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AMBIGUOUS CLASS NUMBER FORMULAS

CHIA-FU YU

Abstract. An elementary proof of Chevalley’s ambiguous class number for-

mula is presented.

1. Introduction

In Gras’ book [2, p. 178, p. 180] one finds Chevalley’s ambiguous class formulas.
In Lemmermeyer [3] one finds a modern and elementary proof. This Note gives a
different elementary proof of this result, which uses basic results proved in Lang’s
book [1].

LetK/k be a cyclic extension of number fields with Galois groupG = Gal(K/k) =
〈σ〉, where σ is a generator of G. Denote by o and O the ring of integers of k and
K, respectively. Let ∞ and ∞r (resp. ∞̃ and ∞̃r) denote the set of infinite and
real places of k (resp. of K), respectively, and Ak (resp. AK) the adele ring of k
(resp. K). We shall identify a real cycle c with its support, which is a subset of
real places. Let rk : ∞̃ → ∞ denote the restriction to k.

Let c̃ be a real cycle on K which is stable under the G-action. Denote by

(1.1) Cl(K, c̃) :=
A×K

K×Ô×K∞(̃c)×

the narrow ideal class group of K with respect to c̃, where Ô is the profinite com-
pletion of O, and K∞(̃c)× = {a = (aw) ∈ K×∞ | aw > 0 ∀w ∈ c̃}. Similarly one
defines Cl(k, c) for any real cycle c on k. The group G acts on the finite abelian
group Cl(K, c̃). Its G-invariant subgroup Cl(K, c̃)G is called the ambiguous ideal
class group (with respect to c̃).

Let c be the real cycle on k such that ∞r − c = rk(∞̃r − c̃) and c0 := rk (̃c). One
has c = c0∞c

r, where∞c
r is the set of real places of k which does not split completely

in K. Let NK/k denote the norm map from K to k. The cycle c is determined

by the property NK/k(K∞(̃c)×) = k∞(c)×. Put o(c)× := o× ∩ i−1∞ (k∞(c)×), where

i∞ : k× → k×∞ is the diagonal embedding. Denote by Vf the set of finite places of
k. Let e(v) denote the ramification index of any place w over v ∈ Vf .

Theorem 1.1. One has

(1.2) # Cl(K, c̃)G =
# Cl(k, c)

∏
v∈Vf

e(v)

[K : k][o(c)× : o(c)× ∩NK/k(K×)]
.
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When c̃ = ∞̃r, we get the restricted version of the formula stated in [2, p. 178].
When c̃ = ∅, using an elementary fact

# Cl(k,∞c
r) =

h(k) · 2|∞c
r|

[o× : o(∞c
r)
×]
,

we get the ordinary version of the formula stated in [2, p. 180].

2. Proof of Theorem 1.1

Define the norm ideal class group N(K, c̃) by

(2.1) N(K, c̃) :=
NK/k(A×K)

NK/k(K×Ô×K∞(̃c)×)
.

Consider the commutative diagram of two short exact sequences (by Hilbert’s The-
orem 90)

(2.2)

1 −−−−→ A×1−σK ∩ U −−−−→ U
NK/k−−−−→ NK/k(U) −−−−→ 1y y y

1 −−−−→ A×1−σK −−−−→ A×K
NK/k−−−−→ NK/k(A×K) −−−−→ 1,

where U = K×Ô×K∞(̃c)×. The snake lemma gives the short exact sequence

(2.3) 1 −−−−→ Cl(K, c̃)1−σ −−−−→ Cl(K, c̃) −−−−→ N(K, c̃) −−−−→ 1

as one has an isomorphism A×1−σK /(A×1−σK ∩U) ' Cl(K, c̃)1−σ. On the other hand
we have the short exact sequence

(2.4) 1 −−−−→ Cl(K, c̃)G −−−−→ Cl(K, c̃) −−−−→ Cl(K, c̃)1−σ −−−−→ 1,

which with (2.3) shows the following result.

Lemma 2.1. We have # Cl(K, c̃)G = #N(K, c̃).

Define

Cl(k, c,O) :=
A×k

k×k∞(c)×NK/k(Ô×)
.

Lemma 2.2. The group N(K, c̃) is isomorphic to a subgroup H ⊂ Cl(k, c,O) of
index [K : k].

Proof. Put A := NK/k(A×K), B := NK/k(K×Ô×K∞(̃c)×), C := k× and H :=
CA/CB. The group H is a subgroup in Cl(k, c,O), which is of index [K : k] by the
global norm index theorem [1, p. 193]. One has A ∩ C = NK/k(K×) ⊂ B by the
Hasse norm theorem [1, p. 195]. The lemma follows from

N(K, c̃) = A/B = A/(A ∩ C)B ' CA/CB = H.

Consider the exact sequence
(2.5)

1 −−−−→ o(c)×

o(c)×∩N(Ô×)
−−−−→ ô×

N(Ô×)
−−−−→ Cl(k, c,O) −−−−→ Cl(k, c) −−−−→ 1.
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It is easy to see o(c)× ∩ NK/k(Ô×) = o(c)× ∩ NK/k(K×) from the Hasse norm
theorem. The local norm index theorem [1, p. 188, Lemma 4] gives

(2.6) #

(
ô×

N(Ô×)

)
=
∏
v∈Vf

e(v).

Combining Lemma 2.2, (2.5) and (2.6) we get

(2.7) #N(K, c̃) =
# Cl(k, c,O)

[K : k]
=

# Cl(k, c)
∏
v∈Vf

e(v)

[K : k][o(c)× : o(c)× ∩NK/k(K×)]
.

Theorem 1.1 follows from Lemma 2.1 and (2.7).

Remark 2.3. We do not know whether Cl(K, c̃)G and N(K, c̃) are isomorphic as
abelian groups or whether there is a natural bijection between them. When [K :
k] = 2 and # Cl(K, c̃)1−σ is odd, we show that there is a natural isomorphism

(2.8) N(K, c̃) ' Cl(K, c̃)G.

The map 1 − σ : Cl(K, c̃) → Cl(K, c̃)1−σ restricted to Cl(K, c̃)1−σ is the squared
map Sq, which is an isomorphism from our assumption. The inverse of Sq defines
a section of (2.4), and hence an isomorphism Cl(K, c̃) ' Cl(K, c̃)G ⊕ Cl(K, c̃)1−σ.
The assertion (2.8) then follows.
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