Elliptic Threefolds with Trivial Canonical Bundles

by
Wing-Wah Sung

Max-Planck-Institut
für
Mathematik
Gottfried-Claren-Strasse 26
W-5300 Bonn 3
Federal Republic of Germany
MPI / 91-42

Elliptic Threefolds with Trivial Canonical Bundles

Abstract
We classify elliptic 3 -folds $\pi: X \rightarrow S$ with $K_{X} \cong \mathcal{O}_{X}$ by classifying the base surface S. An approach for constructing examples of such elliptic 3 -folds with $q(X)=0$ will be presented.

Introduction

By an elliptic 3-fold we shall mean a fibration $\pi: X \rightarrow S$ of a smooth projective 3 -fold X over a smooth projective surface S such that general fibers are smooth elliptic curves. Here by a fibration we mean a proper surjective holomorphic map with connected fibers. Throughout this article we do not assume that π admits a section.

Elliptic 3-folds are higher-dimensional analogues of elliptic surfaces. In this article we shall consider fibrations $\pi: X \rightarrow S$ of a smooth projective 3-fold X with $K_{X} \cong \mathcal{O}_{X}$ over a smooth projective surface S. Note that by the adjunction formula, general fibers of π are smooth elliptic curves and therefore $\pi: X \rightarrow S$ is an elliptic 3 -fold. We shall classify such elliptic 3 -folds by classifying the base surface S. The main results are stated in Theorems 2.2.17, 3.1.3 and 3.2.1. Our method of proof will be completely elementary.

The contents of this article are organized as follows: in § 1 we will establish the basic formulas and prove that the anticanonical bundle of S is nef, $\S 2$ and $\S 3$ will be devoted to the cases $q(X)=0$ and $q(X) \geq 1$ respectively, $\S 4$ deals with construction of examples. Unfortunately non-trivial examples' for the case $q(X) \geq 1$ are much harder to come by. Therefore we will restrict ourselves to the case $q(X)=0$ only. We will discuss a unified construction (Theorem 4.5) which yields examples for the majority of cases predicted by our classification.

I would like to thank the Max-Planck-Institut für Mathematik for excellent working environment and for hospitality.

Contents

§1 Preliminaries 5
1.1 An inequality and an intersection formula 5
1.2 Numerical effectiveness of $-K_{S}$ 7
§2 The case $q(X)=0$ 8
2.1 Rationality of S 9
2.2 Determination of S 11
§3 The case $q(X) \geq 1$ 22
$3.1 q(X)=1$ 22
$3.2 q(X)=3$ 25
§4 Construction of examples 26
References 32

NOTATIONS

K_{M} : the canonical line bundle of a complex manifold M,
$\kappa(M)$: Kodaira dimension of a complex manifold M,
Ω_{M}^{i} : sheaf of germs of holomorphic sections of i-forms on a complex manifold M, $q(M)$: the complex dimension of $H^{1}\left(M, \mathcal{O}_{M}\right)$,
ω_{M} : sheaf of germs of holomorphic sections of n-forms on a complex manifold M of dimension n,
$R^{i} \pi_{*} \mathcal{F}$: the i-th higher direct image sheaf of a coherent sheaf \mathcal{F} on M under π,
$\Gamma(M, L)$: the space of sections of a holomorphic line bundle L on a complex manifold M,
$e(M)$: the topological Euler number of a complex manifold M,
$\kappa^{-1}(M)$: the anti-Kodaira dimension of a complex manifold M,
\diamond : end of proof of an assertion.
All varieties are defined over the field of complex numbers.

§1 Preliminaries

In this section we will derive an inequality relating invariants of X and S. We will also prove an intersection formula by a spectral sequence computation. A Kähler-Einstein metric on X will then be used to conclude that the anticanonical bundle of S is numerically effective.

§1.1 AN INEQUALITY AND AN INTERSECTION FORMULA

We start with a simple observation.

Proposition 1.1.1

Let $\pi: X \rightarrow S$ be an elliptic 3 -fold with $K_{X} \cong \mathcal{O}_{X}$. Then we have

$$
R^{i} \pi_{*} \omega_{X}= \begin{cases}\mathcal{O}_{S}, & i=0 \\ \omega_{S}, & i=1 \\ 0, & i \geq 2\end{cases}
$$

Proof

Since π is proper and has connected fibers, $\pi_{*} \omega_{X} \cong \pi_{*} \mathcal{O}_{X} \cong \mathcal{O}_{S}$. The rest follows directly from Kollár ([11], Theorem 2.1 and Proposition 7.6). \diamond

Proposition 1.1.2

Let $\pi: X \rightarrow S$ be an elliptic 3 -fold with $K_{X} \cong \mathcal{O}_{X}$. Then we have

$$
q(S) \leq q(X) \leq q(S)+p_{g}(S)
$$

Proof

We have an exact sequence

$$
0 \rightarrow H^{1}\left(S, \pi_{*} \mathcal{O}_{X}\right) \rightarrow H^{1}\left(X, \mathcal{O}_{X}\right) \rightarrow H^{0}\left(S, R^{1} \pi_{*} \mathcal{O}_{X}\right) \rightarrow \cdots
$$

Using Proposition 1.1.1 we immediately arrive at the inequalities. \diamond

Proposition 1.1.3

Let $\pi: X \rightarrow S$ be an elliptic 3 -fold with $K_{X} \cong \mathcal{O}_{X}$. For any divisor C on S, we have

$$
-C \cdot K_{S}=\frac{1}{12} \pi^{*}\left(c_{1}[C]\right) \cdot c_{2}(X)
$$

where $[C]$ is the holomorphic line bundle on S associated to the divisor C.

Proof

By Hirzebruch-Riemann-Roch on X,

$$
\mathcal{X}\left(X, \pi^{*}[C]\right)=\left\{\operatorname{ch}\left(\pi^{*}[C]\right) \cdot \operatorname{Td}(X)\right\}_{3}
$$

where $\{*\}_{3}$ denotes evaluation of the degree 3 term of $*$ on the fundamental cycle $[X]$. As $c_{1}^{3}\left(\pi^{*}[C]\right)=0$ and $c_{1}(X)=0$, the right hand side equals $\frac{1}{12} \pi^{*}\left(c_{1}[C]\right) \cdot c_{2}(X)$.

By definition, $\mathcal{X}\left(X, \pi^{*}[C]\right)=\sum_{i=0}^{3}(-1)^{i} h^{i}\left(X, \pi^{*}[C]\right)$. To compute $h^{i}\left(X, \pi^{*}[C]\right)$, we look at the Leray spectral sequence whose E_{2} terms are given by

$$
E_{2}^{p, q}=H^{p}\left(S, R^{q} \pi_{*}\left(\pi^{*}[C]\right)\right) \Rightarrow H^{p+q}\left(X, \pi^{*}[C]\right)
$$

Using Proposition 1.1.1 and the projection formula ([6], p.253), we have

$$
R^{q} \pi_{*}\left(\pi^{*}[C]\right)= \begin{cases}{[C],} & q=0 \\ {[C] \otimes \omega_{S},} & q=1 \\ 0, & q \geq 2\end{cases}
$$

Therefore $E_{2}^{p, q}=0$ for all $q \geq 2$. Also, $E_{2}^{p, q}=0$ for all $p \geq 3$ since $\operatorname{dim} S=2$. Hence the spectral sequence degenerates at E_{3} level, and therefore $H^{i}\left(X, \pi^{*}[C]\right) \cong$ $\underset{i=p+q}{ } E_{3}^{p, q}$.

A straight forward computation gives

$$
\begin{aligned}
& H^{0}\left(X, \pi^{*}[C]\right) \cong H^{0}(S,[C]) \\
& H^{1}\left(X, \pi^{*}[C]\right) \cong H^{1}(S,[C]) \oplus \operatorname{Ker} d_{2} \\
& H^{2}\left(X, \pi^{*}[C]\right) \cong H^{1}\left(S,[C] \otimes \omega_{S}\right) \oplus \frac{H^{2}(S,[C])}{\text { im } d_{2}} \\
& H^{3}\left(X, \pi^{*}[C]\right) \cong H^{2}\left(S,[C] \otimes \omega_{S}\right)
\end{aligned}
$$

where $d_{2}: H^{0}\left(S,[C] \otimes \omega_{S}\right) \rightarrow H^{2}(S,[C])$ is the differential on the E_{2} level. By summing them up, we have

$$
\begin{aligned}
\mathcal{X}\left(X, \pi^{*}[C]\right) & =\mathcal{X}(S,[C])-\mathcal{X}\left(S,[C] \otimes \omega_{S}\right) \\
& =-C \cdot K_{S} . \quad(\text { By Riemann }- \text { Roch on } S)
\end{aligned}
$$

Thus

$$
-C \cdot K_{S}=\frac{1}{12} \pi^{*}\left(c_{1}[C]\right) \cdot c_{2}(X) . \diamond
$$

§1.2 NUMERICAL EFFECTIVENESS OF $-K_{S}$

Let D be a divisor on a smooth projective manifold $M . D$ is said to be nef if $D \cdot C \geq 0$ for all irreducible curve C on M. Here by a curve we shall always mean an effective divisor.

Proposition 1.2.1

Let $\pi: X \rightarrow S$ be an elliptic 3-fold with $K_{X} \cong \mathcal{O}_{X}$. Then $-K_{S}$ is nef.

Proof

Let C be an irreducible curve on S. Since the line bundle $\left[\pi^{*} C\right]$ comes from the divisor $D=\pi^{*} C, c_{1}\left[\pi^{*} C\right]$ is represented by the Poincare dual η_{D} of the divisor D ([5], p.141). D is effective since C is. Write $D=\Sigma_{i} a_{i} D_{i}$, where each D_{i} is an irreducible component of D and $a_{i} \geq 0$ for all i. We have $\eta_{D}=\Sigma_{i} a_{i} \eta_{\nu_{i}}$. By Proposition 1.1.3

$$
\begin{aligned}
-C \cdot K_{S} & =\frac{1}{12} c_{1}\left(\left[\pi^{*} C\right]\right) \cdot c_{2}(X) \\
& =\frac{1}{12} \int_{X} \eta_{D} \wedge c_{2}(X) \quad \text { (by definition of Poincaré dual) } \\
& =\frac{1}{12} \sum_{i} a_{i} \int_{D_{i}} j^{*} c_{2}(X)
\end{aligned}
$$

where $j: D_{i} \rightarrow X$ denotes the inclusion. We may assume that each D_{i} is a smooth complex submanifold of X without affecting the value of the integral.

By a theorem of $\operatorname{Chern}([3]), c_{2}(X)=-\frac{1}{8 \pi^{2}}\left(\Omega_{j}^{j} \wedge \Omega_{k}^{k}-\Omega_{l}^{k} \wedge \Omega_{k}^{l}\right)$, where $\Omega_{l}^{k}=$ $R_{l k p q} \omega^{p} \wedge \bar{\omega}^{q}$ is the curvature given by a hermitian metric ($g_{i j}$) on X expressed in terms of a unitary coframe ($\omega^{1}, \omega^{2}, \omega^{3}$).

As $c_{1}(X)$ vanishes, by the solution to the Calabi conjecture by Yau ([18]), we may choose a Kähler-Einstein metric ($g_{i j}$) on X with Ricci curvature $r_{p q}=R_{j j p q}=0$ for all p and q. Thus

$$
\begin{aligned}
\Omega_{j}^{j} & =R_{j . j p q} \omega^{p} \wedge \bar{\omega}^{q} \\
& =r_{p q} \omega^{p} \wedge \bar{\omega}^{q}=0 .
\end{aligned}
$$

Also, locally we may choose an adapted unitary coframe ($\omega^{1}, \omega^{2}, \omega^{3}$) on X such that $\left(j^{*} \omega^{1}, j^{*} \omega^{2}\right)$ is a unitary coframe for the induced metric ($j^{*} g_{i j}$) on D_{i} and $j^{*} \omega^{3}=$ 0 . The volume form of D_{i} is equal to $d \mu_{\nu_{i}}=-\frac{1}{4} j^{*}\left(\omega^{1} \wedge \bar{\omega}^{1} \wedge \omega^{2} \wedge \bar{\omega}^{2}\right)$.

Using $j^{*} \omega^{3}=0$, the only terms survived in $j^{*} c_{2}(X)$ are $\omega^{1} \wedge \bar{\omega}^{1} \wedge \omega^{2} \wedge \bar{\omega}^{2}$, $\omega^{1} \wedge \bar{\omega}^{2} \wedge \omega^{2} \wedge \bar{\omega}^{1}, \omega^{2} \wedge \bar{\omega}^{1} \wedge \omega^{1} \wedge \bar{\omega}^{2}$ and $\omega^{2} \wedge \bar{\omega}^{2} \wedge \omega^{1} \wedge \bar{\omega}^{1}$. Therefore
$j^{*} c_{2}(X)=\frac{1}{8 \pi^{2}} j^{*}\left(-2 R_{l k 12} R_{k l 21}\right) j^{*}\left(\omega^{1} \wedge \bar{\omega}^{1} \wedge \omega^{2} \wedge \bar{\omega}^{2}\right)$.
Thus

$$
\begin{aligned}
\int_{D_{i}} c_{2}(X) & =\frac{1}{8 \pi^{2}} \int_{D_{i}}\left(-2 R_{l k 12} R_{k l 21}\right)\left(-4 d \mu_{\nu_{i}}\right) \\
& =\frac{1}{\pi^{2}} \int_{D_{i}}\left|R_{l k 12}\right|^{2} d \mu_{D_{i}} \\
& \geq 0 .
\end{aligned}
$$

Hence $-K_{S} \cdot C \geq 0$ and $-K_{S}$ is nef. \diamond
We may now set off to classify S. Note that since the Kodaira dimension $\kappa(X)$ of X is zero, we have $q(X) \leq \operatorname{dim} X=3$ ($[8]$, Corollary 2). We will consider the situation for each value of $q(X)$ separately.

§2 The case $q(X)=0$

Throughout this section X will denote a smooth projective 3 -fold with $K_{X} \cong \mathcal{O}_{X}$ and $q(X)=0$, i.e. a Calabi-Yau 3-fold. X automatically satisfies $h^{0}\left(X, \Omega_{X}^{2}\right)=0$ by Serre duality. We record the following simple observation.

Claim

Let $\pi: X \rightarrow S$ be a fibration of a Calabi-Yau 3 -fold X over a smooth compact complex surface S. Then S is projective.

Proof

Using $\pi_{*} \mathcal{O}_{X} \cong \mathcal{O}_{S}$ and the exact sequence

$$
0 \rightarrow H^{1}\left(S, \pi_{*} \mathcal{O}_{X}\right) \rightarrow H^{1}\left(X, \mathcal{O}_{X}\right) \rightarrow H^{0}\left(S, R^{1} \pi_{*} \mathcal{O}_{X}\right) \rightarrow \cdots
$$

we have $h^{0,1}(S)=0$. Also, $h^{0,2}(S)=h^{2,0}(S)=\operatorname{dim} H^{0}\left(S, \Omega_{S}^{2}\right)=0$ because X does not have non-trivial holomorphic 2 -forms. Therefore the first Chern class map $H^{1}\left(S, \mathcal{O}_{S}^{*}\right) \rightarrow H^{2}(S, Z)$ is an isomorphism.

If $b_{1}(S)$ were odd, we would have $1+b_{1}(S)=2 h^{0,1}(S)=0$, which is absurd. Thus $b_{1}(S)$ is even and $b^{+}(S)=1+2 h^{2,0}(S)=1$. Hence there exists $\alpha \in H^{2}(S, Z)$ with $\alpha^{2}>0$. By the fact that the first Chern class map is an isomorphism, there exists a holomorphic line bundle L on S with $c_{1}(L)=\alpha$. Therefore $c_{1}^{2}(L)=\alpha^{2}>0$, which implies that S is projective. \diamond

Thus for the case $K_{X} \cong \mathcal{O}_{X}$ and $q(X)=0$, there is no loss in generality by letting the base surface S to be projective in our definition of elliptic 3 -folds.

§2.1 RATIONALITY OF S

Before we prove that the base surface S is rational, we need some preliminaries which are well-known, but we include them for completeness.

Let M be a compact Kähler manifold of complex dimension n. A holomorphic tensor field of type (p, q) on M is defined to be a global holomorphic section of $\otimes_{p} T_{M}^{\prime} \otimes \otimes_{q} \Omega_{M}^{1}$, where p and q are non-negative integers. We have the following result by a Bochner type argument.

Proposition 2.1.1

Let M be a compact Kähler manifold of complex dimension n with $c_{1}(M)=0$. Then holomorphic tensor fields of type (p, q) on M are parallel.

Proof

By the solution to the Calabi conjecture by Yau ([18]), we can choose a KählerEinstein metric $\left(g_{i j}\right)$ on M with Ricci curvature $r_{i j}=c g_{i j}=0$. The metric ($g_{i j}$)
induces a metric g_{q}^{p} on $\otimes_{p} T_{M}^{\prime} \otimes \otimes_{q} \Omega_{M}^{1}$. Denote by $\|\sigma\|$ the length of a holomorphic tensor field σ of type (p, q) on M under the metric g_{q}^{p}. By a straight forward computation, we have

$$
\begin{aligned}
\Delta\|\sigma\|^{2} & =\Delta g_{q}^{p}(\sigma \otimes \bar{\sigma}) \\
& =g^{k l} \frac{\partial^{2}}{\partial z^{k} \partial \bar{z}^{1}} g_{q}^{p}(\sigma \otimes \bar{\sigma}) \\
& =\|\nabla \sigma\|^{2}+Q(\sigma)
\end{aligned}
$$

where $Q(\sigma)=c(q-p)\|\sigma\|^{2}=0$. Therefore $\Delta\|\sigma\|^{2}=\|\nabla \sigma\|^{2}$. By Hopf's maximum principle ([7]), $\Delta\|\sigma\|^{2}$ is identically zero on M, so that $\nabla \sigma=0$, i.e. σ is parallel. \diamond

Again let M be a compact Kähler manifold of complex dimension n with
$c_{1}(M)=0$. By works of Bogomolov, the universal covering \widetilde{M} of M is biholomorphic to a product

$$
\mathcal{C}^{k} \times \prod_{i} U_{i} \times \prod_{j} V_{j}
$$

where
(i) \mathcal{C}^{k} is the usual complex Euclidean space with the standard Kähler metric;
(ii) each U_{i} is a simply-connected compact Kähler manifold of odd complex dimension $u_{i} \geq 3$ with trivial canonical bundle and with irreducible holonomy group $S U\left(u_{i}\right) ;$
(iii) each V_{j} is a simply-connected compact Kähler manifold of even complex dimension v_{j} with trivial canonical bundle and with irreducible holonomy group $S p\left(\frac{v_{j}}{2}\right)$.

Applying this to a Calabi-Yau 3-fold X, we have the following

Proposition 2.1.2

Let X be a Calabi-Yau 3-fold. Then $h^{0}\left(X, \otimes_{m} \Omega_{X}^{1}\right)=0$ for all positive integers m.

Proof

If σ were a non-trivial global holomorphic section of $\otimes_{m} \Omega_{X}^{1}$, consider its lifting $\tilde{\sigma}$ to the universal cover \widetilde{X} of X. Since $\pi_{1}(X)$ is finite ($[1], \S 3$, Proposition 2), \widetilde{X} does not contain Euclidean factors. On individual factors U_{i} and V_{j} of $\tilde{X}, \tilde{\sigma}$ is
decomposed into holomorphic tensor fields of types ($0, m_{i}$) and ($0, n_{j}$) respectively, which are parallel by Proposition 2.1.1 and hence are identically zero by irreducible holonomy. Thus $\tilde{\sigma}$ is identically zero and so is $\sigma . \diamond$

Corollary 2.1.3

Let $\pi: X \rightarrow S$ be an elliptic 3-fold with $K_{X} \cong \mathcal{O}_{X}$ and $q(X)=0$. Then S is rational.

Proof

We have $q(S)=0$ because $q(X)=0$. We only need to prove that $h^{0}\left(S, K_{S}^{n}\right)=0$ for all positive integers n.

If, on the contrary, that there were a non-trivial holomorphic section σ of $K_{S}^{n}=\otimes_{n}\left(\wedge^{2} \Omega_{S}^{1}\right)$ for some positive integer $n, \pi^{*} \sigma$ would then be a non-trivial global holomorphic section of $\otimes_{n}\left(\wedge^{2} \Omega_{X}^{1}\right)$. As $\otimes_{n}\left(\wedge^{2} \Omega_{X}^{1}\right)$ is a sub-bundle of $\otimes_{2 n}\left(\Omega_{X}^{1}\right), \pi^{*} \sigma$ would give a non-trivial global holomorphic section of $\otimes_{2_{n}}\left(\Omega_{X}^{1}\right)$, which is impossible by Proposition 2.1.2.

Thus S is rational. \diamond

§2.2 DETERMINATION OF S

We need to determine all rational surfaces S with $-K_{S}$ nef. We start by noting a couple of elementary observations.

Proposition 2.2.1

Let S be a rational surface with $-K_{S}$ nef. Then $c_{1}^{2}(S) \geq 0, h^{0}\left(S,-K_{S}\right) \geq 1$ and $C^{2} \geq-2$ for all smooth irreducible curves C on S.

Proof

Since $-K_{S}$ is nef, $c_{1}^{2}(S) \geq 0$ by Kleiman ([9]). Using Riemann-Roch and $h^{0}\left(S, K_{S}^{2}\right)=0$, we have $h^{0}\left(S,-K_{S}\right)=1+c_{1}^{2}(S)+h^{1}\left(S,-K_{S}\right) \geq 1$. The last assertion follows from the genus formula. \diamond

Proposition 2.2.2

Let $b: \widetilde{S} \rightarrow S$ be a finite succession of blow-ups of a smooth compact complex surface S. If $-K_{\widetilde{S}}$ is nef, so is $-K_{S}$.

Proof

We can write

$$
\tilde{S}=S_{m} \xrightarrow{b_{m}} S_{m-1} \xrightarrow{b_{m-1}} \cdots \longrightarrow S_{1} \xrightarrow{b_{1}} S_{0}=S,
$$

where $b=b_{1} \circ \cdots \circ b_{m}$ and each b_{i} is a blow-up at a single point p_{i} of S_{i-1}. It suffices to show that $-K_{S_{i-1}}$ is nef under the assumption that $-K_{S_{i}}$ is nef. For simplicity we write p_{i} as p.

Let C be an irreducible curve on S_{i-1}. Then $b_{i}^{*}(C)=\widehat{C}+m E$, where \widehat{C} is the proper transform of C, E is the exceptional curve of the blow-up b_{i} and $m=$ $\operatorname{mult}_{p}(C) \geq 0$. Since \widehat{C} is still an irreducible curve on S_{i}, we have

$$
\begin{aligned}
0 \leq \widehat{C} \cdot\left(-K_{S_{i}}\right) & =\left(b_{i}^{*}(C)-m E\right)\left(b_{i}^{*}\left(-K_{S_{i-1}}\right)-E\right) \\
& =C \cdot\left(-K_{S_{i-1}}\right)-m . \quad \text { Thus } \\
C \cdot\left(-K_{S_{i-1}}\right) & \geq m \geq 0 .
\end{aligned}
$$

Hence $-K_{S_{i-1}}$ is nef. \diamond

Proposition 2.2.3

Let S be a minimal rational surface with $-K_{S}$ nef. Then S is either $\mathcal{C P}^{2}$, $\mathcal{C P}{ }^{1} \times \mathcal{C P}{ }^{1}$ or the Hirzebruch surface Σ_{2}.

Proof

All minimal rational surfaces are among $\mathcal{C P ^ { 2 }}$ or $\Sigma_{n}, n=0,2,3, \cdots$, where Σ_{n} is the n-th Hirzebruch surface.
$-K_{\mathcal{C P}}{ }^{2}=3 H$ is ample and hence nef. For Σ_{n} 's, we have

$$
-K_{\Sigma_{n}}=2 E_{0}+(2-n) F, E_{0}^{2}=n, E_{0} \cdot F=1, E_{\infty} \sim E_{0}-n F,
$$

where E_{0}, E_{∞} and F are the zero-section, ∞-section and a fiber of the projection $p: \Sigma_{n} \longrightarrow \mathcal{C} \mathcal{P}^{1}$ respectively.

For $-K_{\Sigma_{n}}$ to be nef,

$$
\begin{aligned}
& 0 \leq\left(-K_{\Sigma_{n}}\right) \cdot E_{0}=n+2, \\
& 0 \leq\left(-K_{\Sigma_{n}}\right) \cdot F=2, \text { and } \\
& 0 \leq\left(-K_{\Sigma_{n}}\right) \cdot E_{\infty}=2-n .
\end{aligned}
$$

Therefore $n=0,1$ or 2 . But Σ_{1} is not minimal because it is $\mathcal{C P}{ }^{2}$ blown up at one point. We are left with $\Sigma_{0} \cong \mathcal{C P} \mathcal{P}^{1} \times \mathcal{C P} \mathcal{P}^{1}$ and $\Sigma_{2} . \diamond$

Since $c_{1}^{2}\left(\mathcal{C P}^{2}\right)=9$ and $c_{1}^{2}\left(\mathcal{C P}^{1} \times \mathcal{C} \mathcal{P}^{1}\right)=c_{1}^{2}\left(\Sigma_{2}\right)=8$, it follows that a rational surface S with $-K_{S}$ nef may be obtained by blowing up
(i) $\mathcal{C P}^{2}$ at most 9 times; or
(ii) $\mathcal{C P}^{1} \times \mathcal{C P}^{1}$ or Σ_{2} at most 8 times.

Although these blow-ups may be performed at infinitely-near points, they cannot be too arbitrary because $C^{2} \geq-2$ for all smooth irreducible curves C on S. We need to distinguish those blow-ups which ensure that $-K_{S}$ is nef from those which do not.

We first look at blow-ups of $\mathcal{C} \mathcal{P}^{2}$. We need the notion of almost general position according to Demazure.

Let $S_{r} \xrightarrow{b_{r}} S_{r-1} \xrightarrow{b_{r-1}} \cdots \longrightarrow S_{1} \xrightarrow{b_{1}} S_{0}=\mathcal{C P}{ }^{2}$ be a succession of blow-ups of $\mathcal{C P}{ }^{2}$, may be at infinitely-near points, such that b_{i} is a blow-up of S_{i-1} at a single point x_{i} and $0 \leq r \leq 8$. Let $\Sigma=\left\{x_{1}, \cdots, x_{r-1}\right\}$ and write $\varphi_{i}=b_{1} \circ \cdots \circ b_{i}$.

For each fixed i, define $E_{j}\left(\varphi_{i-1}\right)$ to be the set-theoretic inverse image of x_{j} under the $\operatorname{map} \varphi_{i-1}$ for $1 \leq j \leq i-1$. Notice that $E_{j}\left(\varphi_{i-1}\right)$ is a divisor on S_{i-1} whose support may contain more that 1 irreducible component.

Let C be an effective divisor on $S_{0}=\mathcal{C} \mathcal{P}^{2}$. We define mult $x_{x_{i}}(C)$ to be the multiplicity at x_{i} of the strict transform of C under the map φ_{i-1}. We say that x_{i} lies on C if mult $_{x_{i}}(C)>0$.

We note the following condition
(*): For each $x_{i} \in \Sigma, 1 \leq i \leq r-1, x_{i}$ does not lie on any irreducible component of $E_{j}\left(\varphi_{i-1}\right)(1 \leq j \leq i-1)$ not of the form $\left(\varphi_{i-1}\right)^{-1}\left(x_{j}\right)$ for some j.

Definition 2.2.4 (Demazure [4], p.39)

With the above definitions and notations, we say that Σ is in almost general position if
(i) Σ satisfies condition (*),
(ii) no 4 points of Σ lie on a line of $\mathcal{C P} \mathcal{P}^{2}$,
(iii) no 7 points of Σ lie on an irreducible conic of $\mathcal{C P}{ }^{2}$.

If $\Sigma=\left\{x_{1}, \cdots, x_{r}\right\}, r \leq 8$, is a set of distinct points on $\mathcal{C P}{ }^{2}$ and if Σ is in general position, then it is also in almost general position. We need the following theorem of Demazure.

Theorem 2.2.5 (Demazure [4], p.39)
Let $S_{r} \xrightarrow{b_{r}} S_{r-1} \xrightarrow{b_{r-1}} \cdots \longrightarrow S_{1} \xrightarrow{b_{1}} S_{0}=\mathcal{C P} \mathcal{P}^{2}$ be a succession of blow-ups of $\mathcal{C P} \mathcal{P}^{2}$ with $\Sigma=\left\{x_{1}, \cdots, x_{r}\right\}$, where $x_{i} \in S_{i-1}$ is the center of the blow-up b_{i}, and $r \leq 8$. Then the followings are equivalent:
(i) Σ is in almost general position;
(ii) the anticanonical system of S_{r} has no fixed components;
(iii) the anticanonical system of S_{r} contains a smooth irreducible curve;
(iv) for each effective divisor D on $S_{r},\left(-K_{S_{r}}\right) \cdot D \geq 0$.

By virtue of this theorem, we conclude that if S is a blow-up of $\mathcal{C P}{ }^{2}$ at r points in almost general position, $0 \leq r \leq 8$, then $-K_{S}$ is nef.

Now let S_{y} be a rational surface obtained by blowing up $\mathcal{C P ^ { 2 }}$ nine times, may be at infinitely-near points, such that $-K_{S_{9}}$ is nef. Let $\sigma: S_{9} \rightarrow S_{8}$ be a blow-down of any (-1) curve on S_{9}, resulting in a smooth rational surface S_{8}. Since $-K_{S_{9}}$ is nef, so is $-K_{S_{8}}$ by Proposition 2.2.2. Therefore S_{8} is a blow-up of $\mathcal{C} \mathcal{P}^{2}$ at 8 points in almost general position and S_{9} is obtained by blowing up some point $s \in S_{8}$. To determine which point of S_{8} is allowed to be blown up, we need some more information about the linear system $\left|-K_{S_{8}}\right|$.

Recall that the linear system $\left|-K_{S_{8}}\right|$ has no fixed components but has a unique base point s_{0}, and that for any point s on S_{8} distinct from s_{0}, there exists a unique member C of $\left|-K_{S_{8}}\right|$ passing through s (cf. Demazure [4], p.40, Proposition 2 and p.55). These notations will be fixed throughout the following discussions. We want to investigate members of $\left|-K_{S_{8}}\right|$.

Proposition 2.2.6

Let S_{8} and $s_{0} \in S_{8}$ be as above. Then
(i) any member of $\left|-K_{S_{8}}\right|$ is non-singular at s_{0};
(ii) any two distinct members of $\left|-K_{S_{8}}\right|$ intersect transversely at s_{0};
(iii) all members of $\left|-K_{S_{8}}\right|$ are connected;
(iv) general members of $\left|-K_{S_{8}}\right|$ are smooth irreducible elliptic curves.

Proof

(i) Since for any point s on S_{8} distinct from s_{0}, there exists a unique member of $\left|-K_{S_{8}}\right|$ passing through s, we deduce that any 2 distinct members of $\left|-K_{S_{8}}\right|$ do not have common components and must intersect at s_{0} only. Let C be an arbitrary member of $\left|-K_{S_{8}}\right|$ and D a smooth irreducible member of $\left|-K_{S_{8}}\right|$ guranteed by Theorem 2.2.5 (iii). We have $1=\left(-K_{S_{8}}\right)\left(-K_{S_{8}}\right)=C \cdot D=$ $(C \cdot D)_{s_{0}}$. We also have mult $s_{s_{0}}(C) \geq 1$ and $\operatorname{mult}_{s_{0}}(D)=1$. Therefore $1=$ $(C \cdot D)_{s_{0}} \geq$ mult $_{s_{0}}(C) \cdot \operatorname{mult}_{s_{0}}(D)=$ mult $_{s_{0}}(C)$. Thus mult $s_{s_{0}}(C)=1$ which implies that C is non-singular at s_{0}.
(ii) Follows directly from the equality $1=C \cdot C^{\prime}=\left(C \cdot C^{\prime}\right)_{s_{0}}=$ mult $_{s_{0}}(C) \cdot$ mult $_{s_{0}}\left(C^{\prime}\right)$ using (i), where C and C^{\prime} are any two distinct members of $\left|-K_{S_{8}}\right|$.
(iii) Let C be an arbitrary member of $\left|-K_{S_{\boldsymbol{8}}}\right|$. If C is irreducible, C is already connected. If C is reducible, then C can be written as $C=\xi+\Gamma$, where ξ is a special exceptional divisor and Γ is a fundamental cycle (Demazure [4], p.55). ξ is irreducible and Γ is connected (ibid, p.53, Corollaire 2 and p.54, Proposition 3). Also, we have $\xi \cdot \Gamma=\xi(C-\xi)=\xi\left(-K_{S_{8}}-\xi\right)=\left(-K_{S_{8}}\right) \cdot \xi-\xi^{2}=1-(-1)=2>0$, by definition of special exceptional divisor. Since both ξ and Γ are effective divisors having no common components, we must have $\xi \cap \Gamma \neq \emptyset$. Thus $C=\xi+\Gamma$ is connected.
(iv) Follows directly from Bertini theorem, (i) and the genus formula. \diamond

Remark 2.2.7

In particular, if C is a reducible member of $\left|-K_{S_{8}}\right|$, we can write $C=C_{0}+$ $\sum_{i} n_{i} C_{i}$ where C_{0} is irreducible and is distinct from each $C_{i}(i \geq 1)$. Moreover, C_{0} is non-singular at s_{0} and no C_{i} passes through s_{0} for $i \geq 1$.

Proposition 2.2.8

Let $\sigma: S_{9} \rightarrow S_{8}$ be the blow-up of S_{8} at the unique base-point s_{0} of $\left|-K_{S_{8}}\right|$. Then S_{9} is a relatively minimal elliptic surface fibered over $\mathcal{C P}{ }^{1}$ without multiple fibers. Moreover, $\left|-K_{S_{я}}\right|$ is base-point free.

Proof

Since s_{0} is the unique base-point of $\left|-K_{S_{8}}\right|$, by blowing up S_{8} at s_{0}, we obtain a holomorphic map $p: S_{9} \rightarrow \mathcal{C} \mathcal{P}^{1}$. Fibers of p are just strict transforms under σ of members of $\left|-K_{S_{8}}\right|$. Therefore general fibers of p are smooth elliptic curves. Also, all fibers of p are connected by virtue of Proposition 2.2.6 (iii) and Remark 2.2.7. Hence S_{9} is an elliptic surface. The exceptional $\mathcal{C} \mathcal{P}^{1}$ of the blow-up σ is a section of p. Therefore p has no multiple fibers.

Let F be an arbitrary fiber of p. Then $F=\widehat{C}$ for some $C \in\left|-K_{S_{8}}\right|$. We have $F=\widehat{C}=\pi^{*}(C)-E \sim \pi^{*}\left(-K_{S_{8}}\right)-E=-K_{S_{8}}$, where E is the exceptional curve of the blow-up σ. Let $F=\sum_{i} n_{i} C_{i}$ be the irreducible decomposition of F. Let F^{\prime} be another fiber of p disjoint from F. Then $F^{\prime} \cdot C_{i}=0$, so that $K_{S_{\mathrm{s}}} \cdot C_{i}=0$ as well. Therefore none of the C_{i} is an exceptional curve of the first kind and thus $p: S_{9} \rightarrow \mathcal{C} \mathcal{P}^{1}$ is relatively minimal.

Since the base curve of p is $\mathcal{C} \mathcal{P}^{1}$ and p does not have multiple fibers, any 2 fibers of p are linearly equivalent. But we have proved that $-K_{S_{g}} \sim$ any arbitrary fiber F. Hence $\left|-K_{S_{g}}\right|$ is base-point free. \diamond

Observe that fibers of $p: S_{\mathrm{y}} \rightarrow \mathcal{C} \mathcal{P}^{1}$ are just strict transforms of members of $\left|-K_{S_{8}}\right|$ under σ. Therefore we immediately arrive at the following corollary.

Corollary 2.2.9

Let C be a member of $\left|-K_{S_{8}}\right|$. Then C is of one of the following types:
(i) a non-singular irreducible elliptic curve;
(ii) a rational curve with a node not at s_{0};
(iii) a rational curve with a cusp not at s_{0};
(iv) $C_{0}+\sum_{i} n_{i} C_{i}$ where C_{0} is a (-1) curve and passes through s_{0}, C_{i} 's $(i \geq 1)$ are mutually distinct smooth rational curves with $C_{i}^{2}=-2$ and no C_{i} for $i \geq 1$ passes through s_{0}. Moreover, g.c.d. $\left(n_{i}\right)=1$ and C_{0} is distinct from all C_{i} for $i \geq 1$.

Proof

The strict transform of an arbitrary member C of $\left|-K_{S_{8}}\right|$ becomes a fiber of the elliptic surface $p: S_{9} \rightarrow \mathcal{C} \mathcal{P}^{1}$, whose fibers are already classified by Kodaira ([10]). If C is irreducible, so is \widehat{C} which is a fiber of p. Therefore C must be either (i), (ii) or (iii). If C is reducible, we can write $C=C_{0}+\sum_{i} n_{i} C_{i}$ by Remark 2.2.7. The blow-up σ does not change C_{i} for $i \geq 1$ because none of them passes through s_{0}. Therefore each C_{i} is a (-2) curve with g.c.d. $\left(n_{i}\right)=1$, as p has no multiple fibers. Also, C_{0} passes through s_{0} and \widehat{C}_{0} is a (-2) curve. Therefore C_{0} itself must be a (-1) curve. \diamond

Now we look at the blow-up $\sigma: S_{9} \rightarrow S_{8}$ of S_{8} at a point s on S_{8} distinct from s_{0}. Recall that s lies on a unique member of $\left|-K_{S_{8}}\right|$.

If s lies on an irreducible member C of $\left|-K_{S_{8}}\right|$ and if C is singular at s, then $\operatorname{mult}_{s}(C) \geq 2$, so that

$$
\begin{aligned}
\left(-K_{S_{\mathrm{s}}}\right) \cdot \widehat{C} & =\left(\sigma^{*}\left(-K_{S_{8}}\right)-E\right)\left(\sigma^{*}(C)-\operatorname{mult}_{s}(C) \cdot E\right) \\
& =-K_{S_{s}} \cdot C-\operatorname{mult}_{s}(C) \\
& =c_{1}^{2}\left(S_{8}\right)-\operatorname{mult}_{s}(C) \\
& =1-\operatorname{mult}_{s}(C)<0
\end{aligned}
$$

where E is the exceptional curve of the blow-up σ. Thus $-K_{S_{g}}$ is not nef.
On the other hand, if s lies on a (-2) curve C_{i} which is an irreducible component of a reducible member C of $\left|-K_{S_{8}}\right|$, then the strict transform of C_{i} will be a (-3) curve on S_{9}. Thus again $-K_{S_{9}}$ is not nef.

Before we go on, we digress to recall some notions which will be useful later.
Definition 2.2.10 (Sakai [15], p.106, Mumford [13], p.330)
Let $C=\sum_{i} n_{i} C_{i}$ be the irreducible decomposition of a curve C on a smooth projective surface $S . C$ is called a curve of fiber type if $C \cdot C_{i}=0$ for all $i . C$ is called a curve of canonical type if $C \cdot C_{i}=K_{S} \cdot C_{i}=0$ for all i. If moreover C is connected and g.c.d. $\left(n_{i}\right)=1$, then C is called an indecomposable curve of canonical type.

We record the following easy consequence.

Propsition 2.2.11

A curve C of fiber type on a smooth projective surface S is nef.

Proof

Take an arbitrary irreducible curve D on S. If $D=C_{i}$ for some i, then $C \cdot D=$ $C \cdot C_{i}=0$. If D is distinct from all C_{i}, then $D \cdot C_{i} \geq 0$ for all i. Therefore, $C \cdot D=\sum_{i} n_{i} C_{i} \cdot D \geq 0 . \diamond$

On S_{8}, we define
$\Lambda_{1}=\left\{s \in S_{8} \mid s\right.$ is a singular point of some irreducible member of $\left.\left|-K_{S_{8}}\right|\right\}$, $\Lambda_{2}=\left\{F \mid F\right.$ is a (-2) curve contained in some reducible member of $\left.\left|-K_{S_{8}}\right|\right\}$. Denote $\Lambda=\Lambda_{1} \cup \Lambda_{2}$. Notice that $s_{0} \notin \Lambda$.

Proposition 2.2.12

Let $\sigma: S_{9} \rightarrow S_{8}$ be the blow-up of S_{8} at a point $s \in S_{8} \backslash \Lambda$. Then $-K_{S_{8}}$ is nef.

Proof

If $s=s_{0},\left|-K_{S_{s}}\right|$ is base-point free by Proposition 2.2.8 and therefore is nef.
If $s \neq s_{0}, s \in C$ for a unique $C \in\left|-K_{S_{8}}\right|$. We separate into 2 cases:
(i) C is irreducible: then C is non-singular at s, \widehat{C} is irreducible on S_{y} and $\widehat{C} \cdot \widehat{C}=$ $C \cdot C-1=0$. Therefore \widehat{C} is a curve of fiber type and hence is nef. But $\widehat{C}=\sigma^{*}(C)-E \sim-K_{S_{8}}$, where E is the exceptional curve of the blow-up. Thus $-K_{S_{g}}$ is nef as well.
(ii) C is reducible : then $C=C_{0}+\sum_{i} n_{i} C_{i}, s \in C_{0}$ which is a (-1) curve. We have

$$
\begin{aligned}
\sigma^{*}(C) & =\sigma^{*}\left(C_{0}\right)+\sum_{i} n_{i} \sigma^{*}\left(C_{i}\right) \\
& =\widehat{C}_{0}+E+\sum_{i} n_{i} \sigma^{*}\left(C_{i}\right) \\
& =\widehat{C}+E
\end{aligned}
$$

where E is the exceptional curve of the blow-up and

$$
\begin{aligned}
\widehat{C} & =\widehat{C}_{0}+\sum_{i} n_{i} \sigma^{*}\left(C_{i}\right) \\
& =\sigma^{*}(C)-E \sim-K_{S_{g}}
\end{aligned}
$$

We only need to prove that \widehat{C} is a curve of fiber type. We have

$$
\begin{aligned}
\widehat{C} \cdot \widehat{C}_{0} & =\left(\widehat{C}_{0}+\sum_{i} n_{i} \sigma^{*}\left(C_{i}\right)\right) \cdot \widehat{C}_{0} \\
& =\left(\widehat{C}_{0}\right)^{2}+\sum_{i} n_{i} \sigma^{*}\left(C_{i}\right)\left(\sigma^{*}\left(C_{0}\right)-E\right) \\
& =-2+\sum_{i} n_{i} C_{i} \cdot C_{0} \\
& =-2+\left(C-C_{0}\right) \cdot C_{0} \\
& =-2+\left(-K_{S_{8}}\right) \cdot C_{0}+1=0 .
\end{aligned}
$$

Also, for any $i \geq 1$,

$$
\begin{aligned}
\widehat{C} \cdot \sigma^{*}\left(C_{i}\right) & =\left(\sigma^{*}\left(C_{0}\right)-E\right) \cdot \sigma^{*}\left(C_{i}\right)+\sum_{j} n_{j} \sigma^{*}\left(C_{j}\right) \cdot \sigma^{*}\left(C_{i}\right) \\
& =C_{0} \cdot C_{i}+\sum_{j} n_{j} C_{j} \cdot C_{i} \\
& =C \cdot C_{i} \\
& =\left(-K_{S_{s}}\right) \cdot C_{i} \\
& =0
\end{aligned}
$$

because each C_{i} is a (-2) curve. \diamond

Remark 2.2.13

In the above proof, we observe that if we blow-up S_{8} at $s \neq s_{0}$ with $s \in C$ for some $C \in\left|-K_{S_{8}}\right|$, then \widehat{C} is always a curve of fiber type on S_{9}. Moreover, since $\widehat{C} \sim-K_{S_{s}}$, we have $-K_{S_{g}} \cdot C_{i}=\widehat{C} \cdot C_{i}=0$ for any irreducible component C_{i} of C. Thus \widehat{C} is in fact a curve of canonical type. In addition, \widehat{C} is indecomposable since C itself is indecomposable by Corollary 2.2.9.

To sum up, we have proved the following

Proposition 2.2.14

Let S be a rational surface obtained by a succession of blow-ups of $\mathcal{C} \mathcal{P}^{2}$, may be at infinitely-near points. If $-K_{S}$ is nef, then S is one of the followings:
(i) a blow-up of $\mathcal{C} \mathcal{P}^{2}$ at r points in almost general position, $0 \leq r \leq 8$;
(ii) a blow-up of S_{8} at a point $s \in S_{8} \backslash \Lambda$.

Next we turn to blow-ups of $\mathcal{C P}{ }^{1} \times \mathcal{C} \mathcal{P}^{1}$. It will be shown that these are exactly those blow-ups of $\mathcal{C P ^ { 2 }}$ we have just considered.

Proposition 2.2.15

Let S be a smooth projective surface obtained by a succession of blow-ups of $\mathcal{C P}{ }^{1} \times \mathcal{C P}{ }^{1}$, may be at infinitely-near points, such that $-K_{S}$ is nef. Then S is isomorphic to some surface on the list of Proposition 2.2.14.

Proof

Write $S \cong \Sigma_{0}^{m} \xrightarrow{b_{m}} \Sigma_{0}^{m-1} \xrightarrow{b_{m-1}} \cdots \longrightarrow \Sigma_{0}^{1} \xrightarrow{b_{1}} \Sigma_{0} \cong \mathcal{C P} \mathcal{P}^{1} \times \mathcal{C} \mathcal{P}^{1}$, where b_{i} is a blow-up of Σ_{0}^{i-1} at a single point. It is well-known that Σ_{0}^{1} is isomorphic to $\mathcal{C} \mathcal{P}^{2}$ blown-up at 2 distinct points, so that S itself may be regarded as a blow-up of $\mathcal{C P} \mathcal{P}^{2}$, may be at infinitely-near points. As $-K_{S}$ is nef, the assertion follows from Proposition 2.2.14. \diamond

For blow-ups of Σ_{2}, the situation is quite similar. As before, we denote by E_{∞} the \propto-section of $p: \Sigma_{2} \rightarrow \mathcal{C P}{ }^{1}$ with $\left(E_{\infty}\right)^{2}=-2$.

If $\sigma: S \rightarrow \Sigma_{2}$ is the blow-up of Σ_{2} at a point $x \in E_{\infty}$, the strict transform $\widehat{E_{\infty}}$ of E_{∞} will be a smooth irreducible curve with self-intersectionn -3 . Thus $-K_{S}$ is not nef.

On the other hand, if $\sigma: S \rightarrow \Sigma_{2}$ is the blow-up of Σ_{2} at a point $x \notin E_{\infty}$, then $-K_{S}$ is nef. Indeed, suppose $x \in F_{\lambda}$ for some fiber F_{λ} of the projection $p: \Sigma_{2} \rightarrow \mathcal{C P}{ }^{1}$. The strict transform $\widehat{F_{\lambda}}$ of F_{λ} is a (-1) curve, intersecting both $\widehat{F_{\lambda}}$ and E transversely, where E is the exceptional curve of the blow-up. We can blow down $\widehat{F_{\lambda}}$, obtaining the first Hirzebruch surface Σ_{1} which can further be blown down to $\mathcal{C} \mathcal{P}^{2}$. In other words, S can be obtained by blowing up $\mathcal{C} \mathcal{P}^{2}$ at p and q, where $p \in \mathcal{C} \mathcal{P}^{2}$ and q is infinitely-near to p. Thus $-K_{S}$ is nef.

Now we can state the following proposition.

Proposition 2.2.16

Let S be a projective surface obtained by a succession of blow-ups of Σ_{2}, may be at infinitely-near points, such that $-K_{S}$ is nef. Then S is isomorphic to some surface on the list of Proposition 2.2.14.

Proof

Write $S \cong \Sigma_{2}^{m} \xrightarrow{b_{m}} \Sigma_{2}^{m-1} \xrightarrow{b_{m-1}} \cdots \longrightarrow \Sigma_{2}^{1} \xrightarrow{b_{1}} \Sigma_{2} \cong \mathcal{C} \mathcal{P}^{1} \times \mathcal{C} \mathcal{P}^{1}$, where b_{i} is a blow-up of Σ_{2}^{i-1} at a single point. Since S has nef anticanonical bundle, so does Σ_{2}^{i} for all i. In particular, b_{1} is a blow-up of Σ_{2} at some point $x \notin E_{\infty}$. By the preceeding discussion, Σ_{2}^{1} is obtained by blowing up $\mathcal{C} \mathcal{P}^{2}$ at 2 points p and q, where $p \in \mathcal{C P} \mathcal{P}^{2}$ and q is infinitely-near to p. Now proceed as in the proof of Proposition 2.2.15. \diamond

Theorem 2.2.17

Let $\pi: X \rightarrow S$ be an elliptic 3 -fold with $K_{X} \cong \mathcal{O}_{X}$ and $q(X)=0$. Then S is among one of the followings:
(i) $\mathcal{C} \mathcal{P}^{1} \times \mathcal{C P}{ }^{1}$;
(ii) Σ_{2};
(iii) blow-ups of $\mathcal{C} \mathcal{P}^{2}$ at r points in almost general position, $0 \leq r \leq 8$;
(iv) blow-ups of S_{8} at points on $S_{8} \backslash \Lambda$.

Proof

Follows from Propositions 1.2.1, 2.1.3, 2.2.14, 2.2.15 and 2.2.16. \diamond

$\S 3$ The case $q(X) \geq 1$

We shall now treat elliptic 3 -folds $\pi: X \rightarrow S$ with $K_{X} \cong \mathcal{O}_{X}$ and $q(X) \geq 1$. We first recall a theorem of Kawamata.

Theorem (Kawamata [8], Theorem 15)
Let M be a smooth projective manifold with $\kappa(M)=0$ and $q(M)=\operatorname{dim}_{\mathcal{C}}(M)-1$. Then the Albanese mapping $\alpha: M \rightarrow \operatorname{Alb}(M)$ is surjective and has connected fibers. Moreover, $h^{0}\left(M, K_{M}\right)=0$.

It follows from this that if M is a smooth projective manifold with $K_{M} \cong \mathcal{O}_{M}$, then $q(M) \neq \operatorname{dim}_{\mathcal{C}}(M)-1$. Therefore, in considering elliptic 3-folds $\pi: X \rightarrow S$ with $K_{X} \cong \mathcal{O}_{X}$, the case $q(X)=2$ does not occur.

In the following subsections we shall consider the cases $q(X)=1$ and $q(X)=3$.

§3.1 $\quad q(X)=1$

Given an elliptic 3 -fold $\pi: X \rightarrow S$ with $K_{X} \cong \mathcal{O}_{X}$ and $q(X)=1$, the inequality proved in Proposition 1.1.2 gives $q(S) \leq 1 \leq q(S)+p_{g}(S)$. Let $S_{\text {min }}$ be a minimal model of S. We still have $q\left(S_{\text {min }}\right) \leq 1 \leq q\left(S_{\text {min }}\right)+p_{g}\left(S_{\text {min }}\right)$ because these are birational invariants. Also, $\kappa\left(S_{\min }\right) \leq 0$ by $C_{3,1}$ ([17]). By Enriques-Kodaira classification, we have the following possibilities:
(i) $S_{\min }$ is a projective K3 surface;
(ii) $S_{\text {min }}$ is a ruled surface of genus 1 ;
(iii) $S_{\min }$ is a hyperelliptic surface.

Observe that $c_{1}^{2}\left(S_{\text {min }}\right)=0$. On the other hand, Proposition 1.2.1 implies that $-K_{S}$ is nef, so that $c_{1}^{2}(S) \geq 0$. Thus we must have $S \cong S_{\min }$. Therefore S is either (i), (ii) or (iii) listed as above.

We want to show that S cannot be a hyperelliptic surface. We start with an elementary result.

Proposition 3.1.1

Let X be a smooth projective 3 -fold with $K_{X} \cong \mathcal{O}_{X}$ and $q(X)=1$. Then the universal covering space \tilde{X} of X is biholomorphic to $\mathcal{C} \times$ a projective K3 surface. Moreover, if $\alpha: X \rightarrow \operatorname{Alb}(X)$ is the Albanese mapping of X, then α is a holomorphic fiber bundle with constant fiber a projective K3 surface.

Proof

By a result of Matsushima ([12],Theorem 3), there exist an abelian variety A and a connected projective manifold V such that
(i) $c_{1}(V)=0$ and $q(V)=0$;
(ii) $A \times V$ is a regular covering space of X and the group of covering transformations is solvable.
Since $\operatorname{dim} X=3$, we must have $A \cong$ an elliptic curve and $V \cong$ a projective K3 surface. Hence the universal covering \tilde{X} of X is biholomorphic to $\mathcal{C} \times$ a projective K3 surface.

Let $\alpha: X \rightarrow \operatorname{Alb}(X)$ be the Albanese mapping of X. By combining a result of Kawamata ([8], Theorem 1) and a result of Bogomolov([2], Theorem 2), α is a holomorphic fiber bundle with constant fiber S and $K_{S} \cong \mathcal{O}_{S}$. Thus S is either a projective K3 surface or an abelian surface. Let G be the identity component of the group of all holomorphic transformations of X. By an argument of Matsushima ([12], p.479), G is an elliptic curve and $G \times S$ is a finite covering space of X. If $S \cong$ abelian surface, the universal covering space of X would be biholomorphic to \mathcal{C}^{3}, which is not possible. Therefore S must be a projective K3 surface. \diamond

From this, we have the following

Proposition 3.1.2

Let $\pi: X \rightarrow S$ be an elliptic 3 -fold with $K_{X} \cong \mathcal{O}_{X}$ and $q(X)=1$. Then S cannot be a hyperelliptic surface.

Proof

Suppose on the contrary that S were a hyperelliptic surface. Consider the composite $\varphi=p \circ \pi: X \rightarrow S \rightarrow E$, where $p: S \rightarrow E$ is the canonical projection of S onto an elliptic curve E. It is easy to see that φ is still a fibration. We want to show that φ is just the Albanese mapping $\alpha: X \rightarrow \operatorname{Alb}(X)$ of X.

By the universal property of Albanese mapping, there exists a morphism h : $\operatorname{Alb}(X) \rightarrow E$ such that for all $x \in X$, we have $h(\alpha(x))+a=\varphi(x)$ for some fixed $a \in E$. Notice that $A l b(X)$ is an elliptic curve, from which we conclude that h is an n-sheeted unramified covering by Hurwitz theorem, $n \geq 1$. Since both φ and α have connected fibers, we must have $n=1$. Hence h is an isomorphism and thus $\alpha=\varphi$. It follows that φ is a holomorphic fiber bundle with constant fiber a projective K3 surface by Proposition 3.1.1. Now for any $e \in E, \varphi^{-1}(e)=\pi^{-1}\left(p^{-1}(e)\right)$ is a K3
surface fibered over $p^{-1}(e) \cong$ elliptic curve via π, which is absurd. Therefore S cannot be a hyperelliptic surface. \diamond

Thus we are left with possibilities (i) and (ii). Now we can prove the main theorem of this subsection.

Theorem 3.1.3

Let $\pi: X \rightarrow S$ be an elliptic 3 -fold with $K_{X} \cong \mathcal{O}_{X}$ and $q(X)=1$. Then S is either a projective K3 surface or a ruled surface of genus 1 of the following types (in Atiyah's notations):
(i) a \mathcal{C}^{*}-bundle which comes from a decomposable rank 2 holomorphic vector bundle $V \cong \mathcal{O}_{E} \oplus \mathcal{L}$ over an elliptic curve E, where \mathcal{L} is a line bundle on E with $\operatorname{deg} \mathcal{L}$ $=0$;
(ii) the A_{0}-bundle;
(iii) the A_{-1}-bundle.

Proof

We have seen that with the given hypothesis, S is either a projective K3 surface or a ruled surface of genus 1 . In case S is a ruled surface of genus 1 , we can write $p: S \cong \mathcal{P}(V) \rightarrow E$ where E is an elliptic curve and $\mathcal{P}(V)$ is the associated projective bundle of a normalized rank 2 holomorphic vector bundle V on E. Let F be a fiber of p and let C_{0} be the canonical section of p with $C_{0}^{2}=-e=\operatorname{deg} V$. We know that K_{S} is numerically equivalent to $-2 C_{0}-e F$. By hypothesis and Proposition 1.2.1, $-K_{S}$ is nef. Thus we have

$$
\begin{aligned}
& 0 \leq\left(-K_{S}\right) \cdot F=2, \text { and } \\
& 0 \leq\left(-K_{S}\right) \cdot C_{0}=-e .
\end{aligned}
$$

Also, a result of Nagata ([14]) implies that $e \geq-\operatorname{genus}(E)=-1$. Hence $e=-1$ or 0 .

If $e=-1$, then V is indecomposable and S corresponds to the A_{-1}-bundle ([6], p.377).

If $e=0, V$ may be indecomposable or decomposable. If V is indecomposable, S corresponds to the A_{0}-bundle. If V is decomposable, then $V \cong \mathcal{O}_{E} \oplus \mathcal{L}$, where \mathcal{L} is a holomorphic line bundle on E and $0=e=-\operatorname{deg}\left(\mathcal{O}_{E} \oplus \mathcal{L}\right)=-\operatorname{deg} \mathcal{L}$ (ibid, p.376). \diamond

We can say something about the singular fibers of π in these cases.

Proposition 3.1.4

Let $\pi: X \rightarrow S$ be an elliptic 3 -fold with $K_{X} \cong \mathcal{O}_{X}$ and $q(X)=1$. If S is a projective K3 surface, then π is a holomorphic fiber bundle with constant fiber an elliptic curve. If S is a ruled surface of genus 1, then the composite map $\varphi=p \circ \pi: X \rightarrow S \rightarrow E$ is a holomorphic fiber bundle with constant fiber a projective elliptic K3 surface without multiple fibers.

Proof

In case S is a projective K3 surface, the assertion follows from Bogomolov ([2], Theorem 2). In case S is a ruled surface of genus 1, by arguing exactly as in Proposition 3.1.2, we see that φ is just the Albanese mapping of X and is therefore a holomorphic fiber bundle over E with constant fiber a projective K3 surface S fibered over $\mathcal{C P}{ }^{1}$. Because $K_{S} \cong \mathcal{O}_{S}, S$ is an elliptic surface without multiple fibers. \diamond

In particular, we conclude that for elliptic 3 -folds $\pi: X \rightarrow S$ with $K_{X} \cong \mathcal{O}_{X}$ and $q(X)=1$, the singular fibers of π are just those which were already classified by Kodaira([10]).

§3.2 $\quad q(X)=3$

In this case, we have the following result.

Theorem 3.2.1

Let $\pi: X \rightarrow S$ be an elliptic 3 -fold with $K_{X} \cong \mathcal{O}_{X}$ and $q(X)=3$. Then S is an abelian surface and π is a holomorphic fiber bundle with constant fiber an elliptic curve.

Proof

By the inequality of Proposition 1.1.2, we have $q\left(S_{\text {min }}\right) \leq 3 \leq q\left(S_{\text {min }}\right)+$ $p_{g}\left(S_{\text {min }}\right)$. Also, $\kappa\left(S_{\text {min }}\right) \leq 0([17])$ and $c_{1}^{2}\left(S_{\text {min }}\right) \geq 0$ (Proposition 1.2.1). Therefore the only possibility is $S \cong S_{\text {min }} \cong$ abelian surface. The last assertion follows from Bogomolov ([2], Theorem 2). \diamond

$\S 4$ Construction of Examples

As we have explained in the Introduction, we shall focus on constructing examples of elliptic 3 -folds $\pi: X \rightarrow S$ with $K_{X} \cong \mathcal{O}_{X}$ and $q(X)=0$. We shall present an approach which works for almost all surfaces on the list of Theorem 2.2.17.

We begin with some preliminaries.

Proposition 4.1

Let $f: M \rightarrow N$ be a holomorphic map between complex manifolds M and N and let L be a holomorphic line bundle on N. If the linear system $|L|$ is base-point free, then so is the induced linear system $\left|f^{*} L\right|$.

Proof

Suppose on the contrary that $\left|f^{*} L\right|$ had a base-point $x \in M$. Write $y=f(x)$. For any section $s \in \Gamma(N, L)$, we would have $s(y)=s(f(x))=\left(f^{*} s\right)(x)=0$, where $f^{*} s$ is the induced section of s. Thus y would be a base-point of $|L|$, a contradiction. \diamond

Proposition 4.2

Let L_{1} and L_{2} be two holomorphic line bundles on a complex manifold M. If the linear systems $\left|L_{1}\right|$ and $\left|L_{2}\right|$ are base-point free, then so is $\left|L_{1} \otimes L_{2}\right|$.

Proof

Given any point x on M, there exist a section s of L_{1} and a section t of L_{2} such that $s(x) \neq 0$ and $t(x) \neq 0$. Then $s \otimes t$ is a section of $L_{1} \otimes L_{2}$ and $(s \otimes t)(x)=$ $s(x) \cdot t(x) \neq 0$. Thus $\left|L_{1} \otimes L_{2}\right|$ is base-point free. \diamond

Proposition 4.3

Let $L_{i} \rightarrow S_{i}$ be holomorphic line bundles over complex manifolds $S_{i}, i=1,2$. If the linear systems $\left|L_{i}\right|, i=1,2$, are base-point free, then so is the linear system $\left|p^{*} L_{1} \otimes q^{*} L_{2}\right|$ on $S_{1} \times S_{2}$, where p and q are the projections onto S_{1} and S_{2} respectively.

Proof

Combine Propositions 4.1 and $4.2 . \diamond$

Now let L be a holomorphic line bundle on a smoooth projective surface S. If the linear system $|L|$ is base-point free, we denote by $\varphi_{L}: S \rightarrow \mathcal{C} \mathcal{P}^{N}$ the holomorphic map defined by choosing a basis of $\Gamma(S, L)$. We need the following proposition.

Proposition 4.4

Let L_{1} and L_{2} be holomorphic line bundles on smooth projective surfaces S_{1} and S_{2} respectively, such that the linear systems $\left|L_{1}\right|$ and $\left|L_{2}\right|$ are base-point free. Denote by $L=p^{*} L_{1} \otimes q^{*} L_{2}$ the corresponding line bundle on $S_{1} \times S_{2}$. If the holomorphic map $\varphi_{L_{1}}: S_{1} \rightarrow \mathcal{C} \mathcal{P}^{N}$ is one to one (e.g. if $\left|L_{1}\right|$ separates points on S_{1}), then the holomorphic map given by $f=\varphi_{L}: S_{1} \times S_{2} \rightarrow \mathcal{C} \mathcal{P}^{N}$ satisfies $\operatorname{dim} f\left(S_{1} \times S_{2}\right) \geq 2$.

Proof

We have $\Gamma\left(S_{1} \times S_{2}, L\right) \cong \Gamma\left(S_{1}, L_{1}\right) \otimes \Gamma\left(S_{2}, L_{2}\right)$. Let $\left\{s_{i} \mid i=1, \cdots, m\right\}$ be a basis of $\Gamma\left(S_{1}, L_{1}\right)$ and let $\left\{t_{j} \mid j=1, \cdots, n\right\}$ be a basis of $\Gamma\left(S_{2}, L_{2}\right)$. Fix a point $y \in S_{2}$. For each t_{j}, either $t_{j}(y)=0$ or $t_{j}(y)=a_{j} \in \mathcal{C} \backslash\{0\}$. Consider the sections $\left.s_{i} \otimes t_{j}\right|_{S_{1} \times\{y\}}=s_{i}(x) t_{j}(y), x \in S_{1}$. We may re-arrange indices such that $t_{1}(y)=0, \cdots, t_{p}(y)=0, t_{p+1}(y)=a_{p+1} \neq 0, \cdots, t_{n}(y)=a_{n} \neq 0$. Then on $S_{1} \times\{y\}$, the sections $\left\{s_{i} \otimes t_{j}\right\}_{i, j}$ becomes $\left[0: \cdots: 0 ; a_{p+1} s_{1}: \cdots: a_{p+1} s_{m} ; \cdots ; a_{n} s_{1}: \cdots\right.$: $\left.a_{n} s_{m}\right]$. Hence the map $\left.f\right|_{S_{1} \times\{y\}}: S_{1} \times\{y\} \rightarrow \mathcal{C} \mathcal{P}^{N}$ takes values in $\mathcal{C} \mathcal{P}^{(n-p) m-1}$ by forgetting about the zeros. If we can show that $\left.f\right|_{S_{1} \times\{y\}}$ is one-to-one, then we will have $\operatorname{dim} f\left(S_{1} \times S_{2}\right) \geq \operatorname{dim} f\left(S_{1} \times\{y\}\right) \geq 2$.

Suppose on the contrary that $\left.f\right|_{S_{1} \times\{y\}}$ were not one-to-one. Then there would exist distinct points $x, \widetilde{x} \in S_{1}$ such that (x, y) and (\widetilde{x}, y) had the same image in $\mathcal{C} \mathcal{P}^{(n-p) m-1}$ under $\left.f\right|_{S_{1} \times\{y\}}$. Hence there would exist $\eta \neq 0$ such that $s_{i}(\widetilde{x})=\eta s_{i}(x)$ for all $i=1, \cdots, m$, which would imply that $\varphi_{L_{1}}$ is not one-to-one, a contradiction. \diamond

Using this, we immediately have the following result.

Theorem 4.5

Let S_{1} be a rational surface with $-K_{S_{1}}$ very ample and let S_{2} be a rational surface with $\left|-K_{S_{2}}\right|$ base-point free. Then a general divisor X in the linear system $\left|p^{*}\left(-K_{S_{1}}\right) \otimes q^{*}\left(-K_{S_{2}}\right)\right|$ is a Calabi-Yau 3-fold. Denote by $i: X \rightarrow S_{1} \times S_{2}$ the inclusion map. Then the composite map $\pi_{1}=p \circ i$ (resp. $\pi_{2}=q \circ i$) is an elliptic 3 -fold X fibered over S_{1} (resp. S_{2}) with $K_{X} \cong \mathcal{O}_{X}$ and $q(X)=0$.

Proof

Given the hypothesis of the theorem, we conclude from Proposition 4.4 and Bertini theorem that a general divisor X in the linear system $\left|p^{*}\left(-K_{S_{1}}\right) \otimes q^{*}\left(-K_{S_{2}}\right)\right|$ is a connected smooth projective manifold. As $K_{S_{1} \times S_{2}} \cong p^{*}\left(K_{S_{1}}\right) \otimes q^{*}\left(K_{S_{2}}\right), K_{X} \cong$ \mathcal{O}_{X} follows from the adjunction formula. We have an exact sequence
$0 \rightarrow \mathcal{O}_{S_{1} \times S_{2}}(-X) \rightarrow \mathcal{O}_{S_{1} \times S_{2}} \rightarrow \mathcal{O}_{X} \rightarrow 0$ on $S_{1} \times S_{2}$.
Check that $\mathcal{O}_{S_{1} \times S_{2}}(-X) \cong K_{S_{1} \times S_{2}}$. The corresponding long exact sequence of cohomology groups is
$\cdots \rightarrow H^{1}\left(S_{1} \times S_{2}, \mathcal{O}_{S_{1} \times S_{2}}\right) \rightarrow H^{1}\left(X, \mathcal{O}_{X}\right) \rightarrow H^{2}\left(S_{1} \times S_{2}, K_{S_{1} \times S_{2}}\right) \rightarrow \cdots$. Since both S_{1} and S_{2} are rational, we conclude from Künneth formula that both $H^{1}\left(S_{1} \times S_{2}, \mathcal{O}_{S_{1} \times S_{2}}\right)$ and $H^{2}\left(S_{1} \times S_{2}, K_{S_{1} \times S_{2}}\right)$ vanish. Hence $H^{1}\left(X, \mathcal{O}_{X}\right)=0$ and therefore X is a Calabi-Yau 3-fold.

We now prove that $\pi_{1}: X \rightarrow S_{1}$ is a fibration. The proof for π_{2} is similar. We will use the notations established in the proof of Proposition 4.4. Holomorphicity and properness of π_{1} are obvious. For any point $p \in S_{1}, \pi_{1}^{-1}(p)=\left(\{p\} \times S_{2}\right) \cap X$ is connected since X is connected. Hence π_{1} has connected fibers. To show that π_{1} is surjective, we suppose that the contrary were true. Then there would exist some point $p \in S_{1}$ such that $\pi_{1}^{-1}(p)=\left(\{p\} \times S_{2}\right) \cap X$ is empty. Since X is the zero set of a section $s \in \Gamma\left(S_{1} \times S_{2}, p^{*}\left(-K_{S_{1}}\right) \otimes q^{*}\left(-K_{S_{2}}\right)\right)$, this would mean that $s(p, y) \neq 0$ for all $y \in S_{2}$. Write $s=\sum_{i, j} a_{i j} s_{i} \otimes t_{j}$. Then, on $\{p\} \times S_{2}$,

$$
\begin{aligned}
0 \neq s(p, y) & =\sum_{i, j} a_{i j} s_{i}(p) t_{j}(y) \\
& =\sum_{j} b_{j} t_{j}(y)
\end{aligned}
$$

where $b_{j}=\sum_{i} a_{i j} s_{i}(p)$. Notice that not all b_{j} are zero because the left-hand side is not zero. Thus $\sum_{j} b_{j} t_{j}$ would be a non-trivial section of $-K_{S_{2}}$, which does not vanish at any point y on S_{2}. Thus $-K_{S_{2}}$ would be a trivial line bundle. This is not possible because S_{2} is rational. \diamond

In order that this theorem may be useful, we need to make sure that there exist rational surfaces whose anticanonical system is base-point free. This is the content of the following proposition.

Proposition 4.6 (Demazure [4], p.55)

Let S be a projective surface obtained by blowing up r points in almost general position on $\mathcal{C P}^{2}, 0 \leq r \leq 7$. Then $\left|-K_{S}\right|$ is base-point free.

Proof

By Theorem 2.2.5, $\left|-K_{S}\right|$ contains a smooth irreducible curve C. By adjunction fromula, $\operatorname{genus}(C)=g(C)=1$. Consider the linear system $\left|-K_{S}\right| C \mid$ on C. We have $\operatorname{deg}\left(-K_{S} \mid C\right)=\left(-K_{S}\right) \cdot C=9-r \geq 2=2 g(C)$, using $0 \leq r \leq 7$. Therefore $\left|-K_{S}\right| C \mid$ has no base- points ([6], p.308, Corollary 3.2(a)).

From the exact sequence
$0 \rightarrow \mathcal{O}_{S}\left(-C-K_{S}\right) \rightarrow \mathcal{O}_{S}\left(-K_{S}\right) \rightarrow \mathcal{O}_{C}\left(-K_{S}\right) \rightarrow 0$, we have the long exact sequence
$\cdots \rightarrow \dot{H}^{0}\left(S, \mathcal{O}_{S}\left(-K_{S}\right)\right) \rightarrow H^{0}\left(C,-K_{S} \mid C\right) \rightarrow H^{1}\left(S, \mathcal{O}_{S}\left(-C-K_{S}\right)\right)$. As $C \sim$ $-K_{S}$ and S is rational, $H^{1}\left(S, \mathcal{O}_{S}\left(-C-K_{S}\right)\right)$ vanishes. Therefore the restriction $\operatorname{map} H^{0}\left(S, \mathcal{O}_{S}\left(-K_{S}\right)\right) \rightarrow H^{0}\left(C,-K_{S} \mid C\right)$ is surjective.

Now if $p \in S$ were a base-point of $\left|-K_{S}\right|, p$ would be contained in C by definition. But every section of $-K_{S} \mid C$ on C extends to a section of $-K_{S}$ on S, so that $p \in C$ would be a base-point of $-K_{S} \mid C$, a contradiction. \diamond

It is well-known that if S is a projective surface obtained by blowing up r points in general position on $\mathcal{C P}{ }^{2}, 0 \leq r \leq 6$, then $-K_{S}$ is very ample. The surface $\mathcal{C P}{ }^{1} \times \mathcal{C} \mathcal{P}^{1}$ also has very ample anticanonical bundle. In addition, the anticanonical system of Σ_{2} is base-point free. Therefore, Theorem 4.5 and Proposition 4.6 enable us to construct numerous examples of elliptic 3 -folds $\pi: X \rightarrow S$ with $K_{X} \cong \mathcal{O}_{X}$ and $q(X)=0$, where S is $\mathcal{C P}{ }^{1} \times \mathcal{C P} \mathcal{P}^{1}, \Sigma_{2}$ or blow-ups of $\mathcal{C} \mathcal{P}^{2}$ at r points in almost general position, $0 \leq r \leq 7$. We remark that elliptic 3 -folds constructed in this way have topological Euler numbers $e(X)=-2\left(12-e\left(S_{1}\right)\right)\left(12-e\left(S_{2}\right)\right)$, as a simple computation with Chern classes shows.

For projective surfaces S_{8} obtained by blowing up $\mathcal{C P}^{2}$ at 8 points in almost general position, we have seen that $\left|-K_{S_{8}}\right|$ has a unique base-point s_{0}. Thus the above construction cannot be applied directly. We get around this difficulty by blowing up S_{8} at s_{0}, obtaining a rational surface S_{9}. We have proved that $\left|-K_{S_{8}}\right|$ is base-point free (Propostion 2.2.8). Therefore the above construction applies to give examples of elliptic 3 -folds $\pi: X \rightarrow S_{9}$ with $K_{X} \cong \mathcal{O}_{X}$ and $q(X)=0$. Let $\sigma: S_{9} \rightarrow S_{8}$ be the blow-up map. Then the composite $\sigma \circ \pi: X \rightarrow S_{8}$ will be an
elliptic 3-fold with $K_{X} \cong \mathcal{O}_{X}$ and $q(X)=0$ fibered over S_{8}.
It remains to treat those surfaces obtained by blowing up S_{8} at a point s of S_{8} distinct from s_{0}. Let $\sigma: S_{9} \rightarrow S_{8}$ be such a blow-up. Denote by \widehat{C} the strict transform of the unique curve $C \in\left|-K_{S_{8}}\right|$ containing s. With these notations, we have the following observation.

Proposition 4.7

$\left|-K_{S_{s}}\right|$ is base-point free iff $N_{\widehat{C}}$ is trivial, where $N_{\widehat{C}}$ is the normal bundle of \widehat{C} in S_{9}.

Proof

Write $\widehat{C}=\sum_{i} n_{i} C_{i}$. By Remark 2.2.13, \widehat{C} is an indecomposable curve of canonical type. Consider the restriction of $N_{\widehat{C}}$ to each irreducible component C_{i} of \widehat{C} : We have

$$
\begin{aligned}
\operatorname{deg}\left(N_{\widehat{C}} \otimes \mathcal{O}_{C_{i}}\right) & =\operatorname{deg}\left(\mathcal{O}_{\widehat{C}}(\widehat{C}) \otimes \mathcal{O}_{C_{i}}\right) \\
& =\operatorname{deg}\left(\mathcal{O}_{S_{\mathfrak{s}}}(\widehat{C}) \otimes \mathcal{O}_{C_{i}}\right) \\
& =\widehat{C} \cdot C_{i}=0
\end{aligned}
$$

Therefore, by a result of Mumford ([13], p.332), $N_{\widehat{C}}$ is trivial if and only if $h^{0}\left(\widehat{C}, N_{\widehat{C}}\right)$ is non-zero.

Now suppose that. $\left|-K_{S_{9}}\right|$ is base-point free. If $h^{0}\left(S_{9},-K_{S_{9}}\right)=1,-K_{S_{9}}$ would have a nowhere vanishing section which would imply that $-K_{S_{9}}$ is trivial, a contradiction. Therefore $h^{0}\left(S_{9},-K_{S_{9}}\right) \geq 2$ in view of Proposition 2.2.1. From the short exact sequence $0 \rightarrow \mathcal{O}_{S_{s}} \rightarrow \mathcal{O}_{S_{s}}(\widehat{C}) \rightarrow N_{\widehat{C}} \rightarrow 0$, we have
$0 \rightarrow H^{0}\left(S_{9}, \mathcal{O}_{S_{s}}\right) \rightarrow H^{0}\left(S_{9}, \mathcal{O}_{S_{s}}(\widehat{C})\right) \rightarrow H^{0}\left(\widehat{C}, N_{\widehat{C}}\right) \rightarrow 0$ because S_{9} is rational . Therefore

$$
\begin{aligned}
h^{0}\left(\widehat{C}, N_{\widehat{C}}\right) & =h^{0}\left(S_{y}, \mathcal{O}_{S_{9}}(\widehat{C})\right)-1 \\
& =h^{0}\left(S_{y},-K_{S_{s}}\right)-1 \geq 1,
\end{aligned}
$$

as $\widehat{C} \sim-K_{S_{8}}$. Hence $N_{\widehat{C}}$ is trivial.
Conversely, suppose that $N_{\widehat{C}}$ is trivial, then $h^{0}\left(\widehat{C}, N_{\widehat{C}}\right)=1$ because \widehat{C} is connected. Notice that $N_{\widehat{C}} \sim-K_{S_{9} \mid \widehat{C}}$ as $\widehat{C} \sim-K_{S_{9}}$. Therefore the restriction map $H^{0}\left(S_{9},-K_{S_{s}}\right) \rightarrow H^{0}\left(\widehat{C},-K_{S_{\mathrm{s}}} \mid \widehat{C}\right)$ is surjective by the exact sequence above. If $\left|-K_{S_{g}}\right|$ had a base-point $b \in S_{9}, b$ would be contained in \widehat{C} by definition. For any non-trivial section \hat{w} of $-K_{S_{9}} \mid \widehat{C}$, there exists a non-trivial section w of $-K_{S_{9}}$ such
that w restricts to \hat{w} on \widehat{C}. Therefore $\hat{w}(b)=w(b)=0$. But this is not possible since $-K_{S_{я}} \mid \widehat{C} \sim N_{\widehat{C}}$ and $N_{\widehat{C}}$ is trivial by hypothesis. Thus $\left|-K_{S_{\natural}}\right|$ is base-point free. \diamond

For such $S_{9}, \kappa^{-1}\left(S_{9}\right) \geq 0$ because we always have $h^{0}\left(S_{9},-K_{S_{g}}\right) \geq 1$ (Proposition 2.2.1). On the other hand, since $-K_{S_{9}}$ is nef and $\left(-K_{S_{9}}\right)^{2}=c_{1}^{2}\left(S_{9}\right)=0$, $\kappa^{-1}\left(S_{9}\right)<2([15], \mathrm{p} .105)$. Hence $\kappa^{-1}\left(S_{\mathrm{g}}\right)=0$ or 1 . If fact, we have ([16], p.407)

$$
\kappa^{-1}\left(S_{y}\right)= \begin{cases}0, & \text { if } N_{\widehat{C}} \text { is not a torsion element in } \operatorname{Pic}(\widehat{C}) \\ 1, & \text { if } N_{\widehat{C}} \text { is a torsion element in } \operatorname{Pic}(\widehat{C}) .\end{cases}
$$

Unfortunately our construction does not apply to these S_{y}. It is not known whether there exist elliptic 3 -folds X fibered over them with $K_{X} \cong \mathcal{O}_{X}$ and $q(X)=$ 0.

To conclude, we have shown that elliptic 3-folds $\pi: X \rightarrow S$ with $K_{X} \cong \mathcal{O}_{X}$ and $q(X)=0$ exist for all surfaces S listed in our classification theorem 2.2.17 except for those S_{9} 's obtained by blowing up S_{8} at points $s \in S_{8} \backslash \Lambda$ distinct from s_{0}.

References

1. Beauville, A.: Variétés kählériennes dont la premiére classe de Chern est nulle, J. Diff. Geom. 18 (1983), 755-782.
2. Bogomolov, F.A.: Kähler manifolds with trivial canonical class, Math. USSR Izv. 8(1974), No.1, 9-20.
3. Chern, S.S.: Characteristic classes of hermitian manifolds, Ann. Math. 47(1946) , 85-121.
4. Demazure, M., Surfaces de Del Pezzo. In: Singularités des surfaces. Lecture Notes in Mathematics, Vol.777, p.21-69. Berlin, Heidelberg, New York: Springer 1980.
5. Griffiths, P., Harris, J.: Principles of Algebraic Geometry, Wiley, New York, 1978.
6. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics Vol.52. New York, Heidelberg, Berlin: Springer 1977.
7. Hopf, E.: Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, Sitzber. preuss. Akad. Wiss. Physik-math. Kl. 19 (1927), 147-152.
8. Kawamata, Y.: Characterization of abelian varieties, Comp. Math. 43 (1981), 253-276.
9. Kleiman, S. L.: Toward a numerical theory of ampleness, Ann. of Math., 84 (1966), 293-344.
10. Kodaira, K.: On Compact analytic surfaces, II Ann. Math. 77 (1963), 563-626.
11. Kollár, J.: Higher direct images of dualizing sheaves I, Ann. of Math., 123 (1986), 11-42.
12. Matsushima, Y.: Holomorphic vector fields and the first Chern class of a Hodge manifold, J. Diff. Geom. 3 (1969), 477-480.
13. Mumford, D.: Enriques classification of surfaces in char. p. I. Global Analysis. Tokyo Univ. Press and Princeton Univ. Press, Tokyo and Princeton (1969), 325-339.
14. Nagata, M.: On self-intersection number of a section on a ruled surface, Nagoya Math. J. 37 (1970), 191-196.
15. Sakai, F.: D-dimensions of algebraic surfaces and numerically effective divisors, Comp. Math. 48(1983), 101-118.
16. Sakai, F.: Anticanonical models of rational surfaces. Math. Ann. 269(1984), no.3, 389-410.
17. Viehweg, E.: Canonical divisors and the additivity of the Kodaira dimensions for morphisms of relative dimension one, Comp. Math. 35 (1977), 197-223.
18. Yau, S. T.: Calabi's conjecture and some new results in algebraic geometry, Proc. Natl. Acad. Sci. USA 74 (1977), 1798-1799.

