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Abstract

Let T be a d X cl matrix with integral coefficients. Then T determines a self-map
of the d-dimensional torus .X = JRdJZd. We shall consider the following question.
Choose for each natural number 11, a ball B(n) in .X and suppose that B(11, + 1) has
smaller radius than B(n) for all n. Now let Hf be the set of points x E .X such
that Tn(x) E B(n) for infinitcly many n E N. Vvhat is the Hausdorff dimension
of W? This question arises from analogies with Diophantine approximation, in
particular Jarnfk-Besicovitch's description of the Hausdorff dimensions of the sets
of well-approximable real numbers. The answer depends on the quantity

1
• . f -log(Radius of B(n))

T = Imin .
n-too n

We are able to give a complete description only.when the matrix is diagonalizable
over Q. In other cases we obtain a result for sufficiently large T. Our results, in
as [ar as they go, show that the Hausdorff dimension of ~V is a strictly decreasing,
continuous function of T which is piecewise of the form ~~t~. The Bumbers A, BI C'
and D which arise in this way are typically sums of logarithms of thc absolute values
of eigenvalues of T.

1 Introduction

1.1 The Shrinking Target Problem and its Connection with
Diophantine Approximation

Let X be a rnetric space and T : X -7 X a transformation. Suppose that X is equipped
with a Borel probability lneasure 1n which is preserved by T. vVe shall also assume that
T is ergodie with respect to 111. It is know that for any ball B in X of positive n1eaSUl'e

the subset
{x E X~ : Tnx E B for infinitely nlany n E N}

of X has full 112-lneasure. This Ineans that thc trajectories of alnl0st all points will go
through the ball B infinitely ofteil. In general one can ask the question what happens
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if the ball B shrinks with time and Inoves around. r't'Iore precisely if at tilne 11, one has
a ball B(n) = B(zn,rad(n)) of radius rad(n) (rad(n) --+ 0 as n --+ 00), then what kind
of properties does the set of points Z have, whose images Tn(z) are in B(n) for infinitely
Inany n?

These points can be thought of a.s trajectories which Hit a shrinking, Inoving target
infinitely often. We shall ca'!l such points "wcll ap'proximable" in analogy with tbc c1assical
thcory of 111etric Diophantine approxitnation [1, 10] anel its more recent extensions to the
theory of discrete hyperbolic groups (sec [2, 7, 8, 9, 11, 12]). In the c1assical theory, the
projective real line, IR U {<X>} is identified with the unit tangent space at a point of the
nlodular surface IBI/SL 2(iZ) (the Inoclular group SL2(Z) acts on the upper half plane IBI by
fractional linear transformations). The "weIl approxiIuable" real numbers in the classical
sense (see [10]) correspond to geodesics which enter a shrinking neighbourhood of the only
cusp of IHl/SL 2(iZ) infinitely often.

1.2 Results

In this paper we shall consider only a special case of the above general probleln, in which T
is a Inatrix transformation of a d-dinlcnsional torus X := ]Rd /Zd. For simplicity we suppose
that the determinant of T is nOll-zero. For any sequence of balls B(n) = B( Zn, racl(11.))
(rad: N --+ R;:::o being a decreasing function), we shall examine the set

vV := {z EX: Tn(z) E B(zn, l'ad(n)) for infinitely many 11. E N}. (1)

Our results will involve the eigenvalues of T and the number T defined by

1
.. r-Iograd(n)

T = 1111lIl .
0-+00 11.

We shall prove the following.

(2)

(3)

(4)

Theoren1 1 Let T : X --+ X bc a rnatrix transformation 0/ the torus X := Rd/Zd. Let
eh ... ,ed bc the absolute values 01 the eigenvahtes 0/ T (with multiplicity) . Suppose these
are ordered: el ::; e2 ::; ... ::; Cd. Thcn fOT T ~ log(ed/ed one has

. . {i log ei + L,1=i+l log ej }
dlrn W = 111111 •

i=l, ... ,d T + log ei

If the matrix T is diagonalizable over Q then we obtain the following stronger result,
which fills the gap in the graph of diIlllV against T.

Theoren1 2 Let T : X --+ X be diagona/izable over Q, and let eI, ... ,ed E fZ be as in

Theo1'e1n 1. Then one "has

. . {i log ei - L,j : e '>eieT (log ej - log ei - T) + L,j>i log ej }
cl UTI W = rnII1 J •

i=I, ... ,d T + log ei
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In fact the I11ethoels we use show that for any T we always have

d
' Ix; . i log ei + Lj>i log ej
1m '. < ITIIn .

- i==1, ... ,d T + log ej

( (Ol Ob) wI'tll 1"'1 2 ~ IblTo show what this looks like we give an exalllpie. Suppose T = u,

and a, b E Z \ {O}. Then the graph of dirn ltV against T is as folIows.

This paper this the first step towards obtaining similar kinds of results for pseudo­
Anasov diffeomorphisIllS. In other papers [4, 5] we have considered this anel related
questions for expanelil1g rational maps acting on their Jlllia sets anel in a forthcoming
paper [6] we shall describe a partial solution for Markov maps of thc interval (ineluding
the case of infinite Markov partitions). An analogons problem for geodesic flows on
surfaces of constant negative Cllrvatllre has been handled in [2, 7, 8, 9, 11, 12], In the
special case of the surface SL2(7l)\1HI (where SL2 (7l) acts on the upper half plane IHI by
fractional linear transfofll1ations) this reduces to a theorem of .Jarnfk and Besicovitch
clescrihing the Hausdorff diIllension of the classical set of weIl approximable real l1umbers
(see [10]).

The main difficulty in this paper is that vV is a limsup set of a collectiol1 of sllbsets of
X which are not elose to heing circular. There is therefore no "obvious" cover of Hf hy
balls as there is in the case of rational 111apS or of maps of thc interval. [n fact the notches
in the graph of dirn Hf against T are consequences of a change in the kind of cover useel.

Notation. To sinlplify notation the sYlnbols « anel » will be used to indicatc an inequality
with an unspecified positive multiplicative constant. Ir a « b anel a » b both hold, then
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we write a ::::::: band say that thc quantities a anel bare cOlnparable. Sirnilarly we shall
write a = O(b) if a « band a = o(b) if alb tends to zero. For z E X and r > 0 we shall
write B( z, r) for the ball with centre z anel radius r (with rcspect to the usual metric on
fRd /71 d ). The set of non-negative real nurnbers will be written ~2:o. For areal nUll1ber x

we shall write [x] for the largest integer less than 01' eqllal to x. Thc cardinality of a finite
set S will be written #5.
Acknowledgments. "\Te woulel like to thank thc Sonderforschllngsbereich 170 in Göttingen
and the Max-Planck-Institut für Mathelnatik in Bann for their support and hospitality.

1.3 Hausdorff Measure and Dimension

The Hausdorff dimension of a llletric space X is an asrect of the sizc of X which can
discrilninate between sets of Lebesgue Ineasure zero. The upper bounds on the Hausdorff
dimensions of thc sets of weil approxinlablc points will follow [roln the defini tion of this
dimension, which we incltlde in order to establish some notation.

The diaIlleter sup{ Ix - y I : x, y E V} of a non-empty subset V of a Inetric space will
be den'oted by d(V). A collection {'~} such that d(l~) ::; p for each i and X C Ui Vi is
callecl a p-cover of X.

Let s be a non-negative number and for any positive p define,

'H;(X) := inf {~d(II;)' : {lI;} is a countable p-cover of X } .

The s-dirnensional Ha7lSdo?1J rneaS71,re 1-l3 (X) of X is defineel by

and the HpusdorJJ di'mension dinl X of X by
~-

dirn X := inf {5 : 1-l3 (X) = O} = sup {5 : 1-l3 (X) = oo} .

Further details anel alternative definitions of Hausdorff Ineasurc anel dilnension can be
rounel in [3].

In order to produce an upper bound dirn ::; s on the Ha,usdorff dinlension of a given
set it is sufficient to exhibit covers of the set, anel ta prave canvergence of the surn of thc
diameters raised to the power s. Producing lower bounds on Hausdorff dimensions is not
as easy. We shall use the followi ng classical leIn Illa..

Len11l1a 1 (Mass Distribution Principle) Let 111 be ametrie space with a Borel prob­
ability 'measure J--l. Suppose there a're constants 1'0,5, C > 0 such that for all x E W,
o< l' < r o one has J,

I-l(B(x, r)) < C . r B
•

Then the following holds
dirn W 2: 5.

4
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Proof. Suppose one has a p-cover {Vi} of IV with p < 7'0' Then one has Li d(Vi)8 '2:
Li 2C-l'l('~) '2: 20- 1I-l(Hl) > O. Therefore }-f'( I'V) > 0, which in1plies the lower bounel
011 the din1ension.

2 Geometry of Misshaped Balls

In the proofs of Theorems 1 anel 2 we shall be interested in what we will call misshapeel
balls. For example let D be the unit ball centrecl at the origin in IR d• Then a misshaped
ball is sOlnething of the fonn AD where A is an affine transfofll1ation of }Rd (ie. a linear
bijection con1posed with a translation).

Lemn1a 2 Let T be a d x d matrix all 0/ whose eigenvalues have absolute value 1. Then
the entries 0/ Tn are bounded by a polynontial in n. In partieular there a7'e lYt, C\ E R~o

depending on T, such that fOT all n E N,

Proof. It is sufficient to show that thc n1atrix entries of Tn are bouneled by a polynomiaJ
in n. AssllIl1e without loss of generality that T is in Jordan canonical form. One can then
show by induction that Tn satisfies

0(1) 0(71.) 0(n2
) O(nd- l

)

0 0(1) G(n) 0(nd- 2 )

T n = 0 0 0(1) 0(n d- 3 )

, .

0 0(1)

Lemlna 3 (Decomposition Lemma) Let T be a real, non-singular cl X d matrix, Then
there is an expression

T = Tl . T2

such that aU the eigenvalues 0/ Tl have absolute value 1; T2 is diagonalizable ove1' IR., and
Tl und T2 com'mute.

Proof. Ta prove this one decolllposes IRd into irreduci ble T -subspaces, anel then proves
the lemma independently for any such subspace. Assluning V to be (real-) irreducible
under the action of T, it follows that all eigenvalues of T in \I have the san1e absolute
value. We shall call this absolute valuc t. Now let T2 be scalar multiplication on V by t,
and let Tl := T . T2-

1
. Then Tl and T2 satisfy the lemma.
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Lenlma 4 (CoveringjSqueezing Lenlnla) Let T be a non-singular real 'matrix. There
are eonstants C 2, 0'2 E JR2: 0 depending on T with the Jollowing pl'operty. Let. Cl ::; ... ::; ed

be the absolute values of the eigenvalues of T eounting 'multiplicity. Then for r > 0 and
n E NJ yn(D) ean be eovercd by

balls of 1'adius r. f7.lrthe,more if l' < C:;l n -02 e7 then Tn( D) conlains a eolleclion oJ

disjoint balls 0/ radius 1'.

Proof. We begin by decomposing T = Tl . T2 by thc previous lemn1a, where all
the eigenvalues of Tl have absolute value 1; T2 is diagonalizable over IR, and Tl anel Tz
commute. The eigenvalues of Tz are el, ... ,ed. Now note that since TI anel Tz comrnute
we have

T n = Tnr.n. I z·

We assuille without loss of genarality that Tz is diagonal. Then Tzn( D) is contained in
a rectangle whose sieles have lengths 2e~, . .. 1 2ed' Fron1 this we see that T2(D) can be
covered by

II
j : Zej>rn01

[
4ery. ] ery.J« J

rnal . II rnOI
J : ej>r

balls of radius rncq
•

Now let B be any ball of radius 1'nal . By Lemn1a 2, TIn ( B) can be covered by C1na\d

balls of radius r. Therefore Tr(T2(D)) can be covered by

balls of radius r, with a suitably chosen Cz. This provcs thc first part of the lenllna.
For the second part let l' < C;ln-ae7. Note that Tzn(D) contains a rectangle whose

sides have lengths e7, . .. , ed. Therefore T2(D) contains a collection of

disjoint balls of radius Cl nol 1', where Cl is as in Lelnma 2 anel Cz is suitably chosen.
Then by the previotls lemtna, each of these, when transformed by Tl will contain » n a1d

balls of radius 1'. This proves the seconcl part of the lemlna.

We shall also ncecl the following, which can be thOllght of as a local countillg reslllt
(see [9, 5]).
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Lelnlna 5 (Local Counting Result) Let T be a non-singular malrix transformation
01 X = jRd/71. d and leteI::; ... ::; ed be the absolute values of the eigenvalues 01 T courliing
multiplicily. Then I.here are constant.s C3 ,0'3 > 0 with the lollowing property. For any
ball B = B(x, r) in X and any 11. E N, one has

C3
1

1·
d j det Tin::; #{y E B : Tn(y) = zn} ::; C3rd

l det Tin.

Proof. vVe transfer the probletn to jRd, where it is l110re easily dealt with. Let B be a
lift of B in JRd, ie. B = B(x, r) where x E R d projects onto x. Furthernl0re choose Zn E IRd

which projects onto Zn' Then one has

Dur notation means that Tn(B) - Zn = {Tn(y) - Zn : Y E B}. By the previous lerntna,
Tn(B) - Zn can be covered by Czno\d TIjTe~>lnOl 2rejn-O

\ balls of radius 1/2, each of
. J 2

which may contain at most one point oE 'Jl..d. This proves the first part of thc lemma. The
other half is proved using the "squeezing" part of the Covering/Squeezing Lemlna.

By modifying the arguments in thc proof of Lemrna 4 we can prove thc following.

Lemn1a 6 Let. T he a non-singular 1natn:x transfoT'1nahon 01 ~)( = jRd /'Jl..d and letei::;
... ::; ed be be absolute values 01 the eigenvalues of T courtling lnultiplicity. Then there
a1'e constants 0 4 ,0'4 depending only on T with the following prope1'ty. For any ball B C }Rd

of radius .,. and any 0 < s ::; "', lhe interseclion B n Tn(D) can be covered by

e':

TI -l...
sj : ~<ej<r

e~

m(B n Tn(D)) ::; Cs1'd rr -;
j : ej<r

balls 01 'radius sn -cq .

Corollary 1 Let T be a non-singular' mat'fix transfo'rmation of X = IRd/71. d and let el ~

•.. ::; ed be the absolute values 01 the eigenvalues of T courtling 'multiplicity. Then there
is a constanls Cs depending only on T wit.h the following p1'operly. Fo'!' any hall B C IR d

of radius l' one has

Proof. Let s tend to zero in the previous lenlma and set Cs = 0 4 111.( D).

Now let C = max{Cl,CZ,C3,C4,CS} and a = nlax{al,O'Z,a3,O:'hO'S}' Each leI11Ina
continues to hold with C in place of G\ and 0' in place of ai, so froln now on we shall sa,ve
on notation by just writing C and Q' instead of Ci and ai·
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3 Proof of Theorem 1

Let T : X ~ X be a matrix transformation of a torus as described above. Suppose that
eh' .. , ed are the absolute values of the eigenvailles of T listed in ascending order counting
multiplicity. Let T be as in (2) and suppose that it satisfies the condition T > log( ed/ed.
Define

r .. _ i log ei + 'L1==-i+l log ej
u 0:= rnin Oi.

t .- T + logei' i==l, ... ,d

vVe begin by proving in §3.1 the upper bound dirn W ::; O. After that we shall describe in
§3.2 the lower bound dirn vV 2: O.

3.1 The Upper Bound

We fix an i = 1, ... ,d. For this i we show that dirn W ::; Oi. Since i is arbitrary the upper
bound folIows. Dur technique will be to find a cover of W, and to show that the sum of
the diameters of the elements of the cover raised to the power Oi + € converges.

Choose p > O. \Ve shall describe a. p-cover of W. Let lV E N be sufficiently large so
that- one has

rad( lV)e~N < p.

Here we have used the condition that T 2: -IOgJl' Let D be the unit ball in jRd and let
p(n) C jRd be given by

P(n) := rad(n)T-nD.

This will be a small, misshaped ball at the origin. Now denote by P(n) its projection in
X = JRd/71. d• Finally, for any y E X we shall write Py(n) for the translation by y of P(n).
Thus Py(n) will be a_ small misshaped ball in X around the point y. Then the preimage
T-n B(zn, rad(n)) is given by

u
It therefore follows that

w c U U Pu(n).
n?:,.N y: TlI Y==Zn

This is a cover of W. However it is not necessarily the one that we want. It may be
necessary to take a finer cover. To do this we first cover P(n) by balls of radius e;nrad(n),
centred at points in some finite set S(n):

?(n) C U Bz(e;nrad(n)).
zES(n)

Note that this is a p-cover. We therefore have a corresponding p-cover of W:

vV C U U U Ey+z(einrad(n)).
n?:.N y: TnY:::=Zn zES(n)

8



If ei is the smallest eigenvalue then P(n) itselfhas diameter only 2e;n rad(n), and therefore
S(n) can be taken to have only one element. In general by Lemma 4 the cardinality of
S(n) can be bounded as folIows:

1

#5'(-n) « nCl TI (ed ej)n.
j=l

Using this we may now bOilnd the .5-dimensional Hausdorff measure of {IV for s E ffi. 2:0:

H~(H/) < I: L I: (einrad(n))8
n>N y : Tny=zn zES(n)

< I: L # S (n ) (e-; n rad (n)) !J
n2:N Y : Tny=zn

i

« L Iclet Tin (e-;nrad(n))!JnQ IT(edej)n
n2:N j=l

This converges as long as

which is equivalent to the condition

log Idet TI - Lj<i log ej + i log ei"
s> .

T + log ei

Using the fact that log Idet Tl = "L,1=1 log eh this reduces to

" > Lj>i log Cj +i log ei = Oi.
T + log ei

Thus for .5 > Oi we have

00 j

H;(H/) ~ L IdetT]n(einrad(n))\1.° ll(edej)n
n=l j=1

However the right ha.nd side of this is independent of p. vVe therefore have

...~ j.

H!J(lV):::; L IdetTln(e;'lrad(n))!Jno II(edejt < 00.

11=1 j=1

This implies diln IV ::; Si'



3.2 The Lower Bound

To prove the lower bound we construct a "Cantor-like" subset !( of lV and a measure {l

on J(. \Ve then show that for any f.: > 0 there is an ra > 0 such that for all x E f\~ 1 r < ra

one has
fl(Bx(r)) < r S-(.

This will imply Theorem 1 via the ~vIass Distribution Principle (Lemma 1). Note that the
above inequality is equivalent to the condition

3i E {I, ... , d} such that f-l(BxCr)) < 1,3;-(.

3.2.1 The Cantor Subset

The Cantor subset f( c Hl will be defined to be the intersection of sets f«l), l E N,
where one has f{(l + 1) C f«(l) for each l. vVe begin by defining [«(1) :=){. Then J«(l)
is defined recursively by the formula

f\" (l + L) = U Py (IV(l + 1)).
yEI(I+l)

Here !V(l) is a rapidly increasing sequence of natural numbers and the union is taken over

all y in the set

rr(l + 1) := {y E ){ : T N
(I+l)y = ZN(/+I) anel PyCN(l + 1)) C I«(l)}.

The subsequence IV(l) will be chosen so as to satisfy the following three conditions:

1.
e-(r+o(l))N(l) < rad(IV(l)) < e-(T-O(l))N(l),

by which we mean that
lim -lograd(IV(l)) = T.

l-'roo IV(l)

2. For all lalle has

3. For all l olle has

(

1-1 )
N(l) > exp j; N(j) .

10



3.2.2 The Measure

'vVe construct the measure p, as a limit of measures P,l on the sets !«(l). From this it
follows imediately that J-l is supported on !(. The set J((l) is made up of misshaped balls
Py(IV(l)). 'vVe give each of these a weight p,(y, I) given recursively by the formulae

/t(z,l)
J-l(Y, I + 1)) := #(n(l + 1) n Pz(iY(I))) ' J-l(Y, 1) := 1, (.5)

in which z is the unique element of n(l) satisfying y E Pz (lY(I)). \,Ve define pion Py(lY(I))
to be distributed like Lebesgue measure but wi th Pf{ Py ( 1Y(I))) = J-l(Y, I).

From the way that we\re set things up it follows that J-lf(Py(lV(I))) = J-l1+n{Py{lV(I)))
for a11 n E BI. Since the Py (lV(l)) generate the sigma algebra of !(, this implies that the
measures J-l1 converge to a limit J.l on !( ~ which is what we want.

The definition of the numbers ft{y, I) is rather uninformative, so we deduce a more
usefnl approximation of these numbers.

Lemma 7 .48 I --+ 00 one has
/-1

logft{y, I) = -lV(I) log Idet TI + Td L lV(i) + O(l)
i=1

P'rooj. VVe shall prove this by induction. It certainly holds for I = 1. Now suppose it
holels for 1. FrOITI the recursi ve definition of J-l(Y, l + 1) we have

logJ-l(y,1 + 1) = logft(z, I) -log#(n(l+ 1) n Pz (lY(l))).

The inductive hypothesis implies

1-1

log J-l(Y, I + 1) = -lV(I) log Idet TI + Td L lV(i) + O(l) -log # (n(l + 1) n Pz (lV(I))). (6)
i=l

'vVe mnst estimate #(n(l + 1) n Pz (lV(l))). By Lemma 4, Pz {lV(l)) contains a collection

of e~N(l) lV(l)odl det TIN(l) disjoint balls of radius C- 1 iV(l)-cr e;;N(l)rad(lV(I)), and can be
covered by a comparable nllmber of such balls. By Lemma 5 and the second condition
on seqllence 1V(l), any ball with this radius which is contained in Pz(N(I)) must contain
::::::: lV (1)-dO rad( IV( l) )ded"N(l)d Idet TI N('+1) points of n(l + 1). \Ve therefore have (after same
cancellat ion)

log # (n(l + 1) n P:~(lV(I))) = (lV(l + 1) - lV(I)) log Idet Tl + rllog rad(lV(I)) + 0(1~7)

Putting formulae (6) and (7) together we get

I-I

log /l(Y) + 1) = -lV(l) log Idet TI + Tel L lV(i) + O(l)
i=l

-(lV(l + 1) - lV(I)) log Idet TI- rllog rad(iV(l)) + 0(1),

= -lV(l + 1) log Iclet TI + 0(1 + L)

This proves thc leIn ma.
11



3.2.3 The Sting

VVe now choose any ball B = Bx(r) cent red on a point of A" and find an upper bound on
/-l( B). This is trickier than in previous calculations of the same kind of thing, since the
P(n) are far from being round. vVe start by introducing same notation.

Since x is in [( 1 we know that x E [«(I) far alll E ~l. Thus for each l there is a unique
yETI (l) such that x E Py(lV( l)). vVe shall refer to this unique y as y( l). \Ve shall also use
the abbreviation Q1 := Py(1) (lV(l)). Note that one has

Q/ =' Q1+1 =' ... :1 :C.

There is one particular value of I which will be of special interest to uso Let e be the
smallest l for which no ball of radius T is contained in Ql. By the second condition on the
sequence lV(l)~ the diameter of P(lV(C + 1)) is less than T.

As a starting point for our calculation of ft( B) we take

fl (B) ::; L It (y, e+ 1).
YEI(t+l) : Py(N(t+1))nB;t~

Since the diameter of Py(lV(f +1)) is less than 1', we have

fl(B) :::; L p(y, C+ 1),
yEI(l+l)n2B

(8)

where 2B .is the ball whose centre is that of B but whose radius is 21'.
The point now is that since \ve are assuming T + log EI > log ed, we n1ay deduce that

2B eIoes not intersect any Py(iV( €)) except Qe (actually this is only trne for sufficiently
large ( but this is enough for our pllrposes). This means that each V arising in the above
sum mnst be containeeI in Qe n 2B. 'Ne therefore have

Il( B) ::; L /-l(V, e+ 1).
YEH(e+ t jn2BnQl

The recurrence relation (.5) now gives

(8) < # (TI (€ + L) n 2B n Qd ( (f.) C)
Il - #(TI( C+ 1) n Qe) /l Y " .

By Lemma 6, 28 n Qe 111ay be covered by

N(l) N(t')
'od TI red TI ed

GlV( €) . d( V( f.)) N(e)
, -N(t) d( V{/)) la 1 , . -N(l) d( V(l))< ej} : e j ra I >r } : e j ra j _ r

balls of radius lV(e)-l~rad(lV(f.))edN(f).Euch of these can contain by Lemma ,5 at most

C lV( C)-WL (rad( lV( C) )edN(l)) J Idet TIN(l+')
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points of lI(f + 1). We therefore have

#(n( f + 1) rl 2B rl QJ) «
N(l)II red

rad(N(€))
j : ejN(ilrad(N(l»)>r

II
e~(t)

x N(l)
j : ejN(llrad(N(l))::5r ej

x (rad( IV( €) )edN(l)) d Idet TI N (t+l).

On the other hand, we have by a similar argument but squeezing rather than covering

d d N(t)

#(rr( f + 1) n Q/) » (rad( LV (e) )edN(l)) Idet TIN(l+l) II e~(l)'
j=l ej

The last two formulae combine to give

#(1I( f + 1) rl2B rl Qt) II J,!(l) d( rH(f))-1
( (

€ « re) ra 1'1 .
# TI + 1) n Ql) j : e-:-N(t)rnd(N(t))>r

J

Substituting this into the above formula for J-l( 8) we obtain

N(l)
re·

/1(B) «lt(y(fL f) N iIT rad(~V(e))'
j : ej (lrad(N(l)>r

(9)

"Ve remark that this can be reformulated as follows:

In( Qe rl 2B)
It( B) « ln(Qe) f-l(Y( €), f).

This formula has analogues in our other papers (see especially [.5)) in which Lebesgue
measure m is replaced by a suitable conformal measure. The result now follows with just
a bit more calculus.

N(l) N(l)ei+l rad(lV(C)) < r ~ ei rad(lV(C)).

"'Ve shall show that IO~Ji(B) > 8,· + 0(.1).
ngr -

First note that by 9, WB have

3.2.4 The Calculus

"Ve shall now fix a value of -i. lf,. < e,iN(l)rad(lV(f)) then let i ;= rl. Otherwise, choose i
so as to satisfy

i N(l)
rc·

1'( B) « 1.1 (V(C), €)Drad(~V (€)) .

13



Taking the logarithm of this, we obtain

I

logp(B) ~ logp(y(f), e) +:L (logr + IV(e) log ej -log rad(IV(f))) +0(1).
j=1

Applying the estimate of Lemma 7 we get

I

log tt (B) ~ IV(e) log Idet Tl +:L (log r + IV(f) log ej - log rad (lV (f) )) + o( IV (f) ).
j=l

By the first condition on the sequence IV(I), we may rcplace lograd(N(f)) by -N(f)(r +
o( 1)):

I

log f.L( B) ::; IV( f) log Idet TI + I:(log r + IV( €)(log ej + r)) + o(1\r( f)).
j=1

Dividing by the negative number log r gives

iOf 1-'( B) :::: i + 111\l( e) (lOg Idet TI + t log ej + r) + 0 (IIV( f)) .
ogr ogr j=1 ogr

By our choice of i, we have
o> _IV_(f_) > __-_1_

- log r - r + log ei

The last t~vo formulae give

log Il( B). 1 ( ,. i )1 2::t- I logldetTI+:L1ogej+r +0(1),
og r T + og ej j= L

which we can tidy up to obtain

3.2.5 The Error Term

logJ.l(B) r ()
I ~ Vi + 0 1 ,og1'

(10)

'vVe now handle the error term o( 1). This tends to zero as e ---+ 00. On the other hand,
by making r very sInall we can ensure that e is very big. Thus for any t > 0 there is an
1'0 > 0 such that for all r < 1'0 the error tenn is less than t:. Assume l' < 1'0' Then by (10)
there is somei such that

Thus we always have
p( B) ::; 1'S-f.

This ilnplies by the !v[ass Distribution Principle (letting E tend to zero) that

clin1 Hl 2:: J.
14



o:= . min Oi.
I=I, ... ,d

4 Proof of Theorem 2

As before T : X -t ); is a matrix transformation of a torus. Assurne in addition that
T is diagonalizable over Q. Suppose that el,"" ed E 7l are the absolute values of the
eigenvalues of T, listed in ascending order. Let T be as in (2) and define

O. "_ i log ei - Lj : ej>e;eT(log ej -log ei - r) + Lj>i log ej

I .- T + log ei '

We begin by proving the upper bound dirn Hf ~ O. After that we shall describe the lower
bound dirn HI ~ 8.

\Ve shall require the following refinemint of Lemma 5.

Lemma 8 Let B = B(x, I)! r < 1. Then

#{y E B : Tny = zn} « II rej.
j : ejn<r

If in addition one asS"umes that Tn x = Zn tlzen one has

#{y E B : Tn:c = zn}» II r'ej.
j : ejn<r

The first part of the lemma will be used for the lawer bound and the second part for
the upper bound.

Proof. Let VI,"'"' Vd E Zd be eigenvectors of T corresponding ta the eigenvalues
eI: ... ~ ed. These eigenvectors span a sublattice L of zn of finite index ind := [!Zd : L].

For V E )( consider the parallelopiped

Each such parallelopiped contains exactly ind points y satisfying Tn y = Zn. To obtain
the llpper baund one covers B by these parallelopipeds anel estimates thc number of
parallelopipeds required in such a cover.

For the lower bonnd note that there is a canstant C > 0 depending only on VI, . " . , Vd

such that
P(x; CVtT', . .. ,CVrlT') C B(x, r).

\·Ve fix such a c. Now let L' be the subgroup of Ra generatecl by those ejHvj for which
-Il 0 Iej < er. ne 1as

S' := {a: + I : l E L'} C {y : Tny = zn}

The lower bonnd will therefore follow fral11 a lower baunel for #( S' n P( ;t;; CVI r', ... , CV'lT')).
The latter is easily seen to be at least nj:e-:-n <er [crej], where thc square bracket notation

)

indicates thc integral part. This proves thc lernma.
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4.1 The Upper Bound

We proceed very much as in §2.1. 'vVe fix an i anel show that

Since this is true for any i we have dirn t,V ~ J. Choose p > O. We shall describe a p-cover
of lV. Let LV E BI be sufficiently large so that one has

rael( lV)e;N < p.

Here we have used the fact that ei ?= 1. vVe define P(n), P(n) anel Py(n) as in §2.1. Then
the preirnage T-n B( Zn, rad(n)) is given by

u
It therefore follows that

HI C U U
n?.N y: T"y=z"

As before we shall refine this cover. Ta da this we first cover p(n) by balls of radius
einrad(n), cent red at points in a finite set S(n):

P(n) C U Bz(e;nrad(n)).
zES{n)

'vVe therefore have a corresponeling cover of H/:

HI C U U U By+z(e;nrad(n)).
n>N y: T"y=zn zES{n)

As in §2.1 we have

# ,C,'(1~.) // ·n
a TI (c 'je·)n~ ~ " ,~ t ) •

The problem with this new cover is that there will be a lot of unnecessary overlapping.
To be more precise, the inner union

U By+z(e;nrad(n))
zES(n)

(11)
e~

Ij : ej1rad(nl>ei

1H(n) := TI

may cover not just Py(nL hut also several other Pw(n), as lang as the distance Iy - tul is
less than einrad(n). Thus by Lemma 8 the nlllnber of P7U (n) covered is » A;f{n), where

ejrad{n)

16



After pruning out the unnecessary elements of the new cover we obtain the following
bound on the Hausdorff rneasure of I/V.

L (einrad(n)r
zES(n)

7-l~(W) «

«

L Lvf(n)-1 L
n2:Ny: Tny=z"

L lvJ(n)-l I: #S(n)(eillrad(n))S
n2:N y : T"y=zn

I

« L l\l(n)-lldetTjn(e;n e-n(1"+o(I)))"nO II(edej)n
n2:N j=1

Let

(
. " log 1\1(n ) )

lV!:= exp hmlnf..--....;;;.---
n-too n

The above surn converges as long as

which is equivalent to the condition

i log ei - Lj : ej>eje T (log ej - log ei - T) + Lj>i log ej
s > = bio

T + log ei

\Ve therefore have as in §3.1,

Since this hoiels for every i: we get

dirn I/V ~ O.

4.2 The Lower Bound

\Ve construct the Cantor subset !( C 1V and the rneasure Il on J( exactly a.s in §2.2.
However the estimate on the 11leasure will be different.

Choose any ball B = Bx ( r) centred on a point of !(. \Ve shall find an llpper bound
on Il( B). \Ve define y(l) and QI exactly as in the previous section. Again we shaU be
interested in €. which a.s before is denned to be the sInallest I for which no ball of radius

. . d '. Q Th'" I" I -N(l+l)r 1S contalne In I. 15 Imp les t lat e l < r.
As a starting point for our calculation of J1( B) we take the formula (8):

II ( B) ::; 2: lL ( y, e+ 1)"
yE2BnI(l+ I)

This gives us analogollsly to (9)

(
B) 1/1.( [(( f) n 28)

Il « ln(!\"(e)) :
L7
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where m is Lebesgue measure. vVe now have to do some more calculus. First note that

m([«(e)) = m(Ql)#II(l).

By Lemma 7 this gives HS

m( [{(e)) x rad( IV(e))d Idet TI-N(l) Idet TIN(l) exp( o( lV( e))) ~ rad( IV( e))d exp(o( IV( e))).

Together with (12) and the first condition on the sequence lV(l), this gives

10g,u(B) :::; logm([«(e) n 2B) + lV(e)dr +o(lV(f)). (13)

ei~~(l)rad (lV( f)) < r :::; e;N(e)rad( lV(E)).

vVe then have for any w E X by Corollary 1

We shall now fix a value ofi. Ifr < e;N(t)rad(N(E)) then let i := d. Otherwise, choose
i so as to satisfy

d

'm(2B n pw(iV(e))) «r i II e;N(e)rad(N(f)).
j=i+l

However, 2B will intersect other things in [«(i) than just Ql. Using Lemma S the number
of pieces Py(N(f)) of [«(f) which B may intersect is «!v!'(N(l)), where

11;f'(n) := II rej.
j : ej"<r

Since r :::; e;N(l)rad(iV(e)), we have l\I'(iV(e)) ::; 11I(lV(f)), where L\1(n) is as defined in
§3.1. We therefore have

d

'm(2B n [«(0) « l\;f'(N(f))r i TI e;N(e)rad(N(f))
j=i+l

d

« iH (lV( e) )ri TI e;N(l)rad( LV(f)).
j=i+l

Together with (13) and the first condition on the sequence lV(l) this implies

d

log Il( B) :::; log iVI( IV( 0) + 'ilog l' - iV(e) I: (T + log ed + IV( l!)dT + o( IV( f)).
j=i+l

"Ve therefore have

10gll(B) logl\l(iV(C)) " lV(f) (. ~ 1 ) (LV(f))--- > +1 +-- 'lT - L- og ei + 0 -- .
log r - log 7' log r j=i+l log T
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Substitutuing the definition (11) of lvI(n), we get

log Il( B) >
log r

1

I
L (lV( f)(log ej - log ei) + log rad( iV( f)))

og r N(l) N(l)
j : e

J
, rad(N(l))>e;

. lV (I!) (. d ) ( lV (e) )+·l+-I- ZT- L log ei +0 -1- .
og r j=i+l og r

From our first condition on the subsequence lV(l) we get

log Il( B)
logr

lV(f) ( d ) ( lV (f) )+ i + -1- iT - L log ei + 0 -1- .
og r j=i+l og r

Using the fact that r ::; e;N(l)rael(N(l)) this becomes

which we can tidy up to obtain

logll(B)r ()
I ~ Vi + 0 1 .
og r

4.2.1 The End of the Proof

The proof finishes like the proof of Theorem 1. By (14) we have for sIllall emough 1':

This irnplies by the lVIass Distribution Principle that

dirn {tl/ ~ J.
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