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1.1 The Shrinking Target Problem and its Connection with

Let X be a metric space and T : X — X a transformation. Suppose that X is equipped
with a Borel probability measure m which is preserved by T'. We shall also assume that
T is ergodic with respect to m. It is know that for any ball B in X of positive measure
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Abstract

Let T be a d X d matrix with integral coefficients. Then 1" determines a self-map
of the d-dimensional torus X = R%/Z% We shall consider the following question.
Choose for each natural number n a ball B(n) in X and suppose that B(n + 1} has
smaller radius than B(n) for all n. Now let W be the set of points z € X such
that T"(x) € B(n) for infinitely many n € N. What is the Hausdorff dimension
of W? This question arises from analogies with Diophantine approximation, in
particular Jarnik-Besicovitch’s description of the Hausdorff dimensions of the sets
of well-approximable real numbers. The answer depends on the quantity

— log(Radius of B(n))

7 = liminf .
n—00 n

We are able to give a complete description only when the matrix is diagonalizable
over Q. In other cases we obtain a result for sufficiently large . Our results, in
as far as they go, show that the Hausdorff dimension of W is a strictly decreasing,
continuous function of = which is piecewise of the form %. The numbers A, B,C
and D which arise in this way are typically sums of logarithms of the absolute values
of eigenvalues of T'.

Introduction

Diophantine Approximation

the subset

of X has full m-measure. This means that the trajectories of almost all points will go
through the ball B infinitely often. In general one can ask the question what happens

{z € X : T"z € B for infinitely many n € N}
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if the ball B shrinks with time and moves around. More precisely if at time n one has
a ball B(n) = B(zy,rad(n)) of radius rad(n) (rad(n) — 0 as n = o00), then what kind
of properties does the set of points z have, whose images 7"(z) are in B(n) for infinitely
many n?

These points can be thought of as trajectories which hit a shrinking, moving target
infinitely often. We shall call such points “well approximable” in analogy with the classical
theory of metric Diophantine approximation {1, 10] and its more recent extensions to the
theory of discrete hyperbolic groups (see (2, 7, 8, 9, 11, 12]). In the classical theory, the
projective real line, R U {oo} is identified with the unit tangent space at a point of the
modular surface H/SL2(Z) (the modular group SL,(Z) acts on the upper half plane H by
fractional linear transformations). The “well approximable” real numbers in the classical
sense (see [10]) correspond to geodesics which enter a shrinking neighbourhood of the only
cusp of H/SL2(Z) infinitely often.

1.2 Results

In this paper we shall consider only a special case of the above general problem, in which T
is a matrix transformation of a d-dimensional torus X := R¢/Z% For simplicity we suppose
that the determinant of 7' is non-zero. For any sequence of balls B(n) = B(zy,,rad(n))
(rad : N — R2° being a decreasing function), we shall examine the set

W:={2€ X : T"(2) € B(zn,rad(n)) for infinitely many n € N}. (1)

Our results will involve the eigenvalues of 7" and the number 7 defined by

T = liminf:—-l-?—g——{icm.
n—+oQ 7

(2)
We shall prove the following.

Theorem 1 Let T : X — X be a matriz transformation of the torus X := RY/z%. Let
€1,...,eq be the absolute values of the eigenvalues of T (with multiplicity). Suppose these
are ordered: ey < ey < ... < ey. Then for 7 > log(ea/e1) one has

dimW = min {

i=1,...,d

iloge; + Yy log e,-}

3
T + log e; ( )

If the matrix T is diagonalizable over @ then we obtain the following stronger result,
which fills the gap in the graph of dim W against 7.

Theorem 2 Let T : X — X be diagonalizable over Q, and let e1,...,eq € Z be as in
Theorem 1. Then one has

dimW = _rnind {

=1,...,

ElOg € — EJ‘ : ej>c.-c"'(log €; — ]Og € — T) + Zj‘;vi lOg €; (4)
T+ loge; '

[SW)



In fact the methods we use show that for any 7" we always have

min tloge; — Zj : e_,'>e.-e“'(]0g € — IOg € — T) + 2j>i log €5
i=1,..,d T+ loge;

< dimW,

dimW < min 08T Lixiloge;
i=1,d T + log €;

a 0
0 b
and a,b € Z\ {0}. Then the graph of dim W against 7 is as follows.

dimm W 7

7 1

To show what this looks like we give an example. Suppose T = with |a|? < |}

(»OgL)"ZIO'aQ Log‘a 7'2

This paper this the first step towards obtaining similar kinds of results for pseudo-
Anasov diffeomorphisms. In other papers [4, 5] we have considered this and related
questions for expanding rational maps acting on their Julia sets and in a forthcoming
paper [6] we shall describe a partial solution for Markov maps of the interval (including
the case of infinite Markov partitions). An analogous problem for geodesic flows on
surfaces of constant negative curvature has been handled in [2, 7, 8, 9, 11, 12]. In the
special case of the surface SLo(Z)\H (where SLy(Z) acts on the upper half plane M by
fractional linear transformations) this reduces to a theorem of Jarnik and Besicovitch
describing the Hausdorff dimension of the classical set of well approximable real numbers
(see [10]).

The main difficulty in this paper is that W is a limsup set of a collection of subsets of
X which are not close to being circular. There is therefore no “obvious” cover of W by
balls as there is in the case of rational maps or of maps of the interval. In fact the notches
in the graph of dim W against 7 are consequences of a change in the kind of cover used.

Notation. To simplify notation the symbols <« and > will be used to indicate an inequality
with an unspecified positive multiplicative constant. If a « b and a >> b both hold, then
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we write @ X b and say that the quantities @ and b are comparable. Similarly we shall
write a = O(b) if ¢ € b and a = o(b) if a/b tends to zero. For z € X and r > 0 we shall
write B(z,r) for the ball with centre z and radius r (with respect to the usual metric on
R%/Z%). The set of non-negative real numbers will be written R2° TFor a real number z

we shall write [z] for the largest integer less than or equal to . The cardinality of a finite
set S will be written #5S.

Acknowledgments. We would like to thank the Sonderforschungsbereich 170 in Géttingen
and the Max-Planck-Institut fiir Mathematik in Bonn for their support and hospitality.

1.3 Hausdorff Measure and Dimension

The Hausdorff dimension of a metric space X is an aspect of the size of X which can
discriminate between sets of Lebesgue measure zero. The upper bounds on the Hausdorff
dimensions of the sets of well approximable points will follow from the definition of this
dimension, which we include in order to establish some notation.

The diameter sup{|x — y|: X,y € V} of a non-empty subset V of a metric space will
he denoted by d(V). A collection {V;} such that d(V;) < p for each i and X C U; V; is
called a p-cover of X.

Let s be a non-negative number and for any positive p define,

H,(X) :=inf {z d(V;)* : {V;} is a countable p—cover of X} :

The s-dimensional Hausdorff measure H*(X) of X is defined by
H(X) = }JI_I;%’HP(A) = s;gng(A)
and the Hausdorff dimension dim X of X by
dim X :=inf{s: H(X) =0} =sup{s: H'(X) = co}. )

Further details and alternative definitions of Hausdorff measure and dimension can be
found in [3].

In order to produce an upper bound dim < s on the Hausdorff dimension of a given
set it is sufficient to exhibit covers of the set, and to prove convergence of the sum of the
diameters raised to the power s. Producing lower bounds on Hausdorff dimensions is not
as easy. We shall use the following classical lemma.

Lemma 1 (Mass Distribution Principle) Let W be a metric space with a Borel prob-
ability measure u. Suppose there are constants v,,s,C > 0 such that for all z € W,
0<r<r, one has '

w(Bz,r) < C-r.

Then the following holds
dimW > s
4



Proof. Suppose one has a p-cover {V;} of W with p < r,. Then one has ¥, d(V;)* >
Y207 (Vi) 2 207 (W) > 0. Therefore H*(W) > 0, which implies the lower bound

on the dimension.

2 Geometry of Misshaped Balls

In the proofs of Theorems 1 and 2 we shall be interested in what we will call misshaped
balls. For example let D be the unit hall centred at the origin in R%. Then a misshaped
ball is something of the form AD where A is an affine transformation of R? (ie. a linear
bijection composed with a translation).

Lemma 2 Let T be a d x d mairiz all of whose eigenvalues have absolute value 1. Then
the eniries of T™ are bounded by a polynomial in n. In particular there are oy, C; € R2°
depending on T', such that for all n € N,

Bo(CT'n™) ¢ TM(D) C Bo(Cin™)
and T™D can be covered by Cin®? balls of radius n=°".

Proof. Tt is sufficient to show that the matrix entries of 7" are bounded by a polynomial
in n. Assume without loss of generality that T is in Jordan canonical form. One can then
show by induction that T™ satisfies

O(1) O(n) O ... O

0 0) On) ... On*?
T — 0 0 O) ... On*?)
0 o)

Lemma 3 (Decomposition Lemma) Let T be a real, non-singular d x d matriz. Then
there is an expression '

T=T1'T2

such that all the eigenvalues of T| have absolute value 1; Ty is diagonalizable over R, and
T, and Ty commute.

Proof. To prove this one decomposes R? into irreducible T-subspaces, and then proves
the lemma independently for any such subspace. Assuming V' to be (real-) irreducible
under the action of T, it follows that all eigenvalues of 7" in V' have the same absolute
value. We shall call this absolute value ¢. Now let T, be scalar multiplication on V by t,
and let T, :=T - T{l. Then T} and T; satisfy the lemma.



Lemma 4 (Covering/Squeezing Lemima) Let T be a non-singular real matriz. There
are constants Cy, g € RZ depending on T with the following property. Let ¢; < ... < ey
be the absolute values of the eigenvalues of T' counting multiplicity. Then for r > 0 and
n € N, T*(D) can be covered by

e
anan H 2

- rne
. Tt ag
7€ >rn

balls of radius r. Furthermore if r < Cy'n=%2e} then T™(D) contains a collection of
Cy v~ det T|"
disjoint balls of radius r.

Proof. We begin by decomposing T = T - T3 by the previous lemma, where all
the eigenvalues of 7} have absolute value 1; T, is diagonalizable over R, and T} and T3
commute. The eigenvalues of T3 are €;,...,eq. Now note that since Ty and T3 commute
we have

T = TPy

We assume without loss of genarality that 7% is diagonal. Then 77 (D) is contained in
a rectangle whose sides have lengths 2e},...,2e}. From this we see that T}(D) can be
covered by

i

i [48;-1j|<< 1 e’

: rnel . rnel
. n a . n
J.2t:,->rn 1 Jel>r

balls of radius rn!.
Now let B be any ball of radius rn®1. By Lemma 2, T*(B) can be covered by Cn®1*
balls of radius r. Therefore T}*(T5(D)) can be covered by
eﬂ

anc”d H J

A vy O]
7 ej>r rn

balls of radius r, with a suitably chosen C,. This proves the first part of the lemma.
For the second part let r < C;'n~%¢?. Note that T7(D) contains a rectangle whose
sides have lengths €7,. .., e}. Therefore T7(D) contains a collection of

Tinmed det T ¢

disjoint balls of radius Cyn°'r, where C; is as in Lemma 2 and C; is suitably chosen.
Then by the previous lemma, each of these, when transformed by TT will contain > nord
balls of radius 7. This proves the second part of the lemma.

We shall also need the following, which can be thought of as a local counting result
(see [9, 5]).



Lemma 5 (Local Counting Result) Let T be a non-singular matriz transformation
of X = R%/Z% and let e; < ... < eq be the absolute values of the eigenvalues of T counting
multiplicity. Then there are constants Cy,as > 0 with the following property. For any
ball B = B(z,7) in X and any n € N, one has

re;

#ye B:T'(y) =2} <Cm> [ -2

j:re?>n°3 nee
Furthermore if r > Can®e[™ then one has
Cilrljdet T|* < #{y € B: T™(y) = z,} < Car®|det T'|™.

Proof. We transfer the problem to R? where it is more easily dealt with. Let B be a
lift of B in RY, ie. B = B(&,r) where # € R? projects onto z. Furthermore choose , € R¢
which projects onto z,. Then one has

#lye B:T(y) =z} = #{y € B:T"(v) ~ 2n € 2%} = # (T™(B) - z) nz?).

Our notation means that T™(B) — 3, = {T™y) — . : y € B}. By the previous lemma,
T™(B) — z, can be covered by an“‘d]—[j:rer_.>%na, 2refn~ balls of radius 1/2, each of
J
which may contain at most one point of Z% This proves the first part of the lemma. The

other half is proved using the “squeezing” part of the Covering/Squeezing Lemma.

By modifying the arguments in the proof of Lemma 4 we can prove the following.

Lemma 6 Let T be a non-singular matriz transformation of X = RY/z% and let ¢; <
... < eq be be absolute values of the eigenvalues of T counting multiplicity. Then there
are constants Cy, cy depending only on T with the following property. For any ball B C R?
of radius v and any 0 < s < r, the intersection BN T™(D) can be covered by

balls of radius sn™%.
Corollary 1 Let T be a non-singular matriz transformation of X = R4/Z¢ and let ¢, <
... < eq be the absolute values of the eigenvalues of T counting multiplicity. Then there
is a constants Cs depending only on T with the following property. For any ball B C R?
of radius v one has
et

m(BNTYD)) < Car* ] =

joetar

Proof. Let s tend to zero in the previous lemma and set Cs = Cym(D).

Now let C = max{C,,Cy,C3,C4,C5} and o = max{o, as, a3, oy, a5}. Each lemma
continues to hold with C in place of C; and « in place of «;, so from now on we shall save
on notation by just writing C' and o instead of C; and «.
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3 Proof of Theorem 1

Let T : X — X be a matrix transformation of a torus as described above. Suppose that
e1,. .., eq are the absolute values of the eigenvalues of T listed in ascending order counting
multiplicity. Let 7 be as in (2) and suppose that it satisfies the condition 7 > log(es/ey).
Define

tloge; + E?='i+1 loge;

T+ log ¢; ’ i=1,..d

We begin by proving in §3.1 the upper bound dim W < §. After that we shall describe in
§3.2 the lower bound dim W > 6.

5" =

3.1 The Upper Bound

We fix an i = 1,...,d. For this ¢ we show that dim W < §;. Since i is arbitrary the upper
bound follows. Qur technique will be to find a cover of W, and to show that the sum of
the diameters of the elements of the cover raised to the power é; + ¢ converges.

Choose p > 0. We shall describe a p-cover of W. Let N € N be sufficiently large so
that one has

rad(V)e;™ < p.
Here we have used the condition that 7 > —loge,. Let D be the unit ball in R? and let
P(n) C R be given by
P(n) := rad(n)T™"D.

This will be a small, misshaped ball at the origin. Now denote by P(n) its projection in
X =R%/z%. Finally, for any y € X we shall write P,(n) for the translation by y of P(n).

Thus P,(n) will be a small misshaped ball in X around the pomt y. Then the preimage
T-"B(zn,rad(n)) is given by

T~"B(zs,rad(n))= |J Py(n).

It therefore follows that

w c U U Py(n).

n>N y: Try=z,

This is a cover of W. However it is not necessarily the one that we want. It may be
necessary to take a finer cover. To do this we first cover P(n) by balls of radius e; "rad(n),
centred at points in some finite set S(n):

P(n)c |J B.(e"rad(n)).
z€8(n)

Note that this is a p-cover. We therefore have a corresponding p-cover of W:

w c U U | Byt:(ei"rad(n)).

n>N y: Try=za zE€S5(n)

8



If e; is the smallest eigenvalue then P(n) itself has diameter only 2e¢; "rad(n), and therefore
S(n) can be taken to have only one element. In general by Lemma 4 the cardinality of
S(n) can be bounded as follows:

#S(n) € n? iI(e,-/e_,-)”.

Using this we may now bound the s-dimensional Hausdorff measure of W for s € B2

H(W) < Z Z > (e[”rad(n))s

n>N y: Thy=zn :€5(n)

< Y Y #50)(egrradn))

n>N y: Thy=z,

& Z |detT|" ( "rad(n ) ﬁ(ei/ej)n

n>N 7=1
This converges as long as

| det T|(e7"e™") [ = < 1,

which is equivalent to the condition

S log |det T| — ¥;<; loge; + i log ¢i-
T+ loge;

Using the fact that log |det T| = ?:1 log e;, this reduces to

S Lini loge; +tloge;

= ;.
T+ loge;

Thus for s > §; we have
Hi (W) < i | det Tj" (e "rad(n)) 'n H ilei)
n=1 j=1
However the right hand side of this is independent of p. We therefore have
(W) Z| let T[* (e "rad(n)) n H i) < oo
n=l j=1

This implies dim IV < 4;.



3.2 The Lower Bound

To prove the lower bound we construct a “Cantor-like” subset K of W and a measure g
on . We then show that for any € > 0 there is an rg > 0 such that forallz € K, r < g
one has

1(Bo(r)) < .
This will imply Theorem 1 via the Mass Distribution Principle (Lemma 1). Note that the
above inequality is equivalent to the condition

Ji € {1,...,d} such that u(B.(r)) < r¥~¢.

3.2.1 The Cantor Subset

The Cantor subset K C W will be defined to be the intersection of sets K'({), [ € N,
where one has K({ + 1) C K(!) for each {. We begin by defining £°(1) := X. Then K({)
is defined recursively by the formula

Ki+1)= | P(NI+1)).
vel(i+1)

Here N({) is a rapidly increasing sequence of natural numbers and the union is taken over
all y in the set

H([+ l) = {y e X: TN(r-i_I)y = ZN(I41) and Py(lV(rf + 1)) C [\’(Z)}

The subsequence N({) will be chosen so as to satisfy the following three conditions:

1.
e—(r+o(l)}N{l) < rad(N(l)) < e—(r-o(l))N(l),

by which we mean that
. —lograd(N(l))
T =T

2. For all [ one has

1 V(-
er ™ < Srad(N (L= 1))y TIN(L = 1)

3. For ali [ one has

i1
N(l) > exp (Z N(j)) .

j=1

10



3.2.2 The Measure

We construct the measure y as a limit of measures p; on the sets K({). From this it
follows imediately that p is supported on K. The set K'({) is made up of misshaped balls
P,(N(l)). We give each of these a weight u(y,!) given recursively by the formulae

plz,0)
#(I(L+1) N P(N(1)))’
in which z is the unique element of I(!) satisfying y € P.(N(l)). We define p; on P,(N(!))
to be distributed like Lebesgue measure but with u(P,(N(!))) = p(y, ).

From the way that we've set things up it follows that ;;(P,(N(1))) = puen (P, (N (1))
for all n € N. Since the P,(N(l)) generate the sigma algebra of /', this implies that the
measures g converge to a limit ¢ on K, which is what we want.

The definition of the numbers u(y,!) is rather uninformative, so we deduce a more
useful approximation of these numbers.

ply, L+ 1)) = m(y, 1) =1, (5)

Lemma 7 As ! — 0o one has
-1
log u(y,l) = —N(l)log |det T'| + 7d > N(i) + O(1)

i=1
Proof. We shall prove this by induction. It certainly holds for [ = 1. Now suppose it
holds for {. From the recursive definition of u(y,! + 1) we have

log u(y, { + 1) = log (=, 1) — log #(1( + 1) N P(N(1))).

The inductive hypothesis implies
-1
log u(y, ! +1) = =N()log | det T| + 7d 3~ N(i) + O(1) — log # (¥(L-+ 1) N Po(N(1))). (6)
=1

We must estimate #(H(l +1)N Pz(N(l))). By Lemma 4, P,(N(!)) contains a collection

of eSNWN(1)*4| det TIN® disjoint balls of radius C"N([)“'e;Nmra,d(N(Z)), and can be
covered by a comparable number of such balls. By Lemma 5 and the second condition
on sequence N({), any ball with this radius which is contained in P,(N({)) must contain

=< N(1)~%rad(N(1))4e; VD¢ det TN points of 1({ + 1). We therefore have (after some
cancellation)

log #(1(1+ 1) N PAN(D)) = (N(I+1) = N(1))log | det T} + dlog rad(N (1)) + O(1{T)

7

Putting formulae (6) and (7) together we get

-1
log p(y,l +1) = —N({)log|detT|+7d> N(i)+ O(l)

i=1
—(N(I+ 1) = N(1)) log | det T| — dlog rad( N (1)) + O(1),
= —N{+1)log|detT|+ 0O+ 1)

This proves the lemma.
11



3.2.3 The Sting

We now choose any ball B = B.(r) centred on a point of A" and find an upper bound on
p(B). This is trickier than in previous calculations of the same kind of thing, since the
P(n) are far from being round. We start by introducing some notation.

Since z is in ', we know that z € () for all { € N. Thus for each ! there is a unique
y € I({) such that z € P,(N({)). We shall refer to this unique y as y(I). We shall also use
the abbreviation Q; := Py (V(/)). Note that one has

Qi 2D2Q1D...3¢.

There is one particular value of / which will be of special interest to us. Let { be the
smallest { for which no ball of radius r is contained in ¢);. By the second condition on the
sequence N(!), the diameter of P(N{£+ 1)) is less than 7.

As a starting point for our calculation of u(B) we take

#(B) < > wly, 0 +1).
YEL(t+1) 1 Py(N(e41))NB#£

Since the diameter of P,(N(¢+ 1)} is less than 7, we have

uBYS Y uly,+ 1), (3)

yEI{{+1)N2B

where 2B is the ball whose centre is that of B but whose radius is 2r.

The point now is that since we are assuming 7 + log e; > log e4, we may deduce that
2B does not intersect any P,(N(?)) except Q¢ (actually this is only true for sufficiently
large ¢, but this is enough for our purposes). This means that each y arising in the above
sum must be contained in Q¢ N 25B. We therefore have

MBYS Y uly. 1)
yel{{+1)N2BNQ,

The recurrence relation (5) now gives

#FAL+1)N2BN Q)

< £), ).
u(B) < 20+ 1) N 00 u(y(), )
By Lemma 6, 2B N Q¢ may be covered by
N0 R0
. ad d d
bt e VO rad(N (> i eV ead(N ) gr

balls of radius N({£)™" rad(z\’(/,’))e‘;'wn. Each of these can contain by Lemma 5 at most

d
C«I\,’(f)—ad (!.ad(l\{(e))e;h’(l)) | det TlN(E+l}
12



points of I(£ + 1). We therefore have

N()
TE
#(1((+1)N2BNQ) < —
Iy cTN“)Ir_a[d(N(c)p,- rad(N(¢))
N

X I1 7

it e Omd(N(e<r &
d
x (rad(NV(£))ez ™ )" | det TV,

On the other hand, we have by a similar argument but squeezing rather than covering

_; 4 d eN(f)
#W(C+1)N Q) > (rad(N(£)e; ") [ det TN D T] ;W
=1 &5
The last two formulae combine to give
#(I(C+1)N2BN Q) N(o) -1
: < II re; rad(N(£))™.
#(I(L+ 1) N Q) j e O end(N ()
Substituting this into the above formula for p(B) we obtain
H re?’(f)
p(B) < pwly(f). £) — T (9)
i e Orad(N())>r rad(N(£)
We remark that this can be reformulated as follows:
?T‘I.(Qg N 23)
B) « ————=pu(y(£),1).
#(B) (Q0) #(y(€), 0)

This formula has analogues in our other papers (see especially [5]) in which Lebesgue
measure m is replaced by a suitable conformal measure. The result now follows with just
a bit more calculus.

3.2.4 The Calculus

We shall now fix a value of i. If r < €;" Wrad(N(£)) then let i := d. Otherwise, choose i

s0 as to satisfy ] r
erh Drad(N(0)) < r < 7V rad(N(0)).

We shall show that l‘%‘:—rB—l > 8 + o(1).

First note that by 9, we have

PN
(B < ul(y(6), () H m

13



Taking the logarithm of this, we obtain

log pu(B) < log u(y(0),0) + i (logr + N(€)loge; — log rad(N(ﬂ))) + O(1).

i=1

Applying the estimate of Lemma 7 we get
log u(B) < N(6)log |det T} + 3 (logr + N(2) log ej ~ log rad(N(£))) + o( N (£)).
i=1

By the first condition on the sequence N(I), we may replace log rad(N(€)) by —N(£)(r +
o(1)):

log u(B) < N({)log |det T| + i(logr + N(&)(loge; + 7)) + o(N(£)).

=1

Dividing by the negative number logr gives

N d Y
__‘logp(B) > 1+ _io:? (10g|detT|+Zlogej+T) +o(1 (6)) .

logr — = log r

By our choice of 7, we have
N() —1
0> >

T logr T r+loge;

The last two formulae give

logu(B) _ . i
= St & I . 1).
oz 7 >4 oz e log | de f|+]§=l ogej+ 1| +ol),
which we can tidy up to obtain
log (B)
> A
ogr = & + o(1), (10)

3.2.5 The Error Term

We now handle the error term o(1). This tends to zero as / — co. On the other hand,
by making r very small we can ensure that £ is very big. Thus for any ¢ > 0 there is an
ro > 0 such that for all r < rg the error term is less than €. Assume r < r,. Then by (10)
there is some : such that

/l(B) < rJ.‘—f.

Thus we always have
p(B) <P

This implies by the Mass Distribution Principle (letting € tend to zero) that

dim W > 4.
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4 Proof of Theorem 2

As before T : X — X is a matrix transformation of a torus. Assume in addition that
T is diagonalizable over Q. Suppose that e;,...,eq € Z are the absolute values of the
eigenvalues of T, listed in ascending order. Let 7 be as in (2) and define

ilog e — Zj : gj)ﬁ,‘tf(log €j — log € — T) + z-b‘l log il 4:= min ¢
1 T i

0; =
T+ log [ i=1,...d

We begin by proving the upper bound dim W < 4. After that we shall describe the lower
bound dim ¥ > 4.
We shall require the following refinemint of Lemma 5.

Lemma 8 Let B = B(z,r), r < 1. Then

#yeB:Try=z} < [ rel.

j: ej_"<r
If in addition one assumes that T"z = z, then one has
#yeB:Tre=z})> ][] re’.
i cJ-"(r

The first part of the lemma will be used for the lower bound and the second part for
the upper bound.

Proof. Let vy,....vq € Z% be eigenvectors of T corresponding to the eigenvalues
€1,....eq. These eigenvectors span a sublattice L of Z" of finite index ind := [2%: L].

For v € X consider the parallelopiped
Pluser ™, ..., zne; va) = {v+zie] v+ ... +zeey vy V7, 0< 2 < 1} C XL

Each such parallelopiped contains exactly ind points y satisfving T"y = z,. To obtain
the upper bound one covers B by these parallelopipeds and estimates the number of
parailelopipeds required in such a cover.
For the lower bound note that there is a constant ¢ > 0 depending only on vy,...,vg
such that
P(z;corr, ... cogr) C Ble, 7).

7 "v; for which

We fix such a ¢. Now let L’ be the subgroup of R? generated by those e
e;" < cr. One has
Si={a+l:lelYC{y: Ty = za}
The lower bound will therefore follow from a lower bound for #{SNP(x;corr,. .., coqr)).
The latter is easily seen to be at least [1;, - [cre}], where the square bracket notation
J

indicates the integral part. This proves the lemma.
L5



4.1 The Upper Bound

We proceed very much as in §2.1. We fix an ¢ and show that
dimW < 6.

Since this is true for any 7 we have dim W < §. Choose p > 0. We shall describe a p-cover
of W. Let N € N be sufficiently large so that one has

rad(N)er ™ < p.

Here we have used the fact that e; > 1. We define £(n), P(n) and P,(n) as in §2.1. Then
the preimage T " B(z,,rad(n)) is given by

T7"B(zp,rad(n)) = U Pn).

y : Try=zn

It therefore follows that

w c U U Rn).

n>N oy Tly=z,

As before we shall refine this cover. To do this we first cover P(n) by balls of radius
e "rad(n), centred at points in a finite set S(n):

P(n) C U B. (e "rad(n)).
z€5(n)

We therefore have a corresponding cover of W:

w o c U U ) Bys:(e7™rad(n)).

a>N y: T'y=zn €5(n)

As in §2.1 we have

#S(n) « n° H (ei/e)".

Jorej<e
The problem with this new cover is that there will be a lot of unnecessary overlapping.
To be more precise, the inner union

U Byeslei™rad(n))

zE5(n)

may cover not just P,(n), but also several other P,(n), as long as the distance |y — w] is
less than e "rad(n). Thus by Lemma 8 the number of P,(n) covered is > M(n), where

M(n) = I1

J: c}'rad(n)}c:-‘

etrad(n)

T
€i

(11)
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After pruning out the unnecessary elements of the new cover we obtain the following
bound on the Hausdorfl measure of W.

H (W) <« ZM(n)“1 > > (e7"rad(n

n2N : TPhy=zn z€S(n)
< Y M@m)Tt S #S(n)(e;"rad(n))”
n>N y : Thy=z,
< 5 M(n) Y det T (e e el "H(e Je;)”
n>N
Let low M
M = exp (Iiminfw) = H 5
n—o0 n L Ly et-eT
1} i ej>eie
The above sum converges as long as
M det T|(ef'e™ ™) I] %< 1,
=1 ej
which is equivalent to the condition
o iloge; — 3, . ,J.)e'.er(log e; —loge; — 1)+ 3 ;5; loge; _s
7 + log e; v
We therefore have as in §3.1,
dim W < é;.
Since this holds for every 1, we get
dimW <.

4.2 The Lower Bound

We construct the Cantor subset A" C W and the measure g on A exactly as in §2.2.
However the estimate on the measure will be different.

Choose any ball B = B,(r) centred on a point of &'. We shall find an upper bound
on p(B). We define y(I) and @, exactly as in the previous section. Again we shall be
interested in £, which as before is defined to be the smallest { for which no ball of radius
r is contained in @;. This implies that e, VD L

As a starting point for our calculation of u(B) we take the formula (8):

wBy< 3 ulyl+1).
yE2BNKL+1)

This gives us analogously to (9)




where m is Lebesgue measure. We now have to do some more calculus. First note that
m(K(8)) = m(Qo#1(0).
By Lemma 7 this gives us
m(K(8)) x rad(N(£))?) det T| V9| det T|V@ exp(o( N (€))) x rad(N(£))? exp(o( N (£))).
Together with (12) and the first condition on the sequence N(!), this gives
log u(B) < logm(K(£)N2B) + N(£)dr + o(N(¢)). (13)

We shall now fix a value of 1. If r < e rad(N(é’)) then let 7 := d. Otherwise, choose
i 50 as to satisfy
ey Orad(N(8)) < r < &7V Orad(N(8)).

We then have for any w € X by Corollary t
d
m(2BN P(N(0)) <7 ] e ¥ Prad(N(6)).
J=i+l

However, 2B will intersect other things in A'(£) than just Q,. Using Lemma 8 the number
of pieces P,(N(¢)) of K'(£) which B may intersect is « M'(N({)), where

M'(‘n) = I ref.

I cf"(r

Since r < 7V ¥rad(N(#)), we have M'(N(€)) < M(N({)), where M(n) is as defined in
§3.1. We therefore have

m(2BN K ({)) « M'(N H e; rad N(€))
J..t-H

& M(N(1) H eV Orad(N(£)).
J=i41

Together with (13) and the first condition on the sequence N(!) this implies
d
log u(B) < log M(N(£)) +ilogr — N(£) Y (7 +loge) + N(£)dr 4+ o( N(¥)).
J=t+1
We therefore have

logu(B) , log M(N(0)) , . N() (iT ~ i loge,-) Y (N(!,’)) |

logr — log log T Pt log 7

18



Substitutuing the definition (11) of M(n), we get

logp(B)  _1
logr = logr
2

(N((,’)(log e; —loge;) + log fad(N(e)))

: ejv(l) ra.d(N(l)))efv(t)

d
+1 + {\o{gr) (ir - Z log e,') +o0 (N(K)) .

=i+l log 7

From our first condition on the subsequence N(I) we get

3 (logej—loge,-—r)

tejeTT e

d
+1 +% (ir— > loge,-) +0(N(£)).

F=itl logr

logpu(B) N9
logr = logrj

Using the fact that » < e;'N(c)rad(N(/,’)) this becomes
log ( B) . 1 . d
= > it = ) loge+ D loge; — loge; — 1),
ogr | 2 i Tloge, ) 2 oge N cJ{}c;cr(oggcej oge; —7) | + o)

which we can tidy up to obtain

log 1(B)
oAl s 4. )
ogr = 8 + o(1) (14)

4.2.1 The End of the Proof
The proof finishes like the proof of Theorem 1. By (14) we have for small emough 7,
w(B) < rf

This implies by the Mass Distribution Principle that

dim W > 6.
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