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Abstract: We show an analytical index formula of Fedosov type for certain operators on an
infinite wedge W = R? x C, where C is an (infinite) cone with smooth compact basis. We
employ a version of SCHULZE’s edge calculus with weighted symbols. The operators under
consideration are of the form I + M + G; here I is the identity while M and G are zero
order pseudo-differential operators taking values in the smoothing Mellin and Green operators,

respectively, on the cone.
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Introduction

The classical index formula of ATIYAH and SINGER (1] showed how to express the index of an
elliptic operator on a closed compact manifold in terms of characteristic classes induced by its
principal symbol and the manifold. FEDOSOV in 1974 proved an analytical index formula, a
simple way of expressing the index of a zero order pseudo-differential operator op(a) on R” via
its complete {matrix-valued) symbol:

indop(a) = cn/ tr (¢~ 'da)?"';
8B

here B is a large ball in T*R™, and ¢, is a constant depending only on n, cf. [5] or [9].

We establish a formula in the same spirit for operators on a wedge. The wedge W = R? x C is
the cartesian product of Euclidean space and a cone C, where the base is a smooth compact
manifold.

Following a central idea in the approach of SCHULZE for an edge calculus [15], we consider
the operators on W as pseudo-differential operators on R? taking values in operators on the
cone C. Due to the non-compactness however, we work with a special class of ‘weighted’
pseudo-differential symbols with a precisely controlled behaviour near infinity. For the scalar
case, these classes have been introduced by SHUBIN [18], PARENTI [10], and CORDES [2], see
also [12].

The operators we are considering are of the form 7 + M + G. Here [ is the identity operator,
M and G are operator-valued pseudo-differential operators of order zero. They take values in
the ideal of smoothing Mellin and Green operators, respectively, on the cone. The operators of
the form M + G as above form an ideal in the full edge calculus, consisting of smoothing, but
nevertheless (generally) noncompact operators. In a certain sense they may be compared to
the singular Green operators in BOUTET DE MONVEL’s calculus, which are pseudo-differential
along the boundary and smoothing in the normal direction. These operators carry important
index information. In fact, many index problems in the full calculus on the wedge can be
reduced to one like this, cf. [13]; therefore this paper constitutes an essential step towards an
index theory on manifolds with edges.

The paper is based on an approach developed by FEDOsOV [6] for expressing the index of
pseudo-differential operators with values in algebras with traces. The natural spaces the oper-
ators in this edge calculus act on are weighted variants of the edge Sobolev spaces introduced
by SCHULZE. We therefore start with an introduction of the weighted operator-valued symbols
and the weighted edge Sobolev spaces and discuss the question of Hilbert-Schmidt and trace
class embeddings. We then define the classes of smoothing Mellin and Green operators we
are interested in. Next we review the relevant techniques developed by FEDOSOV and employ
them to finally derive the analytic index formula in Theorem 3.19.

Acknowledgement: We thank B.-W. Schulze for many helpful discussions. Recently, FE-
DOSOV, SCHULZE, and TARKHANOV (7] obtained a similar index formula for compactly sup-
ported perturbations of the identity by zero order operators in the edge calculus. Their formula,
however, still involves the symbol of the parametrix.



1 Operator-valued pseudo-differential operators and Sobolev
spaces

1.1 Definition. Let E be a Hilbert space. A set k = {sx; A > 0} C L(E) of isomorphisms is
called a (strongly continuous) group action on F if

i) Kakp =ry, forall A,p0>0 (in particular, k1 = 1).
ii) For each e € E the function A — kye : Ry — E is continuous.

For a group action « on E one can find non-negative constants ¢ and M such that
lealle,e < cmax{\, A7} for all A > 0. (1.1)

This can be derived from Banach-Steinhaus’ theorem (cf. [8]).

For the following considerations we fix pairs (Ej, s;), j = 0, 1,2, of Hilbert spaces with corre-
sponding group actions. Furthermore, we choose a smooth and strictly positive function

n[n]: R > Ry with [n] = |n| for [n] > ¢

for a fixed constant ¢ > 0. For abbreviation we set x(n) = K[y

1.2 Definition. For py,m € R let S#™(R? x RY; Ey, E1) denote the space of all functions
a € C*®(R? x R?, L(Ey, E,)) satisfying

sup { llx7" ()95 85 aly, Mo ()]l o, (] [y1P 7™} <00 W, € NG,
y,nERI

These semi-norms induce a Fréchet topology on S*™(RY x RY; Ey, E).

Clearly,
8298 SH™(RY x RY; Eo, By) € S¥~lebm=IBl(RY x RY; Ey, By),

SH™(RY x RY; By, Ep) - S¥™ (R? x RY; By, By) € SFFH™H™ (RI x RY; By, By).
In case By — E3 and k3 = K1 on Ey, ie., kg ) = K1, on By for all A > 0,
SHT(RI x RY; Ey, Ey) < SP™(RI x RY; Ey, E»).
If My, M, are the constants corresponding to kg, &1 via (1.1), then
SHMRY x RY; By, By) — SHHMotMum(Re « RY; By, Er) ),

where the subscript (1) indicates that both Ey and E; are equipped with the trivial action
k=1

Let S(RY, E) be the Schwartz space of rapidly decreasing functions taking values in a Hilbert
space E. To a given symbol a € S#™(R? x R?; Ey, E;) associate a continuous operator

op(a) : S(R?, Ey) — S(RY, Ey) : u — [op(a)u)(y) = /eiy"a(y,n)(fu)(n) dn.

Here, F is the Fourier transform, and dn = (27)%dn.



1.3 Theorem. Ifa € S*™(R? x RY; Ey, Ey) and b € $*™ (R? x R?; Ey, E,) then op(a)op(b) =
op(a#b), where

(a#b)(y,7) = f / aly,n + )by + z,7) dade.
For each N € N,

(@#D)(wm) = Y =5(35a)(D5D) + rvly,)
a<N

with a remainder ry € SET# —Nm+m'=N(Rd » RI; E,, Fy) given by
1 (1 _ H)N-—l )
rn(y,m) =N Y / — // e A aly,n + 66) Dybly + =, n) dzdfds.
=m0 |

The double-integrals have to be understood as oscillatory integrals.
The adequate Sobolev spaces, the so called abstract edge Sobolev spaces, are defined as follows.

1.4 Definition. Let W*(RY, Ey), s € R, denote the space of all distributions u € S'(R?, Fp)
such that Fu is a measurable function and

1/2
lulbws 0 = (215" ) Pl an) < o
For § € R we have weighted variants of those spaces, namely
W (RT, Bo) = {u € §'(R, Eo); ['u € W' (R, Ey)}.

Equipped with the obvious norm they are Hilbert spaces, having S(IR?, Ep) as a dense subset.
In case of a trivial group action, i.e., kg = 1, we use write H5(RY, Ey) and H**(R?, Eg). Then,

WS(RY, By) — HMA(R, By), (1.2)

where M is the constant in (1.1). Further, if By — E; and k1 = Ko on Ey we immediately
obtain that
W3R, Ep) — WSS(R?, By). (1.3)

1.5 Theorem. Let FEy, E, be Hilbert spaces equipped with arbitrary group actions, and
a € SH™(RY x R?; Ey, E1). Then a induces for all s, € R continuous operators

op(a) : WS (R?, Eg) — WS—HE—™(RY B,

A proof is given in [17]. Next we extend the above material to the case where E) is a Fréchet
space, which can be written as a projective limit

Ey = proj-lim Ef
1= projlim £f
with Hilbert spaces E} < E? < ..., such that the group action on E} induces (by restriction)
the group actions on each E¥. Then we set
W (R, By) = proj-lim W**(RY, Ef)
€
equipped with the topology of the projective limit, and
SH™(RY x RY; By, B1) = NkenS*™(R? x RY; By, EY).

Theorem 1.4 extends to this situation.



2 Hilbert-Schmidt and trace class operators

2.1 Mappings between L%-spaces

For Hilbert spaces Ey, By let £1(Ep, E1) denote the Banach space of all trace class operators
Ey ~» B, and, in case of Ey, E; being Hilbert spaces, £L%(Ey, E1) the Hilbert space of all
Hilbert-Schmidt operators Eq — E;. For A € L!(Ejp) let Tr (4) denote its trace. The following
results are well-known:

2.1 Theorem. An operator A : L*(R™, Ey) — L?(R!, Ey), with Hilbert spaces Ey and E;, is
a Hilbert-Schmidt operator iff it has a representation as an integral operator

(Af)w) = / kale,)f(e)dz, e LA(R™, By),

with a kernel ks € L?>(R™ x R!, L?(Ey, E;)). In this case

41 = [ [ a@,0) gy

2.2 Theorem. If E is a Hilbert space and A € L'(L*(R™, E)) is an integral operator with a
continuous kernel k4 € C(R™ x R™, L1(E)) then

Tr (A) =/t1’ ka(z,z)dz.

Here ‘tr’ is the trace on L (E).

2.2 The case of abstract edge Sobolev spaces

Let Ey — E; — E3 be Hilbert spaces, where each of the embeddings is Hilbert-Schmidt.
Then the embedding H*(R?, Ey) < H* ¥ (R?, By) is of trace class whenever s — s’ > ¢ and
d — & > q. We need analogous statements for abstract edge Sobolev spaces. As it will be
satisfied in later applications, we consider a scale of Hilbert spaces E7, r € R, which fulfills

(1) E" < E™ if r > r' (here ‘>’ holds in each component);

(2) there are mappings k) : UpE” — U, E", A > 0, such that &, = {s)|gr; A > 0} is a group
action on F,, and Ky is a group of unitary operators on E?;

(3) there is an r¢ > 0, such that the embedding E" < E" is Hilbert-Schmidt if » — ' > ry;

(4) the mapping r — M(r) : R — R, where M(r) is the constant associated with &, via
(1.1), is locally bounded.

Assumption (4) allows us to define

N(e) :=sup{M(r) + q; r > 2rg and |r — 2rq| < €}, N = inf{N(g); € > 0}. (2.4)



2.3 Lemma. For s > N, N as in (2.4), 6 > q, and v > 2r¢, vy as in (3), we have a trace class
embedding
WS(RI, ET) — WOO(RY, EO).

PROOF: By construction of N we find an & > 0 such that s > N(£). Further we can choose
an 7 € R" with » > 7 > 2rg and |7 — 2rg| < €. This implies, in particular, that

s >sup{M(r) + q; r > 2r¢ and |r ~ 2rg| < €} > M(F) + q.
By 1.2 and 1.3 we obtain

WS(RI,ET) o WH(RI, ET) — H~MP(Re BT “ HOYO(RY, E%) = WOO(RY, B0,

where the embedding () is of trace class. Note that the last identity holds since the group
action is unitary on E°. .

2.4 Corollary. Let a € S»™(R? x R?; E%, E™) with u < —N, m < —q, and r > 2ry; here N
is as in (2.4) and ry as in (3). Then o induces a trace class operator

op(a) : WYO(R?, E®) — WOY(RI, ED),

where the trace is given by

Trop(a) = (2m)77 [/ tr a(y,n) dydn.
Here ‘tr’ is the trace in L1(EY).

PROOF: First, from Lemma 2.3 it is clear that op(a) is of trace class. Further, there exists an
€ > 0 such that —p < —N(€). Hence we can choose an 7 with 7 > 7 > 2ry and |7 — 2rg| < €
such that —p < N(&) < —(M(7F) + ¢). In particular, we obtain

a € SM™(RY x RY; B, BT) ¢ SHMOm(RY x RY; B°, BT )y,

where the subscript (1) means that both E° and E” are equipped with the trivial group
action & = 1. Since the group action on E° is unitary we have WOO(R?, E®) = L?(R9, E?).
Furthermore, in view of p + M(7) < —q and L(E°, ET) — L£1(E°), op(a) has a kernel

k(y,y') = | €47¥a(y,n) dn € C(R? x RY; L(E)).
Thus Theorem 2.2 yields Tr (A) = /tr k(y,y)dy = (2n)~¢ // tr a(y,n) dydn. u

2.3 Application

Here we show that the results of Section 2.2 are applicable to wedge Sobolev spaces.

In this section let X be a smooth compact manifold of dimension n. We fix a covering U =
{Uh,...,Un} of X with coordinate neighbourhoods U; and charts x; : U; — V; C R*, and
g; : U; — V; C S, the unit sphere in R+l To the latter diffeomorphisms associate

0;: Ry x U; — R (¢, 2) = t6;(a).
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Further, let {¢;,...,¢n} be a partition of unity subordinate to the covering .

First, we define a scale of cone Sobolev spaces K%7(X”)2 on X" = R, x X for real s, v and
o; it will play the role of the spaces E™, » € R™, in the preceding section.

For v € R define a linear bijection S, : CP(R;. x R*) — CO(R1") by
(Syu)(r,z) = e("’_ﬁzi)ru(e_r,z), reR, z € R".

2.5 Definition. Let w(t) € C°(Ry) such that w = 1 near ¢t = 0. Then K*7(X")? denotes
the closure of C§°(X") with respect to the norm

N
||U||)2cm(x/\)o = Z | Sy[(weju) o (1 x Xj)_l]"%{a(mwn) + (1 — w)gju) o 95,'_1||%1s.9(ml+n)-
J=1

Here, the functions on the right-hand side are extended by zero outside their natural domains.
This yields a Hilbert space. The construction is independent of the choice of w.

The proof of the following lemma is straightforward.

2.6 Lemma. For each A > 0 the mappings
(kaw)(t, z) = AU 2u(0 7),  we CP(X7Y), (2.5)

- extend to continuous operators ky : K*7(X")¢ — K$7(X")¢. The operator-norm | x| is
locally bounded as a function of (), s,v,0) € Ry x R x R x R. Furthermore, {xy; A > 0} is a
group action (cf. Definition 1.1) on each K7(X"), and is unitary on K%9(X")O.

As a corollary, we obtain that the constant M(s,~, p) associated to {xx} and K£%7(X")? via
(1.1) is locally bounded as a function of (s,7,0) € Rx R x R.

2.7 Remark. From the well-known embedding properties of the usual (weighted) Sobolev
spaces on R!*" it is straightforward to verify that the embedding

KT (XMNe o K5 (XM

is Hilbert-Schmidt if s — s’ > 2, v — ' > 0, and ¢ — ¢’ > ntl e, (3) from Section 2.2 is
valid with rg = (%£2,0, 2£1). Thus the scale K$7(X")® satisfies conditions (1)—(4) from the
beginning of Section 2.2. In particular, Lemma 2.3 and Corollary 2.4 hold.

3 The index formula

3.1 Green and smoothing Mellin operators

In [16] was introduced an algebra of pseudo-differential operators on an (open stretched) wedge
RI x X", with X as in Section 2.3. In particular, this calculus allows a control of the asymptotics
of solutions to elliptic equations. To deal with index theory, it is not necessary to handle these
asymptotics. Thus we modify the material from [16] and develop a more general algebra.
Proofs are omitted, since they are (simpler) variants of those in [16].



By L*#(X) denote the space of pseudo-differential operators of order p on the manifold X, and
by L¥(X;R) the parameter-dependent ones with parameter 7 € R. For real 3 set

I's ={z€C; Rez=pf}.

By means of the identification I's = R : # 4+ it — 7 we can define L*(X;Tg).
A function w(t) € C°(R,) with w = 1 near t = 0 is called cut-off function.
With a function f € L¥(X;T/3_,), ¥ € R, we associate a Mellin pseudo-differential operator

k(D) = 5 [ TTEMOE) s we CRXN),
r

1/2—~

Here M is the Mellin transform, defined for u € C§°(X") = C§°(Ry,C*®(X)) by

cQ
(Mu)(z) =/ 2~ Lu(t) dt.
0
For arbitrary s, g, o' € R and cut-off functions w, & we have continuous extensions
wopl, ()i« K2 (XM)e — josmrtn/2(x e
3.1 Definition. For ¢ > 0 set
Se={z€C ! —c <Rez < 2! +¢}.

Now, M¥(X), u € R, denotes the space of all functions h € A(S., L*(X)), i.e., h is holomorphic
in z € S; with values in L#(X), such that

h(B +it) € L*(X;R,) uniformly in 8 €]2 —¢, & + ¢

M¥(X) becomes a Fréchet space if equipped with the system of semi-norms consisting of that
from A(S,, L*(X)), and

sup {p(h(ﬁ+ i7)); ”TH —e<f< ”T“ + e},
where p(-) runs over a system of semi-norms of L#(X; R, ).

3.2 Definition. For p,m € R, ¢ > 0, the space M (X) consists of all functions h €
C®(RY, M¥ (X)) such that

sup { " p (ghly, B+im)); Bl —e < f< Bl 4e,yeR <o (36)

for all @ € Nj, and all semi-norms p(-) of LA(X;R;). On MI™(X) we define a Fréchet
topology by means of the semi-norms of C®(R?, M (X)) and those from (3.6). Finally set
M:™(X) = NperME™(X) and

M*™(X) = UgsoMP™(X),  p€ RU{—o0}.



3.3 Definition. i) A smoothing Mellin symbol of order (0,mm) is an operator-valued func-
tion on R? x R? of the form

d(y,m) = w(tlm)opyr’* (h)(y)a(¢n), (3.7)
with cut-off functions w, @, and h € M~ (X).

ii) For some fixed L € Ny let RZ™(R? x R?), v,m € RU {—oo}, denote the space of all
functions g(y,n) € NserS*™(RI x RY; K£0(XM)0 @ CL, K0 XM @ CF) satisfying

8 € NyerS” ™ (RY x RE K50(XM)° @ CF, £%5(X")® @ CF),

g* c nseRSu,m(Rq % Rq; }Cs,O(X/\)O e CL,}COO,E(X/\)OO e (CL),

for a certain € > 0 (depending on g). For a space E with group action {x,} we employ
the action {x) @ 1} on E @ Cl. Furthermore * means the pointwise formal adjoint
with respect to the scalar product on X%°(X")° @ CF. These functions are called Green
symbols.

iil) Let Rﬁ’ﬁG(R‘f x R?) denote all symbols m + g, where, in block matrix notation,

40 }Cs,O(X/\)O ]Coo,O(X/\)(]
m(y,n)=(0 0)(y,n)r ® — ®
CcL CcL

with d as in (3.7), and g € Rg:m(R" x RY). In particular, we obtain that
Ry 6(RY x RY) C NyerS¥™(RY x R:; K0(X M) @ CF, KX ™) @ CF).

3.4 Remark. Let d be as in (3.7) with A € M, ,°™(X). Then [16], Corollary 2.25 implies
that for each 0 < e < ¢gg

d(y,n) = w(tlm)ops, ™M) W)a(th]) v (y,m) € B
as operators on K5¢(X")¢, hence
d € Ny perSPO(RI x BRI KHE(X )2, K2 (XM)).

Both symbol classes Rg and Rjpryg form an algebra with respect to pointwise multiplication.
The Green symbols form an ideal in the sense that

RE™RI x RY) - RYTo(RI x RY) C RE™™ (RY x RY);
the analogous statement holds if we interchange the factors on the left-hand side. Furthermore

we have 920§ RE™ (R? x RY) ¢ Rl 1Pl(Re » RY), 9 RO™ (R x RY) € RO PI(Re x me),
and the important fact that

OZR™ L(R? x RY) C RG™(RY x BY) V]al > 1.



The corresponding pseudo-differential operators act continuously between the weighted wedge
Sobolev spaces, cf. Sections 1 and 2.3. The composition of operators

op(m + g)op(m’ + g') = op((m + g)#(m’ +g))
in the sense of Theorem 1.3 furnishes a continuous map
0, 0,m/ ) !
Ryfy (R x R?) x RyTA(RY x RY) - RyVE™ (R x RY),
with restrictions
RY™R? x BRY) x Ry o(RT x RY) — RG™™ (RI x RY),

RO L(R? x RY) x RG™ (R? x R?) — RY™ ™ (RY x RY).
Analogously the composition of Green operators yields a mappin
g
RY™(R? x RY) x RA™ (RY x RY) — RETH ™™ (R » RY),

Now let 1 = ( (1) 8 ) in the sense of Definition 3.2.iii). The pseudo-differential operators we

consider have symbols
l1+m+g, with m+ge Rgf_l_G(Rq x R7).

In case of ellipticity, these operators are Fredholm. We will show an analytical index formula
in Theorem 3.19.

3.5 Definition. Let m + g € RR}IO+G(Rq x R?) with m = ( g 8 ) and d(y,n) = w(tn)])
op;,,n/g(h)(y)dz(t[n]). The symbol 1 + m + g is called elliptic, if
i) (14 k) e MOO(X),

ii) for large |(y,n)|

}‘CO’O(X"‘)O ,CO,O(X/\)D
(1+m+g)y,n): o) — ®
(03 CE

is invertible and the inverse is uniformly bounded in (y, 7).

Then we find a parametrix to 1 + m + g, i.e., an inverse under the Leibniz product modulo
R (R? x R?). But we will only need the following

3.6 Proposition. (cf. [16], Proposition 3.10) Let 1 + m + g be elliptic and ¢ € C®(R??),
¢ = 1 for large |(y,n)|, such that 14+ m+ g is invertible in supp ¢. Then there exist my +gg €
Ry o(RT x RY) and g, g, € RY’(R? x R?) such that

(l+m+g)(l+mp+gy)=1-(1-¢)gy, (1+mp+gy)(l+m+g)=1-(1-¢)g,.

10



3.2 Elliptic families and Chern characters

As indicated in the introduction, this paper employs techniques developed by FEDOsSOV. This
section gives a short review of the relevant material from [6].

3.7 Definition. i) Let 2 be an associative algebra over C and J a twosided ideal in 2 with
a trace, i.e., a linear map Tr : J = C, satisfying

Tr (ab) = Tr (ba)
whenever @ or b belongs to J. Then 2 is called a frace algebra and J a trace ideal.
ii) A collection F = {p1, p2, a, r} of elements from 2 is called an elliptic collection if
)p?=p; 2)apr=pa=aandrpy=pir=r1, 3)p—ra,py—ar€l.
The indez of E is defined by
ind E = Tr (p; — ra) — Tr (p2 — ar).
This notation is motivated by Proposition 3.13.

iii) If p1,py are idempotents in A with py —ps € J, then E = {p1, p2, p2p1, p1p2} is an elliptic
collection which is shortly denoted by E = {pi1, p2}. It is easily seen that in this case
ind E = Tr (p, — pa).

We also will consider elliptic collections depending smoothly on a parameter z € R™. Therefore
we assume that 2 and J are equipped with suitable topologies such that J — 2 and Tr is a
continuous functional on J.

A pform Q) = Zi1<...<i,, fir.ap(z)dxy; A ... Adzg, is said to be an element of AP(R™, ) (or
AP(R™,7), or AJ(R™,2)) if the functions f;,. ;,(z) belong to C®(R™,A) (or C=(R™,7), or
C§°(R™,7)). The graded commutator of a p-form £ and a g-form  is defined as

[Q,Q=0A0 - (-1)PQAQ.

3.8 Definition. A set E = {p;, p2} of functions p; € C®°(R™,2), is an elliptic family on R™
with values in 2 if p? = p;, and p; — po € CP(R™,7). To p; associate its curvature form
Q; = (1/2m)pidpidp; and then define the Chern character of E by

oo
1 ,
ch E =Tr (p; — p2) + ZE’I&-(Q{“ — k).
k=1

This is a complex-valued inhomogeneous form of even degree with compact support. If E does
not depend on a parameter, i.e., R = R0 := {0}, we can view E as an elliptic collection, and
then clearly ind E = ch E.

To a general elliptic family E = {pi, p2, a, r} (i.e., pi,a,r € C®(R™,2), conditions 1), 2) of
Definition 3.7.i1) hold pointwise and p; — ra,p2 — ar € C§°(R™,J)) we associate

_ p1(z) — r(z)a(zx) 7(z) {0 r(x
Pl(f“")‘(a(x)(m(a:)—r(z)a(m)) alz)r(z) ) PZ("”’"(O p2(2) )

11



These are idempotents in the algebra of 2 x 2-matrices with entries from 2. Here the trace ideal
are those matrices with entries from J and the trace is the sum of the traces of the diagonal
elements. Then we define

ch E =ch {P, P»}.

In case E is independent of a parameter we again see that ind E = ch E.

3.9 Theorem. (cf. [6], (5.8)) For an elliptic family E = {1, 1, a, r} with values in U the
Chern character is given by

= (k—1)! 2%-1 , 1 2k—1

hE= — e T =[(rd d 3.

c Tr [a, 7] kEZI 2mi)F (2 1)!Tr d(rda) + 2[(7" a)**~*, rda} (3.8)
modulo the exterior differential of a compactly supported, inhomogeneous form.

3.10 Definition. Let R?? = R} x R}. Then S(R?,2l) denotes the algebra of formal symbols
o0
a=> Mag,  ap€CPRY, ),

with multiplication

aob=Y [ Y é(@,‘;‘az)(ngm)}.

k=0 |a|+l+m=k

The function ay is called leading term of a. The trace ideal S(R?,J) consists of those symbols
a with ay € C$°(R%,3) for all k € Ny. On this ideal different traces are defined by

Trya = (27) ¢ // tr ax(y,n) dydn, k € No,

where the ‘tr’ is the trace in J. For M € Ny define the truncated symbol a|p = ch‘io a (a
function on R24).

To an elliptic collection E = {fy, p2, @, 7} we can associate different indices, depending on
which of the traces Tr; we use. They are denoted by indg, and simply ind if &k = ¢.

3.11 Proposition. (cf. [6], Proposition 3.5). indyE = 0 for k # ¢.

Obviously, E induces an elliptic family E = {p,, p2, a, 7} on R?? with values in 2, consisting
of the leading terms of the involved symbols. This family is called the leading term of E.

3.12 Theorem. (cf. [6], (4.13)). Let E be an elliptic collection in the algebra of symbols
S(R?,2) and E its leading term. Then

indE=/ ch E, (3.9)
R2¢

where R?? is oriented by dmy Adyi A ... A dng A\ dy, > 0, and on the right-hand side only the
term of degree 2q of the inhomogeneous form ch E is integrated.
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3.3 The index of elliptic wedge pseudo-differential operators

First, we state a well-known connection between Fredholm and trace class operators.

3.13 Proposition. Let Hy be a Hilbert space and T € L(Hy). If there is an operator S €
L(Hy) such that both I — ST and I — TS are of trace class, then T' is a Fredholm operator
with index

indT =Tr (I - ST) - Tx (I - TS).
For abbreviation we set
H=K"Xx"ect. (3.10)
with a fixed L € Ny. Next, we introduce two trace algebras.

3.14 Definition. i) Let A = L(H) with trace ideal 3 = L(H) equipped with the usual
trace.

ii) Let 2y be the algebra of pseudo-differential operators with symbols ¢ € S®0(R? x
R?; H, H) satisfying

Jeg>0V0<e<eVs>0: ae SR x RY; KS(XM)* @ CL, K5 (X" @ CL).

Then, in particular, op(a) : WOO(R?, H) — WYO(RY, H) continuously. By Theorem 2.3
there is an N > ¢ such that the embedding W*9(R9, K¢(X")e @ CL) — WOO(RY, H) is
of trace class for s > N, > q,e > 0,7 >n+1 and o > n+ 1. The trace ideal Jy of 2y
consists of those operators where in addition

a € S*™(RI x RY; H,K™¢(X™M2 @ CL)

with certain y < —N, m < —q,e > 0,7 >n+1, p > n+ 1, and the trace is defined (or
given, cf. Corollary 2.4) by

Trop(a) = (2m)* [ [ Traty,n) dyay
here ‘tr’ is the trace on L!(H).

3.15 Notation. In the following let 1 + m+g, 1+ my + gg, and ¢ as in Proposition 3.6. We
use the abbreviation

a=14+m+g, ro =14+ mg + gg.
Then
arg =1~ (1 - ¢)gy, roa =1—(1 - ¢)g,.
with suitable g;,g, € R%O(R" x R?). In particular, ro(y,n) = aly,n)~! for (y,n) € R\

supp (1 — ¢), and
E = {1, 1, a, ro} (3.11)

is an elliptic family on R?4 with values in 2.
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Now set
a = a, To = 70,

ie., a,7p € S(R?,2) are formal symbols consisting only of a principal symbol. Further, choose
© € C®°(R??) with ¢ = 0 on the set {arg # 1} and ¢ =1 for large |(y,7n)|. Then consider the
formal symbol

oo

Z (1 — a7o)]*. (3.12)
k=1

Now, 1 — arg = (1 — arp) + Ezil Xeep with

‘3!
‘il

k=) é(aﬁ"a)(D?m) € R;F (R x RY).

|a|=k

Especially, each coefficient of 1—@# is a Green symbol. Together with the fact that ¢(1—arg) =
0 this shows that 7 = rg + 3 5o ; Ay with

re € RZFHRI X RY), k> 1.

Hereby, to the weights €5 > 0 corresponding to rg, cf. the definition of Green symbols, we find
an € > 0 such that ¢, > ¢ for all £ > 1. Furthermore, inserting (3.12) yields

1-a7 = ) =3 [ —aro)lF + (1~ aro) Y [p(1 - a7
k=1 k=1
= A-p-a){l+) led-an)},

k=1
hence 1-af = Y 5>, A¥dy, with d € N, ,erCP (R, L(H, K (X))@ C) with an appropriate
e > 0 independent of k¥ € Ny. Analogous statements are true for 1 — 7a; hence

E={1,1,a,r} (3.13)

is an elliptic family in S(R?,2). The leading symbol of E is exactly E, cf. (3.11). Finally, if
we set
by =ro+...+71K, keEN, (3.14)

the {standard) construction of a parametrix shows that
1 —op(bx)op(a) = op(g; 1}, 1 —op(a)op(bx) = op(gak)

with g; 4,824 € R_’c _k(]Rq x R9); again the involved weights are independent of k in the above
sense. In fact ao 7y corresponds to the asymptotic expansion of a#ry, cf. Theorem 1.3. Then
Proposition 3.6 yields that 1 — a#ry € RC_;1 1(]R‘? x R7). Hence,

k-1

ro+ro# Y (1 —arg)#

J=1
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is a Leibniz inverse of a modulo Rék’”k(R‘? xIR7). Since (1—@)#(1—a#ry) € R 7 (RIxR7),
we obtain another inverse by

k-1

7o + ToFt Z [p#(1 — adtro)]?.

i=1

Clearly in the expansion of this symbol we can omit all terms in RZ"™ ™" (R? x R?) for m > k,
to obtain a third inverse of a, which is exactly bg. Thus, for sufficiently large k&,

Ey = {1, 1, op(a), op(b)} (3.15)
is an elliptic family in the algebra 2y.
3.16 Definition. For m € N and (appropriate) functions f,g defined on R?? set R,,(f,g) =
Lioj=m A Bma(f,g) with

Rono(f,9)(y,m) = /0 (- f [ €707 f(y,n + 06) Dy g(y + 3,1) dwdtdd,
cf. Theorem 1.3.

3.17 Theorem. (regularized trace). Let H be as in (3.10), M € N with M > N, and N as
in Definition 3.14.ii). Then

[op(a), op(bm)] — op([@, 7|ar) : WO (R?, H) — WO (R, H) (3.16)
is a trace class operator with trace equal to 0. Here, [-,-] denotes the commutator.

PROOF: By definition of the product in S(R?,2) and Theorem 1.3 we get the identities

M 1 M-la|
@oMlu = Y —@aDg{ Y n},
la]=0 =0
M M
1
afby = Z E(BSG)DZIQ{Z”} +RM+1(G, bM)
le=0 " 1=0
and from this we see
Mo M
(atba) = @o Ay = 3 S@aDF{ D n}+ Rarelabu).
laj=1 " l=M+1—|a|
Analogously one can show that
Mo M
(utta) - (Fodlu = Y —d5{ 3. n}(Dja)+Rusibw,a).
la=1 " =M +1—|a|

Now we can rewrite the operator in (3.16) as
op ((a#tbum) — (@ o 7)ar) — op ((bar#a) — (Foa)|n) =: A1 — 4.
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Hence, it is sufficient to show that both A; and Aj are of trace class and Tr A; = Tr A,.
Therefore set Sclr,l = (Oya)(Dyr), Sg’, = (0pn)(Dya) for 1 <ol < M, and M +1 - |af <

| <M. Then S}, 8%, € RE;(MH)’_(MH)(R‘] x R?), hence op(Sy ;) and op(S2 ) are of trace
class and

Trop(SL,) = / [ e (@305, .

Since |a|,! > 1 the trace can be pulled in front of the integral and using integration by parts
we can interchange 9y and Dy. Then by the invariance of the trace under cyclic permutations
we obtain

Trop(Sh, // tr {(897:)(Dga)}(y,n) dydn = Trop(S% ).

Finally, Trop(Rp+1{a,brr)) = Trop(Rar+1(bar,a)) by the following Lemma 3.18, and this
finishes the proof. =

3.18 Lemma. Let m,k > N. Then
Trop(Rm,o(a,bk)) = Trop(Rm,qo (bx, a))
as trace class operators WOO(RY, H) — WOO(RY, H).

PROOF: Since both Ry, s (a,bi)) and Ry, o (bk,a) are elements of R;™ ™™ (R? x R?), Corollary
2.4 shows that the associated pseudo-differential operators are of trace class. Now let x(z,£) €
S(R??) with x(0,0) = 1 and set

fe(z,€,0,y,m) = x(ez,e€)0 aly,n + 08) Dy by + z,7).

Then, by definition of oscillatory integrals and Corollary 2.4 we have

Tr op(Bim o (a, bx)) //tr / _gym-1 hm// i€ £ (2. €,0,y, )dxdgde}dydn

For each [y, l; € N we obtain after integration by parts

/ / e £, (2,€,0,y,7) do dE
= f / )T (1= A (1 — Ay) {(z) 7 fu(s,€,60,y,7m) }dx dE.

Since dpa € RZ™ D(]R"’ x R7) and Dgby € RM+G(]RQ x [R?) there exist appropriate reals s > N,
v >0, and o > g such that N > M( 5,7, @) (the constant associated to {x)} and K>7(X")? via
(1.1)) and the latter integrand is a smooth function taking values in L(H, X*7(X")? @ CL),
whose norm can be estimated from above by

()7 (&) 70 -+ 08) TN (g 4 7y
< c({)m-f-M(s,‘f,g)—‘Zh (x>m—2lg <77>

—m+M(5,7,0) (y>_m

where the constant ¢ is independent of ,e. This allows us to write

Teop(Fons(a, b)) = Jim [[ [ 1ot [[ 7% (o8, 6,,m do de pas ay an
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Now f, is, for fixed € > 0, integrable as a function Riqg x [0,1] x R2%, — L£1(H) and this justifies
the following calculation. Using the transformations y — y — z and n — n — 6 we can write

[//1(1‘9)m_1tf //e‘ixffs(x,é,e,y,n) da d¢ df dy dn
// / " / / ~Ex(ex, en)dy aly — =,n) Dy bi (y,n — 0€) dy dn d6 dz d&.

By means of an integration by parts we now can interchange the differentiations d7 and D7.
Thus, using the invariance of the trace under permutation and the transformations z — —z,
& — —£, the latter expression equals

// /01(1 - 60)" M // ey (—ex, —en) 0y bi(y,n + 0§} Dyaly + z,n) dz d& df dy dn.
Taking the limit for ¢ — 0 then yields
T 0D (R (650)) = [ [ T8 Ron (0r,) i i,
But the right-hand side of this equation is just the trace of op(Rm ¢ (bk,a)). "

3.19 Theorem. The operator op(a) : WOO(R?, H) —» WOO(R?, H) is Fredholm and, for ¢ > 2,
its index is given by

(¢ =1
(2m1)2(2g — 1)! Jop
where B is an open ball in R?? centered at 0 such that a~! exists on R?? \ B. The orientation

on OB is that inherited from R*? via Stokes’ theorem, if R%¢ is oriented by dm Ady, A ... A
dng A dyg > 0.

indop(a) = — Tr (o™ tda)? 1, (3.17)

PrOOF: For any integer M > N, by Proposition 3.13 and the definition of the index for Ielliptic
collections we have

indop(a) = ind {1, 1, op(a), op(bar)} = Tr[op(a),op(bar)].
The above Theorem 3.17 on the regularized trace shows that

M
Tr [op(a), op(b)] = Trop([@, 7)la) = D _ indk {1, I, @,
k=0

=
——

The latter identity is again just the definition. Now by Proposition 3.11 and Theorem 3.12

Zmdk {1,1, a, 7} =ind {1, 1, @, 7} =/ ch {1, 1, a, ro}.
R2e

The latter Chern character is computed in Theorem 3.9, and from this we obtain

BT o ™ 080+ Sl (rado)] .,
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with R being oriented by dm A dy; A ... Adny Adyg > 0. Furthermore,
1
5[(’1"065@)2?”1, (roda)] = (roda)®

Since 8y, a is pointwise trace class each coefficient of (rpda)?? is also trace class. But this implies
that the trace of the commutator is equal to 0. Without loss of generality ry = ™! on R%7\ B,
but then on this set Tr {d(rqda)?91} = Tr (a~'da)?? = 0. Hence

(g—1

indop(a) = —(2m—2q—:-i-—/ Tr {d(roda)®~1}. (3.18)

In case of ¢ > 2 each coeflicient of (roda)2q‘14contains at least one factor Jdpa and thus is
of trace class. Then one can interchange Tr and the exterior differentiation d, and the index
formula follows from Stokes’ theorem. =

3.20 Remark. For ¢ = 1 the index of op(a) is also given by (3.18) from the proof of the latter
theorem. But in general it is not possible to permute Tr and d, since rodya is not of trace
class.
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