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Abstract. In [Kl], §75, p.300, F. Klein formulated a conjecture on genera-
tors of the group of birational contact transformations of the projective plane.
These transformations act birationally on the three-dimensional projective
space. We solve the problem for the subgroup of contact transformations
acting biregularly on the three-dimensional affine space. A description of the
structure of the group of polynomial contact automorphisms of multidimen-
sional affine space is given in the final section of the text.

1. Introduction

The ground field k is of characteristic zero.
Let (x, y, p) be three affine coordinates. The Pfaffian form

(1.1) ω = dy − pdx

is said to be a contact form of the three-dimensional space. A Cremona transfor-
mation T of the three-dimensional (x, y, p)-space defined by

(1.2) x′ = f(x, y, p), y′ = g(x, y, p), p′ = h(x, y, p)

is said to be a contact Cremona transformation of the (x, y)-plane if the image
T ∗(ω) of the contact form (1.1) is proportional to this form:

(1.3) T ∗(ω) = ρ(x, y, p) · ω,

where ρ(x, y, p) is a non-zero rational function. We will say that ρ(x, y, p) is the
multiplier of T . The contact transformation T is said to be a contact affine transfor-
mation if T and its inverse T−1 are polynomial. For a contact affine transformation,
the multiplier is a non-zero constant (see Corollary 3.2 of Lemma 3.1 below).

Example 1.1. Let

(1.4) x′ = f(x, y) y′ = g(x, y)

be a Cremona transformation of the (x, y)-plane. It is possible to extend (1.4) to a
contact transformation

(1.5) x′ = f(x, y), y′ = g(x, y), p′ = h(x, y, p),
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where

h(x, y, p) =
pg′y + g′x
pf ′

y + f ′
x

.

See a description of such an extension for a one-parameter group in [In], no 4.5,
page 103. According to a tradition, we will say that (1.5) is a contact extension of

point transformation (1.4), or shorter that (1.5) is a point transformation.

Example 1.2. It is not hard to verify that the following transformation

(1.6) L : x′ = p, y′ = xp − y, p′ = x

is involutive and contact. It is the Legendre transformation. See [In], no2.5, pages
40-41. The Legendre transformation belongs to the set of duality transforma-
tions. All the duality transformations are conjugate by extended plane projective
collineations to the Legendre transformation. See [Kl], §62 for a description of
space duality transformations as contact transformations. According to [Po], page
125, the connection between the reciprocity defined by a quadric and the Legendre
transformation was observed by Michel Chasles.

In [Kl], §75.1, page 300, one can find the following conjecture.
Klein’s conjecture. The group of contact Cremona transformation of the pro-

jective plane is generated by the subgroup of point contact transformation and by

the Legendre transformation.

Remark 1.3. The above formulation of the conjecture is more explicit than
Klein’s original description of his principle. In the mentioned place of [Kl], Klein
comments an example of decomposition of a contact transformation (it was the
pedal transformation) and writes the following.

Wir entnehmen aus unserem Beispiel daher das folgende allgemeine Prinzip:

Um Beispiele ein eideutiger Berührungstransformation herzustellen, braucht man

nur eine beliebige dualistische Transformation mit einer beliebigen Cremona Trans-

formation verbunden .
Later authors stated the conjecture without a reference to Klein. For example,

Ott-Heinrich Keller in [Ke], page 651 wrote that he does not know a birational
contact transformation of the plane which is not presentable as a composition of
point Cremona transformations and duality transformations:
Korrelationen und Cremona Transformationen und alles daraus Zusammengestzen

sind Berührungstransformationen. Eine birationale Berührungstransformation die

nicht dieser Gruppe angehört, ist nur nicht bekannt.
Some other authors, for example, Manfred Hermann [He], attributed the con-

jecture to O-H. Keller but not to F. Klein.
I add final Klein’s sorrowful remark at the end of the mentioned §75.1 in [Kl].

He says that so far we do not have a general theory of one-to-one algebraic con-
tact transformations. (Eine allgemeine Theorie der eindeutigen und albebraischen

Berührungstransformationen sheint noch nicht entwickelt zu sein.) Moreover, I
add that for the first time Klein stated his conjecture in his lithographic lectures
on higher geometry (the first publication of [Kl]) in 1893.

Our result is the following theorem



KLEIN’S CONJECTURE 3

Theorem 1.4. Any polynomial contact automorphism of the affine (x, y, p)-
space is a composition of some extended point polynomial automorphisms of the

(x, y)-plane and of some number of Legendre transformations.

In the final section of our paper, we present a description of the structure of
polynomial contact transformation of multidimensional affine space.
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2. Some examples, the notions of potential and lift

Example 2.1. Let P (x) be a polynomial of x.

x′ = x, y′ = y + P (x), p′ = p + P ′(x),

where P ′(x) is the derivative of P (x). According to example 1.1, this transformation
is a contact extension of a triangular point transformation

(2.1) x′ = x, y′ = y + P (x).

Example 2.2. Let us take a polynomial automorphism of the affine (x, p)-plane

(2.2) x′ = f(x, p), p′ = h(x, p).

The Jacobian of the automorphism is a non-zero constant r,

f ′

x(x, p)h′

p(x, p) − h′

x(x, p)f ′

p(x, p) = r.

The Pffafian form of two variables (x, p)

Θ = (hf ′

x − rp)dx + (hf ′

p)dp

is closed, that is dΘ = 0, hence Θ is the differential of some polynomial U(x, p),
dU = Θ. Thus we have identities

(2.3) U ′

x = hf ′

x − rp, U ′

p = hf ′

p.

The polynomial U(x, p) is defined up to an additive constant.
It is not difficult to verify that

(2.4) x′ = f(x, p), y′ = ry + U(x, p), p′ = h(x, p)

is a contact affine transformation.
We will say that U(x, p) is a potential of the polynomial affine automorphism

(2.2) of the (x, p)-plane and that transformation (2.4) is a contact lift of (2.2).
If

f(x, p) = x, h(x, p) = p + P ′(x), U = P (x),

then by lift we obtain the transformation of example 2.1.
Legendre transformation (1.6) is a lift of the transposition of variables x, p.
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Example 2.3. More generally, the linear transformation

(2.5) x′ = Ap, p′ = Bx,

where A ∈ k∗, B ∈ k∗, has the following lift

x′ = Ap, y′ = AB(px − y), p′ = Bx.

Example 2.4. One of the lifts of the following triangular transformation

(2.6) x′ = x + F (p), p′ = p,

where F (p) ∈ k[p], is

x′ = x + F (p), y′ = y + U(p), p′ = p,

where U(p) ∈ k[p], U ′ = pF. The latter transformation is a composition of two
Legendre transformations L from (1.6) and of a point transformation. Indeed, if R
is the following point transformation

x′ = x, y′ = y + U(x), p′ = p + F (x),

then the lift coincides with LRL.

Remark 2.5. Sophus Lie preferred the following writing of the lift of 2.6

x′ = x +
dW (p)

dp
, y′ = y − W (p) + p

dW (p)

dp
, p′ = p.

Certainly, Lie considered W (p) more general than a rational function. He proved
in [Lie], Chap. 2, Theorem 11, page 60 that such a commutative subgroup of
contact transformations coincides with his own centralizer in the group of all contact
transformations.

The following lemma is obvious.

Lemma 2.6. Polynomial contact transformation (1.2) of the affine (x, y, p)-
space is a contact lift of some polynomial automorphism of the affine (x, p)-plane

if and only if polynomials f and h do not depend on y.

3. The proof of Theorem 1.4

Lemma 3.1. Let T be a contact Cremona transformation (1.2), ρ(x, y, p) be its

multiplier. The square of the multiplier coincides with the Jacobian J(T ) of the

transformation:

J(T ) = ρ2.

Proof. The contact condition (1.3) is equivalent to the following three iden-
tities

(3.1) g′p − hf ′

p = 0,

(3.2) g′y − hf ′

y = ρ,

(3.3) g′x − hf ′

x = −ρp.
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Taking the difference of the partial derivatives of the first identity (3.1) by y
and of the second identity (3.2) by p, we obtain

(3.4)

∣

∣

∣

∣

f ′

y f ′

p

h′

y h′

p

∣

∣

∣

∣

= −ρ′p.

Taking the difference of the partial derivatives of the first identity (3.1) by x and
of the third identity (3.3) by p, we obtain

(3.5)

∣

∣

∣

∣

f ′

x f ′

p

h′

x h′

p

∣

∣

∣

∣

= ρ + pρ′

p.

Taking the difference of the partial derivatives of the second identity (3.2) by
x of the third identity (3.3) by y we obtain

(3.6)

∣

∣

∣

∣

f ′

x f ′

y

h′

x h′

y

∣

∣

∣

∣

= ρ′x + pρ′y.

If we multiply the first row of the Jacobian matrix

(3.7)





f ′

x f ′

y f ′

p

g′x g′y g′p
h′

x h′

y h′

p





by (−h) and add the produced row to the the second row, then using the above
three identities (3.1),(3.2),(3.3), we obtain new matrix





f ′

x f ′

y f ′

p

−ρp ρ 0
h′

x h′

y h′

p





with the same determinant. Taking the expansion of the determinant of the latter
matrix along the second row, we obtain that

J(T ) = ρ(p

∣

∣

∣

∣

f ′

y f ′

p

h′

y h′

p

∣

∣

∣

∣

+

∣

∣

∣

∣

f ′

x f ′

p

h′

x h′

p

∣

∣

∣

∣

).

According to the above two determinantal identities (3.4), (3.5), the expression in
the parentheses coincides with ρ, hence the Jacobian J(T ) is equal to ρ2. �

Corollary 3.2. The multiplier of any polynomial contact transformation of

the affine (x, y, p)-space is a nonzero constant.

Proof. The Jacobian of any polynomial affine automorphism is a constant.
�

Lemma 3.3. Any polynomial contact transformation of the affine (x, y, p)-space
is a contact lift of some polynomial automorphism of the affine (x, p)-plane, that is

such a transformation is representable as (2.4), where U satisfies (2.3).

Proof. Let (1.2) be a contact polynomial transformation, ρ be its multiplier.
By the corollary 3.2 of Lemma 3.1, ρ is a constant, hence all the partial derivatives of
ρ vanish. Therefore we may rewrite three determinantal identities (3.4),(3.5),(3.6)
as

(3.8)

∣

∣

∣

∣

f ′

y f ′

p

h′

y h′

p

∣

∣

∣

∣

= 0,
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(3.9)

∣

∣

∣

∣

f ′

x f ′

p

h′

x h′

p

∣

∣

∣

∣

= ρ,

(3.10)

∣

∣

∣

∣

f ′

x f ′

y

h′

x h′

y

∣

∣

∣

∣

= 0.

Using the three latter identities (3.8), (3.9),(3.10) and the expansion of the Jacobian
determinant of J(T ) by the second row of matrix (3.7), we see that the Jacobian
determinant coincides with g′

yρ. By Lemma 3.1, the Jacobian determinant of any
polynomial transformation is the square of the multiplier, hence

g′y = ρ, g(x, y, p) = ρy + U(x, p)

for some polynomial U(x, p). Because of identity (3.2), we obtain

hf ′

y = 0,

hence f does not depend on y,

f(x, y, p) = f(x, p).

Let us consider the following two subcases.

First : f ′

x(x, p) = 0.

Second : f ′

x(x, p) 6= 0.

If we have the first subcase, then f(x, p) = f(p), f ′

p is a divisor of the Jacobian
determinant, therefore f ′

p =const, f = Ap + B, where A, B are constants, A 6= 0,
−Ah′

x = ρ, whence

h = −A−1x + G(p),

where G(p) is a polynomial, therefore using Lemma 2.6 we obtain a polynomial
automorphism of type (2.2), and a potential exists.

Let us consider the second subcase. According to (3.10), we obtain

h′

y = 0,

that is h is independent on y, h = h(x, p), and again by Lemma 2.6 we obtain a
polynomial automorphism type (2.2).

The Lemma is proved. �

The end of the proof of Theorem 1.4.
It is enough to find a set of generators of the group of contact polynomial

automorphisms of the affine 3-space such that any generator is decomposable into
a composition of some extended point transformations and some number of the
Legendre transformations.

According to well-known Jung’s and Van der Kulk’s theorem [Ju],[Ku], the
group of polynomial automorphisms of the (x, p)-plane is generated by transforma-
tions (2.5) (2.6) from Examples 2.3, 2.4 respectively. We saw that some contact
lifts of the transformations exist. Any contact lift is defined up to a translation
parallel to the y-axis

(3.11) x′ = x, y′ = y + b, p′ = p.
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By Lemma 3.3, the lifted transformations (2.6) and (2.5) together with extended
(2.1) and the translations (3.11) generate the group of contact polynomial automor-
phisms of the affine 3-space. It is clear that any translation is a point transforma-
tion,. Moreover, we saw that the lifts of (2.6) and (2.5) satisfy Klein’s conjecture.

4. Some generalizations

We begin with multidimensional generalizations of the basic definitions. Here
we consider
odd-dimensional affine space A

2n+1 with point coordinates

(x, y,p) = (x1, ..., xn, y, p1, ..., pn),

its even-dimensional (sub/quotient)space A
2n with coordinates

(x,p) = (x1, ..., xn, p1, ..., pn),

two differential form on A
2n+1

(4.1) ω(x, y,p) = dy − p1dx1 − ... − pndxn

and the differential

(4.2) Ω = dω = dx1 ∧ dp1 + ... + dxn ∧ dpn.

Certainly, (4.1) generalizes (1.1). A Cremona transformation T of the (2n + 1)-
dimensional affine space A

2n+1 defined by

(4.3) x′

i = fi(x, y,p),

y′ = g(x, y,p),

p′i = hi(x, y,p),

where 1 ≤ i ≤ n, is said to be a contact Cremona transformation of the space if
the image T ∗(ω) of the contact form (4.1) is proportional to this form:

(4.4) T ∗(ω) = ρ(x, y,p) · ω,

where ρ(x, y,p) is a non-zero rational function.
The function ρ(x, y,p) is the multiplier of T . The contact Cremona transformation
T is said to be a contact affine transformation if T and its inverse T−1 are polyno-
mial. The multiplier of any contact affine transformation is a non-zero constant. A
Cremona transformation S of the 2n-dimensional affine space A

2n defined by

(4.5) x′

i = fi(x,p),

p′i = hi(x,p)

is said to be a conformally symplectic Cremona transformation of the space if the
image S∗(Ω) of the symplectic form (4.2) is proportional to this form:

(4.6) S∗(Ω) = σ(x,p) · Ω,

where σ(x,p) is a non-zero rational function. The function σ is the conformal

multiplier of S.

There exists the following generalization of Lemma 3.1. (According to [Po],
page 138, such an assertion as Lemma 4.1 for a multidimensional case was proved
by Sophus Lie, the proof is reproduced in [Ca], page 109. Caratheodory did not
use exterior differential forms. E. M. Polistchuk writes that the idea of application
of differential forms in a proof is due to F. Frobenius and E. Cartan. We use the
idea below.)
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Lemma 4.1. For a contact Cremona transformation T defined by (4.3), the

determinant J(T ) of the Jacobian matrix

(4.7) M(T ) =























∂f1

∂x1

... ∂f1

∂xn

∂f1

∂y
∂f1

∂p1

... ∂f1

∂pn

. ... . . . ... .
∂fn

∂x1

... ∂fn

∂xn

∂fn

∂y
∂fn

∂p1

... ∂fn

∂pn

∂g
∂x1

... ∂g
∂xn

∂g
∂y

∂g
∂p1

... ∂g
∂pn

∂h1

∂x1

... ∂h1

∂xn

∂h1

∂y
∂h1

∂p1

... ∂h1

∂pn

. ... . . . ... .
∂hn

∂x1

... ∂hn

∂xn

∂hn

∂y
∂hn

∂p1

... ∂hn

∂pn























.

is equal to (n + 1)-th power of the multiplier:

J(T ) = ρn+1.

Proof. Indeed, if T is contact, then

(4.8) T ∗(Ω) = T ∗(dω) = dT ∗(ω) =

dρ ∧ ω + ρΩ,

therefore

J(T )dx1 ∧ ... ∧ dxn ∧ dy ∧ dp1 ∧ ... ∧ dpn =

T ∗(dx1 ∧ ... ∧ dxn ∧ dy ∧ dp1 ∧ ... ∧ dpn) =

1

n!
T ∗(ω ∧ Ω∧n) =

1

n!
ρn+1ω ∧ Ω∧n =

ρn+1dx1 ∧ ... ∧ dxn ∧ dy ∧ dp1 ∧ ... ∧ dpn.

�

A parallel similar assertion with almost the same proof takes place for confor-
mally symplectic transformations.

Lemma 4.2. For a conformally symplectic Cremona transformation S defined

by 4.5, the determinant J(S) of the Jacobian matrix

(4.9) M(S) =



















∂f1

∂x1

... ∂f1

∂xn

∂f1

∂p1

... ∂f1

∂pn

. ... . . ... .
∂fn

∂x1

... ∂fn

∂xn

∂fn

∂p1

... ∂fn

∂pn

∂h1

∂x1

... ∂h1

∂xn

∂h1

∂p1

... ∂h1

∂pn

. ... . . ... .
∂hn

∂x1

... ∂hn

∂xn

∂hn

∂p1

... ∂hn

∂pn



















is equal to n-th power of the conformal multiplier:

J(S) = σn.

Proof. We omit it. �

We will say that for a conformally symplectic Cremona transformation (4.5)
there exists a potential U = U(x,p) ∈ k(x1, ..., xn, p1, ..., pn) if the following iden-
tities are fulfilled:

∂U

∂pi

=

n
∑

k=1

hk

∂fk

∂pi

,
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∂U

∂xi

=

n
∑

k=1

hk

∂fk

∂xi

− piσ,

where 1 ≤ i ≤ n, σ is the conformal multiplier of the transformation. It is clear
that for any symplectic polynomial automorphism of A

2n the conformal multiplier
σ is a constant and a potential exists.

If σ is a constant and a potential for (4.5) exists, then

(4.10) x′

i = fi(x,p),

y′ = σy + U(x,p),

p′i = hi(x,p)

is a contact transformation. We will say that the latter transformation (4.10) is a
contact lift of (4.5). For such a lift (4.10), the multiplier ρ coincides with σ. Any
potential is defined up to an additive constant, therefore any lift is defined up to
an element from group Ty(A2n+1) of translations parallel to the y-axis

(4.11) x′

i = xi, y′ = y + b, p′i = pi,

where b is an element of the ground field k.
Lemma 3.3 has the following multidimensional analog.

Lemma 4.3. Any polynomial contact transformation of the affine (2n + 1)-
space is a contact lift of some polynomial conformally symplectic automorphism of

the affine 2n-space, that is such a transformation is representable as (4.10).

Proof. For a polynomial contact transformation T defined by by (4.3), one
can write

det(M(T )) =
∂g

∂x1

F1 + ... +
∂g

∂xn

Fn +
∂g

∂y
G +

∂g

∂p1

H1 + ... +
∂g

∂pn

Hn,

where F1, ...Fn, G, H1, ..., Hn are the co-factors of elements of (n + 1)-th row of
matrix M(T ) in (4.7).

The plan of the proof is as follows.
First, we have to show that if the multiplier ρ is a constant, then all the co-factors
(with the exception of G) of the (n + 1)-th row of M(T ) vanish, but the co-factor
G is equal to the n-th power of the multiplier, therefore, according to Lemma 4.2,
the (n + 1)-th element ∂g

∂y
of the (n +1)-th row of matrix is equal to the multiplier:

∂g

∂y
= ρ.

Second, we have to show that if the multiplier ρ of transformation (4.3) is a con-
stant, then the right hand sides fi and gi of (4.3) do not depend on y, that is the
corresponding lines of formulas for (4.3) have the same form as the lines of (4.10).

In the proof of Lemma 4.2, we have seen identity (4.8). Here the multiplier is
a constant, therefore

(4.12) T ∗(Ω) = ρΩ,

whence

T ∗(Ω∧n) = ρnΩ∧n,

T ∗(dx1 ∧ ... ∧ dxn ∧ dp1 ∧ ... ∧ dpn) = ρn · dx1 ∧ ... ∧ dxn ∧ dp1 ∧ ... ∧ dpn.
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The latter identity means that the co-factor G is equal to ρn, and that other co-
factors vanish.

Second, identity (4.12) implies that

Σn
i=1

∣

∣

∣

∣

∣

∂fi

∂xm

∂fi

∂y
∂hi

∂xm

∂hi

∂y

∣

∣

∣

∣

∣

= 0, m = 1, ..., n,

or

Σn
i=1

∂hi

∂y

∂fi

∂xm

− Σn
i=1

∂fi

∂y

∂hi

∂xm

= 0, m = 1, ..., n.

One can consider the latter identities as a system of homogeneous linear equations
with unknown quantities ∂hi

∂y
,∂fi

∂y
. The determinant of the system is equal (up to a

sign) to G (or to the determinant of matrix of form (4.9)). Because of non-vanishing
of the determinant, the solution of the linear system is trivial.

We add that a comparison of (4.12) and (4.6) implies equality ρ = σ. �

Remark 4.4. About the second step of our proof. The vanishing of the partial
derivatives by y admits some interpretation with the point of view of a general
theory of contact varieties, one can see such a theory in chap. 4 of [Hu]. On a
general contact variety, the structure contact form ω defines a vector field Vω by
the following condition

Vω(f) · ω ∧ (dω)∧n = df ∧ (dω)∧n.

For the case of our standard ω (see (4.1)), Cartan used notation {f} instead of
Vω(f) (see [Car], chap. XIII, no131). Certainly, for the standard case, the vector
field is parallel to the y-axis, {f} = ∂f/∂y. The vanishing of Vω(f) means that f is
a constant along the trajectories of the vector field Vω, and f is a lift of a function
defined on a symplectic quotient of the contact variety.

Remark 4.5. We would like to say a few final words about the structure of
the group of contact polynomial automorphisms.

Let CSAut(A2n) denote the group of all conformally symplectic polynomial au-
tomorphisms of A

2n (see (4.5) and (4.6)), let ContAut(A2n+1) denote the group of
all contact polynomial automorphisms of A

2n+1 (see (4.3) and (4.4)), let Ty(A2n+1)
be the group of translations parallel to the y-axis(see (4.11)). The group of such
translations is a subgroup ContAut(A2n+1). Lemma 4.3 says that if we omit the
middle line in (4.3), then we obtain formulas of type (4.5). Thus we have a ho-
momorphism of ContAut(A2n+1) to CSAut(A2n). The latter homomorphism is
surjective. Hence we obtain the following

Theorem 4.6. The sequence of homomorphisms

(4.13) {1} → Ty(A2n+1) → ContAut(A2n+1) → CSAut(A2n) → {1}

is exact.

Proof. The theorem is a reformulation of Lemma 4.3. �

Remark 4.7. In (4.13), the middle group is an extension of abelian invariant
subgroup Ty(A2n+1) by CSAut(A2n). One can describe such an extension with
the help of an action of the quotient group on the kernel together with a system
of factors, see [Ku], §48. In our case, the action coincides with the multiplication
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by the Jacobian determinant, that is if α ∈ CSAut(A2n) is the image of gα ∈
ContAut(A2n+1), and t is the translation (4.11), then gαtg−1

α is defined by

x′

i = xi, y′ = y + J(α)b, p′i = pi,

where J(α) is the Jacobian determinant of α. For a general extension, the system
of factors is the function mα,β of pairs of elements α, β of the quotient group with
values in the kernel, the function is defined (after a fixation of some representatives
gα ) by the following identity

gαgβ = mα,βgαβ .

For our case, we can fix the representatives by the condition of vanishing of poten-
tials at the origin (0). By such a fixation,

mα,β = Uα(0),

where Uα((x,p)) is the potential of α vanishing at (0), is the system of factors
defining the extension (4.13).
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