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GEOSPHERE LAMINATIONS IN FREE GROUPS

SIDDHARTHA GADGIL AND SUHAS PANDIT

Abstract. We construct geosphere laminations for free groups, which are

codimension one analogues of geodesic laminations on surfaces. Other ana-
logues that have been constructed by several authors are dimension-one instead
of codimension-one.

Our main result is that the space of such laminations is compact. This

in turn is based on the result that crossing, in the sense of Scott-Swarup, is
an open condition. Our construction is based on Hatcher’s normal form for
spheres in the model manifold.

1. Introduction

Geodesic laminations (and measured laminations) on surfaces have proved to be
very fruitful in three-manifold topology, Teichmüller theory and related areas. In
this paper, we construct analogously geosphere laminations for free groups. They
have the same relation to (disjoint unions of) embedded spheres in the connected
sum M = ]nS

2 × S1 of n copies of S2 × S1 as geodesic laminations on surfaces
have to (disjoint unions of) simple closed curves on surfaces. The manifold M has
fundamental group the free group on n generators, and is a natural model for the
study of free groups.

Laminations for groups (including free groups) have been constructed and stud-
ied in various contexts. In [2], laminations in the free group context have been
defined in three different approaches, algebraic laminations, symbolic laminations
and laminary languages. The set of each of these three objects naturally come with
a topology and an action of the group Out(Fn) of outer automorphisms of the free
group Fn. These three approaches turn out to be equivalent. In [3], dual lamina-
tion for any isometric very small Fn-action on an R-tree is defined. In this paper,
an Out(Fn)-equivariant map from the boundary of the outer space to the space of
laminations is obtained. This map generalizes the corresponding basic construc-
tion for surfaces. In [1], laminations for free groups are defined and studied using
graphs as a model for free groups. However, these laminations are one dimensional
objects, corresponding to geodesics. We study here objects of codimension one,
which correspond to splittings of free groups. In the case of surfaces, dimension
one and codimension one coincide.

Our main result is a compactness theorem for the space of (non-trivial) geosphere
laminations. We also show that embedded spheres in M are geosphere laminations.
Hence sequences of spheres, in particular under iterations of an outer automorphism
of the free group, have subsequences converging to geosphere laminations. It is such
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limiting constructions that make geodesic laminations for surfaces a very useful
construction.

Our construction is based on the normal form for disjoint unions of spheres in
M due to Hatcher. The normal form is relative to a decomposition of M with
respect to a maximal collection of disjointly embedded spheres in M . This is in
many respects analogous to a normal form with respect to an ideal triangulation
of a punctured surface. In particular, isotopy for spheres in normal form implies
normal isotopy, i.e., the normal form is unique.

As in the case of normal curves on surfaces and normal surfaces in three-manifolds,
we can associate the number of pieces of each type to a collection of spheres in
Hatcher’s normal form. However, these numbers do not determine the (collection
of) spheres up to isotopy. We instead proceed by considering lifts of normal spheres

to the universal cover M̃ of M .
In the universal cover M̃ , a normal sphere is determined by a finite subtree τ

of a tree T associated to M̃ together with some additional data. We construct

geospheres in M̃ by dropping the finiteness condition. We construct an appropriate
topology on the space of geospheres and show that the space is locally compact and
totally disconnected.

The lift of a normal sphere in M to its universal cover satisfies an additional
condition, namely it is disjoint from all its translates. This can be reformulated

in terms of the notion of crossing of spheres in M̃ , following Scott-Swarup, which

depends on the corresponding partitions of ends of M̃ . We show that there is
an appropriate notion of crossing for geospheres, which is defined in terms of the
appropriate partition of ends (into three sets in this case).

Our main technical result is that crossing is an open condition. We recall that
this is the case for crossing of geodesics in hyperbolic space, and that this plays a
central role in the study of geodesic laminations. The proof of compactness of the
space of geosphere laminations uses the result that crossing is an open condition.

The construction based on normal forms is not intrinsic, as it depends on the
maximal collection of spheres with respect to which M is decomposed. However,
we show that geospheres can be described in terms of their associated partitions.
This gives an intrinsic definition.

We end with a list of problems and questions in Section 10.

Contents

1. Introduction 1
2. Preliminaries 3
2.1. The model 3-manifold 3
2.2. Construction of the tree T 4
2.3. Ends of M̃ 4
2.4. Topology on the set of ends of M̃ 5

2.5. Crossings of spheres in M̃ 5
3. Normal form 6
3.1. Normal form for sphere systems 6

3.2. A description of an embedded sphere in M̃ using its normal form 6
4. Geospheres 7
4.1. Geospheres and trees 7



GEOSPHERE LAMINATIONS IN FREE GROUPS 3

4.2. The topology on Geospheres 8
4.3. A compactness theorem for geospheres 9
5. Crossing of geospheres 11
5.1. Partitions and Crossing 11
5.2. Stability of Crossings 12
6. Geosphere laminations in M 14
6.1. Topology on L(M) 14
6.2. Geosphere laminations from spheres 16
7. Compactness for geosphere laminations 17
7.1. The Compactness Theorem 17
7.2. Limit laminations 17
7.3. Laminations that are not limits of spheres 18
8. Geospheres and partitions 18
8.1. Geospheres from partitions 19
8.2. Partitions correspond to Geospheres 23
9. The Topology in terms of Partitions 23

9.1. Topology on the set GS(M̃) 24

9.2. Topology on the set C(M̃) and L(M) 25
10. Some Questions 25
References 26

2. Preliminaries

2.1. The model 3-manifold. Consider the 3-manifold M = ]kS
2 × S1, i.e., the

connected sum of k copies of S2 × S1. A description of M can be given as follows:
Consider the 3-sphere S3 and let Ai, Bi, 1 ≤ i ≤ k, be a collection of 2k disjoint
embedded balls in S3. Let P be the complement of the union of the interiors of
these balls and let Si (respectively, Ti) denote the boundary of Ai (respectively,
Bi). Then, M is obtained from P by gluing together Si and Ti with an orientation
reversing diffeomorphism ϕi for each i, 1 ≤ i ≤ k. The image of Si (hence Ti) in M
will be denoted Σi. The fundamental group π1(M) of M , which is a free group of

rank k, acts freely on the universal cover M̃ of M by deck transformations.

Definition 2.1. A smooth, embedded 2-sphere in M is said to be essential if it
does not bound a 3-ball in M .

Definition 2.2. A system of 2-spheres in M is defined to be a finite collection of
disjointly embedded smooth essential 2-spheres Σi ⊂ M such that no two spheres
in this collection are isotopic.

Let Σ = ∪jΣj be a maximal system of 2-sphere in M . We shall call the spheres

Σj as well as their lifts to M̃ standard spheres. Let M∗ be obtained by splitting
M along Σ, i.e., M∗ is obtained from M − Σ by completing with respect to the
restriction of a Riemannian metric on M . Then, M∗ is a finite collection of 3-
punctured 3-spheres Pk, whose boundary components correspond to the spheres Σi.
Here, a 3-punctured 3-sphere is the complement of the interiors of three disjointly

embedded 3-balls in a 3-sphere. Let M̃∗ be obtained similarly by splitting M̃ along

standard spheres. Then M̃∗ is the disjoint union of lifts P̃k of the components Pk

of M∗.
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There are natural inclusion maps M∗ → M and M̃∗ → M̃ . These maps are one-
to-one on the union of the interiors of (the components of) M∗ and on each bound-
ary component. Boundary components are identified in pairs under these maps.

Further, the map from M̃∗ → M is injective on each component as identifications
are between boundaries of different components. We identify each component of

M̃∗ with its image in M̃ .

2.2. Construction of the tree T . We recall some constructions from [6].

We associate a tree T to M̃ corresponding to the decomposition of M by Σ. Let

Σ̃ be the pre-image of Σ in M̃ . The vertices of the tree T are of two types, with one

vertex corresponding to each component of M̃∗ and one vertex for each component

of Σ̃. An edge of T joins a pair of vertices if one of the vertices corresponds to

a component X of M̃∗ and the other vertex corresponds to a component of Σ̃
that is in the image of the boundary of X. Thus, we have a Y -shaped subtree

corresponding to each component of M̃∗. The end points of different Y ’s that

correspond to the same sphere in Σ̃ are identified. We pick an embedding of T in

M̃ respecting the correspondences. The tree T has bivalent and trivalent vertices

with bivalent vertices corresponding to components of Σ̃. We call each sphere Σi a

standard sphere in M and each component of Σ̃ a standard sphere in M̃ . We call
a vertex of T which corresponds to a standard sphere a standard vertex.

Let τ = τ1 ⊂ τ2 ⊂ . . . be an exhaustion of T by finite subtrees of T such that all
the terminal vertices of each τi are bivalent in T . Let Kτi be the union of closures

of components P̃ of M̃∗ which corresponds to vertices in τi which are trivalent
in T . Then, one can easily see that Kτi is a compact, simply-connected space
homeomorphic to a space of the form S3−∪n

j=1int(Dj) with Dj disjoint embedded

balls in S3.

2.3. Ends of M̃ . We recall the notion of ends of a topological space. An end of
a topological space is a point of the so called Freudenthal compactification of the
space. It can be viewed as a way to approach infinity within the space.

Namely, let X be a topological space. For a compact set K ⊂ X, let C(K)
denote the set of components of X − K. For L compact with K ⊂ L, we have
a natural map C(L) → C(K). Thus, as compact subsets of X define a directed
system under inclusion, we can define the set of ends E(X) as the inverse limit
of the sets C(K). Further, we can compute the inverse limit with respect to any
exhaustion by compact sets.

It is easy to see that a proper map f : X → Y induces a map E(f) : E(X) →
E(Y ) and that if f : X → Y and g : Y → Z are proper maps, then E(g ◦ f) =
E(g) ◦ E(f). In particular, the real line R has two ends which can be regarded as
∞ and −∞. Hence, a proper map c : R → X gives a pair of ends c− and c+ of X.

The space M̃ is non-compact and it has infinitely many ends. We denote the set

of ends of M̃ by E(M̃).

Consider a proper map c : R → M̃ . As M̃ is a union of the simply-connected
compact sets Kτ , where τ is a finite subtree of T , the following lemma is straight-
forward.

Lemma 2.3. There is a one-one correspondence between proper homotopy classes

of maps c : R → M̃ and pairs (c−, c+) ∈ E(M̃)× E(M̃) with c+ 6= c−.
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2.4. Topology on the set of ends of M̃ . We define a topology on E(M̃). If K

is any compact subset of M̃ , then M̃ −K has finitely many components. Consider
the collection of sets

U = {E(W ) : W a component of M −K for a compact set K}.

It is easy to see that U forms a basis for a topology on E(M̃). The set E(M̃) is
homeomorphic to a Cantor set, in particular compact. Note that the set E(T ) of

ends of T can be identified with the set E(M̃).

Given an oriented essential embedded sphere S ⊂ M̃ , we get a partition of the

ends of E(M̃). Namely, as H1(M) is trivial, it follows by Alexander duality that

M̃ − S has two components, say V + and V −, with V + on the positive side of S

according to the given orientations on S and M̃ . The sets E±(S) are the sets of

ends E(V ±) of these components. The sets E±(S) are open in E(M̃). As the sets

E±(S) give partition of E(M̃), both E+ and E− are closed subsets of E(M̃). As

E(M̃) is compact, both E+ and E− are compact subsets of E(M̃).

If S′ is an embedded sphere in M̃ , homologous to S, then both S and S′ give the

same partition of the set of ends of M̃ . Conversely, if S and S′ are two embedded

spheres in M̃ such that they give the same partition (E+, E−) of the set E(M̃) of

ends of M̃ , then S and S′ are homologous in M̃ .

2.5. Crossings of spheres in M̃ . Let A and B be two homology classes in H2(M̃)

represented by embedded spheres in M̃ . A homology classes A of embedded spheres

S in M̃ is completely determined by a partition of E(M̃) into two open subsets of

E(M̃). If S gives partition of E(M̃) into two open subsets E+(S) and E−(S) of

E(M̃), then we can write E+(A) = E+(S) and E−(A) = E−(S).

Definition 2.4. We say that A and B cross if we have

Eε(A) ∩ Eη(B) 6= φ

for each of the four sets obtained by choosing signs ε and η in {+,−}.
Suppose A and B do not cross, then for some choice of sign Eε(A) ⊃ Eη(B). It

follows that E ε̄(A) ⊂ Eη̄(B), where ε̄ and η̄ denote the opposite signs. Further, if
A 6= B, then the inequalities are strict.

Definition 2.5. We say that B is on the positive side of A if E+(A) ⊃ Eη(B) for
some sign η. Otherwise, we say that B is on the negative side of A. In general, we
say that B is on the ε-side of A for the appropriate sign ε.

If A and B are two homology classes in H2(M̃) represented by embedded spheres

in M̃ . Then, A and B can be represented by disjoint embedded spheres in M̃ if
and only if A and B do not cross (for the proof, see [5]).

Group theoretically, embedded spheres in M correspond to splittings of the fun-
damental group of M . Scott and Swarup [8] introduced an algebraic analogue,
called the algebraic intersection number, for a pair of splittings of a group. This is
based on the associated partition of the ends of a group. Given a pair of embed-
ded spheres in M , we can consider their geometric intersection number as well as
the algebraic intersection number of Scott and Swarup for the corresponding split-
tings. In [4], it is shown that for embedded spheres, these two intersection numbers
coincide.
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3. Normal form

We recall the notion of normal sphere systems from [6].

3.1. Normal form for sphere systems. Let Σ = ∪jΣj be a maximal system of
2-sphere in M . We recall that splitting M along Σ gives a manifold M∗, which
is a finite collection of 3-punctured 3-spheres. Here, a 3-punctured 3-sphere is the
complement of the interiors of three disjointly embedded 3-balls in a 3-sphere.

Definition 3.1. A system of 2-spheres S = ∪iSi in M is said to be in normal
form with respect to Σ if each component Si either coincides with a sphere Σj

or meets Σ transversely in a non-empty finite collection of circles splitting Si into
components (which we call pieces) p ⊂ P , P a component of M∗, such that the
following two conditions hold:

(1) Each piece p in P meets each component of ∂P in at most one circle.
(2) No piece in P is a disk which is isotopic, fixing its boundary, to a disk in

∂P .

Thus, each piece p ⊂ P is a disk, a cylinder or a pair of pants. A disk piece has
its boundary on one component of ∂P and separates the other two components of
∂P for some component P of M∗. A cylinder piece (tube) joins any two boundary
components of ∂P and a pants piece joins all three boundary spheres of P .

Recall the following result from [6].

Proposition 3.2 (Hatcher). Every system S ⊂ M can be isotoped to be in normal
form with respect to Σ. In particular, every embedded sphere S which does not
bound a ball in M can be isotoped to be in normal form with respect to Σ.

Similarly, we can define sphere systems in normal form with respect to the pre-

image Σ̃ of Σ in M̃ .

3.2. A description of an embedded sphere in M̃ using its normal form.

Given a sphere S in normal form with respect to Σ̃ in M̃ , we associate a tree τ
corresponding to the decomposition of S into pieces. Namely, we consider a tree τ

with two kinds of vertices, one for each piece p ⊂ P̃ of S and one for each component

C of S ∩ Σ̃i for standard spheres Σ̃i. Edges join vertices corresponding to pieces p

to those corresponding to C ⊂ ∂P . Here we identify P with its image in M̃ .

In [6], it is shown that τ is a tree. Moreover, the inclusion S ↪→ M̃ induces a
natural inclusion map τ ↪→ T . Hence we can view τ as a subtree of T . It is easy

to see that each component P̃ of M̃∗ contains at most one piece of S. If S is a
standard sphere (or can be isotoped to standard sphere), then the associated tree
τ is single vertex in T corresponding to that standard sphere.

Let N(τ) be the subgraph of T consisting of points with distance at most 1 from
τ . Then, N(τ) is a tree, which is the union of τ with the following two kinds of
edges:

(1) For each terminal vertex v of τ , we have a pair of edges e1(v) /∈ τ and
e2(v) /∈ τ with v as an end-vertex. Let v1 and v2 be the other end vertices
of e1 and e2, respectively.

(2) A non-standard bivalent vertex of τ is a bivalent vertex of τ which is not
a standard vertex in T . For each non-standard bivalent vertex w of τ , we
have an edge e(w) /∈ τ with w as an end-vertex. Let w1 be its other end
vertex.
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Fix an orientation of S. As S separates M̃ , the orientation on S determines

the positive and negative sides of S in M̃ . A terminal vertex v of τ corresponds
to a disc piece in a thrice-punctured 3-sphere P (v), which separates the two other
boundary components of P (v). The standard sphere corresponding to one of v1
and v2 is on the positive side of S and other standard sphere is on the negative
side. The vertices v1 and v2 are end vertices of e1 and e2 respectively. So, we can
assign positive or negative signs to these edges accordingly. We denote the positive
edge by e+(v) and denote the other edge (which is on the negative side) by e−(v).

We denote the standard spheres corresponding to v1 and v2 by Σ̃(v1) = Σ̃(e1) and

Σ̃(v2) = Σ̃(e2), respectively.
A non-standard bivalent vertex w of τ corresponds to an annulus piece (cylinder

piece) in P (w). The boundary component of P (w) not intersecting the annulus is
on either the positive or the negative side of S. For a non-standard bivalent vertex

w of τ , we can associate a sign ε(w) so that Σ̃(w1) = Σ̃(e(w)) is on the ε(w)-side
of S.

Thus, we can associate a triple (τ, ε, e+), with τ a subtree of T , to a normal

sphere in M̃ . In [5], it is shown that the triple (τ, ε, e+) determines the normal

sphere S and the partition (E+(S), E−(S)) of E(M̃) given by S.

4. Geospheres

To construct geosphere laminations in M , we first need the analogue of (not
necessarily closed) geodesics in M . We first construct the analogue of geodesics in

M̃ , which we call geospheres. We then consider when two such geospheres cross,
and deduce basic properties of crossing. This allows us to study the appropriate
notion of geospheres embedded in M . Our main technical lemma says that crossing
is an open condition. This allows us to construct limiting laminations and prove a
compactness theorem for geosphere laminations in M .

4.1. Geospheres and trees. In Section 3, we have seen that a normal sphere in

M̃ is determined by a triple (τ, ε, e+), with τ either a finite subtree of T with each
terminal vertex of τ a trivalent vertex of T or τ a standard vertex, ε an assignment
of sign to each non-standard bivalent vertex of τ and e+ an assignment to each
univalent vertex v of τ an edge containing v and not contained in τ .

Geospheres are generalizations of such spheres where we drop the condition that
τ is finite.

Definition 4.1. A geosphere σ in M̃ is a triple σ = (τ, ε, e+) with

• τ a subtree of T such that either τ is a bivalent vertex of T (and has no
edges) or τ has at least one edge and each univalent (terminal) vertex of τ
is a trivalent vertex in T .

• If B(τ) is the set of non-standard bivalent vertices of τ , ε is a function
ε : B(τ) → {+,−}.

• If τ is not a single bivalent vertex, then if C(τ) is the set of terminal
vertices of τ , e+ associates to each vertex in C(τ) an edge containing v and
not contained in τ .

Let GS(M̃) be the set of such geospheres in M̃ . To construct a topology on

GS(M̃), we consider restrictions to compact subtrees κ ⊂ T such that each of its
terminal vertices is a trivalent vertex in T . We call a tree containing no edge as a
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degenerate tree. We define for a non-degenerate tree κ, N(κ) to be the set of points
of distance at most 1 from κ. For a degenerate tree κ, we define N(κ) = κ.

Henceforth, we consider only subtrees κ of T such that all univalent vertices of
κ are trivalent in T or κ is a degenerate tree.

Definition 4.2. If σ = (τ, ε, e+) is a geosphere, then the restriction resκ(σ) of σ
to κ is the triple σ|κ = (τ ∩N(κ), ε|B(τ)∩κ, e+|C(τ)∩κ).

Note that the valence of a vertex v of τ such that v ∈ κ is determined by τ∩N(κ).
Further, for univalent vertices v of τ ∩ κ, the edges e+(v) (and e−(v)) are in N(τ).

Thus, we can view res|κ as a map from GS(M̃) to the set GS(κ) defined as below:

Definition 4.3. For a subtree κ ⊂ T , we define GS(κ) to be the set of triples
σ = (τ, ε, e+) with

• τ a subtree of N(κ) or the empty graph.
• If B(τ) is the set of vertices τ ∩ κ which are non-standard bivalent vertices
in τ , ε is a function ε : B(τ) → {+,−}.

• If C(τ) is the set of vertices of τ ∩ κ which are univalent in τ and trivalent
in T , then e+ associates to each vertex v in C(τ) an edge containing v and
not contained in τ .

We remark that GS(κ) is not a subset of GS(M̃), as an element of GS(κ) can
correspond to the empty graph, and terminal vertices of the tree τ corresponding
to an element of GS(κ) may be bivalent in T .

Note that if κ is a finite subtree of T , then the set GS(κ) is finite. We say that
an element σ = (τ, ε, e+) of GS(κ) is non-trivial if τ is non-empty.

Suppose κ′ is a subtree of T such that κ′ ⊃ κ, then we can similarly define a
restriction map resκ,κ′ : GS(κ′) → GS(κ). Further, resκ = resκ,κ′ ◦ resκ′ . In
particular, we can denote without ambiguity the map resκ,κ′ as simply resκ.

4.2. The topology on Geospheres. We define a topology on GS(M̃) using the
restriction maps. Namely, for each subtree κ of T and each σ0 ∈ GS(κ), consider
the set

U(κ, σ0) = {σ ∈ GS(M̃) : resκ(σ) = σ0}

Lemma 4.4. The sets U(κ, σ0) for finite subtrees κ of T form a basis for a topology

on GS(M̃).

Proof. Showing that the sets U(κ, σ0) form a basis for a topology on GS(M̃) is
equivalent to showing that if U(κi, σi

0), 1 ≤ i ≤ n is a finite collection of basic open
sets and σ ∈ ∩iU(κi, σi

0), then there is a basic open set containing σ and contained
in each of the sets U(κi, σi

0).
To show this, let κ be the finite subtree of T spanned by the subtrees κi, and

let σ0 = σ|κ. Note that as σ ∈ U(κi, σi
0), resκi(σ) = σi

0. Hence, if σ′ ∈ U(κ, σ|κ),
as κ ⊃ κi, resκi(σ′) = resκi(σ) = σi

0. Thus, U(κ, σ|κ) ⊂ U(κi, σi
0), for each i as

required. �
Lemma 4.5. Each basic open set U(κ, σ0) is closed.

Proof. Observe that the complement of U(κ, σ0) is the union of basic open sets

U(κ, σ0)
c =

⋃
σ∈GS(κ), σ 6=σ0

U(κ, σ).
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�

Henceforth, consider GS(M̃) with the topology whose basis is given by the sets

U(κ, σ0) as above. By construction, GS(M̃) is second countable. If κ = κ1 ⊂ κ2 ⊂
. . . is an exhaustion of T by finite subtrees of T , then for each i, the collection
{U(κi, σ) : σ ∈ GS(κi)} is finite. Hence, one can easily see that the collection

∪i{U(κi, σ) : σ ∈ GS(κi)}i gives a countable basis for the topology on GS(M̃).
If κ ⊂ T is a finite tree and σ1, σ2 are elements of GS(κ) such that σ1 6= σ2,

then U(κ, σ1) ∩ U(κ, σ2) = φ and GS(M̃) = qU(κ, σi), where σi ∈ GS(κ).

We see that the space GS(M̃) is Hausdorff, in fact totally disconnected.

Lemma 4.6. The space GS(M̃) is totally disconnected.

Proof. Let σi = (τ i, εi, ei+), i = 1, 2, be two distinct points in GS(M̃). It is easy
to see that for some finite tree κ, resκ(σ

1) 6= resκ(σ
2). As GS(κ) is a finite set, it

follows that we can partition GS(κ) into finite sets S1 and S2 with resκ(σ
i) ∈ Si,

for i = 1, 2.

It now follows from Lemma 4.5 that GS(M̃) is totally disconnected. �

4.3. A compactness theorem for geospheres. The main result we need about
the topology is the following compactness theorem. This is the analogue of the fact
that the set of geodesics in hyperbolic space (more generally, in any Riemannian
manifold) that intersect a fixed compact set is compact.

Theorem 4.7. For a fixed finite subtree κ ⊂ T , the set of all geospheres whose
restriction to κ is non-trivial is compact.

Proof. Let A be the set of all geospheres whose restriction to κ is non-trivial. As

GS(M̃) is second countable and Hausdorff, it is metrizable. Hence, it suffices to
show that every sequence in the given subspace A has a convergent subsequence in
A.

Let κ = κ1 ⊂ κ2 ⊂ . . . be an exhaustion of T by finite subtrees of T . Let σi be

a sequence of geospheres in M̃ so that the restriction of each σi to κ is non-trivial.
We construct a convergent subsequence of σi.

Firstly, for each i, resκ1(σi) ∈ GS(κ1) and GS(κ) is a finite set. Hence, on
passing to a subsequence (which we continue to denote by σi), we can assume that
resκ1(σi) is constant. Similarly, passing to a further subsequence, we can assume
that resκ2(σi) is constant. Iterating this and passing to a diagonal subsequence, we
obtain a sequence, which we also denote σi, so that the restriction of σi to each of
the sets κi is eventually constant. More concretely, we can assume that for j, k ≥ i,
resκi(σj) = resκi(σk).

We claim that the subsequence σi constructed as above has a limit σ = (τ, ε, e+).
Namely, to determine whether an edge e is in τ , consider i large enough that e ∈ κi.
Then, as resκi(σj) = resκi(σi) for j ≥ i (taking k = i), either e ∈ τj for all j large
enough or e /∈ τj for all j ≥ i, where τj is the tree corresponding to σj . In the
former case, we declare e ∈ τ and in the latter case e /∈ τ . We can see τ1 ⊂ τ2 ⊂ . . .
is an exhaustion of τ . We similarly can decide what vertices are in τ and also the
values of the functions ε and e+.

As the restriction of each σi is non-empty, the limiting subgraph τ is non-empty.
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One can show that τ is connected. Namely, is v and w are vertices of τ , for
j sufficiently large, v and w are contained in the tree τj , hence there is a unique
reduced path λ between them. It follows that λ ⊂ τ by the definition of τ .

Thus, σ ∈ GS(M̃). Finally, as κi is an exhaustion of T by compact subtrees,
any compact subtree κ′ is contained in κj for some j. Hence, for k > j, resκ′(σk) =

resκ′(σ). By the definition of the topology on GS(M̃), we see that σi → σ.
�

As a corollary, we see that GS(M̃) is locally compact. In fact, every geosphere

σ is contained in a compact open subset of GS(M̃).

Proposition 4.8. Any geosphere σ is contained in a compact open subset U of

GS(M̃).

Proof. It is easy to see that there is a finite tree κ such that resκ(σ) is non-trivial.
Let

U = {σ′ ∈ GS(M̃) : resκ(σ) = resκ(σ
′)}

By Theorem 4.7, U is compact. The set U is open by definition of the topology on

GS(M̃). �

In Section 3, we have seen that a normal sphere S in M̃ is determined by triple
σ = (τ, ε, e+), with τ is a finite subtree of T , ε is an assignment of sign to each
non-standard bivalent vertex of τ and e+ an assignment to each univalent vertex

of τ an edge containing v and not contained in τ . Hence, normal spheres M̃ are
geospheres.

Let S(M̃) be the set of all normal spheres in M̃ , i.e., S(M̃) is the set of all
geospheres σ = (τ, ε, e+), where τ is a finite subtree of T .

Proposition 4.9. The set S(M̃) is the set of isolated points of GS(M̃) and is

dense in GS(M̃).

Proof. Let σ0 = (τ0, ε0, e0+) be a normal sphere in M̃ . We see that resτ0(σ0) = σ0.
Consider U(τ0, σ0). If σ′ = (τ ′, ε′, e′+) ∈ U(τ0, σ0), then resτ0(σ′) = σ0. By
definition of res,

resτ0(σ′) = (τ ′ ∩N(τ0), ε′|B(τ′)∩τ0
, e′+|C(τ ′)∩τ0) = (τ0, ε0, e0+).

As τ ′ ∩ N(τ0) = τ0, we have τ ′ = τ0 and ε′ = ε0, e′+ = e0+. Thus, σ′ = σ0. This

implies U(τ0, σ0) = {σ0} and hence, σ0 is an isolated point in GS(M̃).

Next, let σ = (τ, ε, e+) be a geosphere in M̃ , where τ is a subtree of T with
each univalent vertex of τ a trivalent vertex in T . We call such a geosphere as
a non-degenerate geosphere. We show that σ is a limit of spheres. Namely, we
consider an exhaustion of T by finite subtrees κi. It is easy to construct spheres
σi with resκi(σi) = resκi(σ). We claim that σi converges to σ. Namely, given a
basic open set U(κ, σ0) containing σ, there is an integer N such that for i > n
we have κ ⊂ κi. This implies that resκ(σi) = resκ(σ) = σ0. Thus, for i > n we
have σi ∈ U(κ, σ0). As such a relation holds for all basic open sets containing σ, it
follows that σi converges to σ.

Thus, every geosphere σ /∈ S(M̃), is the limit of a sequence of points of S(M̃)

and hence, it is not an isolated point in GS(M̃). This shows that the set S(M̃) is

the set of isolated points of GS(M̃) and is dense in GS(M̃). �



GEOSPHERE LAMINATIONS IN FREE GROUPS 11

Figure 1. Bivalent and Univalent vertices

5. Crossing of geospheres

5.1. Partitions and Crossing. As in the case of spheres, we can associate to a

geosphere a partition of the ends of M̃ , which can be identified with the set of ends
E(T ). However, in the case of a geosphere σ = (τ, ε, e+), we get a partition into
three sets

E(T ) = E∞(σ)q E+(σ)q E−(σ)

with E∞(σ) closed and E±(σ) open.
The set E∞(σ) is defined to be the set of ends of τ . It is easy to see that, as τ is

a subtree of T , τ is closed. Hence, E∞(σ) is closed in E(T ). Observe that E∞(σ)
can also be interpreted as the set of ends of N(τ).

The complement V (σ) = T −N(τ) of N(τ) is an open set. We shall partition the
components of V (σ) into sets V +(σ) and V −(σ) using the data for σ, in analogy
with the case of spheres. We shall define E±(σ) as the set of ends of V ±(σ).

Let V0 be a component of T − N(τ). Then, as τ is a tree, the closure of V0

contains exactly one vertex w of N(τ), which in turn is at a distance 1 from a
unique vertex v of τ which is either bivalent or univalent (see figure 1). If v is
bivalent, we say that V0 is positive (and w is on the positive side of v) if ε(v) = +
and say that V0 is negative otherwise. If v is univalent, we say that V0 is positive
(and w is on the positive side of v) if the edge e+(v) joins v to w and say that V0

is negative otherwise.
By the above rule, each component of V (σ) is assigned a sign. We define V +(σ)

to be the union of the positive components and V −(σ) the union of negative com-
ponents. We define E±(σ) as the set of ends of V ±(σ).

Given two geospheres σ1 and σ2, we can define when they cross.

Definition 5.1. The geospheres σi = (τ i, εi, ei+), i = 1, 2 cross if either each of the
four sets

E±(σ1) ∩ (E±(σ2) ∪E∞(σ2))
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is non-empty or if each of the four sets

E±(σ2) ∩ (E±(σ1) ∪E∞(σ1))

is non-empty.

We remark that it is necessary to consider both the above collections of four sets
separately.

The above definition is motivated by the observation that if, for instance, σ2 is
on the positive side of σ1, then all ends (in fact points) on either the negative side
of σ2 or the positive side of σ2 (the side away from σ1) are on the positive side of
σ1. Hence, one of the intersections E−(σ1) ∩ (E±(σ2) ∪ E∞(σ2)) is empty.

Lemma 5.2. Let σi = (τ i, εi, ei+), i = 1, 2 be geospheres. If τ1 ∩ τ2 = φ, then σ1

and σ2 do not cross.

Proof. As τ1 and τ2 are subtrees of T and τ1 ∩ τ2 = φ, for some component V 1
0 of

T − N(τ1), τ2 is contained in V 1
0 . Let v1 be the point in τ1 that is unit distance

from V 1
0 . Without loss of generality assume V 1

0 is positive.
As τ2 is contained in the closure of V 1

0 , E
∞(σ2) is contained in the ends of V 1

0 ,
and hence is contained in E+(σ1). Further, as τ1 is a tree, τ1 is contained in a
component V 2

0 of T −N(τ2) and all other components of T −N(τ2) are contained
in V 1

0 . Hence, if V 2
0 is positive, then E−(σ2) is contained in the ends of V 1

0 , and
hence is contained in E+(σ1).

Thus, as V 1
0 and V 2

0 are positive, the intersection E−(σ1)∩ (E−(σ2) ∪E∞(σ2))
is empty. Considering other cases similarly, we see that in each case, at least one
of the intersections E±(σ1) ∩ (E±(σ2) ∪ E∞(σ2)) is empty.

Reversing the roles of τ1 and τ2, we see that one of the four intersections E±(σ2)∩
(E±(σ1) ∪ E∞(σ1)) is also empty. Thus, σ1 and σ2 do not cross. �

5.2. Stability of Crossings. Our main technical result is that crossing is an open
condition.

Lemma 5.3. Suppose σi = (τ i, εi, ei+), i = 1, 2 cross, then there are open sets U i,

i = 1, 2, with σi ∈ U i so that if si ∈ U i for i = 1, 2, then s1 crosses s2.

Proof. Without loss of generality, we assume that each of the four intersections

E±(σ1) ∩ (E±(σ2) ∪E∞(σ2))

is non-empty. We shall construct open sets U i containing σi so that for si ∈ U i,

E+(s1) ∩ (E+(s2) ∪E∞(s2)) 6= φ

We can similarly construct open sets for which each of the other three intersec-
tions is non-empty. The intersections of the four pairs of open sets thus constructed
give the required neighbourhoods of σi.

We first make some observations. Suppose ξ ∈ E+(σ1) is an end. Then, there is
a component V0 of T −N(τ1) so that ξ ∈ E(V0). The intersection of the closure of
V0 with N(τ1) is a vertex w, which is unit distance from a unique vertex v of τ1.
Further, the vertex is bivalent or univalent, with w on the positive side of v (see
figure 1).

Let κ be a finite tree containing v. Then, if (τ0, ε0, e0+) is another geosphere with
resκ(σ

0) = resκ(σ
1), then as N(κ) ∩ τ0 = N(κ) ∩ τ1, w is a vertex of N(τ0)− τ0

and v is in τ0. As ε0 = ε1 and e0+ = e+1 , w is on the positive side of v with respect
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Figure 2

to σ0. It follows, as τ0 is connected, that V0 is a component of T −N(τ0) which is
positive.

Suppose now that ξ is an end in E+(σ1)∩ (E+(σ2)∪E∞(σ2)). We consider two
cases. Firstly, if ξ ∈ E+(σ1)∩E+(σ2), then as above we have positive components
V i
0 of T − N(τ i) containing ξ, for i = 1, 2, and corresponding vertices vi and wi.

Let κ be a finite tree containing v1 and v2 and let U i = U(κ, resκ(σ
i)).

Suppose si = (ti, εi, ei+) ∈ U i, i = 1, 2, then, as above, V i
0 is a component of

T−N(ti) and is positive. Hence, ξ ∈ E+(si) for i = 1, 2, i.e., ξ ∈ E+(s1)∩E+(s2) ⊂
E+(s1) ∩ (E+(s2) ∪ E∞(s2)).

Next, consider the case when ξ ∈ E+(σ1) ∩ E∞(σ2). Let V0 be the component
of T −N(σ1) that has ξ as an end and let v and w be as above. As ξ ∈ E∞(σ2),
the intersection τ2 ∩ V0 is infinite.

Note that as σ1 and σ2 cross, we cannot have τ1 ∩ τ2 = φ, as this would imply
that one of the intersections E−(σ1) ∩ (E±(σ2) ∪ E∞(σ2)) is empty. As τ2 is
connected and τ1 ∩ τ2 6= φ 6= V0 ∩ τ2, it follows that v and w are vertices of τ2.

Let κ be a finite tree containing v and w and let U i = U(κ, resκ(σ
i)) and si

be as before. As in the first case, if s1 ∈ U1, then V0 is a positive component of
T −N(t1). To complete the proof, we show that if s2 ∈ U2, then the set of ends of
V0 contains either a point of E∞(s2) or a point of E+(s2).

To see this, observe that as τ2 ∩V0 is infinite and t2 ∩N(κ) = τ2 ∩N(κ), with κ
a tree containing w, t2 ∩ V0 is non-empty. Suppose t2 ∩ V0 is infinite, then an end
of t2 ∩ V0 lies in V0 ∩E∞(s2), as claimed.

On the other hand, if t2∩V0 is finite, it has a terminal vertex v2 distinct from w.
The other vertex w2 of e2+(v

2) is in the closure of a component of V + of T −N(t2),
with E(V +) ⊂ E+(s2) (see figure 2).

By construction V + ⊂ V0. An end of V + gives an element E+(s2) which is an
end of V0, hence in E+(s1).
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Thus, we have shown that in all cases E+(s1)∩ (E+(s2)∪E∞(s2)) is non-empty
for si ∈ U i.

�

6. Geosphere laminations in M

We are now in a position to define geosphere laminations in M , which are the
analogues of (embedded) geodesic laminations in a surface. Recall that the group

π1(M) acts on M̃ by deck transformations. Geosphere laminations are the natural

completion of the inverse image in M̃ of a sphere (or a collection of spheres) in M .

Definition 6.1. A subset X ⊂ GS(M̃) is said to be embedded in M if for σ1, σ2 ∈
X, σ1 does not cross σ2.

Definition 6.2. A geosphere lamination in M is a subset Γ ⊂ GS(M̃) such that

(1) Γ is closed in GS(M̃).
(2) Γ is invariant under the action of π1(M).
(3) Γ is embedded in M .

We denote the set of geosphere laminations in M by L(M).

Definition 6.3. Let Γ be geosphere lamination in M . A geosphere σ ∈ Γ is called
a leaf of Γ.

Definition 6.4. A subset Γ′ of a geosphere lamination Γ is said to be a sublami-
nation of Γ if Γ′ itself is a geosphere lamination.

Definition 6.5. A geosphere lamination Γ is said to be maximal if Γ is not a
proper sublamination of any geosphere lamination in M .

Definition 6.6. A geosphere lamination Γ is said to be minimal if no proper subset
of Γ is a sublamination of Γ.

We shall see that this contains all collections of disjoint, non-parallel spheres in
M , and that the space of non-trivial geosphere laminations is compact. This allows
us to consider limits of spheres in M .

We first observe that the condition that Γ is closed is easy to achieve.

Lemma 6.7. Suppose X ⊂ GS(M̃) is embedded in M , then so is its closure X̄.

Proof. Suppose σ1 and σ2 are geospheres in X̄ that cross. By Lemma 5.3, there
are open sets Ui with σi ∈ Ui so that if si ∈ Ui, i = 1, 2, then s1 and s2 cross. As
σi ∈ X̄, there are elements si ∈ X ∩Ui, which thus cross. But, this contradicts the
hypothesis that X is embedded in M . Thus, X̄ is embedded in M . �

It is clear that the closure of a π1(M)-invariant set in GS(M̃) is π1(M)-invariant.
Thus, if X is not closed but satisfies the other two conditions for being a geosphere
lamination, then its closure is a geosphere lamination.

6.1. Topology on L(M). We shall make the set L(M) of geosphere laminations
in M into a topological space by defining a topology on L(M). To do this, we first

define a topology on the set of closed subsets of GS(M̃), which we denote by C(M̃).
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The topology we construct is analogous to the Hausdorff topology. Namely, if

Γ ⊂ GS(M̃) is closed and κ is a finite subtree of T , consider the image resκ(Γ) of
Γ under the restriction map. For S ⊂ GS(κ), consider the set

U(κ, S) = {Γ ∈ C(M̃) : resκ(Γ) = S}.

Lemma 6.8. The sets U(κ, S) for finite subtrees κ of T form a basis for a topology

on C(M̃).

Proof. Showing that the sets U(κ, S) form a basis for a topology on C(M̃) is equiv-
alent to showing that if U(κi, Si), 1 ≤ i ≤ n is a finite collection of basic open sets
and Γ ∈ ∩iU(κi, Si), then there is a basic open set containing Γ and contained in
each of the sets U(κi, Si).

To show this, let κ be the finite subtree of T spanned by the subtrees κi, and let
S0 = resκ(Γ). Note that as Γ ∈ U(κi, Si), resκi(Γ) = Si. Hence, if Γ′ ∈ U(κ, S0),
as κ ⊃ κi, resκi(Γ′) = resκi(Γ) = Si, for each i. Thus, U(κ, S0) ⊂ U(κi, σi

0), for
each i as required. �

Thus, the sets U(κ, S) form the basis for a topology, which we take to be the

topology on C(M̃). Note that as GS(κ) is finite, so is the collection of subsets of
GS(κ).

If κ ∈ T is a finite tree and S1 and S2 are subsets of GS(κ) such that S1 6= S2,

then U(κ, S1) ∩ U(κ, S2) = φ and C(M̃) = q U(κ, Si), where Si is a subset of
GS(κ).

We can easily see that C(M̃) is second countable. We see that the topology is
Hausdorff, in fact totally disconnected. This is based on the following lemma.

Lemma 6.9. If Γ1,Γ2 ⊂ GS(M̃) are closed sets with Γ1 6= Γ2, then for some finite
subtree κ of T , resκ(Γ1) 6= resκ(Γ2).

Proof. As Γ1 6= Γ2, without loss of generality, there is a point σ ∈ Γ1 \ Γ2. As

Γ2 is closed subset of GS(M̃), there is a basic open set U = U(κ, σ0) with σ ∈ U
but U ∩ Γ2 = φ. But this means that resκ(σ) ∈ resκ(Γ1) \ resκ(Γ2). Hence,
resκ(Γ1) 6= resκ(Γ2). �

It is easy to deduce that the topology on C(M̃) is totally disconnected. The
proof is analogous to Lemma 4.6.

Lemma 6.10. Given Γ1,Γ2 ∈ C(M̃), there are disjoint open sets U1,U2 ⊂ C(M̃)

with Γi ⊂ Ui so that U1 ∪ U2 = C(M̃).

�
We can consider S(M̃) as a subset of C(M̃). If σ = (τ, ε, e+) ∈ S(M̃), then

{σ} ∈ C(M̃) and resτ (σ) = σ ∈ GS(τ). One can easily see that in fact U(τ, {σ}) =
{{σ}}.

The topology on C(M̃) restricts to one on L(M). To study the restriction, the
following lemma is useful.

Lemma 6.11. The subspace L(M) ⊂ C(M̃) is closed.

Proof. As the topology on C(M̃) is second countable and Hausdorff, it suffices to

show that if Γ0 ∈ C(M̃) is the limit of a sequence Γi ∈ L(M), then Γ0 ∈ L(M).
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Firstly, as C(M̃) is Hausdorff, limits are well-defined. Hence, if g ∈ π1(M), as
gΓi = Γi and gΓi → gΓ0 (as the deck transformation g is a homeomorphism),
gΓ0 = Γ0. Thus, Γ0 is π1(M)-invariant. Further, Γ0 is closed as it is an element of

C(M̃). Thus, to complete the proof it suffices to show that Γ0 is embedded in M .
Suppose Γ0 is not embedded in M , then there are elements σ1, σ2 in Γ0 that

cross. By Lemma 5.3, there are open sets Ui with σi ∈ Ui so that if si ∈ Ui, then

s1 and s2 cross. By the definition of the topology on GS(M̃), for some finite tree
κ, Ui contains the open set U(κ, resκ(σi)). As Γi → Γ0, for i sufficiently large,
resκ(Γi) = resκ(Γ0), in particular, there are elements si ∈ Γi with si ∈ Ui. It
follows that s1 and s2 cross, contradicting the hypothesis that Γi ∈ L(M). �
6.2. Geosphere laminations from spheres. We see that (collections of) spheres
in M have associated geosphere laminations.

Suppose that Σ′ is a collection of disjoint, non-parallel spheres in M which are

in normal form with respect to Σ. Let Σ̃′ be the collection of lifts of the spheres in

Σ′, i.e., the inverse image of Σ′ under the covering map M̃ → M . Each element of

Σ̃′ is a sphere, and hence, gives a geosphere. Thus, Σ̃′ can be viewed as a subset of

GS(M̃).

It is immediate that the set Σ̃′ is π1(M)-invariant. The set Σ̃′ is embedded in

M as it is a union of disjoint spheres. To see that Σ̃′ gives an element in L(M)), it

only remains to show that the set Σ̃′ is a closed subset of GS(M̃).

Lemma 6.12. The set Σ̃′ is closed in GS(M̃), hence a lamination.

Proof. The tree τ corresponding to each element σ ∈ Σ̃′ is finite, with diameter
determined by the corresponding sphere in M . Hence, there is an integer D > 0

such that the trees τ corresponding to elements σ ∈ Σ̃′ have diameter at most D.

Suppose now σ0 is in the closure of Σ̃′, with τ0 the tree corresponding to σ0. Let
v be a vertex of τ0 and let κ be the tree consisting of all points of distance at most
D from v.

As σ0 is in the closure of Σ̃′, resκ(σ0) = resκ(σ) for some σ ∈ Σ̃′. If τ is the
tree corresponding to σ, then v ∈ τ and τ has diameter at most D. It follows
that τ ⊂ κ, and hence, τ = τ ∩N(κ) and is contained in the interior of N(κ). As
τ0 ∩N(κ) = τ ∩N(κ), τ0 ∩N(κ) is contained in the interior of N(κ). Hence, as τ0
is connected, τ0 = τ0 ∩ N(κ) = τ ∩ N(κ) = τ . As resκ(σ0) = resκ(σ), it follows

that σ0 = σ, hence σ0 ∈ Σ̃. Thus, any element of the closure of Σ̃′ is in Σ̃′, showing

that Σ̃′ is closed. �
Thus, given any embedded sphere S in normal form with respect to Σ in M , we

have a geosphere lamination associated to it, namely, the inverse image of S in M̃
under the covering map. So, we can regard S as a geosphere lamination in M . Let
S0(M) be the set of isotopy classes spheres in M . Then, S0(M) can be considered
as a subset of L(M).

Proposition 6.13. The geosphere lamination Σ′ is an isolated point in L(M).

Proof. Fix a lift Σ̃′
i of Σ′

i to M̃ . Note that Σ̃′
i is a normal sphere in M̃ . Let

Σ̃′
i = (τ i, εi, ei+). Let κ be a subtree of T spanned by trees τ i. Let S = {Σ̃′

i}i. The
set resκ(S) is S. Then, one can easily see that U(κ, resκ(S) ∪ {φ}) = Σ′. This
shows that Σ′ is an isolated point in L(M). �
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7. Compactness for geosphere laminations

7.1. The Compactness Theorem. Our main result concerning geosphere lami-
nations is the following compactness theorem.

Theorem 7.1. The spaces L(M) and C(M̃) are compact.

Proof. First observe that as L(M) is a closed subset of C(M̃), it suffices to show

that C(M̃) is compact. Further, as C(M̃) is second countable and Hausdorff, it

suffices to show that any sequence Γi ∈ C(M̃) has a convergent subsequence.
As in the proof of Theorem 4.7, let κi be an exhaustion of T by finite subtrees.

Observe that resκ1(Γi) ∈ GS(κi) is contained in a finite set, namely the set of
subsets of GS(κi). Hence, passing to a subsequence, we can assume that this is
constant. Similarly, passing to a further subsequence, we can assume that resκj (Γi)
is constant for each successive integer j. Iterating this and passing to a diagonal
subsequence, we obtain a sequence, which we also denote Γi, so that the restriction
of Γi to each of the sets κj is eventually constant. More concretely, we can assume
that for j, k ≥ i, resκi(Γj) = resκi(Γk) = resκi(Γi).

We claim that the subsequence Γi constructed as above has a limit Γ0. Let

Xi = {σ ∈ GS(M̃) : resκi(σ) ∈ resκi(Γi)}. It is immediate that Γi ⊂ Xi. We let
Γ0 = ∩iXi.

We claim that Γi → Γ0. As the finite trees κi form an exhaustion, it suffices to
show that for j sufficiently large, resκi(Γj) = resκi(Γ0). We show this for j ≥ i.

Observe that for j ≥ i, Xj ⊂ Xi. This is because if σ ∈ Xj , by definition there
is a geosphere σ′ ∈ Γj with resκj (σ) = resκj (σ

′). As κi ⊂ κj , it follows that
resκi(σ) = resκi(σ

′) and hence resκi(σ) ∈ resκi(Γj) = resκi(Γi), which implies
that σ ∈ Xi. As σ ∈ Xj was arbitrary, Xj ⊂ Xi.

Next, note that resκi(Γj) = resκi(Γi) for j ≥ i. Hence, we are reduced to
showing that resκi(Γi) = resκi(Γ0). Firstly, as Γ0 ⊂ Xi and for σ ∈ Xi, resκi(σ) ∈
resκi(Γi), we have resκi(Γ0) ⊂ resκi(Γi).

Conversely, suppose σ0 ∈ resκi(Γi), and without loss of generality, σ0 is not
degenerate. Then, as resκi(Γj) = resκi(Γi) for j ≥ i and Γj ⊂ Xj , σ0 ∈ resκi(Xj).
Hence, for j ≥ i, there is an element σj ∈ Xj with resκi(σj) = σ0.

By the compactness theorem, Theorem 4.7, there is a subsequence σnj that
converges to a geosphere σ. By construction resκi(σ) = σ0. We finish the proof by
showing that σ ∈ Γ0, hence σ0 ∈ resκi(Γ0).

Assume without loss of generality that nj ≥ j for all j. Hence, if j ≥ i is fixed,
for k ≥ j, σnk

∈ Xnk
⊂ Xj . As Xj is closed and σnk

→ σ, σ ∈ Xj . As j ≥ i was
arbitrary, σ ∈ ∩jXj = Γ0. Thus, σ0 = resκi(σ) ∈ resκi(Γ0).

�

7.2. Limit laminations. Thus, we can extract limits of geosphere laminations, in
particular those of collections of spheres. For this construction to be useful, one
would like the limit to be non-trivial. This turns out to be automatic for geosphere
laminations embedded in M .

Proposition 7.2. The empty subset φ ∈ L(M) is an isolated point.

Proof. As π1(M) acts cocompactly on T , there is a finite tree κ such that the

translates of κ cover T . Let U be the open set in C(M̃) given by U = {Γ ∈ C(M̃) :
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resκ(σ) = φ}. Clearly, φ ∈ U for the empty lamination φ. We shall show that if
Γ ∈ L(M) and Γ 6= φ, then Γ /∈ U .

Suppose Γ ∈ L(M) is non-trivial. Let σ ∈ Γ be a geosphere. Let v be a vertex
in the tree τ corresponding to σ. Then, as the translates of κ cover T , v ∈ gκ for
some g ∈ π1(M). Hence, g−1v ∈ κ, which implies that g−1τ ∩ κ 6= φ.

It follows that resκ(g
−1Γ) 6= φ. But, as Γ ∈ L(M), g−1Γ = Γ and hence,

resκ(Γ) 6= φ, i.e., Γ /∈ U as claimed. �

An important example is that associated to an outer automorphism ϕ of the free
group and a sphere S. Namely, the sphere S is an element of L(M) by Lemma 6.12.
Hence, we obtain a sequence of laminations ϕk(S). A convergent subsequence of
this gives a limiting lamination.

7.3. Laminations that are not limits of spheres. It is natural to ask whether
laminations corresponding to spheres in M are the only isolated points of L(M).
The analogous result holds for geodesic laminations, namely the only isolated ge-
odesic laminations are unions of simple closed curves. However, we see that there
are isolated geosphere laminations which are not unions of spheres.

Consider the geosphere lamination Γ0 = {σo}, where σo = (τ0, ε0, eo+) is geo-
sphere such that τ0 = T . Observe that τ0 has no terminal or non-standard bivalent
vertices.

Proposition 7.3. The geosphere lamination Γ0 is an isolated point in L(M̃).

Proof. Consider the projection of the tree T ⊂ M̃ under covering map in M . Then,
the projection is a graph G. Choose a maximal tree T in G and fix a lift κ of T in
the tree T .

The resκ(Γ0) contains only one element σ0 = (τ0, ε0, e0+), where τ0 = N(κ).
Then, τ0 has no terminal or non-standard bivalent vertex. We shall show that
U(κ,Γ0) = {Γ0}.

If Γ 6= Γ0 is a geosphere lamination, then Γ has a leaf σ = (τ, ε, e+) (geosphere)
such that either τ is a bivalent vertex or contains at least one vertex which is a
non-standard bivalent vertex or a terminal vertex. Suppose τ has a non-standard
bivalent vertex. Then, one can easily see that there exists a translate gσ of σ
such that if we consider resκ(gσ) = (τ ′, ε′, e′+), then τ ′ has a non-standard bivalent
vertex. A similar argument holds in the other cases. This shows that resκ(Γ0) 6=
resκ(Γ), for all Γ. Therefore, resκ(Γ0) = {Γ0}. Hence, Γ0 is an isolated point of

L(M̃).
�

Using the above argument, we have the following proposition:

Proposition 7.4. A geosphere lamination Γ such that no leaf of Γ has a terminal
vertex, is not a limit of spheres.

8. Geospheres and partitions

The definition of geospheres a priori depends on the choice of standard spheres
for M . However, we show that geospheres can be defined intrinsically by showing
that they are determined by the partition of the space of ends.

As we have seen, every geosphere σ = (τ, ε, e+) gives a partition of the set of

E(M̃) of ends of M̃ in to three sets E+(σ), E−(σ) and E∞(σ). If τ is a finite tree,
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then E∞(σ) = φ. If τ = T , then E∞ = E(M̃) and E+(σ) = E−(σ) = φ. In
general, we get a partition with E±(Σ) open sets and E∞(Σ) a closed set.

We show that any such partition corresponds to a geosphere.

Theorem 8.1. Given a partition E(M̃) = E+∪E−∪E∞ of the ends of M (hence
of T ) into disjoint sets so that E± are open (and hence E∞ is closed) so that either
E∞ has at least two points or both E+ and E− are non-empty, there is a geosphere
σ = (τ, ε, e+) so that E±(Σ) = E± and E∞(Σ) = E∞

We prove this by constructing the appropriate geosphere.

8.1. Geospheres from partitions. Consider a partition of E(M̃) satisfying the
hypothesis, say A = (E+, E−, E∞) = (E+(A), E−(A), E∞(A)). We note that it
makes sense to talk of partitions crossing (as in the Definition 5.1).

Firstly, we associate a subgraph τ of T to A motivated by the following lemma
(see also [4]).

Lemma 8.2. A non-degenerate geosphere σ = (τ, ε, e+) crosses a standard sphere
S if and only if τ contains the corresponding vertex v.

Proof. If τ does not contain v, it is either on the positive or the negative side of v.
As in Lemma 5.2, we see that S does not cross σ.

Conversely, suppose τ contains v. As v is a standard vertex, v is not a terminal
vertex of τ . Hence, if W±, are the complementary components of v corresponding
to a chosen orientation on S, then τ has non-empty intersection with W±.

It follows that τ ∩W± is either infinite or has a terminal vertex. In the first case,
E±(S)∩E∞(σ) is non-empty. In the second case, as terminal vertices are adjacent
to edges on both the positive and negative sides, as in the proof of Lemma 5.3,
E±(S) intersects both E+(σ) and E−(σ). In either case, S crosses σ. �

We construct τ as follows. If A crosses a standard sphere Σ̃i, then τ contains

the bivalent vertex vi corresponding to Σ̃i and the edges ei1 and ei2 containing that
vertex vi. The other end vertex vij of the edge eij , for j = 1, 2, is a trivalent vertex

in T which corresponds to a component of M̃ − Σ̃. Each vij may be a univalent,

bivalent or trivalent vertex in τ . If A does not cross some standard sphere in M̃ ,
then τ does not contain the standard vertex corresponding to this standard sphere
and hence, it does not contain the edges containing this standard vertex.

Lemma 8.3. If the partition A does not cross any standard sphere in M̃ , then
E∞(A) = φ and there exists a standard sphere Σ0 such that E± = E±(Σ0).

Proof. Firstly we shall show that E∞(A) = φ. Suppose E∞(A) 6= φ. Let P ∈ E∞.
Suppose E∞ has another point Q, we consider the geodesic γ ⊂ T from P to Q.
Given any edge e of γ, if Σ(e) is the standard sphere corresponding to the standard
vertex of e oriented appropriately, then P ∈ E−(Σ(e)) and Q ∈ E+(Σ(e)). Hence,
Σ(e) crosses the given partition A. This is a contradiction to the hypothesis as A
does not cross any standard sphere.

On the other hand, if P is the only point in E∞(A), then there are points Q± ∈
E±(A). Let α be the geodesic from Q− to Q+ and let γ be the unique geodesic ray
from a point of α to P with the property that its interior is disjoint from α. Given
any edge e of γ, if Σ(e) is the standard sphere corresponding to the standard vertex
of e oriented appropriately, then P ∈ E−(Σ(e)) and Q± ∈ E+(Σ(e)). Hence, Σ(e)
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crosses the given partition A. This is a contradiction to the hypothesis. Therefore,
E∞(A) = φ.

Now, by hypothesis, if v is a standard bivalent vertex of T , the standard sphere
Σ(v) corresponding to v does not cross A. Hence, after choosing orientations appro-
priately, either E+(Σ(v)) ⊂ E+(A) or E−(Σ(V )) ⊂ E−(A). If Σ(v) = Σ0 satisfies
both the conditions, then E±(A) = E±(Σ0).

Suppose no Σ(v) satisfies both the above conditions, we get a partition of bivalent
vertices of T as

V + = {v : E+(Σ(v)) ⊂ E+(A)}
and

V − = {v : E−(Σ(v)) ⊂ E−(A)}.
Let X± is the union of all the edges e in T such that the bivalent vertex of e

lies in V ±. Then, X± are closed and T = X+ ∪ X−. Hence, X+ ∩X− 6= φ. By
construction, X+∩X− consists of trivalent vertices of T . Let w ∈ X+∩X− and let
v1, v2 and v3 be bivalent vertices adjacent to w. Note that at least one vi ∈ X+ and
at least one vj ∈ X−. Without loss of generality, suppose v1, v2 ∈ X+ and v3 ∈ X−.
Let N(w) denote the set of all the points in T distance at most 1 from w. Then,
T −N(w) has three components V1, V2 and V3 whose closures contain the vertices
v1, v2 and v3, respectively. It is easy to see that E(V1) ⊂ E+, E(V2) ⊂ E+ and
E(V3) ⊂ E−. It follows that E+(Σ(v3)) = E+(Σ(v1)) ∪ E+(Σ(v2)). This implies
E+(Σ(v3)) ⊂ E+. As v3 ∈ X−, E−(Σ(v3)) ⊂ E−. But then, v3 ∈ V + ∩ V −. This
is a contradiction as V + and V − are disjoint. Hence, there must exist a standard
sphere Σ0 such that E±(A) = E±(Σ0). �

If A does not cross any standard sphere, the tree τ associated to A is a standard
vertex corresponding to the standard sphere representing A. Note that any edge e
in T has a unique end vertex which is a standard bivalent vertex in T .

We make the following observations :

If the partitionA = (E+, E−, E∞) of E(M̃) crosses a sphere S = (E+(S), E−(S))

in M̃ , where (E+(S), E−(S)) is a partition of E(M̃) given by S, then all the four in-
tersections E±(S)∩(E±∪E∞) are non-empty. For, if Eε(S)∩(Eη(A)∪E∞(A)) = φ,
for some sign ε and η, then Eη(A) ⊂ E ε̄(S) and hence, Eη(A) ∩ Eε(S) = φ. This
is a contradiction to the fact the partition A crosses S.

Lemma 8.4. The graph τ associated to the partition A is connected, and hence is
a subtree of T .

Proof. Suppose S, S′ and S′′ are standard spheres in M̃ such that the standard
bivalent vertex v′ in T corresponding to S′ lies on the geodesic in T joining the
standard bivalent vertices v and v′′ in T corresponding to S and S′′, respectively
(the geodesic is the dark line in Figure 3). By giving appropriate orientations to
S, S′ and S′′, we can assume that E+(S′′) ⊂ E+(S′) ⊂ E+(S) and E−(S) ⊂
E−(S′) ⊂ E−(S′′). Now, if A crosses S and S′′, it follows that each of the four
intersections E±(S) ∩ (E+(A) ∩ E∞(A)) is non-empty, hence A crosses S′. This
shows that the geodesic in T joining v and v′′ in T is completely contained in τ .
From this, one easily see that τ is connected and hence a subtree of T . �

Note that the terminal vertices of τ are trivalent vertices in T .
If A does not cross a sphere S = (E+(S), E−(S)) in M̃ , where (E+(S), E−(S))

is a partition of E(M̃) given by S, then Eε(S) ∩ (Eη(A) ∪ E∞(A)) = φ, for some
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Figure 3

sign ε and η obtained by choosing signs ε and η in {+,−}. Then, Eε(S) ⊂ Eη̄(A)
and (Eη(A)∪E∞(A)) ⊂ E ε̄(S). In this case, we say S is on the η̄-side of A and A
is on ε̄-side of S.

Note that the tree τ may or may not have terminal vertices. Suppose v is a
vertex of τ adjacent to a single edge e0 ∈ τ , i.e., a terminal vertex of τ . Let v0 ∈ τ

be the other end vertex of e0 and Σ0 be the standard sphere in M̃ corresponding
to v0. Then, A crosses Σ0. Let the other edges adjacent to v in T be e1 and e2
with other end vertices v1 and v2, respectively (see figure 4). Consider the standard

spheres Σ̃i = Σ̃(vi) corresponding to vertices vi, with orientations chosen so that

for i = 1, 2, the set E+(Σ̃i) is the set of ends of the component of M̃ − Σ̃i that does

not contain Σ̃0. We can orient Σ̃0 so that E+(Σ̃0) = E+(Σ̃1) ∪E+(Σ̃2).

Lemma 8.5. For some sign ε, Eε(A) ⊃ E+(Σ̃1) and E ε̄(A) ⊃ E+(Σ̃2).

Proof. First note that for each i, i = 1, 2, E+(Σ̃i) ∩ E∞(A) = φ. For, if E+(Σ̃i) ∩
E∞(A) 6= φ, then E+(Σ̃i) ∩ (E±(A) ∪ E∞(A)) 6= φ. As E−(Σ̃0) ⊂ E−(Σ̃i) and A

crosses Σ̃0, we have E−(Σ̃i) ∩ (E±(A) ∪ E∞(A)) 6= φ. This implies that A crosses

Σ̃i, which is a contradiction. Thus, E+(Σ̃i) ∩ E∞(A) = φ.

As A does not cross the spheres Σ̃i, for appropriate signs εi, (E
εi(A)∪E∞(A))∩

E+(Σ̃i) = φ. Then, we have E+(Σ̃i) ⊂ E ε̄i(A), for i = 1, 2. Finally, if ε1 = ε2 = ε,

then E ε̄(A) ⊃ E+(Σ̃0) as E
+(Σ̃0) = E+(Σ̃1) ∪E+(Σ̃2). As E∞(A) ∩E+(Σ̃0) = φ,
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Figure 4

we get E+(Σ̃0)∩(Eε(A)∪E∞(A)) = φ, contradicting the hypothesis that A crosses

Σ̃0. Therefore, ε1 6= ε2. Hence the result. �

Thus, one of the spheres Σ̃1 and Σ̃2 is on the positive side of A and the other on
the negative side. In the case of a vertex v of valence 2 of τ , either it is a bivalent
vertex (standard vertex) of T or there is an edge ev of T adjacent to v which is not

in τ . The standard sphere Σ̃(ev) corresponding to the other end vertex of the edge
ev is either on the positive side of A or on the negative side.

Let N(τ) be the subgraph of T consisting of points with distance at most 1 from
τ . Then, N(τ) is a tree, which is the union of τ with the following two kinds of
edges:

(1) For each terminal vertex v of τ , we have a pair of edges e1(v) /∈ τ and
e2(v) /∈ τ with v as an end-vertex. Let v1 and v2 be the other end vertices
of e1 and e2, respectively.

(2) For each non-standard bivalent vertex w of τ , we have an edge e(w) /∈ τ
with w as an end-vertex. Let w1 be its other end vertex.

By Lemma 8.5, for a terminal vertex v, the sphere corresponding to one of v1
and v2 is on the positive side of τ (positive side of A). The vertices v1 and v2 are
end vertices of e1 and e2 respectively. So, we can assign positive or negative signs to
these edges accordingly. We denote this by e+(v) and denote the other edge (which
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is on the negative side) by e−(v). We denote the standard spheres corresponding

to v1 and v2 by Σ̃(v1) = Σ̃(e1) and Σ̃(v2) = Σ̃(e2), respectively. For a non-standard

bivalent vertex w of τ , we can associate a sign ε(w) so that Σ̃(w1) = Σ̃(e(w)) is on

the ε(w)-side of A. Thus, we have a triple σ = (τ, ε, e+) which is geosphere in M̃ .

8.2. Partitions correspond to Geospheres. Now we shall show that σ gives

the partition A of E(M̃).

Lemma 8.6. The partition (E+(σ), E−(σ), E∞(σ)) of E(M̃) given by the geo-

sphere σ is the same as the partition A of E(M̃).

Proof. Let P ∈ E+(A). As E+(A) is open in the space of ends of T , there is a finite
connected tree κ ⊂ T and a component V of T − κ so that P ∈ E(V ) ⊂ E+(A).
We shall show that no edge of V is contained in τ . Let e be an edge of T contained
in V = T − κ. Then, as κ is connected, some component W of T − e is disjoint
from κ, and hence contained in V . Suppose v is the end vertex of e such that v is a
standard bivalent vertex in T . Let Σ(v) be the standard sphere corresponding to v,
then it follows that for some sign ε, Eε(Σ(v)) ⊂ E(V ) ⊂ E+(A), and hence, Σ(v)
does not cross A. This implies v is not in τ . It follows that e is not in τ . Thus, no
edge of V is in τ , as required.

Let W0 be the component of T − τ that contains V . Then, the closure of W0

intersects τ in a single vertex, which is either a terminal vertex or a non-standard
bivalent vertex. In either case, E(W0) ⊂ E+(σ) by construction of the partition
associated to a geosphere. Then, as P ∈ E(V ) ⊂ E(W0), P ∈ E+(σ). Thus,
E± ⊂ E±(σ).

We next show that E∞(A) ⊂ E∞(σ). Let P ∈ E∞(A). Suppose E∞(A) has
another point Q, we consider the geodesic γ ⊂ T from P to Q. Given any edge e of
γ, if Σ(e) is the standard sphere corresponding to the standard vertex of e oriented
appropriately, then P ∈ E−(Σ(e)) and Q ∈ E+(Σ(e)). Hence, Σ(e) crosses the
given partition A, so v ∈ τ and hence, e ∈ τ . Thus, γ ⊂ τ and hence P ∈ E∞(τ).

On the other hand, if P is the only point in E∞(A), then there are points
Q± ∈ E±(A). Let α be the geodesic fromQ− toQ+ and let γ be the unique geodesic
ray from a point of α to P with the property that its interior is disjoint from α.
Given any edge e of γ, if Σ(e) is the standard sphere corresponding to the standard
vertex of e oriented appropriately, then P ∈ E−(Σ(e)) and Q± ∈ E+(Σ(e)). Hence,
Σ(e) crosses the given partition A, so e ∈ τ . Thus, γ ⊂ τ and hence, P ∈ E∞(τ).

This shows that E∞(A) ⊂ E∞(σ). Thus, as (E+(σ), E−(σ), E∞(σ)) and A form

partitions of E(M̃), both are the same. �
This completes the existence part of the proof of Theorem 8.1. In the degenerate

case, which corresponds to A not crossing any standard sphere, uniqueness follows
as different standard spheres clearly give different partitions. In the non-degenerate
case, it follows from Lemma 8.2 that if σ = (τ, ε, e+) corresponds to A, then τ
is determined by A. Further, ε and e+ are also determined by A, as they are
determined by whether the set of ends of a given component of T − τ is contained
in E+(A) or in E−(A). Thus A uniquely determines σ. �

9. The Topology in terms of Partitions

In Section 8, we saw that a geosphere σ can be defined as the triple (E+, E−, E∞),

where the sets E± ⊂ E(M̃) are open, E∞ is closed and these sets form a partition
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of E(M̃). Now, we define an appropriate topology on the set GS(M̃) of geospheres,
viewed as partitions, and accordingly define topology on the set L(M) of geosphere

laminations where geospheres are partitions. We shall show that the spaces L(M̃)

and L(M̃) are homeomorphic.

9.1. Topology on the set GS(M̃). Let σi = (E+
i , E−

i , E∞
i ), i = 1, 2, be two

geospheres in GS(M̃). Let U be a basic open subset of the space E(M̃) of the ends

of M̃ .

Definition 9.1. We say σ1 is U -equivalent to σ2 if

(1) E±
1 ∩ U is non-empty if and only if E±

2 ∩ U is non-empty and,
(2) (E±

1 ∪ E∞
1 ) ∩ U is non-empty if and only if (E±

2 ∪ E∞
2 ) ∩ U is non-empty.

This is clearly an equivalence relation for each open set U , which we shall call

U -equivalence. Let U(σ,U) ⊂ GS(M̃) be the U -equivalence class of σ. We consider
the topology on geospheres with sub-basis the set of all U -equivalent subsets U(σ,U)

of GS(M̃), for all σ ∈ GS(M̃) and for all basic open subsets U of E(M̃). Thus,

a basic open subset of GS(M̃) is a finite intersection of U -equivalent subsets of

GS(M̃).

Now, we shall show that the space GS(M̃) with the topology defined above is

homeomorphic to the space GS(M̃). The identity map gives a bijective corre-

spondence θ : GS(M̃) → GS(M̃). We shall show that this correspondence is a
homeomorphism.

Theorem 9.2. The space GS(M̃) is homeomorphic to the space GS(M̃).

Proof. Firstly, we shall show that θ is continuous. Let σn ∈ GS(M̃) and let κ be a
finite subtree of T . Consider the basic open set U(σn, κ). Let σp be the geosphere in

GS(M̃) corresponding to σn. We shall show that there exists a basic neighborhood

of σp in GS(M̃) whose image under θ is contained in U(σn, κ).
Let resκ(σn) = (τ, ε, e+). Note that τ ⊂ N(κ). Consider T \τ . It has only finitely

many components Wi. Let Ui = E(Wi) ⊂ E(M̃). Consider the basic neighborhood

∩iU(σp, Ui) of σp in GS(M̃). We claim that for every geosphere σ′
p ∈ ∩iU(σp, Ui),

the corresponding geosphere σ′
n has the same restriction to κ as the restriction to

κ of σn. Let resκ(σ
′
n) = (τ ′, ε′, e′+).

Let w be any vertex of N(κ) \ τ , then w lies in a component, say Wi0 of T \ τ .
For this component, E(Wi0) = Ui0 is contained either in E+(σn) or in E−(σn).
Without loss of generality, we assume Ui0 ⊂ E+(σn) = E+(σp). In this case, we
say w (and its adjacent edges) are on the positive side of τ . As E+(σp) ∩ Ui0 is
non-empty and (E−(σp)∪E∞(σp))∩Ui0 is empty, E+(σ′

p)∩Ui0 is non-empty and

(E−(σ′
p) ∪ E∞(σ′

p)) ∩ Ui0 is empty. This shows that Ui0 ⊂ E+(σ′
p) = E+(σ′

n) and
τ ′∩Wi0 is empty. This imples τ ′ ⊂ τ and w lies on the positive side of τ ′. Similary,
we can show that τ ⊂ τ ′. Hence, τ = τ ′. The above arguments also show that
ε′ = ε and e′+ = e+. Thus, resκ(σ

′
n) = resκ(σn). Therefore, image under θ of

∩iU(σp, Ui) is contained U(σn, κ). This shows that the map θ is continuous.
Now, we shall show that the map θ−1 is continuous. Let σp ∈ U = ∩k

i=1U(σi
p, Ui).

For each basic open set Ui, there exists a finite subtree κi of T such that for some
component W i of T − κi, E(W i) = Ui. Further, if (the open set) E±(σp) ∩ Ui
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is non-empty, there is a finite tree κ±
i and a component W±

i of T − κ±
i so that

E(W±
i ) ⊂ E±(σp) ∩ Ui.

Let κ be a finite subtree of T containing the subtrees κi and κ±
i in its inte-

rior. Consider the basic open set U(σn, κ). Note that U(σn, κ) ⊂ U(σn, κi) and
U(σn, κ) ⊂ U(σn, κ

±
i ) whenever E

±(σn) ∩ Ui 6= φ.
Suppose σ′ ∈ U(σn, κ), then if E±(σn) ∩ Ui 6= φ, then as resκ±

i
(σ′) = resκ±

i
(σ),

it follows that E(W±
i ) ⊂ E±(σ′) ∩ Ui and hence E±(σ′) ∩ Ui 6= φ.

Next, if (E±(σp) ∪ E∞(σp)) ∩ Ui 6= φ, either E±(σp) ∩ Ui 6= φ or E∞(σp) ∩
Ui 6= φ. In the first case the claim follows as above. Thus, we may assume that
E∞(σp) ∩ Ui 6= φ, and hence τ ∩ E(W i) is an infinite tree. It follows that, if τ ′

is the tree corresponding to σ′ ∈ U(σn, κ), then τ ′ ∩ E(W i) is non-trivial. Hence,
either τ ′ ∩ E(W i) is infinite, in which case E∞(σ′) ∩ Ui 6= φ, or τ ′ ∩ E(W i) has a
terminal vertex, in which case E±(σ′)∩Ui 6= φ as each terminal vertex is adjacent
to both positive and negative vertices. This shows that σ′

p ∈ U .
Thus, θ is homeomorphism.

�

9.2. Topology on the set C(M̃) and L(M). Let C(M̃) be the collection of all

closed subsets of GS(M̃). Let U be basic open subset of E(M̃). Given two elements

F1 and F2 of C(M̃), we say F1 is U -equivalent to F2, if each geosphere of F1 is U -
equivalent to some geosphere of F2 and vice versa. Then, the U -equivalent subsets

of C(M̃) form a sub-basis for a topology on C(M̃). Using arguments similar to

those in Section 9.1, one can see that the space C(M̃) is homeomorphic to C(M̃).
One can define geosphere laminations where geospheres are the partitions in the
same way as the geosphere lamination defined in the Section 6. We can restrict

the topology on C(M̃) to the set L(M) of geosphere laminations with geospheres as
partitions. One can easily conclude that the space L(M) is homeomorphic to the
space L(M).

Remark 9.3. From this definition of the topology, it is immediate that crossing is
an open condition. Indeed half of the proof of the equivalence of the two topologies
is essentially the same as the proof that crossing is an open condition.

10. Some Questions

We end with a list of questions and problems regarding geosphere laminations,
the solutions to some of which should be straightforward adaptations of results for
geodesic laminations while others require new insights.

(1) Given any outer automorphism ϕ of the free group, show that there is a lami-
nation that is a limit of spheres and is invariant under ϕ.

(2) Characterise geosphere laminations that are limits of spheres.
(3) Show that an invariant lamination of a totally irreducible automorphism of a

free group is filling, i.e., intersects every essential sphere.
(4) Is there a lamination that is filling, minimal and a limit of spheres.

Remark 10.1. This may be obtained either by 3 or some iterated construction.
One may be able to deduce infinite diameter of the sphere complex from this.

(5) Construct measured geosphere laminations and show that space is compact.
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(6) Which geosphere laminations admit transverse measures. There is a corre-
sponding characterisation for geodesic laminations.

(7) Do we have a Cauchy inequality in the sense of Luo-Stong (see [7]) for embed-
ded spheres in M , (we should, but it will also be interesting if we show this
false) allowing a completion of the space of spheres with intersection number
to ‘measured laminations’.

(8) If 7 is true, are the limiting objects geosphere laminations with transversal
measure.
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