
AN ANALYTICAL INDEX FORMULA FOR
PSEUDO-DIFFERENTIAL OPERATORS ON

WEDGES

Elmar Schrohe and Jörg Seiler

Max-Planck-Arbeitsgruppe
"Partielle Differentialgleichungen und
komplexe Analysis"

Universität Potsdam
Am Neuen Palais 10
14469 Potsdam
Germany

MPI96-172

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
53225 Bonn

Gennany





An Analytical Index Formula for Pseudo-Differential
Operators on Wedges

Elmar Schrohe and Jörg Seiler
Max-Planck-Arbeitsgruppe

"Partielle Differentialgleichungen und Komplexe Analysis"
Universität Potsdam

14415 Potsdam

December, 1996

Abstract: We show an analytical index formula of Fedosov type for certain operators on an
infinite wedge W = IRq x C, where C is an (infinite) cone with smooth compact basis. We
employ aversion of SCHULZE'S edge calculus with weighted symbols. The operators under
consideration are of the form I + M + G; here I is the identity while M and G are zero
order pseudo-differential operators taking values in the smoothing Mellin and Green operators,
respectively, on the cone.
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Introduction

The dassical index formula of ATIYAH and SINGER [I) showed how to express the index of an
elliptic operator on a dosed compact manifold in terms of characteristic dasses induced by its
principal symbol and the manifold. FEDOSOV in 1974 proved an analytical index formula, a
simple way of expressing the index of a zero order pseudo-differential operator op(a) on)Rn via
its complete (matrix-valued) symbol:

indop(a) = Cn r tr (a- 1 da)2n-l;
JaB

here B is a large ball in T*}Rn, and Cn is a constant depending only on n, cf. [5] or [9].

We establish a formula in the same, spirit for operators on a wedge. The wedge W = IRq x C is
the cartesian product of Eudidean space and a cone C, where the base is a smooth compact
manifold.

Following a central idea in the approach of SCHULZE for an edge calculus [15], we consider
the operators on W as pseudo-differential operators on IRq taking values in operators on the
cone C. Due to the non-compactness however, we work with a special dass of 'weighted'
pseudo-differential symbols with a precisely controlled behaviour near infinity. For the scalar
case, these classes have been introduced by SHUBIN [18], PARENTI [10], and CORDES [2), see
also [12].

The operators we are considering are of the form I + M + G. Here I is the identity operator,
M and G are operator-valued pseudo-differential operators of order zero. They take values in
the ideal of smoothing Mellin and Green operators, respectively, on the cone. The operators of
the form M + G as above form an ideal in the full edge calculus, consisting of smoothing, but
nevertheless (generally) noncompact operators. In a certain sense they may be compared to
the singular Green operators in BOUTET DE MONVEL'S calculus, which are pseudo-differential
along the boundary and smoothing in the normal direction. These operators carry important
index information. In fact, many index problems in the fuIl calculus on the wedge can be
reduced to one like this, cf. [13]; therefore this paper constitutes an essential step towards an
index theory on manifolds with edges.

The paper is based on an approach developed by FEDOSOV [6] for expressing the index of
pseudo-differential operators with values in algebras with traces. The natural spaces the oper­
ators in this edge calculus act on are weighted variants of the edge Sobolev spaces introduced
by SCHULZE. We therefore start with an introduction of the weighted operator-valued symbols
and the weighted edge Sobolev spaces and discuss the question of Hilbert-Schmidt and trace
dass embeddings. We then define the dasses of smoothing Mellin and Green operators we
are interested in. Next we review the relevant techniques developed by FEnosov and employ
them to finally derive the analytic index formula in Theorem 3.19.

Acknowledgement: We thank B.-W. Schulze for many helpful discussions. Recently, FE­
DOSOV, SCHULZE, and TARKHANOV [7] obtained a similar index formula for compactly sup­
ported perturbations of the identity by zero order operators in the edge calculus. Their formula,
however, still involves the symbol of the parametrix.
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1 Operator-valued pseudo-differential operators and Sobolev
spaces

1.1 Definition. Let E be a Hilbert space. A set"" = {~,,; ). > O} c I:.(E) of isomorphisms is
caned a (strongly continuous) group action on E if

i) """""e = """g for an .A, f2 > 0 (in particular, ""1 = 1).

ii) For each e E E the function ). t-7 """e :Rr ---7 E is continuous.

For a group action K, on E one can find non-negative constants c and M such that

(1.1)

This can be derived from Banach-Steinhaus' theorem (cf. [8]).

For the following considerations we fix pairs (Ej , K,j), j = 0, 1,2, of Hilbert spaces with corre­
sponding group actions. Furthermore, we choose a smooth and strictly positive function

for a fixed constant c > O. For abbreviation we set K:( 'TJ) = I'l:[TJ]'

1.2 Definition. For jL, m E IR let S/-L,m(IRq X JRll; Eo,Ed denote the space of an functions
a E Coo (Rq x Rq , I:. (Eo, EI)) satisfying

sup {11""11 ('TJ)a~aea(y, 'TJ)""o ('TJ) II Eo,E} ['TJ]lal-/-L[y]IßI-m} < 00 VQ, ß E N6.
Y,TJEIRq

These semi-norms induce a Frechet topology on S/-L,m (IRq x IRq; Eo, EI)'

Clearly,
ä~ae S/-L,m(IRq X IRq; Eo, EI) C S/-L-Ial,m-IßI (IRq x IRq; Eo, Ed,

I / + I + IsJ.t,m(IRq X }RQ; EI, E2) . S/-L,m (IRq x IRq; Eo,EI) C SJ.t J.t,m m (IRq x IRq; Eo,E2).

In case EI Y E2 and ""2 = ""Ion EI, i.e., ""2," = K:l," on EI for an .A > 0,

If Mo, MI are the constants corresponding to ""0, ""1 via (1.1), then

S/-L,m(IRq X IRq; Eo, EI) Y SJ.t+Mo+M} ,m(JRll x IRq; Eo,El)(l),

where the subscript (1) indicates that both Eo and EI are equipped with the trivial action
",,=:1.

Let S(IRq, E) be the Schwartz space of rapidly decreasing functions taking values in a Hilbert
space E. To a given symbol a E S/-L,m(IRq X IRq; Eo, Ed associate a continuous operator

op(a) : S(~, Eol --t S(lRq
, Eil :U >-t [op(a)u](y) = JeiY~a(y, I))(Fu)(l)) dl).

Here, :F is the Fourier transform, and a'TJ = (27r)-qd'TJ.
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1.3 Theorem. Ifa E SJl,m(I~q X IR.q; E 1 , E2) and bE SJlI,m' (IRq x ~q; Eo, Ed then op(a)op(b) =

op(a#b), where

(a#b)(y, TI) = / / e-ix(a(y,,., + Ejb(y + x,,.,) dxd(

For each N E N,
1

(a#b)(Y,11) = L l(a~a)(D~b) + TN(Y, '1])
0'.

a<N

with a remainder TN E SJl+JlI~N,m+m'-N (IR.q x Rq; Eo, E2) given by

fl (1 - B)N-l 11 .
rN(Y, '1]) = N L Jo a! e-tX~a; a(y, 11 + ()~)D~b(y + x, 7]) dXft~de.

lal:::::N

The double-integrals have to be understood as oscillatory integrals.

The adequate Sobolev spaces, the so called abstract edge Sobolev spaces, are defined as folIows.

1.4 Definition. Let WS(I~q,Eo), s E~, denote the space of all distributions u E S'(IRq,Eo)
such that :Fu is a measurable function and

Ilullw'(IR' ,Eo) = (/ [,.,f s 111<01 (,.,)(Fu)(,.,) lI~o d,.,) 1/2 < 00.

For eS E IR we have weighted variants of those spaces, namely

WS,Ö (IR.q, Eo) = {u E S' (IRq, Eo); [.]Ö u E Ws (IRq, Eo)}.

Equipped with the obvious norm they are Hilbert spaces, having S(~q,Eo) as a dense subset.
In case of a trivial group action, i.e., KO =: 1, we use write HS(lRq , Eo) and Hs,oCIT?.q, Eo). Then,

WS,Ö(IRq, Eo) y HS-M,Ö(~q, Eo), (1.2)

where M is the constant in (1.1). Further, if E o Y E1 and Kl = "'0 on Eo we immediately
obtain that

(1.3)

1.5 Theorem. Let Eo, EI be Hilbert spaces equipped with arbitrary group actions, and
a E SJl,m(IRq X IRq; E01 EI)' Then a induces for all s, eS E IR continuous operators

op(a) : Ws,J(}Rq, Eo) ~ WS-Jl,o-m(IRq, EI)'

A proof is given in [17]. Next we extend the above material to the case where EI is a Frechet
space, which can be written as a projective limit

E 1 = proj-limEf
kEN

with Hilbert spaces Ei f--J Er f--J ... , such that the group action on Ei induces (by restriction)
the group actions on each Ef. Then we set

WS,O(lRq,Ed = pr~tMmWS,O(IRq, E~)

equipped with the topology of the projective limit, and

SJl,m(lRq
X ~q; Eo,Ed = nkENSJl,m(I~q x ~q; Eo, E~).

Theorem 1.4 extends to this situation.
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2 Hilbert-Schmidt and trace class operators

2.1 Mappings between L2-spaces

For Hilbert spaces Ea, EI let .cl (Eo,Ed denote the Banach space of all trace dass operators
Eo -7 EI, and, in case of Eo,EI being Hilbert spaces, .c2 (Eo, Ed the Hilbert space of all
Hilbert-Schmidt operators Eo --+ EI· For A E .c1(Ea) let Tr (A) denote its trace. The following
results are well-known:

2.1 Theorem. An operator A : L 2 (IRm , Eo) -7 L 2 (IRl , Ed, with Hilbert spaces Eo and EIl is
a Hilbert-Schmidt operator Hf it has a representation as an integral operator

(Af)(y) = ! kA (x, y)j(x) dx,

2.2 Theorem. JE E is a Hilbert space and A E .cl (L2(lRm , E)) is an integral operator with a
continuous kernel kA E C(IRm x IRm,.cI(E)) then

Tr (A) = ! tr kA(X, x) dx.

Here 'tr' is the trace on .cl (E).

2.2 The case of abstract edge Sobolev spaces

Let Eo y EI Y E2 be Hilbert spaces, where each of the embeddings is Hilbert-Schrnidt.
Then the embedding H S

l
8 (JRll, Eo) '---+ H s',8' (IRq, E2) is of trace dass whenever s - s' > q and

o- ö' > q. We need analogous statements for abstract edge Sobolev spaces. As it will be
satisfied in later applications, we consider a scale of Hilbert spaces Er, r E IRl , which fulfills

(1) Er y Er' if r 2:: r ' (here '2::' holds in each component);

(2) there are mappings K). : UrEr -7 UrEr, A > 0, such that Kr = {K).IEr; A > O} is a group
action on Er, and KO is a group of unitary operators on EO;

(3) there is an ro 2:: 0, such that the embedding Er y Er' is Hilbert-Schmidt if r - r' > ro;

(4) the mapping r M M(r) : JRl -7 IR, where M(r) is the constant associated with ""r via
(1.1), is 10cally bounded.

Assumption (4) allows us to define

N(c) := sup{M(r) + q; r > 2ro and Ir - 2rol < c},

5
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•

2.3 Lemma. For s > N, N as in (2.4), 8 > q, and r > 2ro, ro as in (3), we have a trace dass
elnbedding

PROOF: By construction of N we find an i > 0 such that s > N(i). Further we can choose
an r E IRn with r > r > 2ro and Ir - 2rol < i. This implies, in particular, that

s > sup{M(r) + q; r > 2ro and Ir - 2rol < i} 2: M(r) + q.

By 1.2 and 1.3 we obtain

Ws,6(I~q,Er) y W s,6(IRq, Er) Y H s- M (f),6(TRQ, W) ~ Ho,o(IRq, E O) = WO,o(IRq, EO),

where the embedding (*) is of trace dass. Note that the last identity holds since the group
action is unitary on EO. •

2.4 Corollary. Let a E SI-L,m(TRq X IRq;EO,ET) witb p, < -N, m < -q, and r > 2ro; here N
is as in (2.4) and ro as in (3). Then a induces a trace dass operator

op(a) : Wo,°(IRq, EO) --7 Wo,o(lRq, EO),

where the trace is given by

Trop(a) = (211")-q JJtr a(y,.,,) dyd.".

Here 'tr' is tbe trace in .cl (EO).

PROOF: First, from Lemma 2.3 it is dear that op(a) is of trace dass. Further, there exists an
i > 0 such that -p, < -N(i). Hence we can choose an r with r > r > 2ro and Ir - 2rol < i
such that -J.L < N(i) :::; -(M(r) + q). In particular, we abtain

a E Sfl,m(IRq X IRqjEO,ET ) C SI-L+M(f),m(IRq x IRq;EO,ET )(1)'

where the subscript (1) means that both EO and Er are equipped with the trivial graup
action K, == 1. Since the group action on EO is unitary we have WO,O(IRq, EO) = L2 (JRCl, EO).
Furthermore, in view of J.L + M(r) < -q and .c(EO, E f ) y .c1(EO), op(a) has a kernel

k(y, y') = Jei(Y-Y')~a(y,.,,) a." E C(JR'l x IRq; .c1(Eo)).

Thus Theorem 2.2 yields Tr (A) = Jtr k(y, y) dy = (211")-q.lJtr a(y,.,,) dyd.".

2.3 Application

Here we show that the results of Section 2.2 are applicable to wedge Sabolev spaces.

In this section let X be a smooth compact manifold of dimension n. We fix a covering U =

{Ull ... , UN} of X with coordinate neighbourhoods Uj and charts Xj : Uj --7 Vj C !Rn, and
Bj : Uj --7 10 C sn 1 the unit sphere in JRn+l. Ta the latter diffeomorphisms associate

l+n -Bj :~ x Uj --7 IR : (t, x) r-+ tBj(x).
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Further, let {cPl,"" cPN} be a partition of unity subordinate to the covering U.

First, we define a scale of cone Sobolev spaces KS " (X!\ ) fJ on X /\ = Il4 x X for real 8, , and
1]; it will play the role of the spaces Er, r E jRm, in the preceding section.

For , E IR:. define a linear bijection S, : C~(lltr x }Rn) -+ C~(}R1+n) by

r E IR, X E }Rn .

2.5 Definition. Let w(t) E Cr(IR+) such that w == 1 near t = O. Then KS,'Y(X/\)fJ denotes
the closure of Cü(X/\) with respect to the norm

N

Ilullks.-r(x/\)q = L IIS,[(wcjJju) 0 (1 X Xj)-l]ll~s(IR1+n) + 11((1 - w)cjJju) 0 ejlll~s.I?(IRl+n).
j=1

Here, the functions on the right-hand side are extended by zero outside their natural domains.
This yields a Hilbert space. The construction is independent of the choice of w.

The proof of the following lemma is straightforward.

2.6 Lemma. For each ), > °the mappings

(2.5)

extend to continuous operators K.).. : KS''Y (X/\)(] -+ ;:.S" (X/\)I). The operator-norm IIK.)..II i8
locally bounded as a function o[ ()" 8, " (2) E lR-t- x IR x IR x IR. Furtbermore, {K.)..; ), > O} i8 a
group action (cf Definition 1.1) on each KS,'Y(XA)fJ, and is unitary on KO,O(XA)o.

As a corollary, we obtain that the constant M(s",I]) associated to {K.>.} and KS,'Y(X/\)fJ via
(1.1) is locally bounded as a function of (8",1]) E IR. x IR x Ilt

2.7 Remark. Prom the well-known embedding properties of the usual (weighted) Sobolev
spaces on IR.l +n it is straightforward to verify that the embedding

Ks,'Y(X!\)f! Y K/d (X/\)(]I

is Hilbert-Schmidt if s - s' > n!l, , - " > 0, and I] - 1]' > nil, i.e., (3) from Section 2.2 is
valid with ro = (nt l , 0, nil). Thus the scale K,s,'Y(X/\)f! satisfies conditions (1)-(4) from the
beginning of Section 2.2. In particular, Lemma 2.3 and Corollary 2.4 hold.

3 The index formula

3.1 Green and smoothing Mellin operators

In [16] was introduced an algebra of pseudo-differential operators on an (open stretched) wedge
JR.Q x X A

, with X as in Section 2.3. In particular, this calculus allows a control of the asymptotics
of solutions to elliptic equations. To deal with index theory, it is not necessary to handle these
asymptotics. Thus we modify the material from [16] and develop a more general algebra.
Proofs are omitted, since they are (simpler) variants of those in [16].
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By LJ.L(X) denote the space of pseudo-differential operators of order f..l on the manifold X, and
by LJ.L(Xj IR) the parameter-dependent ones with parameter T E IIt For real ß set

r ß = {z E C; Re z = ß}.

By means of the identification rß ---+ IR : ß + iT t---+ T we cau define LIJ.(Xj rß)'
A function w(t) E C~(IR+) with w == 1 near t = 0 is called cut-off function.

With a function f E LIJ.(X; r 1/ 2-1')' "y E IR, we associate a Mellin pseudo-differential operator

[op1(J)u](t) = 2~i Ir C
Z j(z)(Mu)(z) dz, u E GQ'(X A

).

r 1/ 2-1'

Here M is the Mellin transform, defined for u E C~(X!I) = O~(Illr, COO(X)) by

(Mu)(z) = 1000

e-1u(t) dt.

For arbitrary s, Q, e' E IR and cut-off functions w, wwe have continuous extensions

3.1 Definition. For c > 0 set

SE. = {z E C; nt1
- c < Re z < nt1 + c}.

Now, Mf'(X), fL E IR, denotes the space of all functions h E A(SE.' LJ.L(X)), i.e., his holomorphic
in z E SE. with values in LIJ.(X), such that

h(ß + iT) E LJ.L(X; IItr) uniformly in ß E] nil - c, nil + c[

Mf'(X) becomes a Frechet space if equipped with the system of semi-norms consisting of that
from A(SE.' LJ.L(X)), and

where p(-) runs ovef a system of semi-norms of Lf.l(X; IRr).

3.2 Definition. For fL, m E ~ c > 0, the space Mf,m(X) consists of all functions h E

0 00 (JR<1 , Mf (X)) such that

sup {(y)lal-m p ((}~h(Y,ß + iT)); n!l - c < ß < nil + c, y E IRq} < 00 (3.6)

for all a E Nö, and all semi-norms p(.) of LIJ. (X; IRr ). 0 n Mf,m (X) we define a Frechet
topology by means of the semi-norms of Coo(lRq

, Mt(X)) and those from (3.6). Finally set
Mg-oo,m(X) = nJ.LEIRMf,m(X) and
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3.3 Definition. i) A smoothing Mellin symbol of order (0, m) is an operator-valued func-
tion on IRq x IRq of the form

(3.7)

with cut-off functions w, w, and h E M-oo,m(x).

ii) For same fixed L E No let R8m (IRq x IRq), v, m E IR U {-oo}, denote the space of all
functions g(y,"7) E nsEIRsv,m(IRq x IRq; KS,O(X/\)O EBCL,Koo,O(X/\)O EBCL) satisfying

g E nsERsv,m (IFtq x ~q; KS'o (XI\)o EB cL, Koo,e (X/\)oo EB CL),

g* E nsElRsv,m(IRq x IRq; KS,o(X")o EB cF, Koo,f:(X")oo EB CL),

for a certain c > 0 (depending on g). For aspace E with group action {~)..} we employ
the action {~>. EB I} on E EB CL. Furthermore * means the pointwise formal adjoint
with respect to the scalar product on KO,o (X")O EB CL. These functions are called Green
symbols.

iii) Let R~~G(IRq x ~q) denote all symbols m + g, where, in block matrix notation,

with d as in (3.7), and g E R~m(IRq x IRq). In particular, we obtain that

3.4 Remark. Let d be as in (3.7) with h E Mc:-;oo,m(X). Then [16], Corollary 2.25 implies
that for each 0 ~ c ~ co

d(y, "7) = w(t["7])op~n/2(h)(y)w(t["7]) V (y, "7) E IR2q

Both symbol classes Re and RM+G form an algebra with respect to pointwise multiplication.
The Green symbols form an ideal in the sense that

the analogous statement holds if we interchange the factors on the left-hand side. Furthermore
we have aaaßRJ-I"m(IRq x]RlJ) C RIl-lo:l,m-IßI(IRq X IRq) aßRO,m (IRq x IRq) c Ro,m-IßI(~q x IRq)

Ti Y G G ' Y M+G M+G '
and the important fact that
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The corresponding pseudo-differential operators act continuously between the weighted wedge
Sobolev spaces, cf. Sections 1 and 2.3. The composition of operators

op(m + g)op(m' + g') I-T op((m + g)#(m' + g'))

in the sense of Theorem 1.3 furnishes a continuous map

RO,m (IRq x ~q) x RO,m' (IRq x ~q) -+ RO,m+m' (IRq x JRll)
M+G M+G M+G ,

with restrictions

R~m(IRq x IRq) x R~~G(IRq x lRq) -+ R~m+m' (IRq x lRq),

R~~G(IRq x IRq) x R~m' (IRq x IRq) -+ R~m+ml (IRq x jRQ).

Analogously the composition of Green operators yields a mapping

Now let 1 = (~ ~) in the sense of Definition 3.2.iii). The pseudo-differential operators we

consider have !Symbols

In case of ellipticity, these operators are Fredholm. We will show an analytical index formula
in Theorem 3.19.

3.5 Definition. Let m + g E R~o+dIRq x IRq) with m = (~ ~) and d(y,1j) = w(t[1jD

op~n/2(h)(y)w(t[1]]). The symbol 1 + m + g is called elliptic, if

i) (1 + h)-l E MO,O(X),

ii) for large l(y,1])1

;::,0,0 (XI\)O

(1 + m+ g)(y,1]) : EB
CL

is invertible and the inverse is uniformly bounded in (y,1]).

Then we find a parametrix to 1 + m + g, i.e., an inverse under the Leibniz product modulo
Rcoo,-oo (IRq x IRq). But we will only need the following

3.6 Proposition. (cf. [16], Proposition 3.10) Let 1 + m + g be elliptic and 1> E 0 00 (IR2q) ,
4J == 1 for large 1(y, 1]) I) such tllat 1 + m + g is invertible in supp 1>. Then there exist mo + go E

00 () oo(RM+G IRq x IRq and gl, g2 E Rd IRq x IRq) such that
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3.2 Elliptic families and ehern characters

As indicated in the introduction, this paper employs teehniques developed by FEDOSOV. This
section gives a short review of the relevant material from [6].

3.7 Definition. i) Let Q( be an associative algebra over C and J a twosided ideal in Q( with
a traee, i.e., a linear map Tr : J --+ C, satisfying

Tr (ab) = Tr (ba)

whenever a or b belongs to J. Then Q( is ealled a trace algebra and J a trace ideal.

ii) A eollection E = {Pt, P2, a, r} of elements from Q( is called an elliptic collection if

1) p~ = Pi, 2) apl = P2 a = a and rp2 = Pir = r , 3) PI - ra, P2 - ar E J.

The index of E is defined by

ind E = Tr (PI - ra) - Tr (P2 - ar).

This notation is motivated by Proposition 3.13.

iii) IfPI,P2 are idempotents in Q( withpl -P2 E J, then E = {Pb P2, P2PI, PIP2} is an elliptie
eollection which is shortly denoted by E = {PI, P2}' It is easily seen that in this ease
indE = Tr (PI - P2)'

We also will eonsider elliptic collections depending smoothly on a parameter x E IRm . Therefore
we assume that 21 and J are equipped with suitable topologies such that J y 21 and 'Ir is a
eontinuous functional on J.

A p-form n = 2:il<...<i
p

fil ...ip(X) dXil 1\ ... 1\ dXip is said to be an element of AP(IRm , 21) (or
AP(IEtm , J), or Ag(IEtm , 2t)) if the functions Jil ...ip(X) belong to coo(IEtm , 21) (or COO(IRm , J), OI

Cü(IRm
, J)). The graded eommutator of a p-form n and a q-form fi is defined as

3.8 Definition. A set E = {PI, P2} of functions Pi E coo(IRm , 21), is an elliptic family on IFtm

with values in Q( if Pt = Pi, and PI - P2 E Cü(IRm
, J). To Pi associate its curvature form

ni = (i/21f)PidpidPi and then define the ehern character of E by

~ 1 k k
eh E = Tr (PI - P2) + L.J k! 'Ir (nI - 02)'

k=1

This is a complex-valued inhomogeneous form of even degree with compact support. If E does
not depend on a parameter, i.e., IRm = IRo := {O}, we can view E as an elliptic collection, and
then clearly ind E = eh E.

To a general elliptic family E = {PI, P2, a, r} (i.e., pi,a,r E coo(IRm ,21), conditions 1),2) of
Definition 3.7.ii) hold pointwise and PI - ra,P2 - ar E CÜ(IRm, J)) we associate

PI(X) - ( pI(X) - r(x)a(x) r(x))
- a(x )(pt{x) - r(x )a(x)) a(x )r(x) ,

11



These are idempotents in the algebra of 2 x 2-matriees with entries from 2t.. Here the traee ideal
are those matriees with entries from J and the traee is the sum of the traees of the diagonal
elements. Then we define

In ease E is independent of a parameter we again see that indE = eh E.

3.9 Theorem. (cf. [6], (5.8)) For an elliptic family E = {I, 1, a, r} with values in 21. the
Ohern character is given by

~ (k - I)! { 2k-l 1 2k-l }
eh E = Th [a, r] - L...J (21l"i)k(2k _ I)! Th d(rda) + 2"[(rda) ,rda]

k=l

modulo the exterior differential oE a compactly supported, inhomogeneaus form.

(3.8)

3.10 Definition. Let }R2q = }R~ x IR~. Then S(IRq, 21.) denotes the algebra of formal symbols

with multiplieation
_ 00 1

äob= L Ak { L a!(a~ad(D~bm)}.
k=O lal+l+m=k

The function ao is ealled leading term of ä. The traee ideal S(IRq, J) eonsists of those symbols
a with ak E C[jO (IR2q

1 J) for all k E No. On this ideal different traces are defined by

where the 'tr' is the trace in J. For M E No define the truncated symbol alM = L~o ak (a
funetion on IR2q).

To an elliptic colleetion E = {fil, P2, a, T} we ean assoeiate different indices, depending on
which of the traees Thk we use. They are denoted by indk, and simply ind if k = q.

3.11 Proposition. (cf. [6], Proposition 3.5). indkE = °for k f:. q.

Obviously, Einduces an elliptic family E = {Pl' P2, a, r} on }R2q with values in 21., consisting
of the leading terms of the involved symbols. This family is called the leading term of E.

3.12 Theorem. (cf. [6], (4.13)). Let E be an elliptic collection in the algebra oE symbols
S(}Rq ,21.) and E its leading term. Then

iudE = f. eh E,
]R2q

(3.9)

where }R2q is oriented by d'TJl 1\ dYl 1\ ... 1\ d7]q 1\ dYq > 0, and on the right-hand side only the
term oE degree 2q oE the inhomogeneous form eh E is integrated.
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3.3 The index of elliptic wedge pseudo-differential operators

First, we state a well-known connection between Fredholm and trace dass operators.

3.13 Proposition. Let Ho be a Hilbert space and T E .c(Ho). JE there is an operator S E

.c(Ho) such that both 1 - ST and 1 - T S are oE trace dass, then T is a F'redholm operator
with index

indT = Tr (1 - ST) - Tr (1 - TS).

For abbreviation we set
H = Ko,o(XI\)o EI' CL.

with a fixed L E No. Next, we introduce two trace algebras.

(3.10)

3.14 Definition.
trace.

i) Let 21 = .c(H) with trace ideal J = .cl(H) equipped with the usual

ii) Let 2lw be the algebra of pseudo-differential operators with symbols a E SO,O (~q x
~q ; H, H) satisfying

Then, in particular, op(a) : WO,O(JRq, H) --+ WO,O(JRq, H) continuously. By Th!3orem 2.3
there is an N > q such that the embedding WS,O(JRq, Kr,€(XI\)!? El'CL ) Y WO,O(lRq,H) is
of trace dass for s > N, fJ > q, c > 0, r > n + 1 and (} > n + 1. The trace ideal Jw of 2lw
consists of those operators where in addition

with certain J.L < -N, m < -q, c > 0, r > n + 1, (} > n + 1, and the trace is defined (or
given, cr. Corollary 2.4) by

Trop(a) = (21f)-q ff Tra(y,,,.,) dyd".,;

here 'tr' is the trace on .cl (H).

3.15 Notation. In the following let 1 + m + g, 1 + rno + go, and ep as in Proposition 3.6. We
use the abbreviation

Then

a = l+m+g, ro = 1 + mo + go'

aro = 1- (1 - ep)gl' roa = 1 - (1 - ep)g2'

with suitable gl,g2 E R~o(IRq x IRq). In particular, ro(Y,'l]) = a(y,'l])-l for (y,'f/) E JR2q \
supp (1 - </», and

E = {I, 1, a, ro}

is an elliptic family on }R2q with values in 21.

13
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Now set
a = a, TO = ro,

i.e., a, To E S(~q, 2l) are formal symbols consisting only of a principal symbol. Further, choose
cp E Coo(~2q) with cp == 0 on the set {aro -=I I} and rp == 1 for large l(y,1])I. Then consider the
formal symbol

00

T = TO + To L [ep(l- aTo)t·
k=l

" 1 (Ba )(Da ) E RC-k,-k(TDlq X mq).ek = 6 ---, 1J a y Ta .IN.. 1ß
a.

lal=k

(3.12)

EspeciallYl each coefficient ofl-aTa is a Green symbol. Together with the fact that rp(l-aro) =

othis shows that r = ra + 2:r=l ),k rk with

Hereby, to the weights ek > 0 corresponding to rk, cf. the definition of Green symbols, we find
an e > 0 such that ek > e for all k ~ 1. Furthermore, inserting (3.12) yields

00 00

I-aT = (1 - ara) - L [ep(I - ara)]k + (I ~ ara) L [ep(1- aTo)]k
k=l k=l

00

(1 - ep)(I - aTo){1 + L [ep(I - aro)]k},
k=l

hence I -ar = 2:r=o ),kdk with dk E ns,rElRCö(IR2q, L(H, K.,S,C (X/\ )T)EB<CL)with an appropriate
e > 0 independent of k E No. Analogous statements are true for I - Ta; hence

E = {I, I, a, T} (3.13)

is an elliptic family in S(~q,2l). The leading symbol of E is exactly E, cf. (3.11). Finally, if
we set

bk = ro + ... + rk, k E N,

the (standard) construction of a parametrix shows that

(3.14)

1 - op(a)op(bk) = op(g2,d

with gl,k' g2,k E RGk,-k(~q X ~q); again the involved weights are independent of k in the above
sense. In fact, a 0 ra corresponds to the asymptotic expansion of a#ro, cf. Theorem 1.3. Then
Proposition 3.6 yields that 1 - a#ro E RC1,-1(lRq X IIfl). Hence, .

k-1

ra + ro# L (1 - a#ro)#j
j=l

14



is a Leibniz inverse of a modulo Rak,-k('«l x IRq). Since (l-ep)#(l-a#ro) E RaOO,-OO(ffi,q x IRq),
we obtain another inverse by

k-1

ro + To# L [ep#(l - a#ro)]#j.
j=1

Clearly in the expansion of this symbol we can omit all terms in Ram,-m(IRq x JRG) for m 2' k,
to obtain a third inverse of a, which is exactly bk . Thus, for sufficiently large k,

EiJt = {1, 1, op(a), op(bk )}

is an elliptic family in the algebra 21.q,.

(3.15)

3.16 Definition. For m E N and (appropriate) functions f,g defined on IR2q set Rm(f,g) =
I:lo-l=m ~.Rm,o-(f, g) with

Rrn,,,(f,g)(y, TI) = [(1- o)m-l JJe-iX{a; f(y, TI +OOD~g(y + x, '1/) dxd~dO,

cf. Theorem 1.3.

3.17 Theorem. (regularized trace). Let H be as in (3.10), M E N with M > N, and N as
in Definition 3.14.ii). Then

(3.16)

(ä 0 r)IM =

is a trace dass operator with trace equal to O. Here, [".] denotes the commutator.

PROOF: By definition of the product in S(IRq, 21.) and Theorem 1.3 we get the identities

M 1 M-Ial

L a! (8~a)D~{ L Tl}'
101=0 l=O

MIM
L a! (a~a)D~{ L Tl} + RM+1(a, bM)

lal=O l=O

and from this we see

M 1 M

(a#bM) - (Ci 0 r)IM = L a! (8~a)D~{ L TL} + RM+1{a, bM)'
lal=1 l=M+1-1a:1

Analogously one can show that

MIM
(bM#a) - (r 0 ä)IM = L a!a~{ L TL }(D~a) + RM+1(bM , a).

lal=1 l=M+I-lal

Now we can rewrite the operator in (3.16) as
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Hence, it is sufficient to show that both Al and A2 are of trace dass and Tr Al = Tr A2 .

Therefore set S~,l := (a~a)(D~rd, S~,l := (a~rl)(D~a) for 1 ::; lai::; M, and M + 1 - lai ::;
l ::; M. Then S~ l' S~ 1 E Ra(M+l),-(M+l) (IRq x IRq), hence op(S~ l) and op(S~ 1) are of trace
dass and " "

Trop(S~,I) = 11 tr {(a~a)(D~rl)}(Y"fJ)dya7).

Since lai, l ~ 1 the trace can be pulled in front of the integral and using integration by parts
we can interchange a~ and D~. Then by the invariance of the trace under cydic permutations
we obtain

Trop(S~,I) = 11 tr {(a;rd(D~a)}(y,7)) dyd7) = Trop(S~,I)'

Finally, Trop(RM+l(a,bM)) = TrOP(RM+l(bM,a)) by the following Lemma 3.18, and this
finishes the proof. _

3.18 Lemma. Let m, k > N. Then

as trace dass operators Wo,o (IRq, H) --+ WO,o (IRq, H).

PROOF: Since both Rm,Cl(a, bk )) and Rm,Cl(bk, a) are elements of Räm,-m(I~.q x IRq), Corollary
2.4 shows that the associated pseudo-differential operators are of trace dass. Now let X(x,~) E

S(lR2q ) with X(O, 0) = 1 and set

fe(x, e, 0, y, 1]) = X(cx, ce)a~a(y, 1] + OOD~bk(Y + x, 1]).

Then, by definition of oscillatory integrals and Corollary 2.4 we have

For each lo, h E N we obtain after integration by parts

11 e-ixf,f.(x,~,0, y, 7)) dx a~

= 11 e-ixf, (0 -21, (1 - t,do(1 - t,x)1I {(x} - 21
0 f.(x, ~,O, y, 7))}dx a~.

Since a~a E Räm,o(IRq x ffi.'l) and D;bk E R~~~(IRq x IRq) there exist appropriate reals s > N,
{ > 0, and (2 > q such that N > M(s, {, (2) (the constant associated to {K>.} and KS,'r(XII)ll via
(1.1)) and the latter integrand is a smooth function taking values in L(H, KS,'r(XII)ll EB CL),
w hose norm can be estimated from above by

c (0 - 2l 1 (x) -2lo (1] + Oe) -m+M(s,I,ll) (y + x)-m

::; c (e)m+M(s",ll)-2LI (x)m-2l 0 (1]) -m+M(s,'r,Q) (y) -m ,

where the constant c is independent of (), c. This allows us to write
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Now Je is, for fixed E > 0, integrable as a function lR;;~ X [0, 1] X jR~?1J --;. 1:,1 (H) and this justifies
the following calculation. Using the transformations y r-+ y - x and "7 r-+ TJ - f)~ we can write

// 1\1 -6)m-1tr / / e-ixC, f,{x, ~,6, y, T/) dx a~ d6 dy al)

= //[(l- 6yn-1tr // e-ixC,x{ox, 01))8;a{y - x, I))D~bdy,I) - 6~) dy al)d6 dx a~.

By means of an integration by parts we now can interchange the differentiations a~ and D~.

Thus, using the invariance of the trace under permutation and the transformations x r-+ -x,
~ r-+ -~, the latter expression equals

Taking the limit for E --;. 0 then yields

But the right-hand side of this equation is just the trace of op(Rm,a(bk' a)). •
3.19 Theorem. The operator op(a) : WO,O(JRq, H) --;. W.o,O(rRq , H) is Fredholm and, for q ~ 2,
its index is given by

. d () - (q - I)! {Tr ( -ld )2q-1
In opa --(21fi)q(2q-1)!JöB a a , (3.17)

where B is an open ball in jR2q centered at 0 such that a- l exists on JR2q \ B. The orientation
on aB is that inherited from IR2q via Stokes' theorem, if IR.2q is oriented by dryl 1\ dYl 1\ ... 1\

dTJq 1\ dYq > O.

PROOF: For any integer M > N, by Proposition 3.13 and the definition ofthe index for elliptic
collections we have

indop(a) = ind{l, 1, op(a), Op(bM)} = Tr[op(a),op(bM )].

The above Theorem 3.17 on the regularized traee shows that

M

Tr [op(a), OP(bM)] = 'Ir op([a, r]IM) = L indk {I, I, ä, r}.
k=O

The latter identity is again just the definition. Now by Proposition 3.11 and Theorem 3.12

M

L indk {I, I, ä, r} = ind {I, I, u, T} = 1. eh {I, 1, a, ro}.
k=O ]R2q

The latter ehern character is computed in Theorem 3.9, and from this we obtain

(q - I)! 1. { 1 }indop(a) = - (21fi)q(2q _ I)! ]R2q Tr d(roda)2
q
-l + 2[(roda)2q~l, (roda)] ,
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(3.18)

with !R2q being oriented by d'TJl 1\ dYl 1\ ... 1\ d'TJq 1\ dYq > O. Furthermore,

1
2[(roda)2Q-l, (roda)] = (rodafq.

Since 01]ia is pointwise trace dass each coefficient of (roda)2q is also tra~e dass. But this implies
that the trace of the commutator is equal to 0. Without loss of generality ra = a- 1 on IR2q \ B,
but then on this set Tr {d(roda)2q-l} = Tr (a-1da)2q = 0. Hence

. d () - (q - 1)! j Tr {d( d )2q-l}
In op a - - ( ') (2 )' ra a .

27r~ q q - 1. B

In case of q ~ 2 each coefficient of (roda) 2q-l . contains at least one factor 01]i a and thus is
of trace class. Then one can interchange Tr and the exterior differentiation d, and the index
formula follows from Stokes' theorem. •

3.20 Remark. For q = 1 the index of op(a) is also given by (3.18) from the proof of the latter
theorem. But in general it is not possible to perrnute Tr and d, since rooya is not of trace
class.
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