}(h)-3 h \cdot C x^{2}-\operatorname{deg} N_{C / X} x^{3}$ for every $h \in H^{2}(X, \mathbb{Z}), x \in$ $\mathbb{Z}, w_{2}(\hat{X}) \equiv \sigma^{*} w_{2}(X)+e, p_{1}(\hat{X})=\sigma^{*} p_{1}(X)+\left(e^{2}-2 \sigma^{*} C\right), b_{3}(\hat{X})=b_{3}(X)+$ $2 g$.
Proof: $[G / H]$. The Chern classes arc given by $c_{1}(\hat{X})=\sigma^{*} c_{1}(X)-c, c_{2}(\hat{X})=$ $\sigma^{*}\left(c_{2}(X)+C\right)-\sigma^{*} c_{1}(X) \cdot e$.

Proposition 15: Let E be a holomorphic vector bundle of rank 2 with Chern classes $c_{i}(E), i=1,2$ over a 1 -connected, compact complex surface Y, and let $\pi: \mathbb{P}(E) \rightarrow Y$ be the projective bundle of lines in the fibers of E. The cup-form of $\mathbb{P}(E)$ is given by $F_{\mathbf{P}(E)}(h+x \xi)=x\left[\left(3 h^{2}\right)-\left(3 c_{1}(E) \cdot h\right) x+\right.$ $\left.\left(c_{1}(E)^{2}-c_{2}(E)\right) x^{2}\right]$, where $\xi=c_{1}\left(\mathcal{O}_{\mathbf{P}(E)}(1)\right), h \in H^{2}(Y, \mathbb{Z})$, and $x \in \mathbb{Z}$. The other topological invariants of $\mathbb{P}(E)$ are: $w_{2}(\mathbb{P}(E)) \equiv \pi^{*}\left(w_{2}(Y)+\right.$ $\left.c_{1}(E)\right), p_{1}(\mathbb{P}(E))=\pi^{*}\left[c_{1}(Y)^{2}-2 c_{2}(Y)+c_{1}(E)^{2}-4 c_{2}(E)\right], b_{3}(\mathbb{P}(E))=0$.
Proof: The Leray-Hirsch theorem identifies the cohomology ring $H^{*}(\mathbb{P}(E), \mathbb{Z})$ with the ring $H^{*}(Y, \mathbb{Z})[\xi] /<\xi^{2}+c_{1}(E) \xi+c_{2}(E)>$; this determines the cup-form. In order to calculate the characteristic classes one uses the exact sequence $0 \rightarrow \mathcal{O}_{\mathbf{P}(E)} \rightarrow \pi^{*} E \otimes \mathcal{O}_{\mathbf{P}(E)}(1) \rightarrow T_{\mathbf{P}(E)} \rightarrow \pi^{*} T_{Y} \rightarrow$ $0 . b_{3}(\mathbb{P}(E))=0$ follows from $b_{1}(Y)=0$ and the Leray-Hirsch theorem.

4.3 Examples of 1 -connected non-Kählerian 3 -folds

Recall that the Hessian of a symmetric trilinear form $F \in S^{3} H^{\vee}$ on a free \mathbb{Z}-module H of finite rank was defined as the composition
$H_{F}: H \xrightarrow{F^{t}} S^{2} H^{\vee} \xrightarrow{\text { disc }} \mathbb{Z}$. In terms of coordinates ξ_{1}, \ldots, ξ_{b} on H it is given by the determinant $\operatorname{det}\left(\frac{\partial^{2} f}{\partial \xi_{i} \partial \xi_{j}}\right)$, where $f \in \mathbb{C}\left[H_{=}\right]_{3}$ is the homogeneous cubic polynomial associated with F.

Proposition 16: Let F be a symmetric trilinear form whose Hessian vanishes identically. Then F is not realizable as cup-form of Kählerian 3-fold.
Proof: Let X be a complex 3 -fold with a Kähler metric g. The Kähler class $\left[\omega_{g}\right] \in H^{2}(X, \mathbb{R})$ defines a multiplication map $\cdot\left[\omega_{g}\right]: H^{2}(X, \mathbb{R}) \rightarrow$ $H^{4}(X, \mathbb{R})$, which is an isomorphism by the Hard Lefschetz Theorem $[\mathrm{G} / \mathrm{H}]$. In section 3.1 we have seen that this is not possible if the Hessian of the cup-form vanishes.

Corollary 6: Cubic forms $f \in \mathbb{C}\left[H_{\mathbf{C}}\right]_{3}$ which depend on strictly less than $b=r k_{\mathbf{z}} H$ variables are not realizable as cup-forms of Kählerian 3-folds with $b_{2}=b$.

By considering the Hessian of a cup-form over the reals one obtains further conditions.

Definition 4: Let $F \in S^{3} H^{\vee}$ be a symmetric trilinear form on a free \mathbb{Z}-module of rank b.
The Hesse cone of F is the subset $\mathcal{H}_{F} \subset H_{\mathbf{\Xi}}$ defined by $\mathcal{H}_{F}:=\{h \in$ $\left.H_{\mathbf{R}} \mid(-1)^{b} \operatorname{det}\left(F^{t}(h)\right)<0\right\}$.
The index cone I_{F} of F is the subset $I_{F}:=\left\{h \in H_{\mathbf{B}} \mid F^{t}(h) \in S^{2} H_{\mathbf{Z}}^{\vee}\right.$ has signature $(1,-1, \ldots,-1)\}$.

Clearly I_{F} is an open subcone of \mathcal{H}_{F} which coincides with \mathcal{H}_{F} iff $b \leq 2$.
Theorem 5: Let $F_{X} \in S^{3} H^{2}(X, \mathbb{Z})^{\vee}$ be the cup-form of a smooth projective 3-fold with $h^{0,2}(X)=0$. Then F_{X} has a non-empty index cone.
Proof: Let $h \in H^{2}(X, \mathbb{Z})$ be the dual class of a hyperplane section Y in some projective embedding. The inclusion $i: Y \hookrightarrow X$ induces a monomorphism $i^{*}: H^{2}(X, \mathbb{Z}) \rightarrow H^{2}(Y, \mathbb{Z})$ by the weak Lefschetz theorem. The symmetric bilinear form $F_{X}^{t}(h) \in S^{2} H^{2}(X, \mathbb{Z})^{\vee}$ is simply the pull-back of the cupform of Y under the inclusion i^{*}; it is therefore non-degenerate by the Hard Lefschetz theorem [L]. Applying the Hodge index theorem to Y we see that the real bilinear form $F_{X}^{t}(h) \in S^{2} H^{2}(X, \mathbb{R})^{\vee}$ must have one positive and $b-1$ negative eigenvalues. In other words: $h \in I_{F_{X}}$.

Remark 13: This result has two applications: if provides topological
'upper bounds' for the ample cone of a projective 3 -fold with $h^{0,2}=0$, and if gives further restrictions on symmetric trilinear forms to be realizable as cup-forms of projective 3 -folds with $h^{0.2}=0$ if $b \geq 4$.
These applications will be discussed in section 5 .
We will now describe examples of 1-connected, non-Kählerian, complex 3 -folds and fit them into the topological classification.

Example 10 (Calabi-Eckmann):

E. Calabi and B. Eckmann have defined complex structures X_{τ}, depending on a parameter τ, on the product $S^{3} \times S^{3}[C / E]$. Their manifolds are principal fiber bundles over $\mathbb{P}^{1} \times \mathbb{P}^{1}$ whose fiber and structure group is the elliptic curve $E_{\tau}=\mathbb{C} / \mathbb{Z} \oplus \mathbb{Z} \tau, \operatorname{lm}(\tau)>0$.
The Calabi-Eckmann manifolds are homogeneous non-Kählerian 3-folds of algebraic dimension 2.

Example 11 (Maeda):

H. Maeda has generalized the Calabi-Eckmann construction. He constructed fiber bundles X_{τ}^{\prime} over Hirzebruch surfaces $\mathbb{F}_{n}, n \geq 0$, whose fibers and structure groups are an elliptic curve E_{τ} and $\operatorname{Aut}\left(E_{\tau}\right)$, respectively [M]. X_{τ}^{\prime} is again diffeomorphic to $S^{3} \times S^{3}$, and therefore non-Kählerian. Maeda's manifolds X_{τ}^{\prime} are homogeneous if and only if $n=0$ in which case they are Calabi-Eckmann 3-folds.

The Calabi-Eckmann construction can also be generalized in the following way:
Let $S^{2} \tilde{\times} S^{4}$ be the non-trivial S^{4}-bundle over S^{2}, i.e. $S^{2} \tilde{\times} S^{4}$ is the unique 1-connected, closed, oriented, differentiable 6 -manifold with $H_{2}\left(S^{2} \dot{\times} S^{4}, \mathbb{Z}\right)$ $\tilde{=} \mathbb{Z}$ and $b_{3}=0$, whose cup-form and Pontrjagin class vanish, but whose Stiefel-Whitney class w_{2} is non-zero.

Theorem 6: For any integer $b \geq 0$ there exist compact complex 3-folds X_{b}, and X_{b}^{\sim} if $b \geq 1$, which are homeomorphic to $\sharp_{b} S^{2} \times S^{4} \sharp_{b+1} S^{3} \times S^{3}$, and $S^{2} \tilde{\times} S^{4} \sharp_{b-1} S^{2} \times S^{4} \sharp_{b+1} S^{3} \times S^{3}$.
Proof: Let Y be a 1-connected, compact complex surface with $p_{g}(Y)=0$ and $b_{2}(Y) \geq 2$, and let $E=\mathbb{C} / \Gamma$ be the elliptic curve associated to the lattice $\Gamma \subset \mathbb{C}$. We want to construct the required 3 -folds as total spaces of principal E-bundles over $Y:$ Let $\underline{c}: H_{2}(Y, \mathbb{Z}) \rightarrow \Gamma$ be an arbitrary epimorphism. The corresponding cohomology class $c \in H^{2}(Y, \Gamma)$ defines a topological principal bundle over Y with fiber and structure group $E=$ \mathbb{C} / Γ as follows immediately from the identification of the classifying space $B E \simeq K^{\prime}(\Gamma, 2)$.

Let $\mathcal{O}_{Y}(E)$ be the sheaf of germs of holomorphic maps from Y to E. We have a short exact sequence $0 \rightarrow \underline{\Gamma} \rightarrow \mathcal{O}_{Y} \rightarrow \mathcal{O}_{Y}(E) \rightarrow 0$ and a corresponding exact cohomology sequence
$\rightarrow H^{1}\left(Y, \mathcal{O}_{Y}\right) \rightarrow H^{1}\left(Y, \mathcal{O}_{Y}(E)\right) \xrightarrow{\delta} H^{2}(Y, \Gamma) \rightarrow H^{2}\left(Y, \mathcal{O}_{Y}\right) \rightarrow$
By our assumptions δ is an isomorphism, so that every topological principal E-bundle admits a holomorphic structure. Let X be the total space of such a bundle corresponding to a surjective map $\underline{\text { a }}: H_{2}(Y: \mathbb{Z}) \rightarrow \Gamma$. The homotopy sequence of the fibration $p: X \rightarrow Y$ yields the sequence
$0 \rightarrow \pi_{2}(X) \xrightarrow{p_{0}} \pi_{2}\left(Y^{*}\right) \rightarrow \pi_{1}\left(E^{\prime}\right) \rightarrow \pi_{1}(X) \xrightarrow{p_{0}} \pi_{1}\left(Y^{\prime}\right) \rightarrow 0$.
Since Y is 1 -connected. $\pi_{2}(Y)$ can be identified with $H_{2}(Y, \mathbb{Z})$, and then the boundary map $\pi_{2}\left(Y^{\prime}\right) \rightarrow \pi_{1}(E)$ becomes the characteristic map \underline{c} : $H_{2}(Y, \mathbb{Z}) \rightarrow \Gamma$ of the bundle. This implies $\pi_{1}(X)=\{1\}$, whereas $H_{2}(X, \mathbb{Z})$ is given by: $0 \rightarrow H_{2}(X, \mathbb{Z}) \xrightarrow{p \cdot} H_{2}(Y, \mathbb{Z}) \xrightarrow{\stackrel{a}{\rightarrow}} \Gamma \rightarrow 0$.
In particular, $H_{2}(X, \mathbb{Z})$ is free as a submodule of $H_{2}(Y, \mathbb{Z})$, and by dualizing the last sequence we obtain an identification
$H^{2}(X, \mathbb{Z})=H^{2}(Y, \mathbb{Z}) / \Gamma^{\vee v i a p}$.
The cup-form F_{X} of X is therefore trivial. In order to calculate $p_{1}(X)$ and $w_{2}(X)$, we use the exact sequence of tangent sheaves: $0 \rightarrow T_{X / Y} \rightarrow$ $T_{X} \rightarrow p^{*} T_{Y} \rightarrow 0$. Since $T_{X / Y}$ is a trivial bundle, the characteristic classes of X are simply the pullbacks of the corresponding classes of Y. But the map $p^{*}: H^{4}(Y, \mathbb{Z}) \rightarrow H^{4}(X, \mathbb{Z})$ is zero, since $\left\langle p^{*}(\varepsilon) \cup p^{*}(\alpha),[X]>=\right.$ $<\varepsilon \cup \alpha, p_{*}[X]>=0$ for all classes $\varepsilon \in H^{4}(Y, \mathbb{Z})$, and $\alpha \in H^{2}(Y, \mathbb{Z})$.
Thus $p_{1}(X)=0$, and $w_{2}(X)$ is the residue of $w_{2}(Y) \in H^{2}\left(Y, \mathbb{Z}_{/ 2}\right)$ modulo $\Gamma^{v} / 2 \Gamma^{v}$.
The Euler characteristic of X is zero, so that from $b_{2}(X)=b_{2}(Y)-2$ we find $b_{3}(X)=2\left(b_{2}(Y)-1\right)$. The system of invariants associated to the manifold X is therefore given by $\left(b_{2}(Y)-1, H^{2}(Y, \mathbb{Z}) / \Gamma^{v}, w_{2}(Y)\left(\bmod \Gamma^{\vee} / 2 \Gamma^{v}\right), 0,0,0\right)$, i.e. X is diffeomorphic to $\sharp_{b_{2}(Y)-2} S^{2} \times S^{4} \sharp_{b_{2}(Y)-1} S^{3} \times S^{3}$ if $w_{2}(Y) \in \Gamma^{\vee} / 21^{\vee}$, and to $S^{2} \tilde{\times} S^{4} \sharp_{b_{2}(Y)-3} S^{2} \times S^{4} H_{b_{2}(Y)-1} S^{3} \times S^{3}$ if $b_{2}(Y) \geq 3$, and $w_{2}(Y) \notin$ $\Gamma^{v} / 2 \Gamma^{v}$.

Example 12 (Kato):

In the two papers [K1], [K2] M. Kato studies the class of compact, complex 3 -folds X containing smooth rational curves with neighborhoods biholomorphic to those of projective lines in \mathbb{P}^{3}. On this class of 3 -folds, called class L, he defines a semi-group structure + with neutral element \mathbb{P}^{3}.
Kato's connecting operation + is defined by removing 'lines' $L_{i} \subset X_{i}$ from 3 -folds $X_{i}, i=1,2$, and by identifying the complements $X_{i} \backslash L_{i}$ along open sets $U_{i} \backslash L_{i}$ obtained from suitable neighborhoods $U_{i} \subset X_{i}$.
Starting with a certain elliptic fiber space X_{1} over the blow-up of $\mathbb{P}^{1} \times \mathbb{P}^{1}$
in a point, he constructs a sequence of 3 -folds $X_{n}:=X_{1}+X_{n-1}, n \geq 2$.
The 3 -folds X_{n} are 1-connected spin-manifolds with $H_{2}\left(X_{n}, \mathbb{Z}\right)=\mathbb{Z}$.
Their cup-forms $F_{X_{n}}$, and their Pontrjagin classes $p_{1}\left(X_{n}\right)$ are in terms of a (normalized) generator $e_{n} \in H^{2}\left(X_{n}^{\prime}, \mathbb{Z}\right)$ and its dual class $\varepsilon_{n} \in H^{4}\left(X_{n}, \mathbb{Z}\right)$ given by $F_{X_{n}}\left(x e_{n}\right)=(n-1) x^{3}$, and $p_{1}\left(X_{n}\right)=4(n-1) \varepsilon_{n}\left(\epsilon_{n}\left(e_{n}\right)=1\right)$. The third Betti-number of X_{n} is $4 n$.
In particular, X_{1} is diffeomorphic to $S^{2} \times S^{4} \dot{H}_{2} S^{3} \times S^{3}$, and X_{2} is diffeomorphic to $\mathbb{P}^{3} \psi_{4} S^{3} \times S^{3}$. It is interesting to note that the Chern-numbers $c_{1}^{3}, c_{1} c_{2}$ of the $X_{n s}^{\prime}$ are $c_{1}^{3}=64(1-n), c_{1} c_{2}=24(1-n)$, i.e. they satisfy $8 c_{1} c_{2}=3 c_{1}^{3}$. For projective manifolds of general type this equality is characteristic for ball quotients [Y].

Example 13 (Twistor spaces):

Let $p: Z \rightarrow M$ be the twistor fibration of a closed, oriented Riemannian 4 -manifold (M, g). Z carries a natural almost complex structure which is integrable if and only if g is self-dual [A/H/S].
Examples of 1 -connected 4 -manifolds which admit self-dual structures are $S^{4}, \sharp_{n} \mathbb{P}^{2}$, and $K 3$-surfaces.
The total spaces of their twistor fibrations are 1-connected complex 3 -folds which may be Moishezon for S^{4} and $\sharp_{n} \mathbb{P}^{2}[C]$, but which are usually nonKähler [Hi$]$. We leave it to the reader to calculate the topological invariants of these 3 -folds. There is an interesting relation between Twistor spaces of connected sums and Kato's connection operation + for class L manifolds [K2], [D/F].

Example 14 (Oguiso):

In a recent preprint [O1] K. Oguiso constructs examples of 1-connected, Moishezon Calabi-Yau 3 -folds with very interesting cup-forms. He proves that for every integer $d \geq 1$ there exists a smooth complete intersection X_{d}^{\prime} of type $(2,4)$ in \mathbb{P}^{5} which contains a non-singular rational curve C_{d} of degree d with normal bundle $N_{C_{d} / X_{d}}=\mathcal{O}_{\mathbf{C}_{d}}(-1)^{\oplus 2}$.
The 3 -fold X_{d}^{\prime} can now be flopped along C_{d}, i.e. C_{d} can be blown up to $\mathbb{P}\left(N_{C_{d} / X_{d}}\right) \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$, and then 'blown down in the other direction'. The resulting 3 -fold X_{d} is a 1-connected Moishezon manifold with trivial canonical bundle and cup-form $F_{X_{d}}$ given by $F_{X_{d}}\left(x e_{d}\right)=\left(d^{3}-8\right) x^{3}$. Here $e_{d} \in H^{2}\left(X_{d}, \mathbb{Z}\right)$ is the normalized generator corresponding to the strict transform of the negative of a hyperplane section of X_{d}^{\prime}. The Pontrjagin class of X_{d} is $p_{1}\left(X_{d}\right)=(112+4 d) \varepsilon_{d}$ where $\varepsilon_{d} \in H^{4}\left(X_{d}, \mathbb{Z}\right)$ denotes the generator with $\varepsilon_{d}\left(e_{d}\right)=1$. Since the Euler-number does not change under a flop we have $b_{3}\left(X_{d}\right)=180$ for every d.

5. Complex 3-folds with small b_{2}

In this section we investigate the following natural problem: Which cubic forms can be realized as cup-forms of compact complex 3 -folds? For small b_{2} something can be said: Any core of a 1 -connected, closed, oriented differentiable 6-manifold with $H_{2}(X, \mathbb{Z}) \cong \mathbb{Z}$ is homotopy equivalent to the core of a 1 -connected complex 3 -fold. In the case $b_{2}=2$, at least every discriminant. Δ is realizable by a complex manifold. If $b_{2}=3$ we can realize all types of complex cubics with one exception, the union of a smooth conic and a tangent line. In addition to these realization results we prove a finiteness theorem for 3 -folds with $b_{2}=1, w_{2} \neq 0$, and we give examples which show that the condition $I_{F_{X}} \neq \emptyset$ for the index cone of a projective 3 -fold with $h^{0,2}=0$ is non-trivial in general.

5.1 3-folds with $b_{2}=1$

Recall from section 1.1 that every closed, oriented, 1 -connected differentiable 6 -manifold X with torsion-free homology has a connected sum decomposition $X \cong X_{0} 甘_{r} S^{3} \times S^{3}$ where $r=\frac{b_{3}(X)}{2}$, which is unique up to orientation preserving diffeomorphisms; the manifold X_{0} with $b_{3}\left(X_{0}\right)=0$ is the core of X.

Theorem 6: Let X_{0} be a 1-connected, closed, oriented differentiable 6manifold with $H_{2}\left(X_{0}, \mathbb{Z}\right) \cong \mathbb{Z}$ and $b_{3}\left(X_{0}\right)=0$. There exists a compact complex 3-fold X whose core is orientation preserving homotopy equivalent to X_{0}.
Proof: The oriented homotopy type of X_{0} is determined by the invariants d, w_{2}, and $p_{1}(\bmod 48)$; more precisely: for $d \equiv 1(\bmod 2)$ there is a single homotopy type whereas for $d \equiv 0(\bmod 2)$ there are three; one of these 3 types has $w_{2} \neq 0$, the other two are spin, they are distinguished by $p_{1} \equiv$ $4 d(\bmod 48), p_{1} \equiv 4 d+24(\bmod 48)$ respectively. In order to realize these homotopy types as cores of complex 3 -folds we first look at simple cyclic coverings of \mathbb{P}^{3}. Given a positive integer d, let $\pi: X \rightarrow \mathbb{P}^{3}$ be a simple cyclic covering of \mathbb{P}^{3} branched along a smooth surface B of degree $d l$. Then X has the correct 'degree' d and the characteristic classes $w_{2} \equiv(d-1) l(\bmod 2)$, and $p_{1}=4 d+(1-d)(1+d) d l^{2}$, see 4.2. For odd d there is nothing to prove. For even d we can realize $w_{2}=0$ or $w_{2} \neq 0$ by choosing $l \equiv 0(\bmod 2)$ or $l \equiv l(\bmod 2)$. Taking $l \equiv 0(\bmod 4)$ gives $w_{2}=0, p_{1} \equiv 4 d(\bmod 48)$, taking $l \equiv 2(\bmod 4)$ yields $w_{2}=0$, and $p_{1} \equiv 4 d+24(\bmod 48)$. It remains to treat the special case $d=0$, where the 3 homotopy types are given by $w_{2} \neq 0$, by $w_{2}=0, p_{1} \equiv 0(\bmod 16)$, and by $w_{2}=0, p_{1} \equiv 8(\bmod 16)$. The first two
homotopy types are realizable as cores of elliptic fiber bundles over the projective plane blown up in two points.
The third homotopy type is realized by the core of Oguiso's Calabi-Yau 3 -fold X_{2} with vanishing cup-form and $p_{1}\left(X_{2}\right)=120 \varepsilon_{2}$.

The result just proven suggests a natural question: given a manifold X_{0} as above, which (even) integers $b_{3} \geq 0$ occur as the third Betti numbers of complex 3 -folds X whose core is homotopy equivalent to X_{0} ?
There will certainly be some gaps for algebraic 3 -folds. In order to show this, we prove the following finiteness theorem for families of Kähler structures:

Theorem 7: Fix a positive constant c. There txist only finitely many families of 1 -connected, smooth projective 3-folds X with $H_{2}(X, \mathbb{Z}) \cong \mathbb{Z}, w_{2}(X)$ $\neq 0$, and with $b_{3}(X) \leq c$.
Proof: Let X be a smooth projective 3 -fold with $H_{1}(X, \mathbb{Z})=\{0\}$, $H_{2}(X, \mathbb{Z}) \cong \mathbb{Z}$, and with $w_{2}(X) \neq 0$. Clearly $\operatorname{Pic}(X) \cong H^{2}(X, \mathbb{Z})$, and we can choose a basis $e \in H^{2}(X, \mathbb{Z})$ corresponding to the ample generator of $\operatorname{Pic}(X)$.
Let $c_{1}(X)=c_{1} e, c_{2}(X)=c_{2} \varepsilon$ where $e^{2}=d \xi, \varepsilon(e) \doteq 1$. If c_{1} is positive, then X is Fano, and there are only finitely many possibilities [Mu]. The case $c_{1}=0$ is excluded, so that we are left with $c_{1}<0$, i.e. the canonical bundle of X is ample.
The Riemann-Roch formula $\chi\left(X, \mathcal{O}_{X}\right)=1-h^{3}\left(X, \mathcal{O}_{X}\right)=\frac{1}{24} c_{1} c_{2}$ shows that the set of possible Chern numbers $c_{1} c_{2}$ is bounded from below: 24(1$c) \leq c_{1} c_{2}$. Using Yau's inequality $8 c_{1}(X) c_{2}(X) \leq 3 c_{1}\left(X^{\prime}\right)^{3}$ we find that $d\left|c_{1}\right|^{3} \leq 64(c-1)$, i.e. the degree d and the order of divisibility $\left|c_{1}\right|$ of $c_{1}(X)$ is bounded. Now Kollar's finiteness theorem [Ko2] yields the assertion.

Example 15: Let X be a 1 -connected, smooth projective 3 -fold with $H_{2}(X, \mathbb{Z}) \cong \mathbb{Z}$ and $w_{2}(X) \neq 0$. If $b_{3}(X) \leq 2$, then $h^{3}\left(X, \mathcal{O}_{X}\right) \leq 1$ and X must be Fano of index 1 or 3 . For $b_{3}(X)=4$ we have that X is either Fano, or $h^{3}\left(X, \mathcal{O}_{X}\right)=2$ and X is of general type with $d\left|c_{1}\right|^{3} \leq 64$.

Note that the assumption $w_{2} \neq 0$ was only used to exclude Calabi-Yau 3 -folds.

5.2 3-folds with $b_{2}=2$

let X be a 1-connected, closed, oriented, 6 -dimensional differentiable manifold with $H_{2}(X, \mathbb{Z}) \cong \mathbb{Z}^{2}$.

We choose a basis e_{1}, e_{2} for $H^{2}(X, \mathbb{Z})$ and set $a_{0}=e_{1}^{3}, a_{1}=e_{1}^{2} e_{2}, a_{2}=$ $e_{1} e_{2}^{2}, a_{3}=e_{2}^{3}$; the cubic polynomial f associated to the cup-form of X is then given by $f=a_{0} X^{3}+3 a_{1} X^{2} Y+3 a_{2} X Y^{2}+a_{3} Y^{\prime 3}$. The discriminant of f is by definition $\Delta(f)=a_{0}^{2} a_{3}^{2}-3 a_{1}^{2} a_{2}^{2}-6 a_{0} a_{1} a_{2} a_{3}+4 a_{0} a_{2}^{3}+4 a_{1}^{3} a_{3}$; up to a factor it is simply the discriminant of the Hessian $H_{f}=6^{2}\left[\left(a_{0} a_{2}-\right.\right.$ $\left.\left.a_{1}^{2}\right) X^{2}+\left(a_{0} a_{3}-a_{1} a_{2}\right) X Y+\left(a_{1} a_{3}-a_{2}^{2}\right) Y^{2}\right]$ of $f: \Delta(f)=\left(a_{0} a_{3}-a_{1} a_{2}\right)^{2}-$ $4\left(a_{0} a_{2}-a_{1}^{2}\right)\left(a_{1} a_{3}-a_{2}^{2}\right)$.
The last identity shows that $\Delta(f)$ is always a square modulo 4 , i.e. $\Delta(f) \equiv$ $0,1(\bmod 4)$.

Proposition 17: Every integer $\Delta \equiv 0,1(\bmod 4)$ is realizable as discriminant of a compact complex 3-fold.
Proof: Consider the projectivization $X=\mathbb{P}_{\mathbf{r}^{2}}(E)$ of a holomorphic rank-2 vector bundle E over the plane. In terms of the standard basis of $H^{2}(X, \mathbb{Z})$ ($\left.e_{1}=\pi^{*} h, e_{2}=c_{1}\left(\mathcal{O}_{\mathbf{P}(E)}(1)\right)\right)$ the cubic polynomial associated to X is given by $f=\left(c_{1}^{2}-c_{2}\right) X^{3}+3\left(-c_{1}\right) X^{2} Y+3 X Y^{2}$, where $c_{i}=c_{i}(E)$ are the Chern classes of E considered as integers. Inserting this into the discriminant, formula yields $\Delta(f)=c_{1}^{2}-4 c_{2}$. Since every pair c_{1}, c_{2} occurs as pair of Chern classes of a holomorphic rank-2 bundle on \mathbb{P}^{2}, every integer $\Delta \equiv$ $0,1(\bmod 4)$ can be realized as discriminant of a holomorphic projective bundle $\mathbb{P}_{\mathbf{P}^{2}}(E)$.

Recall from section 3.2 that there are 4 different types of $S L(2)$-orbits of complex binary cubics: non-singular forms f (with $\Delta(f) \neq 0$), and three orbits of singular cubics, represented by the normal forms $X^{2} Y, X^{3}$, and 0 .

Proposition 18: All four types of complex binary cubics are realizable by complex 3-folds.
Proof: We have seen this already for non-singular cubics. Clearly the product $\mathbb{P}^{1} \times \mathbb{P}^{2}$ realizes the normal form $X^{2} Y$. The cubics of normal forms X^{3} or 0 are degenerate, i.e. their Hessians vanish identically. Therefore they can only be realized by non-Kählerian 3 -folds. To realize X^{3} one can blow up a point in an elliptic fiber bundle over a surface Y with $b_{2}(Y)=3$; the trivial form occurs for elliptic fiber bundles over a surface with $b_{2}=4$.

More detailed investigations of the possible homotopy types of real or complex manifolds with $h_{2}=2$ will appear elsewhere.
Here we only want to illustrate an interesting phenomenon which relates the ample cone of a projective 3 -fold with $b_{2}=2$ to the Hessian of its cup-form.

Proposition 19: Let X be a smooth projective 3-fold with $b_{2}(X)=2$.

The ample cone \mathcal{C}_{X} is contained in the Hesse cone $\mathcal{H}_{F}:=\left\{h \in H^{2}(X, \mathbb{R}) \mid\right.$ $\left.\operatorname{det}\left(F^{t}(h)\right)<0\right\}$.
Proof: This is only a special case of our general result in section 4.3.
Remark 14: The Hessian of a binary form $F \in S^{3} H^{\vee}$ is identically zero iff F is degenerate; it is negative semi-definite if F is non-degenerate and $\Delta(F) \leq 0$; it is indefinite iff $\Delta(F)>0[C a]$. Only in the indefinite case $\Delta(F)>0$ can the closure $\overline{\mathcal{H}}_{F}:=\left\{h \in H_{\mathbf{B}} \mid \operatorname{det} F^{t}(h) \leq 0\right\}$ of the Hesse cone be a proper subset of H_{R}.

Example 16: Let $P=\mathbb{P}_{\mathbf{F}^{2}}(E)$ be the projectivization of a rank-2 vector bundle E with Chern classes $c_{i}=c_{i}(E)$. The cup-form of P yields the cubic polynomial $f=\left(c_{1}^{2}-c_{2}\right) X^{2}+3\left(-c_{1}\right) X^{2} Y^{\prime}+3 X Y^{2}$ whose Hessian is $H_{f}=\left(-c_{2}\right) X^{2}+c_{1} X Y-Y^{2}$. Rewriting H_{f} as $H_{f}=-\frac{1}{4}\left[\left(2 Y-c_{1} X\right)^{2}+\right.$ $\left.X^{2}\left(4 c_{2}-c_{1}^{2}\right)\right]=\frac{-1}{4}\left[\left(2 Y-c_{1} X\right)^{2}-\Delta(f) X^{2}\right]$ we find 3 possibilities for the Hesse cone:
i) $\Delta(f)<0: \mathcal{H}_{f}=H^{2}(P, \mathbb{R}) \backslash\{0\}$
ii) $\Delta(f)=0: \mathcal{H}_{f}=H^{2}(P, \mathbb{R}) \backslash L_{c_{1}}$ for a real line $L_{c_{1}}$ depending on $c_{1}\left(L_{c_{1}}=\mathbb{R}\left(2, c_{1}\right)\right.$ in the coordinates $\left.X, Y\right)$
iii) $\Delta(f)>0: \mathcal{H}_{f}$ is an open cone whose angle is determined by $\Delta(f)((Z+\sqrt{\Delta(f)} X)(Z-\sqrt{\Delta(f)} X)>0$ in coordinates $X, Z:=$ $\left.2 Y-c_{1} X\right)$.

5.3 3-folds with $b_{2} \geq 3$

Let X be a 1 -connected, compact complex 3 -fold with $H_{2}(X, \mathbb{Z}) \cong \mathbb{Z}^{\oplus 3}$. The cup-form of X gives rise to a curve C_{X} of degree 3 in the projective plane $\mathbb{P}\left(H^{2}(X, \mathbb{C})\right)$:
$C_{X}:=\left\{<h>\in \mathbb{P}\left(H^{2}(X, \mathbb{C})\right) \mid h^{3}=0\right\}$.
A first natural question is which types of plane cubic curves occur in this way?
Recall that there are 10 types of plane cubics, namely: 1) non-singular cubics, 2) irreducible cubics with a node, 3) irreducible cubics with a cusp, 4) reducible cubics consisting a smooth conic and a transversal line, 5) smooth conics with a tangent line, 6) three lines forming a triangle, 7) three distinct lines through a common point, 8) a double line with a third skew line, 9) a triple line, 10) the trivial 'cubic' with equation 0.

Lemma 4: If the 3-fold X has a non-trivial Hodge number $h^{2,0}(X) \neq 0$, then C_{X} is of type 4), 6) 9) or 10).
Proof: Choose basis vectors $e^{k, l} \in H^{k, l}(X)$, so that every $h \in H^{2}(X, \mathbb{C})$ can be uniquely written as $h=x e^{2,0}+y e^{1 ; 1}+z e^{0,2}$.
Then clearly $h^{3}=y\left[y^{2}\left(e^{1,1}\right)^{3}+6 x z\left(e^{2.0} \cdot e^{1.1} \cdot \epsilon^{0,2}\right)\right]$.
We now realize the cubics of types 7) - 10). These cubics are degenerate, i.e. they are cones, and therefore their Hessians vanish identically. From section 4.3 we know that they can not be realized by Kählerian 3 -folds.

Proposition 20: The plane cubics of types 7) - 10) can all be realized by 1-connected, non-Kählerian 3-folds.
Proof: 'Cubics' of type 10) can be realized by elliptic fibre bundles over surfaces Y with $b_{2}(Y)=5$. In order to realize cubics of type 9) or 7) one blows up one or two points in an elliptic fibre bundle over a surface with $b_{2}=4$ or 3 respectively. The realization of a type 8) cubic is a little trickier: One starts with an elliptic fibre bundle over a surface Y with $b_{2}(Y)=3$, and blows up one of its fibers. The resulting 3 -fold X^{\prime} has $b_{2}\left(X^{\prime}\right)=2$ and $F_{X^{\prime}} \equiv 0$. Now choose a line l in the exceptional divisor E of X^{\prime}, and let X be the blow-up of X^{\prime} along l. The cup-form of X yields the cubic polynomial $x^{2}\left[y(-3 l-E)-x\left(\operatorname{deg} N_{C / X^{\prime}}\right)\right]$ with a non-zero coefficient $-3 l \cdot E=3$.

There are four types of complex cubics which we have been able to realize by projective 3 -folds.

Proposition 21: Cubics of type 1), 3), 4) and 6) are realizable by 1 connected projective 3 -folds.
Proof: Type 1) occurs for blow-ups of complete intersections in two distinct points. The product $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ realizes a triangle, whereas most projective bundles over a surface with $b_{2}=2$ lead to a smooth conic union a transversal line.
Irreducible cubics with a cusp can be obtained by blowing-up a line and a point in \mathbb{P}^{3}. The resulting 3 -fold yields the cubic polynomial $X^{3}-3 X Y^{2}-$ $2 Y^{3}+Z^{3}=(X+Y)^{2}(X-2 Y)+Z^{3}$.

The remaining two types of cubics are cubics with a node (type 2)), and smooth conics with tangent a line (type 5)). We do not know if these types are realizable by projective 3 -folds. A non-Kāhlerian 3 -fold whose cup-form yields a nodal cubic can be constructed: one just takes the blow-up of two suitable curves in Oguiso's Calabi-Yau 3 -fold with $b_{2}=1$ and vanishing cup-form.

Finally we like to show that the non-emptiness condition on the index cone of a projective 3 -fold with $h^{0,2}=0$ gives non-trivial restrictions for the possible cup-forms if $b_{2} \geq 4$. Further investigations of this condition will appear elsewhere.

Example 17: Let H be a free \mathbb{Z}-module of rank 4 with basis $\left(e_{i}\right)_{i=1 \ldots . . .4}$. Consider a trilinear form $F \in S^{3} H^{\vee}$ and its adjoint map $F^{t}: H \rightarrow$ $S^{2} H^{v}$. The image $F^{t}(h)$ of an element $h \in H$ is in terms of the chosen basis $\left(\epsilon_{i}\right)_{i=1, \ldots .4}$ represented by the symmetric 4×4-matrix $\left[\left[h \epsilon_{i} \epsilon_{j}\right]\right]_{i, j=1, \ldots, 4}$. Suppose this matrix is a diagonal sum $\left[\left[h e_{i} \epsilon_{j}\right]\right]_{i, j=1,2} \oplus\left[\left[h e_{k} \epsilon_{1}\right]\right]_{k, l=3,4}$ such that the determinants of both 2×2-matrices are negative for evcry $h \in$ $H \backslash\{0\}$.
In this case $F^{t}(h)$ were of signature $(1,-1,1,-1)$ for every $h \in H \backslash\{0\}$, and we would have $I_{F}=\mathcal{H}_{F}=\emptyset$.
All these conditions can be met, e.g. by setting $e_{1}^{2} e_{2}=e_{2}^{3}=e_{3}^{2} \epsilon_{4}=e_{4}^{3}=$ $1, e_{1} e_{2}^{2}=e_{3} e_{4}^{2}=2$, and $e_{i} e_{j} e_{k}=0$ otherwise. In this particular case the image of $h=\sum_{i=1}^{4} h_{i} e_{i}$ under F^{t} in represented by the matrix

$$
\left.\left[\begin{array}{cc|cc}
h_{2} & h_{1}+2 h_{2} & & 0 \\
h_{1}+2 h_{2} & 2 h_{1}+h_{2} & & \\
\hline & & h_{4} & h_{3}+2 h_{4} \\
& 0 & & h_{3}+2 h_{4}
\end{array}\right] 2 h_{3}+h_{4} .\right]
$$

which has a positive determinant unless $h=0$.

References

[A] Arndt, F.: Zur Theorie der bināren kubischen Formen.
Crelle's Journal, 53, 309-321 (1857)
[Ar1] Aronhold, S.: Zur Theorie der homogenen Funktionen dritten Grades von drei Variabeln. Crelle's Journal, 39, 140-159 (1850)
[Ar2] Aronhold, S.: Theorie der homogenen Funktionen dritten Grades von drei Veränderlichen. Crelle's Journal, 55, 93-191 (1858)
[At] Atiyah, M.: Some examples of complex manifolds. Bonner Math. Schriften 5, 1-28 (1958)
[A/H/S] Atiyah, M.. Hitchin, N., Singer, I.: Self-duality in four-dimensional Riemannian geometry.
Proc. R. Soc. Lond. A. 362, 425-461 (1978)
[B] Beauville, A.: Variétés Kähleriennes Dont la Première Classe De Chern Est Nulle. J. Diff. Geom. 18, 755-782 (1983)
[Bo] Borel, A.: Introduction aux groupes arithmetiques. Publ. De L'Institut De Math. De L'Univ. De Strasbourg. Hermann, Paris 1969
[B/H-C] Borel, A., Harish-Chandra: Arithmetic subgroups of algebraic groups. Annals of Math. (2) 75, 485-535 (1962)
[B/H] Borel, A., Hirzebruch, F.: Characteristic classes and homogeneous spaces, III. Amer. J. Math. 82, 491-504 (1960)
[B/V] Brieskorn, E., Van de Ven, A.: Some complex structures on products of homotopy spheres. Topology 7, 389-393 (1968)
[C/E] Calabi, E., Eckmann, B.: A class of compact, complex manifolds which are not algebraic. Ann. of Math. 58, 494-500 (1959)
[C] Campana, F.: On Twistor Spaces of the class C.
J. Diff. Geom. 33, 541-549 (1991)
[C/P] Campana, F., Peternell, T.: Rigidity theorems for primitive Fano 3-folds. Preprint, Bayreuth 1991
[Ca] Cassels, J.: An Introduction to the Geometry of Numbers. Grundlehren Bd. 99, Springer, Berlin 1959
[Cay] Cayley, A.: Tables of the binary cubic forms for the negative discrimiuants, $\equiv 0$ (mod. 4), from -4 to -400 ; and $\equiv 1$ (mod. 4), form -3 to -99 ; and for five irregular negative determinants. The Quart. J. 11, 246-261 (1871)
[Co] Cornalba, M.: Una osservazione sulla topologia dei rivestimenti ciclici di varietà algebriche. Bolletino U.M.I. (5) 18-A, 323-328 (1981)
[D/G/M] Deligne, P., Griffiths, P. Morgan, J.: Real homotopy theory of Kāhler manifolds. Invent. math. 29, 245-274 (1975)
[D] Dickson, L.: History of the theory of numbers. Vol. III. Quadratic and higher forms. Reprinted by: Chelsea Publishing Company, New York, N.Y. 1971
[D/F] Donaldson, S., Friedman, R.: Connected sums of Self-Dual Manifolds and Deformations of Singular Spaces. Nonlinearity 2, 197-239 (1989)
[E/L1] Ein, L., Lazarsfeld, R.: Syzygies and Koszul cohomology of smooth projective varieties of arbitrary dimension. Invent. math. 111, 373-392 (1993)
[E/L2] Ein, L. Lazarsfeld, R.: Global generation of pluricanonical and adjoint hinear series on smooth projective threefolds. Preprint, 1992
[F] Friedmann, R.: On threefolds with trivial canonical bundle. Proc. Symp. Pure Math. 53, 103-134 (1991)
[F/M] Friedmann, R., Morgan, J.: Smooth four-manifolds and complex surfaces. Ergeb. Math. 3. Folge, Springer, Heidelberg 1994
[G/N] Gordan, P., Noether, M.: Ūber die algebraischen Formen, deren Hesse'sche Determinante identisch verschwindet. Math. Ann. 10, 547-568 (1876)
[G/H] Griffiths, P., Harris, J.: Principles of Algebraic Geometry. J. Wiley and Sons, New York 1978
[G/S] Grunewald, F., Segal, D.: Some general algorithms. I: Arithmetic groups. Ann. of Math. 112, 531-583 (1980)
[H] Hilbert, D.: Über die vollen Invariantensysteme. Math. Ann. 42, 313-373 (1893)
[H1] Hirzebruch, F.: Komplexe Mannigfaltigkeiten.
In: Proc. Int. Congress of Math. 1958, 119-136, Cambridge UP 1960
[H2] Hirzebruch, F.: Some examples of threefolds with trivial canonical bundle. Notes by J. Werner. Preprint, MPI Boun 1985
[Hi] Hitchin, N.: Kählerian Twistor Spaces. Proc. London Math. Soc. 43, 133-150 (1981)
[J1] Jordan, C.: Sur l'equivalence des formes algebriques. C.R. Acad. Sc. t. XC, 1422-1423 (1880)
[J2] Jordan, C.: Mémoire sur l'equivalence des formes. J. Éc. Polytechn. XLVIII, 111-150 (1880)
[J] Jupp, P.: Classification of certain 6-manifolds.
Proc. Camb. Phil. Soc. 73, 293-300 (1973)
[K1] Kato, M.: Examples of simply connected compact complex 3-folds. Tokyo J. Math. 5, 341-364 (1982)
[K2] Kato, M.: On compact complex 3 -folds with lines.
Japan J. Math. Vol. 11, No. 1, 1-58 (1985)
[K/Y] Kato, M., Yamada, A.: Examples of simply connected complex 3-folds II.
Tokyo J. Math. 9, 1-28 (1986)
[K/M/M] Kawamata, Y., Matsuda, K., Matsuki, K.: Introduction to the minimal model problem.
Adv. Stud. Pure Math. 10, 283-360. (1987)
[Ko1] Kollár, J.: Flips, flops, minimal models, etc.
Survey in Diff. Geom. 1, 113-199, (1991)
[Ko2] Kollar, J.: Effective base point freeness.
Preprint, Utah 1992
[Kr] Kraft, H.: Geometrischc Methoden in der Invariantentheorie. Aspekte der Math., Vieweg, Braunschweig 1984
[L] Lamotke, K.: The Topology Of Complex Projective Varieties After S. Lefschetz. Topology, Vol. 20, 15-51 (1981)
[L/S] Lanteri, A., Struppa, D.: Projective manifolds with the same homology as \mathbb{P}_{k}. Monatsh. Math. 101, 53-58 (1986)
[L/W] Libgober, A., Wood, J.: Differentiable Structures On Complete Intersections - I. Topology, Vol. 21, No.4, 469-482 (1982)
[M] Maeda, H.: Some complex structures on the product of spheres. J. Fac. Sci. Univ. Tokyo 21, 161-165 (1974)
[Mi] Miyaoka, Y.: The Chern classes and Kodaira dimension of a minimal variety. Adv. Stud. Pure Math. 10, 449-476 (1987)
[Mo] Mori, S.: Threefolds whose canonical bundle is not numerically effective. Ann. Math. 116, 133-176 (1982)
[M/M1] Mori, S., Mukai S.: On Fano 3-folds with $b_{2} \geq 2$. Manus. math. 36, 147-162 (1981)
[M/M2] Mori, S., Mukai, S.: Classification of Fano 3-folds with $b_{2} \geq 2$. Adv. Studies Pure Math. 1, 101-129 (1981)
[M/F] Mumford, D., Fogarty, J.: Geometric invariant theory.
2 nd ed. Ergeb. Math. 34, Springer, Heidelberg 1982
[Mu] Murre, J.: Classification of Fano threefolds according to Fano and Jskovskikh. LNM 947, 35-92, Springer
[N] Newstead: Introduction to moduli problems and orbit spaces.
Tata Inst. Lecture Notes, Springer, Heidelberg 1978
[O1] Oguiso, K.: On polarized Calabi-Yau 3-folds. J. Fac. Sci. Univ. Tokyo 38, 395-429 (1991)
[O2] Oguiso, K.: On algebraic fiber space structures on a Calabi-Yau 3-fold. Preprint, Bonn 1992
[O3] Oguiso, K.: A note on the graded ring of a polarized Calabi-Yau 3-fold. Preprint, Bonn 1993
[O4] Oguiso, K.: Two remarks on Moishezon Calabi-Yau 3-folds. Preprint, Bonn 1993
[O/V] Okonek, Ch., Van de Ven, A.: Stable Bundles, Instantons and C^{∞}-structures on Algebraic Surfaces. Encyclopaedia of Math. Sciences, Vol. 69, 198-249, Springer, Berlin-Heidelberg 1990
[P] Poincaré, H.: Formes Cubiques Ternaires Et Quaternaires. J. Éc. Polytechn. 51, 45-91 (1882)
[S] Seshadri, C.: Geometric Reductivity over Arbitrary Base. Advances in Math. 26, 225-274 (1977)
[Si] Siegel, C.: The integer solutions of the equation $y^{2}=a x^{n}+b x^{n-1}+k$. J. London Math. Soc. 1, 66-68 (1926)
[Sm] Smale, S.: On the structure of manifolds. Amer. J. Math. 84, 387-399 (1962)
[St] Sturmfels,: Algorithms in Invariant Theory. Springer, New York 1993
[W] Wall, C.T.C.: Classification Problems in Differential Topology, V. On certain 6-Manifolds. Invent. math. 1, 355-374 (1966)
[We] Werner, J.: Neue Beispiele dreidimensionaler Varietäten mit $c_{1}=0$. Math. Gottingensis 20, 1988
[Wi] Wilson, P.: Calabi-Yau manifolds with large Picard number. Invent. math. 98, 139-155 (1989)
[Y] Yau, S.: On the Ricci curvature of a compact Kähler manifold and the complex MongeAmpere equation, I.
Comm. Pure \& Appl. Math. 31, 339-411 (1978)
[Z1] Z̆ubr, A.: Classification of simply-connected six-dimensional Spin-manifolds. Izv. Akad. Nauk SSSR, Ser. Mat., 39, 793-812 (1975)
[Z2] Z̈ubr, A.: Classification of simply connected six-dimensional manifolds. Dokl. Akad. Nauk SSSR, 255, 828-831 (1980)
[Z3] Z̆ubr, A.: Classification of simply-connected topological 6-manifolds. (Rohlin-volume) LNM 1346, 325-339 (1988)

