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1. Introduction: The classiflcation of conforlllal fleld theories. Confonnal
field theories (CFTs) anel relatccl structurcs havc been of consielerablc value to rnatheruat­
ies, as for instanee the work of \~ritten has shown. This paper is concerned with thcir
classification. Fortunately, the problern has a sinlple cxpression in tenns of the characters
of I(ac-J\!Ioocly algebras (see (1.2) below), anel requires no prior knowledgc of CFT. Never­
theless, für reasons of lnotivation, in the following paragraphs wc will sketch the definition
of CFT.

Before discussing this backgrounclrnaterial, let us quiekly stute the actual llH:ühelllat­

ical problelll adelressed in this paper. The charaeters of an affine algebra, at fixed !cvel
k define in a natural way a unitary l'cprcsentation of SL2(Z) (see cquations (3.3) bclow).
The ultilnate classification problelu here is to find a11nlatrices )\1 which con1nlutc \vith the
Iuatrices of this rcprcsentation 1 ancl whieh in addi tion 0 bey rela-tiolls (1.2b) anel (1. 2<.:) ­
such 1\1 are callecl ]Jhy,o;ica[ invo.Tiants. In this paper wc adclrcss the subproblcrn of fincling
all physical invariants which in addition satisfy (1.3b), wherc S is the group of all SYlllllle­
tries of the (extendecl) Coxeter-Dynkin diagralll - these 1\1 we eull ADE7 - ty])(!. inval'iants.
Ahllost every physical invariant is expected to be a ADE7-type invaJ:iaJlt. In this paper
\ve develop a prograul to find a11 of these for any affine algebra l anel apply it. to cxplicitly
finel theul für the algebra A~.l) .

The rernainder of this introductory seetion is inteneled to explain thc lllotivation für
this prüblclu. In the lauguagc of CFT (\vhich will be touchecl on shortly), the cIassificat.ion
of these physical invariants is Ctluivalcnt to the classification of a11 possible Wess-Z'u,7nino­
Witten ]1(J,rtition fnnctions. There is, we 8h8oll see, a faidy natural cut of this classification
illtO two subproblelus. One is to find all possible chi7yLl algebra,.:; (these are essentially vertex
operator algebrRs), allel thc other is to find all possible autolllorphisrns of thc corresponcling
fusion rings (these encode the tensor proc!tlct structure of thc algebra). In previous work
[11)2} wc accoluplishcd thc second subproblcln for thc case where the chiral algebra corre­
sponcls to an affine algebra; in this paper we gencralizc those argulllcnts to thc case \vhere
the chiral algebra is an extension of those by simple C'UTTent-: (see e.g. [6J). It is gencrally
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belicved (for reasons given below) that 'aln108t every' chiral algebra fini tely cxteneling the

chiral algebra of an affine algebra, will be of this fonn, and so this paper sohres (for .4~.[))
the second subproblcrn for what rnay bc tcnncd its gcnc7"i.c chil'al extensions.

Accorcling to Segal [25J (see also thc prcsentation in [15]), a (two-cliluensional) con­
fannal field thcory is (1, rC]J7'cscntation of the ce"Ltegory C whose objects are elisjoint unions
of para1uetrizeel cirdes anel whose 1l1orphis1uS are cobordis111s - i.e. it is a functor T [1'01u
C into the category of coruplex Hilbe1't spaces anel trace-dass operators. Thcre exists a
Hilbert spacc H such that T takes 17. circles to H 0 ... 0 H (17. tirues). Sewing togethe1' su1'­
faces in C along boundary circlcs corresponds by T to con1posing operators. The eletailecl
definitions anel axicnus are not iruportant here, anel woulel take us too [ar afielcl.

The data of a CFT elecoruposcs into two chiral halves, relat.ed to the fact that the
confonnal1uaps in C consist of analytic functions anel their cOll1plex conjugates. Of g1'eatest
interest are the rational confo1'n13.1 field tl1eorics (R.CFTs), clefined by Segal using thc notion
of a rnod'nlaT jnnctoT. The 1uodular functor 1uakes precise thc constraints i1uposed on each
chiral half: the key propcrty of an R.CFT is that the chiral data is labe11ecl by a finite set
(the prirnary fields of thc theory).

Twill 11lap the closed torus C/('1l + Z T) to a COll1plcx nU1nber Z(T); Z is calleel the
partition functio1l for thc theory. But different T can correspond to the san1e torus; these
T are relatecl by thc luoclular group of thc torus. Thus the prL1:tition function Z shoulcl
be lnoclular inVHJ'iant, i.e. invariant uncle1' the natural action of PSL2 (Z) on the upper half
C0111plcx plane.

h11portant eXeu11ples ofR,CFTs are whcre the 'chi1'allabels' are givcn by representations
'of a. I\:ac-lvIoody algebra ~y~ [) at S0111C fixe cl le<rel k E {I, 2, 3, ... }. These <'\,re called \Vess~
Zurnino-\~Tittcn (\VZ\-\') luoclels 1. The partition functioll of Cl. \~TZ\~T rnodel \vi11 be of the
fonll

(1.1 )
Jl, I/

whcre the paraIlletcr v can be takell to lie in a Cartan subalgebra of )CI·!). Thc sun1 in (1.1)

is over all highest. weights p+(){~1),k)j one of these weights, clenotecl kAo, is clistinguishecl.
This cliffers the parti tion function Z (T) cliscussecl earlier, only by depending on r110re
variables. There is a natural action 'V M Av of SL2 (Z) on the Cartan subalgebra [17]. Thc
function in (1.1) obcys thc fo11owing condi tions:

Z(Av) = Z(v) for a11 A E SL2 (Z) ;

)\1/J , IJ E {0, 1, 2, . . .}

j\1kAo ,kl\n = 1 .

(1.2(/.)

(1.2b)

(1.2c)

Any such 2 01' lvI is callecl a physical invCL1'iaut.
""lZ\\' 1110clcls have been extensively studiccl bccausc thcy are siIuplc enough to ana­

lyze, but con1plicated enough that the answers should be intcresting and hopefully cha,r­
acteristic of 1uore general R,CFTs. They are generally regardccl as building blocks, via thc
Godclard-I\:ent-Olive caset construction, for pcrhaps all other R,CFTs.

1 ""rzvv is oft.en IIsed in t.he Ilarrower sense of sl,rings propagating Oll a grollp manifold, so I.he t.erm cOlljol"maf

CU7TCltl model was proposed in [12] for the more general casc of interest. here.
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One of the few renlaining fundi:"l.lllental questions of \,\TZ\"-' 1110clels is their classification.
Becausc of Segal's sewing axioIll, the higher genus bchaviour of a CFT cau be detennined
in principle fro1n that of lo\ver genus. In partieular, a R.CFT is uniqucly cletcn11inecl by its
two chira1 algebras (which in 1110St cases are t a.ken to be isonlorphie), the operator produet

structure coefficients (obtaincel in pl'ineiplc fro1n T by sclecting a elisk with two puncturcs),
anel the partition funetion.

In this paper we adclress the classification of possible \,VZV.,T partition funetions (i.e.

physieal invariants). Thc first such result was for A~l), for all k [4]. It \vas founcl that

the set of solutions to (1.2) for A~l) fall into the 1nysterious A-D-E pattern (see also [26]).
An explanation has recently been announced by Ocneanu [21], using subfactor theory anel

path algebras on graphs. All physical invariants are also known for A~l) [10]. For it:
no connection with A-D-E is known, but several unexplained eoineiclellces havc appeared

(see c.g. [22]) bet\V(~en the A~1
) classification allel the Jacobians of Fcrnuü eUl'ves. Zuber

[28] alld collaborators have explored using generalizeel Coxcter graphs to reinterprct anel
extenel SOlne of these observations. Classifying R.CFTs is intcl'csting in its own right: but
what 1nakes it n10re intriguing is thc desire to unclerstand and if possible generalizc these
appal'cnt patterns.

Unfortunatcly physical invariants have resistcd extensive attclnpts at their classifica­

tion; only for A ~1) [4J: A~ I) [10], anel (A L EB AL )0) [9]2 has the classifieation been attainecl
at all levels k. However there has been recent progress [11,12J towarcl the solution of this
problcln, and this paper takes us one step eloser to this goal.

Let S denote the group of all synunetries of thc (extencled) Dynkin cliagnl.111 of _y~.1).

Any A E S \vill inchlce a pennutation /\ f--7 A/\ of the level k weights of ~y~l), by the action
of A on the Dynkin labels. V/rite S/\ for the orbit of /\ by S. Thc A E S which fix the
extended noclc are ea11ecl conj'/l,gation~; sorne of thc rClnainelcr (defineel in section 3 belo\v)
are callecl simple C'(I. r'7'e rLts. It is easy to verify (see (3.5) below) that thc lnoelular hehrLViour
of X..L\ is elosely l'clatcd to that of X,\, for any syrnnlCtry A ES. So it is not surprising
that these can be used to obtain nc\v physical invariants fronl old ones [2]. Incleeel it seC1l1S
that l110St physieal invariallts ean be obtainecl in this way fronl the identity nuürix physiea1
invariant lvI = I - such physiea1 invariants are called sirnplc C'ltrr'cnt invar'iants (anel their
conjugations). See (1.4) bclow.

As can be seen fronl (1.2e), as \vc11 as (3.4e) bclow, the weight kAu has special signifi­
cance. A reasonable division of this classifieation problelll illtO two subproblcnls is, on the
oue hand, to consider a11 possiblc values i'1kAo ,/I' 1VJ,t, kA o - these are severely constraincd
[10] - anel on the other hand to find all physical invariants lvI whieh realize eaeh of these
possible choices für A1kAoJlJ 1 111,t I 1.:1\0 . This is a restatClllCnt of the two subproblenIs 111cn­
tioneel in the thircl paragraph. In [11 )2] wc find all possiblc physical invariants satisfying
the additional eonstraint

(1.30 )

2 Howe\'er for this lat.t.er algebra all addit.ional cOllstraint. beyollcl (1.2L invol\'ing t.he Knizhnik-Zalllolodchiko\'

cquaiioll, was assumed.
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These are called (J,utomor]Jhism invariants. In this paper we generalize those arguluents to
find all physical invariant.s obeying instead the nl0re general constraint

(1.3b)

VVe call these ADE7 -type 'invariant...;. For exalnple, in the A~ 1) classifica,tion [4], these
cansist of the physical invariants callecl Ar. anel Dr., along with the exceptional E7 . Based
on the known classifications (e.g. [4,10,9,5}), together with various COluputer checks in
thc literature, it is reasonable to conjectul'e that ahnost. 3011 physical inval'iants are ADE7 -

type invariants. For exaluple, for all but a sIllall lllunber of A~.I), we expect all physic30l
invari30nts for each k :f 7' - 1, l' + 1, 'f' + 3 to obey (1.3b). The ADE7-type invariants are

interesting also because they incluelc cxceptional physical invariants (like E7 for Ai l ») which
are notoriously elifficult to obtajn by standard eonstructions.

This paper is concerned with the classification of 3011 ADE7-type invariants. Vvc rechlce
the prablelll to the Inechanical 30lbeit teclious t.,sk of cornputing q-dilnensions anel tensor

product coefficients. \Ve cornplete the classification for the ease of gl'eatest interest: A~.l).
Up to conjugations, we find only 8 exceptional ADE7-type invariants. This is a significant
step towarcls the classification of all \~TZ\~T partition functions for the unitary algebras. The
final step in that classification, nalnely soh'ing the va-rious constraints for lVI/J,kA o , J..;]kA o ,11:

will not be acldressed here.
Sonle of the argulnents in this paper are based on those for the autolnorphisnl invariant

classification [11,12], as weIl as aleler classifications [9,10], but sevcral new cOlnplications
arise here. Thc lna.in tools we use are the l'Cac-Pcterson fonnula (3.4d) - whic.:h pernlits
us to exploit thc well-understooc1representation theory of finite-elilncnsional Lie algebras
- anel thc Perron-Frobenius spectral theory for non-negative lnatrices.

A sonle\vhat l'elated problern is [19] to classify all physical invariants \vhich for all
weights p, v obey the constraint

(1.4)

whcre Ssc is the subgroup of S eonsisting of all siluplc currcnts. These are callecl simple
c'Uf'rent invariants; they are a special case of the ADE7-type invariants considered here.
Their classification has been accolnplished for all R,CFT, subject to a certain constraint
on the lnodular S lllatrix (3.3c) [19] - it i8 faund that there are no exceptional invariants
of this fonn. Though this is clearly a nla..1or resul t, (1.4) is sllfficien tly stronger than (1. 3b)
th30t the argulnents in [19] are not useful in our contcxt.

In sechon 2 bclow we list all ADE7 -type invariants for AV). Section 3 estahlishes

the basic results \VC neeel, anel seetion 4 specializes to A~.l) anel outlines the argulllent

for classifying all A~,l) ADE7 -type invariants. The problelll reduces to sonle q-dilnension
calcul3otions anel cOlnputing sCHue tensor product cocfficients, which wc do in scctions 5 and

6 respectively. This cOlllpletes thc classification for alrnost all levels k of A~,l) i the finitcl~l
lnany trouble-nul.king pairs (7', k) are explicitly handlecl in scction 7.

2. The ADEi-type invariants af A~.1) . In this section we explicitly list a11 of the

ADEi-type invariants of g = A~.l). Thc proof that this list is cOlnplete will bc accülnplishecl
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in the later sections. In the following section \ve will nlotivate and gencralize 111aJlY of the
definitions 111ade herc; our purpose here is 111erely to statc Thcorenl 2.1.

Fix the rank l' anel level k, anel clefine f = r + 1 anel k = 1~ + ,P. The level k llighcst

wcights of A~.1) constitute thc set P+ of f-tuples /\ = (/\0, ... , /\.) of non-negative integcrs

"\i obeying L:~~o Ai = k. The extendcd Coxcter-Dynkin diagranl of A~.l) is a circle with
f nodes, which \ve label counterclockwise 0 t.o ',. - 0 is callcd the extcnded node. Its 2f
synul1etries (only f, if 'r = 1) fonn thc eliheelral group S; it is generated by an order 2
synl1netry fixing 0 (the conj'll,gation C), and an order f rotat.ion taking i to i + 1 (the
simple c'll,rrerd J). This group acts on P+ by pennut.ing the indices of the weight:

CA =(/\0, /\T, "\1'-1, ... ,/\1) ,

.1/\ =(/\,.,/\0,A1, ... ,/\,.-]).

A convenient quantity we will often use is thc f-ality t dcfined by

r

t(A) d~f Lj/\j .
j=l

(2.10-)

(2.1b)

(2.2)

Togcther wi th LcnlnlHs 3.1, 3.2 ancl 3.3, the followi ng thCOl'Clll is thc rnain res ult of
this paper. The ADEi-type inva,riants na111eel in Theorelll 2.1 are clefinecl in equations
(2.3a), (2.4), (2.5), aud (2.7) below.

TH GOREr..,1 2.1. Thc com]Jlete li~~t of ADEi-type intJariants for A~.1) at level k is:
• for all '1', k 2:: 1) d dividing fand t::atisfying (2.8b), and c = 0,1: ce. l[J(d ;
• for ('I'~k) E {(1, 16)~ (3,8), (4,5), (7,4)}: E(r,k);

• for (1',k) E {(2,9), (8,3)}: E(1" l k) and C· E(1",k);

• for (1', k) = (15,2): [(15,2), t1[J4] . E(l5 l 2) and C. [(15,2).

Next, we explicitly define these ADEi-type invariants.
Denote by Jd the subgroup of S generated by Jd 1 when cl divides r. Each such

sllbgroup C(1,n be llsecl to construct a ADE i-type invariant. In particular, put Ji:' = k if
both k anel f a.re odel, otherwise put k' = k. Define [23]

''Icl
l(Jcl]'\'1l = L O"/cl(i(/\) + djA:' /2) 0ltlJdj,\ ,

j=l

(2.3a)

where 5Y(x) = 1 01' 0 clepending, rcspectively, on whether 01' not ~(; / y E Z. Thcn l[Jd] will
be a physical invariant iff [23]

k'd == 0 (Illoel 2) . , (2.3b)

This can be reacli ly proven using (4.1 b) and (4.1c) below.
These l[Jcl] were first explicitly given in [7], though sonle appcared carlier in [2].

Equation (2.3a) cxtencls naturally to any _y~ 1) (sec [23]). Note that d = ,p always si:l.tisfies
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(2.3b); it gives 1[31') = I, thc identity 1uatrix. Incidcntly, for each divisor d of r, there

is a Lie group Gd whosc sinlply-conncctecl covering group is GI ~f SU1', anel which obeys
Ile;] /Gd 11 = d. For exa]uple, for 'r = 2 G2 = 803 . Thc cxistcnec of I[3d] is intinlately
connected to that of Grltl [7].

Thc conjugation C defines another AVE7-type invaria.nt (sec (4.1el), (4.1c)), which we
will also denote by C:

(2.4)

whcrc 0 dCllotes the Kronecker delta. ivlorcover, the 111atrix procluct C . lvI of C with any
othcr AVE7 -type invariant lvI will also be a. ADE 7 -type invariant, and C 2 = I.

In addition, therc are a nu01bc1' of othc1' AVE 7-type invariants, called E7 -typc exccp­
tionals. It is slightly nlO1'e convcnient to express these in tenns of characr-ers rathel' than
their cocfficient rnatrices 1\11. It sufficcs to give the relevant subgroup Jd, as weIl as thc
characters \vith thc exceptiona.l behaviour (thc renH\.ining characters conlbine exactly as
in I[Jd])' To hclp cxplain our notation, we will write out in füll thc two sirnplest such
exceptionals:

E(1,1 G) _I " +". 12 + 1 " +" 12 + 1 " +" (2- ~\lG,O .:\0,J6 .:\ 12,4 .:\4,12 .:\ 10,6 }\6,10

+ (XJ.1,2 + Xz,l.d X;,8 + X8,S (X14,2 + X2,I.d* + Ixs,81
2

(2.50.)

E(2,9) = !X900 + X090 + xo091
2 + IX522 + X252 + x2251

2 + IX60J + X360 + X036]2

+ IX630 + X063 + X30G 1
2 + IX144 + X414 + X4411

2 + 2lx3331
2

+ (X711 + XliI + Xlli) X;33 + X333 (X711 + X17I + X117)* (2.50)

Here and elsewhere, we label a \vcight by its Dynkin labels.
For cOllvenience wl'ite

(2.60)

Also, write ::(1 * b" as shol't-hand for ::0.0* + 00.*11. Note that. wc 1n3.Y capt.ul'c all t.hc
infonnation in (2.5a) by stating cl = 1, anel giving t.he :exccpt.ional' ternlS:

(2.Gb)

Thc l'clnaining tenns in (2.5a) are cxactly as in I[Jtl. Si1nila1'ly, (2.5b) can be stllnnHtrizecl
by stating cl = 1; anel giving the cxceptional tenns

2
21x3331 + (X711 )1 * X333

Thc rC1naining E7-type exceptiona.ls are exprcsscd in this \Vay as:

(2.Gc)

,,(4,5) .
(.... .
('(7,4) .
v .

cl = 1;

cl = 1;

d= 2:

2
21X22221 + ((XS012 h + (X521O) r) * X2222

+ (X 61 01 ) I * (X -1040) I + 1(X·1 040) I 1
2

;

(X3100l)r *X11l1l +4Ixlllld2;

l(x20002000)21
2 + IC\,02000200h1

2 + (X2100000t}2 * C\'2000';WOO)2

6
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+ (X12100000)2 * (X02000200h + ((X12000010)2 + (XlOI00002h) * XOlOlOlOl

2 2}
((X21010000 h + (X20000 101)2) * XI0 101010 + 21xol 0101 01 I + 21x 1010] 010 I ;

2

[(8,3): d = 3; L (21x Jj (A o+A 3 +A 6 ) 1
2 + (X Jj (A2+Aa+A~))3* X Jj (A o+A 3 +"6)) (2.7d)

)=0

i

&( 15,2): cl = 8; L (IxJj (1\0+ 1\8) 12 + (X )i (A 3+1\5))8 * X)i (1\0+A 8 ))

j=O

(2.7e)

[(1,16) wa,s first given in [4]; [(2,9) in [20); &(4,5) in [24]; [(3,8), [(i,4), [(8,3) in [8].
[(15,2) is new but [8] obtained its projection: the lnatrix product ~ 1[J4J . [(15,2), which
has d = 4 and the exceptional tenns

:1

L (h-: )2j (1\n+1\H) 12 + (X )2j (1\3+1\5))4 * X )2j (1\0+A 8 ))

j=O

(2.7 f)

Note thc synlnletry (1', k) H (k - 1, T + 1) in the list of ranks and levels of these
cxceptiollals. This is not surprising, consic1ering the rank-level (Z.uality (see (4.2), (4.3)
below) exhibitec1 by the 1\:a.c-PctersOll S nud T nlatrices.

Rcrnal'ks 2.1. Note that the lnatrices lVI of a11 AD[7-type invariants here are synl­
lnetric: ]\11 = l'1 T . This is not always true for ather 9 [13]. There are sonle redun­
dancies in the list in Theorenl 2.1. \'Vhen l' = 1 01' k :S 2, take c = 0 only - this is
because there C will equal Olle of the I[Jd). Likewise, C· I[Jd) = I[Jd] for ('1', k, d) E
{(2, 3,1), (2,6,1), (4,5,1), (5: 3, 2)}. The final rec1unc1ancy is I[Jd = I[J~,d for f = k = 2.

3. CYCIOtOlllY, Kac-Peterson and Perron-Frobenius. In this section \ve estab­
lish the fundall1entallenl1113s which define our progranl to classify a11 ADE7 -type invariants.

\~Te will state and prove theIn for any 9 = ..\"~]) - indeed they continue to hold for any
RCFT. The notation used here is standard; see e.g. [16] for n10re details. \~Te will quickly
review the basic facts: before heading into the statelnent and proof of Lenllllas 3.1, 3.2:
3.3.

Let 9 b8 the non-twisted affine algebra ~y~ I) dcrived frolll thc finite-dilncnsional algebra
TJ = ~\"J"' Let L( ,,\) denote any irrecluciblc intcgrablc highcst \vcight g-rnodulc, ancl !ct X>..

be its nonna.lized character with rcspect to a Cartan subalgebra h = h. ffi Ce ffi 01 (h. is a
Cartan subalgebra of y, (l,nd c the canonical ccntral clelnent, d a. derivatioll, of g).

Let Ao, ... : Ar E 17.* denote thc fllnd;unental weights of g. Then thc highest weight
/\ E P+(g, h-:) of L(/\) can be taken to lic in

,. ,.
p+ ~f {L /\ jA j 1,,\ j E Z, /\j ;::: 0, L aj ,,\ j = li:} ,

j=O j=O

7
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where k is a positive integer called the level, anel the positive intcgers a,i are the co-labels

of g. '~Trit.e hY = L:i aY, anel k = k+hY. Thc "Veyl veetor is p = L::~o Ai. For convenience
we will wri tc A0 for kAo. Note that the projcetion

1"

- der" -
/\ r-+ /\ = 6/\jAi ,

i=l

produces a highest weight for the underlying algebra 9 = ){r. This projection is orthogonal
with respcct to thc invariant bilinear fann (-1-) (which we take to be nonnalized so that
lang roots have nonn 2); in fact (/\1/\) = ()~I~).

Let QY denote the coroot lattice, and Hf the \~Teyl group of g. The affine \~Teyl group
I'V is isonlorphic to the selui-direct proeluct T· Hf, wherc T consists of the translations tal

0' E QY, defineel on h* (lnoel Co) by

(nloel Co) (3.2)

(0 here is an inIaginary root of g). This is a central observat.ion in the represcntatiol1
theory of affine Kac-Mooely algebras. It pennits an expression - the \~Teyl-KRc character
fonnula - for the character X,\ in t.enns of theta fUl1ctions. This ilnplies [17] that X,\
will bc a Inoclular function: in particular, \ve nIay regarcl X>. as a fUllct.ion frorn 17. to Ci
coorelinatizing h in the usua.l way (i.e. 21ri(z - T r1 + u c) E 17., where z E h" T, U E C), we
obtain

X,\ (T + 1, Z, '({) = L T'\dl X, I (T, z, '/l.) :
IlEf'+

T der [.'{ (A + pi/\ + p) (plp)}] r
,\,Jl - exp 7ft k - ----,;v () '\,Jl

-1 z (zlz)
X'\(-, -, 'U - -')-) = L 5)"IJ X,l( T: Z, '11) ,

T T ....T
JlEP+

S der,,,"",, 1.() ~ [ ,.(w(/\+p)!ll+p)].
'\lIJ - ::; ~ c et w exp - 27ft k 1

wE~V

where in (3.3cl) the nornIali2ation s is

(3.30.)

(3.3b)

(3.3c)

(3.3d)

Here, 116+11 denotes the nlllnber of positive roots of y, and the weight. latt.ice QY * is the
eluallattice of QY. Together, (3.3a),(3.3c) define the transfonnation properties of X>. with
respect to SL2 (Z).

These Kac-Peterson Inatrices S allel T have SOllIe special properties. They are unitary
anel synunetric. Frcnn the 'Veyl denonlinatol' fonnula we get, fCH' any e= 0, ... , l~ / (/iY - 1),

TI . (~ + pIO')
Sep), = Isl 2 sln( iT /( ) ,

, 0>0 k C+l)

s

(3.40.)



where by ep in (3.4a) we Illean the weight Cp + (k - e(hV
- 1))1\0, anel where thc product

is o'/cr the positive roots Ü' E ~+ of g. Usually \VC \vill take e= 0 in (3.4a). This iluplies
thc following expression for the q-dirnensions:

(3.4b)

Fronl (3.430) onc can show that

S also satisfies thc ünportant equation [17]

S>., Jt _ --:-, ( ? .Ti + P)-5-- - ("1.I -...,1r1.---.- ,
AO,}l k:

(3.4c)

(3.4d)

wherc chI i5 the \-\Teyl character of thc g-lllodule L(),). Equation (3.4d) has ll1any con8e­
quences, one of which has to do with the fusion coefficicnts of g. These can be takcn to
be definecl by Verlinde's f01'lnula:

(3.4e)

Fusion coefficients have an algebra.ic interpretation in tenns of the tensor proelucts of
representations of C.g. Hecke algcbras anel quantulli groups at roots of unity, as weIl as
a geornetric interpretation involving Inoduli 8paccs of principle bundles over projective
curves. In the langua.gc of R,CFTs, they give thc diInensions of the spaces of conforrnal
blocks. Thc only relevant point here is that, because of (3.4d), they can be COll1putecl in
tenns of the tensor proeluct nlultiplicities nlult>:0/T("v) in g [27,16), anel hencc its weight

1 . l' . . (-) der d' L(\)IHU t,lp IcItles rn.I P = Inl /\ JI:

J1lÄ,jl = L clet(w) rn'TlCw.1J - X) ,
wE1V

(3.4f)

where tu., (~f w (,+p) - fJ (COll1pare thc Rac3oh-Spciscr algori tlun for CCHUpUting n1ul t>:~Yil(v)).
The sYl1unet ries of the (extellelecl) Coxet.cr-Dynkill eliagrarl1 of g define thc grollp

S. These play Cl, l11ajor role in t.his paper. Those fixing t.he extcl1decl node are calleel
confugatio71s. Al10ther subgroup is Ssc = Hl:, clefined as follows. Let To denote the set of
all translations in in (3.2) with a E p v , whcre pv is the co-weight lattice. Define (18]

where ~+ are the positive roots of g. Ssc stabilizes rrv , anel clefines a nonnal subgroup of
S iS01110rphic to QV / pv. Hs eleillent.s are calleel sirnple cn1Tcnts. Both conjugatiol1s anel
SÜllpIe Cllrrents act on P+ by pel'l11ut.illg t.hc Dynkin labeIs, a.nel togcthcr they generate S.
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All conjngations COllunute with S allel T anel fix Ao. The 1110St iInportant conjngation
is callecl cha7'ge conjugation: it takes each weight /\ to C /\ = t _\ thc weight. contragredient.
to /\. It obcys thc iInportant relation

(3.50.)

The prilnary reason for the iInportancc of Sf/C is: let J = tal/) ESse, then [18]

(3.5b)

where by Ja we nlean thc (I-fold conlposition J 0 ... 0 J, and where QJ(p.) = -(pIO'). Thc
lllatrix T also behavcs sinlilarly nnder Ssc:

(3.5e)

Definitiun 3.1. By a po,';itivc invariant for a. given a.lgebra ).;~1) and level k we Illean
a 111atrix 1\1 cOlllnluting with the corresponding Kac-Peterson Illatrices S anel T, with
thc additional property that cach j\1)..,Jl 2:: O. By a physical invariant we Illean a positive
invariant \vith each 11.1)..,11 E JE, anel obeying (1.2c). By a ADE i -type 'invariant we I11ean a
physical invariant A1 sat.isfying (1.3b).

For cxanlple, any conjugation dcfines Cl, ADE i-type invariant. SiInple currents can also
be used to construct theIn (see e.g. [2,23]) - an exal11ple is (2.3a). Any physical invaria,nt
not cOl1structable in these standard ways out of siInple currents allel conjugations is callecl
an exceptional inva1'iant, allel if it. is in aeldition a ADEi-type invariant, we shall call it an
Ei-type exceptional (hy analogy with the A-D-E classification in [4]).

The conelition T 1\1 = A1T i5 eql1ivalcnt to thc 'selection rule'

1\1>,,'/ -I- 0 => (/\ + pi /\ + p) == (p. + pi IJ + p) (rnoel 21.:)

The other conlnlutation coneli tion, naIllcly

S 1\1 = lVI S ,

01' equivalently (sincc S is unitary)

S 1\1 st = ld ,

(3.60 )

(3.6b)

(3.6e)

is n1uch nlore subtle anel interesting, anel we will begin to explore its conscquences in this
scction. Equa.tions (3.6a) anel (3.6b) are cquivalcnt to thc nloelular invaria.n~e conelition
(1.2a.) .

For a positive invariant 1\1, dcfine

:1J)1\1) = {J E Sf/C 11\1JAO,AO =I- O}

PL(i\1) = {/\ E P+ 13p. E P+ such that 1\1)..,/1 -I- O}

10
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anel define JR(lvJ) anel PR(l\1) sinlilarly (using thc other subscript of 1\1). Call /\ E P+ Cl.

fixerl point of J C S sr; if 1\ JA 11 < 11 J 11· Let :F(J) denote the set of a11 fixed points of .:J .
. Für any .1 C S sc 1 c1efine

(3.7e)

The renHlinder of this section is devoteel to the stateluent allel proof of the basic
lenuuas we will llccd. Exactly how to use these will be adc1ressed in the follüwing sectioll.

Our first len1nla is an easy cOllsequcllcc of (3.4c) and (3.5b). It teIls U8 how ...1LO'd)
allel JR(A1) illfillence all üther values üf j\1.

LE!vlrviA 3.1. (a) Let j\1 be any ]Jhysica[ invariant, und.1, J' ESse. Then the follo'win!J
sta,tem.cnts are eq'uiv(Llcnt:

(i) 1\1J i\0,J'AO # 0;
(ii) 1\1J1\O,J'AO = 1;
(iii) for (Lny /\,Il E P+ J if 1\1)..,/1 # 0 thcn QJ(.\) == QJ'(p) (1nod 1);
(iv) 1\1J)..,J'/J = A1)..,Jl f01' all/\, pEP+.

(b) Let NI be any pos'itive invariant satisfying

JVIt\o,/J = L 0Jl,Jt\O,
JE:Ju

1111)..,1\0 = L o)..,JI\O 1

JE:JL

(3.7d)

for som.e J L, J R. Then
(i) 1\1J>..,J'/1 = 1\1)..d1 f07' all /\,p E P+ and all .1 E .1Ll .1' E JR.
(ii) •..1L and Jn are groups and IIJLII = IIJRII.
(iii) PL(A1) = P(JIJ and PR(l\1) = P(JR)'

Proo/. (a) Note that

A1J>..,JlJl = LSJ)..,pA1ß,'1S;,J'IJ = Lcxp[27ri(QJ(ß) -QJI(i))]S)..,ßJitIß,'1S;,Jl· (3.8a)
ß" ß,/

Applying this to /\ = P = AG, anc1 USillg (3.4c), we get that IA1Jl\o,JII\ 0 1 :::; 11\11\°,/\°1 with
equality iff the conclition (iii) hol<18. Thlls for any physical inva.riant ivJ, (i) =? (ii) :::} (iii).
Stateluent (iii) iluplies (iv) by (3.8a), anc1 (iv) :::} (i) is trivial.

(b) The argtuuent [rolu (3.8a) ,vith ,,\ = Jl = AG and .]' = 'id. teIls us that J E JL if
QJ(ß) E Z for all ß E PL(NI) - this iluplies, again fronl (3.8a), that J\([J>"!11 = ]VI)..,11 for
all .J E JI.Jl for all /\,lt E P+. Sinlila.rly for Jn. Hence JLl JR are groups. The relation
11.11.,11 = II.1RII (0111e8 fronl thc calculation

5 1\0,1\0 11JLII = L 5/\0,~/1l1/,/\0 = L 1\1J\0,'1 5-(,/\0 = 5/\0,1\0 lIJul1 ., /

In addition, (S111)>.,1\0 = (111S) .. ,1\0 gives us

S>..,/\O L exp[27r·i Q](/\)] = L 111)..,,5/,/\0 .
JE:JL '1

11
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The r.h.s. is > 0 iff ..\ E PD(A1). Thc 1.h.s. is > 0 iff Q J(/\) E Z for all .J E JL: since JL i8
a group. •

Of course by Lenuna 3.1(a), any ADEj-typc invariant 1\1 will obey (3.7d) with .:IL =
.:IL (1"\1) anel .:In = 3 R( 1\1). The converse however is false. \·Ve will statc anel prove thc
relllaining results in this section for positive invariants 0 beying (3.7cl), cven though our
prill1ary interest is in ADEj-type invariants.

Definition 3.2. For 30 given positive invariant lvi obeying (3.7d), caU the pair (/\, J.l.) E
PL(.A1) X PR(1"v1) 1\1-1non090111,0'//','I if for 3011 v E P+, both

anel

In this case we also say /\ (resp. Il) i5 right-(resp. left- )j\;f-rnonvgom.v'lts.

Note that (3.7el) says that (A0, A0) is ]v[-nlonogoll1oUS. For another exalllple, every
/\ E PL(1I1) for 111 = I(.:Id) (see (2.330)) is right-A1-nlonogoll1oUS. Vve \vill find that 1111­
nl0nogonlous pairs are thc basic builcling blocks of ADErtype invariants. \~Then (A,I') i8
NJ-nl0nogonlous, the value of ~~;j>',11 is given by (3.9) below. Also: LeIllIlla 3.2(b) bclo\v
irllplies that \vhenevcr /\ anel J.L are not fixecl points of 31.. anel3n rcspectively; then lV[>',JL "#
0, for S0111e ADEi-type invariant 1\1: Ineans (/\,/J) 111ust be 1\1-111onogolllollS.

Anothcr tool we will use is the Pcrron-Frobcnius theory of non-nega,tive nlatrices - ~.
see e.g. [14]. By n non-negative lllatrix B i8 rneant one whose cntries are a.!l non-negative .
real nunlbers. Such a Inatrix hEls an cigenvalue r(B') ~ 0 with the propcrty that 'l'(B) is at
least as large as thc 1110clllillS of any othcr cigenvalllc of B. An eigenvector corrcsponding
to r(B) is also non-nega,tive. For cxalnple: if B is the 11 X Tl, Inatl'ix satisfying B ij = ro fo1'

a11 'i, j, then 1'(B) = .,11.17.. There are other pl'operties of non-negative rnatrices which wc will
need belowj \ve \vill state thelll as ,ve usc thel11. The llext lenlllla uses PC1'l'on-Frobenius to
severely constrain the fonn 11,1 can take.

For Lernl11a 3.2 anel elsewhcre, it i8 convenient to introduce the dircct sunl decornpo­
sition

(

J1,;f1

1\1 = ffi j 1\1j =
o

wherc each iVIj is indcconlposable (i.c. cannot be written as 1\1; ffi ]l.1i'). Lct I( ~~1j) bc thc
index set of l'1j. \·Vc will always take 1\11 tu bc the unique one with 1\0 E I( J.111 ).

By an ir·Tcdu.cible rn.atrix in Lenuna 3.2(a,) below wc nlCHU a luatrix \vhich cannot:
under any silllultancous pennutatiol1 of row anel C9hulll1 indices, be written in the f()l'ln

for sllbll1atrices A, B, D. Irreclllcibic non-negative nuttrices have special propertics [14],
as we sha11 see in thc proof of LClllnUt 3.3 givcn latcr.

LgrvlMA 3.2. (a) Let J';j be any positive invariant satisfying (3.7d) for :J = 3L = :JR.

Then for' each i,. edher lvIi = (0) or r(1\1i) = \/,.(1\1j litJr) = IISII. Moreovc1', cach nonZC1'O

1\1; is irreducible.
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(b) Let 1\1 be lLny positive invlL1'iant BCLtisfying (3. 7d). 1f (/\, 1") a1'C lVI -7nonogO'fl!,{J'/I,S,

then
[IJLII

NIl>..J'/ = ,VJ E JL : .1' E JR . (3.9)
. vIIJI/\IIIIJIl pli

Snp]Jose ß" E P+ satiBfy 1\1ß'I;::: IIJLII/JIIJLßIIII..7Rf'II. Then (ßl') i,<; 1I1-m.onogorno'/l,s.

Pr'vof. (a) Considcr A1(€) (~f (IVI/IIJII)'. The lnatrix IIJII A1(1!) will also satisfy (3.7d).
1I1(€) will be a elirect. Sunl of (1I1i/IIJII/. As e-+ 00, (1I1i /IIJII)C will tcnd ielentically to 0
if r(l\ld < 11.111, anel will bc unbounded if r(l\1d > 1131! - both these follow for exarnple
fronl the .Jorelan canonical fonn of 1\1i . That each r( l\1t) :s; 11 J 1I then follows fnnn the
(cruele) bound

(3.10)

valid for any positive invariant AI' (see (3Ac)).
Thc bound (3.10) also nIeans that the sequencc {l\l(e)}~l will have a linlit point 1\1,

by Bolzano- \\Teicrstrass. 11..7 111\1 will be a positive invariant, anel will also satisfy (3.7cl) for

3 = .:1L = 3u. By LC1111na 3.1(b), this 11188.118 PL(1I1) = PL(l\1), whieh forees 7'(1I1t) = IIJII
whenever 1\1; =1= O. That r(lVIi1\1!) = 11.:111 2 follows by applying this result to J'1111T /11311.

Finally, to sec that cach NI; =f:. 0 is irrcclucible, it saffices to show [14] that both 1'1,
andl\lr have a st.rictly positive cigenvector corrcsponding to eigcnvalue IIJII. Let v denote
the vector with c01l1ponellt v tl = S,\O,ll for each p E 7(1\lj ). Then for cach /\ E I(1\1i),

L (*~1;)>.", Vlt = L ~~I>',tt SJt,AO = L S>',tt *~l/ll'\O = IIJII 5>.,[\0 = 11311 v>. ,
JIEI(1Hi) ItEP+ JtEP+

so v iso a positive eigcnvector for l\li. The idcntical calculation anel conclusion holels for
AIr·

(b) Put 1'11- = IIJLII = IIJR11. Let ffijB i bc thc clirect SUlll clecolnposition of l'1j'1T fra,
where each Bi i8 indccolllposablc and AO E I(B 1 ). AIJ'lT/rn. satisfics (3.7d) \vith J = JL,
so '1' ( B;) = 711. for all nOllzero B;.

First. let us prove (3.9). Supposc /\ E I(B;). Note that by Lenllna 3.1(b),

so by Lenllua 3.1 (b) aud thc hypothesis that (/\, p.) is J'1-I11onogornous, we get

7r1. = 'l'(B j ) = IIJn I-tll NJ~ t IIJL/\II .
rn ,I

Next, suppose ß E I(Bj). Note that, by Len11ua 3.1(b), Bj 2: Bj (ce>1nponcnt-wise),
where

(B '.) - { ln/llJL ßII
) vv' - 0
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Because B j is irreducible, we have [14] '1'(B j) 2 1'(Bi)~ with equality iff B j = Bi. However~

1'(Bi) = rn.. Hence B j = Bj. A sinülar argllluellt applied to j\1'T 1VI/nl. now concludes the
proof that (ß, r) is ~~1-1uonogonlous. •

Definition 3.3. Given r ~ P(J), define

r(1) = {/\ E P( ...1) 1 Vp E P( ...1), 11 tf. JA, :Jr E r satisfying SS,,).. # SS"'1 }, (3.11)
1\ 0 ,).. 1\ 0 ,11

anel r(ll) = (r(n-l))(1). r is called a fusion-gcnc1'CJ,tor for J if r(1l) = P(J) for SOlue n.

Thc naDle eonlCs frolll the fact that the nlllnbers ;'],.\ are the eigellvalues of thc fusion
,,0,.\

lllatrix 1Vi' whase clltrics are fusion eocfficicllts (3.4e).
Lenuua 3.3 bclow teIls us that it sufficcs far rnast purposes to look at the r-ro\vs

anel -colunlns of j\1. To find fusion-generators, by (3.4d) it is natural to look at thc
representation ring of ){r - sec Proposition 4.1 below. For exaulplc, if:l = {id.}, a fusion­
generator is fonned fronl the lifts (A: - a~)Ao +Ai illto P+ of thc horizontal fundanlental
wcights j\i' for all i = 1~ ... ,'/' (provided k 2 luaXi {ar} ).

LI~rvlMA 3.3. (30) Let r be a fns'ion-generator for J. Let lvI be a positive invariant
obeying (3.7d) with :11., = 3n == 3, s'/J,ch that (r, r) is 1\l-rfl,onogor/l,o'Us for alt r Er. Thcn
f07' aU /\ E P(J): (/\ A) is 11l-rnonogom,o·fJ,s.

(b) Let 111 be any positive in:ua7"iant obeY'ing (3.7d). Let r Land r R be fllsiun­
genercJ,t01'S f01' 3/. and J R .. 7'espectively. Snppuse that each ....f E r L i,'i right-111-monogorno'us,
and each r E r R i.~ left-111-rnonogorT/.o'lJ,,'i. Then therc exists a rn(J,IJ (j : P(JL) -t P(Jn)
such that (/\, (j /\) is 1il-rno1'togor/l,o'/L,'i, and thc inr{uced rnap 3L/\ r-+ 3HO' /\ is a b'ijcct'ion
between the JL-07'bits in P(JL) and the JR-orbits in P(:ln). In addition,

113R(jAlIlIJR(jp.!1 S
113D/\ 11113L p. j1 fi ).., fi I

1

1

11 J R (j /\ I' 11:1R (j11 1111 :IR (j lJ 1I
IIJL/\IIIIJLPllIIJL1JII

'" j7\T ffil/L !\rr)..,rrILl

J'E:Ju

(3.12a)

Finally, let 111' be uHy othe1' positive invari(J,llt obeying (S.7d) for the sarne J L, J R· If f07'
all r E r L, each (/ l (j ..../) is also 1\1' -rfl.onogorT/.O'US, then Al = 111'.

P1'OOf. (H.) \'Vrite lvI = ffii 1I1i, whcre each 1I1i is irreduciblc (Lenuna 3.2(a) ). \,Ve gct,
the equatiolls

11311 S" >. = (111S),,).. = (S 111) i, >. = L S" I1 11111 ,).. 1 VA E P+ :
Il

(3.13)

a,nd all r E {AG} Ur. In other words , writing V{ for the vcctor with cOlnponents (v7) .. =
Si,>' for all /\ E I(1'1;): (3.13) tells us that vf is (-l, lcft-cigcnvector of 111i wi th the PCl'ron­
Frobellius eigellvalue 11311 = 1'(11lz). Since 1ilj is irrecluciblc, this l11C3on8 [14} each vf ;l1ust
bc a. sealar 111Ultiplc of vf 0, i.c.

for all A,p- E I(~~l;) :
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for eaeh , E rand each subnla.t.rix 11lfi. Henec by (3.11): (/\, /\) will be ..i\1-nlonogol110US for
each /\ E r(n. Continuing recursivcly: wc get thc desircelrcsult.

(b) Let A1 = j\1T 111/11..1L 11. Thcn 111 satisfics thc hypotheses of Lenlnla 3.3(a)

with..1 = ..1R anel r = f n , so for eaeh p E P(JR), (P',fl) is .1\I-rnonogoluous. Thus if
Ji' tf. ..1R/\, then for a,ny 1/ E P+, 1\1/1,,11\1/1,/1' = O. Sinülarly, for any .-\ E P(..1L) anel!/ E P+:
1I1)..,vN1)..I,v = 0 whencvcr /\' tf. ..1L/\. These staternents force the cxistenee of the nHtp er.

Equations (3.Gb), (3.9) now dircctly give (3.12a), anel then (3.12b) follows fron1 (3.4e).
Finally, let 1\1 = i\11v1'T /11.1R 11; frorll LCll1lna. 3.3(a) we find (/\,.-\) is 1I1-l110nogol110US

for aH /\ E P(JIJ. Thus, using (3.9), *~1T = 1I17);1/II.1LII = lvI lv!,'I'/II..1RII' = j\;J,T. •

RC1na1'/" S.1. For A~1), thc ease we are interesteel in in this papCl': Lenuna 3.1 (b )(ii )
forees JL = ..1n: anel wc can drop tbe bypotbesis in LeIl111la 3.3(b) which says that (,: ,)
nlust be l\I-11lo11ogolnous far 3011 , Ern - this will follow [roln thc r L hypothcsis. NIore
generally, the Sl1,111C thing happens whcncvcr thc n'u1nbcr 0/ ..1L -orbits 'in P( JL) eq'/f,(Lls thc
71,'llmber 0/ ..1R-orbits in P(..1n). That we can ignore r R in tbis ease follows frolll thc proof
of Leullua 3.3(b) given abovc.

4. The proof of the Theorenl. In this section we specializc to tbc affinc alge-

bra A~.t): anel outEne the proof of Tbeoreln 2.1. \\Te begill by eolleetillg together results

partieular to A~.1).

Fix the algebra. A~.l) anel tbc level k. Let f = l' + 1~ k = k + f. The set. P+ of weights
is given by (3.1) with all a'j = 1. RecaU tbe definitions of ./ ESse, C, a.nel t, given in
Seetion 2. S sc is generatecl by .J, ancl S by J anel C. The I\:ac-Petcrson nlat. rices S (1,ncl T
are defined in (3.3b),(3.3d). \Vc havc:

t(Ja /\) == k:a + t(.-\) (ll1ocl 'r)

Tj")",j"/' = cxp[ni (-20 t(.-\) + ka (f - a))/"'] T)..!!!

SJ")..,Jv /1 = CXp[21Ti (bt(/\) +at(fJ') + !;;ab)/f] 5)..,/1

SC)..,/I = S;,/I

TC)..,c,L = T)..,'l

(4.10)

(4.1b)

(4.1(;)

(4.1d)

(4.1e)

(eolnpare (4.1b),(4.1c) with (3.5b),(3.5c) - note tbat. Qjd(/\) = dt(/\)/F). Thc subgroups
of Ssc are ..1d: whieh is generated by ./d where d clivieles f. \Ve will write [/\] für the orbit.
of /\ over S, i.c. generateel by J alld G\ ,und [/\]d for the orbit ovcr ..1d, i.c. generated by
Jd. \~Trite Pd = P(..1d)' Let. :Fr! elenote tbe fixeel points of Jrt. Thcy look, schelnat.ically,
like (fl, ... 1 J-l) for SOl11e d'-tuple 11 anel sonle nlultiple cl' < r of d.

The nuttrix S obeys a. surprising relation callcel 7'lLnk-Ievcl duality, relatecl to the cxis­
tellee of tbe enlbedeling .':Hl(r)EBsu(k) C su(rh:). Given any /\ E P+, define 30 \veight T(/\) of

Ai'~l level.,. + 1, as follows. First eOllstruct thc Young diagranl of /\: for 1 ::; 'i ::; r; itsitb
row eonsists of 2:j'=i /\j boxes. Tal:c tbc transpose of this diagnun; delcting all cohllllns

(if any) of length k, tbis will be the Young diagnun of S0111e level 'I' + 1 A~l~1 wcight which

wc will denote by T(/\). For exarnplc, T((k - 1)1\0 + At) = (f - e)Ao + eA I for aU e- t.o
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avoid confusion wc will always put tilde 's ouer the q'll,antities v/ A~l~l level r + 1. It \vas
shown in [1], by applying Laplace's detenninHJ1t. fonnula [14] to a detenninant expression
for the S lnatrix entries, that

(4.2a)

- -
Note that this nutp T clefines a bijection bctwecn JI-orbits in P+ and Jrorbits in P+.

(4.2a) takes a sitnpler fonn for /\,//, E Pt: for ,\ E PI, let T ' (/\) = j-t()..)/rT(/\); then
the obvious calculation frenn (4.2a) gives

(4.2b)

(4.2c)

Since, in addition, ,\ E PI ilnplies

we see that T' takes PI to PI. In fact, (4.2b) in1plies that T' is a bijection.
Incidently, sin1ilar fornlltlae hold for the luatrix T. In particular,

nz --
T)..,).. Tt~o,t\O = exp[fk t(/\)(fk - t(/\))] T,j,()..),'T()") TAO,;\O

= T'~I (A) ,T' (),) T;\ 0 J\ 0 V/\ E PI.

(4.3a)

(4.3b)

(4.4)(1110d 2f) ,

Choose any ADE7-type invariant 1\1. Then by Le111n1(1, 3.1(b), 3IJ(]v!) is Cl. subgroup
of Ssc, so equals Jd for 801ne d. LCl1una 3.1(b) also says 3d = 3n(1"\1) - \vrite 3(1"\1) = Jd.
Then by (3.Ga),

\vhere 1..-..' is defined in Seetion 2. (4.4) and (4.1b) tagether in1ply

The first itnportant stap in the proof is to find fusion-generators (Definition 3.3) fo1'
3d. Let

fo1' 0 < 'i < f- ,

(4.5a)

(4.5b)

(4.5c)

for 1 ::; j ::; ,,./2 ,

\
,. der \0

1 = 1 .

/\' ~f (h - 2)Ao + Ai + A;;_I for 1 :s; 'i :s; f/2 ,
. der

pJ = (k - 3)Ao + 1\ I + Aj + 1\,._j
. der

1\l ~ (k - 1)1\0 + AI

PRO POSITION 4.1. (a) For an'!) divis01' d v/ f, tet lF 1 denvte the field 0/ all 1ntivnal
fUTl,ctions over Q in thc Weyl ch(&1'actcrs chj)) /01' all h01'izontal 'wcights f; E U:b I Pd. Then
IF d is gene1YLted by thc characte'fS 0/ the f 'wcights )\1) [ti,. and 1\ fJd.
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(b) Thc f 'Weights in r d = {/\i,pj,A f
/

d } /or1n a flJ,sion-genC7Y~tor /07' 3d. Choosing

r11., eE Z s'ILch that 0 :s; ,picl - rnh: = e< k) thc h: 'Wcights in r;l = {T' (~i),T' (p,J), JOlT( }./-)}
(dso fonn a f/J,sion-genc~ator for Jd'

P7'00f. (a) IF d is a subfield of thc fidd of fractions of thc representation ring of Al'; thc
latter being isonlorphic by Cl, theorelll of Chevelley (see C.g. [3]) to thc ring of polynolllials
Q[Xl, ..• , X,.L thc isolllorphisill sending

Thus IF d can be t.hought of as the field generated ove1" Q by the Inononlials :U;1 I ... x ~~ r 1

W hcre t (Cl) (~ ~ j (J.j == 0 (lnod r Id) . Consider the case cl = 1; the resul t for general cl
follows inlnlcdiately frol11 this.

Note that the l' nlonol11ials Xl x," X2X;, ... ,x~ clearly generate IF 1 :

,.
XIII ••• X ar = (Xi')-/(a)/r Il(X 'Xj)a j
• 1 r . ,. ") r

j=1

Thus so do Xi~J.:f-i anel Xl;l:jX r-j: recursively,

Let nUn dcnote the clOlninant. weights of L(p,). Now, 11 E fl(p) iff P - iJ is a sunl of
positive raots. Fronl this we find

Thus wc can express :z; i x i'- i anel Xl :/; j X r- j in tenns of the polynolnials corresponding to
chv , for p E {~i, pj}.

(b) Define -)Cd = {/\ E Pd IS1\i,>.. =1= 0 Vi}. We begin by showing that );d ~ r~l).
Incleed, choose any /\ E )(d, J.l E Pd with

Vr E r d . (4.6a)

Then by choosing f = /\ i for va1'ious ·i wc find that also f.l E ){d. NOW: for any 0", ß E Pd:

(3.4d) anel Prop. 4.1 (a) tell us that Sn,ß IS1\ 0 Ji can bc cxprcssecl HS a. rational function in
the 11t1111be1's Si,ßI Si\O,ßl f Erd; we find froll1 the proof of Prop. 4.1( a) that this expression
will be well-c1efined (i.c:. not of thc fonn 010) if ß E ~3;d. What this lneans is that (4.6a)
iI11plies

(4.6b)
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NIultiplying (4.6b) by L:JE..7d S~,J)" (which vanishcs for a Fj. Pd) anel SUllllllillg over all
0' E p+~ givcs us

i.c. IJ E [/\]d. Thercfore, wc indeed havc )Ct ~ r~l).

Now we will show r~l2) = Pd. Choose any /\, I-l E Pd such thnt (4.60.) holels. Define the
sunlS

If 8(/\,/\) f- 8(A,/1), then 31/ E Pd such that. 5A i,v 1= 0 \h, anel S~,)..SAO,'1/SAO,).. =I 5 1:,/1 - by

the previous result this would nlean ,,\ E r~2). Silnilarly if .s( 1/~ 1/) 1= s( /\, 1/). Thus \ve nlay
aSSUlllC S (/\, /\) = .5 (/\, v) = .., (1/: 1/ ). Bu t thcn thc tri angle inequali ty teIls us

Thcreforc wc IllUst havc Sv,>. 5:" 1 2 0 \;/1/ E Pd (it is strictly largcr for e.g. 1/ = A0
). Now,

frOUl (3 Ac) applied to lVl~°,>. = 6,1 ' ,;", wc find

L 6/J I
,;., = L L S;."IIS~I,V = ll[p']dll L S>.,vS~,v > O.

IJ' E(/t]d /1 1 E[/l]d vE'Pd vE'Pd

This calculation forces J1 E [/\Li, which concludes t.he proof that frl is Cl, fusion-gencrat.or of
Jd.

\'-.,Te fiud tha.t {v E Pd I5(1.-i)Ao+iA},11 #- 0 Vi} ~ r~(I), by llsing (4.2b) anel the r 1

argulllcnt. That r~/2
) = Pd now follow5 by the argluncnt used for rd, with 1\ j there

replaccd herc with (k - i)1\o + 'iAI. •

Strictly spcaking, r d rcquires k 2: 3: if k = 2, siInply drop the pj. \Vc will discuss the
trivial case J..~ = 1 at the cnd of this scction. Silnilarly, r:l reqllircs '1' 2:: 2: if·,. = 1 drop the
T'(jjj).

\Vhen 1-: ::; k, we will choose thc fusion~gencrat.orr = r d; when 'r > /;; > 1 \Vc \vill
llsually choose the slllaUcr set r = r:1. Note that T'(~i) = (k - 2i)Ao + iA 1 + iA r , and

T'(iJ-j) = (k - 2j - 1)1\0 + (j - 1)1\1 + 1\2 + (j + l)A1"
Suppose AtJ;.,,'l =I- O. Then using Lenllua 3.1(a),

T
d SAO"I = L j\tJA O ,V SV,i l = L SAO ,v i\tJv ,/1 2 IIJd,\11 SAO,;" AtJ;",/1

v v

Thus if we can show

(4.7a)

(4.7b)

18



where V r
,k ( ).) is the q-din1ension defined in (3.4b), thcn that woulcl n1can NIi, lp = lvItp, i = 0

for a11 fixed points <p anc1 each '"'I Er. In thc following section \ve use this ic1ea. togethcr
with Len11uas 3.2(b) anel 3.3(b) to prove:

PR.OPOSITION 5.1'. For lIll but finitcly rno,ny ]JlIi7's (r, k), each /\ E Pd 'tS Tight-J\I­
rnonogornous J und ne ither /\ 1 nor u /\ 1 'Will be fix ed ]Joints ()f 3d.

Fron1 the previous discussion, this is not too surprising a result consielering that for
fixed r, the nlininlluu of the r.h.s. of (4.7b) tends to 00 as k -1- 00, while thc 1.h.s. tencls to
the clilllension of son1e L(=n. The reluaining CI', h~) are treated in section 7.

Let adenote the luap in Lcnulla 3.3(b). Provided ll[/\l]dll = II[a/\l]dll (this will hold
e.g. if neithcr /\1 nor 0"/\1 are fixcd points): we sec frolll (3.12a) that

(4.8)

Using (4.8) anel (3.6a), we prove in seetions 5 anel 7 that:

PROPOSITION 5.2'. Suppose alt /\ E Pd a7'C right-lvI-m,onogornous) and (4.8) holels.
Then a).l E [).I].

vVe a.lso know fnnll (3.12b) that, anel 0", have sinülar fusions (3.4f), for / Erd. Fnnn
this we prove in seetion 6:

PROPOSITION 6.1'. Sn]J]Jose (l,ll A E Pd ar'e right-M-rnonogorno'lts, and (4.8) holels.
Then /07' S01f1.C C = 0, 1, we have /07' all i, j that (/\ j, ce /\ i) and (J.l.1 , cepj) are A1-rnonogorno'lls:
and aAfl d E [CCAf,/d]l'

Putting these all together, we are now prepareel to prove:

PROPOSITION 4.2. Let A1 bc an AVE7 -type invari(Lnt with 3d = 3(1\1), and let r
be any !flsioH-gencrato/ 0/ 3d. S7tppO:;c cach , E r is iight-l\1-rnonogom,o'/Ls) and (4.8)
hotds. Thcn /07' sorne divisor' d' 0/ -r for which. 1l1'd' is eUCH,. und S01l1,e c = 0: 1) 'we haue
lVI = ce . I(3d') (see (2..9)).

Pr'oof. By Renul.rk 3.1, all /\ E Pd will be l'ight-J1.1-I11onogon10us. Let C = 0,1 be as
in Proposition 6.1'. For convcnicncc replace A1 with Ce·lvI. Thcn each (Xi, /V:) aud (f-lJ,pj)
is A1-lllonogonl0us, and (Arid, .Im Af/d ) is A1-rnonog(Hl10US for SOll1e rn. By Len1111n. 3.3( a)

anel (4.4) \ve are done if cl = 1 (take d' = 1), so consicler d > 1.
'Equation (3.6a): and thc fact that. d dividcs 'r, tclls us

117. k'1n2

-+--=0
cl 2'r

(nl0d 1) . (4.90.)

Put d' = gcd{rn, d}. \,Ve 111ay aSSU111e, by adcling a llluitipie of cl to rn if ncccssary (sec

Lenuna 3.1(a)), that gcd{rn./d', 2f} = 1. Then (4.9a) becolues

-2f ,
-- =Ä:-rn

d
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Consider 1\1' = I(Jd l ]. 1\1' is a physical invariant. bccause (2.3b) follows fronl (4.9b), anel
the facts that d elivicles f anel rn/cl' is odd. Then J(lvI') = Jd iff

21' 2f, ,
d == gcd{d" d k } . (4.9c)

But (4.9c) follows fronl (4.9b) anel the fact that d' dividcs rl. Also, (4. 9b) teIls us that
l'1:V/d,JmAf'/d =1= O. Thus by Lenulla 3.3(b), lVI = 1d'. •

In particular, Proposit.ions 4.2 aud 5.1' suffice to prove Theorell1 2.1 für l1l0St pairs
(.,., k ). The fini tely nlany renlaining pairs are hancllecl in scction 7.

Inciclently, Proposition 4.2 pernlits an iIllIuccliate proof of Theorcnl 2.1 for k = 1. It
suffices to note that für h: = 1: (i) Pd is generated by Arid; (ii) Pd = [Afjd]fld; (iii) Pd
has no fixecl points. k = 1 was first proved in [5], thüugh in a very different way. Fol'
cünvenicnce we will henceforth restriet attention to k 2: 2.

5. Q-dhnension calculations. The point of this section is tü prove, uSlng q-
dilnensions (3.4b) 1 that für l1l0st (1', k), (4. 7b) will be satisfied, anel for IllüSt er, k), (4.8)
iluplies a ..\ 1 E [..\ 1]. 'Ve begin by listing SOllie of the prüperties q-diIuensions obey.

This section is the luOSt technically conlplicatecl of the paper. Even so, q-clirnensions
are extrenlcly well-behavcel allel arnenable to analysis. Recall their definition in (3.4h) ­
the nanlC conlCS froin intcrprcting theIn as l~q-clefonneel \\'ey l cliIl1ellSiol1s" .

Note fronl (4.1c),(4.1d) that

(5.1(1)

Also, an iIllluecliate consequence of rank-level eluality (4.2a) is that

By C r ,!.: we Inean thc funclarnental chalnber

(5.1b)

l'

C I' k def {' \ I 1Th
1 = ~ Xii i Xi E 1n.I., Xi 2: 0,

;=0

l'

LXi = k} .
i=O

(- .) )0 ...(1

Extencl the clOlnain of V", k frorll P+ to Ci"!.:, using (3.4b). Choose any real "r-vcctors rL, b,
b =j=. 0, such that Cl + bu E Gf r

,!.: for all '/l E [UD, 'Il-l]' Then for 'UD ::; u' ::; UI, an easy
calculation gives [11]

d DT.!.: ( b) I d
2

. I' k ( b) I-l- ' a + U u=u ' = 0 ::::;. d 2 D 1 a + 'fl !t=1l
'

< 0 .
('U ,'/l,

This ilnplies the ilnportant fact:
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Eleluentary consequences of (5.2c) are, for a11,,\ E P+,

vr ,k ( A) 2: 1 ,

Vr,k(A) =1 iff ,,\E(AO].

(5.3a)

(5.3b)

Thc following trigononletric iclentity, obtained frolu tbc factorisation of ym - 1: will
be useel to sinlplify SOIUC exprcssions:

H1-1 e . ( )
II . ( ) SIll rn:r;

sln x + -7f = ---
111. 2H1 - 1

(=0

(5.4)

Ultin1ately, in conlparing specific q-elilnensions, we will have to estiluate si7.es of va,rious
proclucts anel quotients of sine's. Apart fron1 thc obvious trigonon1etric ielentities, a. useful
technique is to investigatc tbe bchaviour as k: 01' r tcnels to 00. A basic fact is that ;1: cot x
decreascs: this Incans: for a > 1 anel 0 < Y < x ::; rrJa, that

(l > sin(ay)J sin(y) > sin(a;1:)J sin(;/:) (5.5a)

For exaluple consicler a sequence ßk E Cr,k with constant projection ß= ßk. Then (5.5a)
anel the \Vcyl cli111Cnsion fonullia teIls HS

(5.5b)

\vith thc I.h.s. converging n10notonically to the r.h.8. as k ---1 00. Another basic fact is thc
concavity of In j sin :1:: I:

sin(a) sin(b) < sin{a - .1:) sin(b + ;1:) , (5.5c)

provicleel 0< b< (I< rr anel 0< x::; (a- b)J2.
Fix Cl. divisor d of F. As in section 4, for f ::; k choose the fusion-generator r = r cl

(cardinality 'r), while for f> k cboose r = r:, (cardinality k).

PRO POSITION 5.1. All .,. 2: 1, k: 2: 1 sotishJ (4. 7b) 'unlcBs (r, k:) eqnal.'5
(i) (l,k)fork E {2,4,6, ... ,16}:
(ii ) (2, k) for k E {3: 6, 9},
(iii) (3, k) /01' k E {4, 6, 8, IO},
(iv) (4,5),
(v ) (5, k) f07' k E {6, S, 10},
(vi) (7,8),
(vii) (r,6) f07' T E {7,9},
(viii) (1',4) f07' rE {5,7,9},
(ix) ('t: 3) 101' 't E {5: S}:
(x) ('r, 2) 101' 'l' E {3, 5, ... ~ 15}.
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Proof. Choosc any fixccl point <p E Fd. Thc pcriod of <p (\vith respect to :Ir!) i8

P = d Il:Id<pll: <Pi = l.pj if 'i = j (rnod p). vVrite

r/p-I
pc!.:..f L kp \ .<P - _ 1 JI] •

l'
j=O

Putting b = Ji<pp - .Jj<plJ in (5.2c) anel using (5.1a), we find that 'D1",k (<p) .2: 'D1',k (<pP). Thus
it suffices to consider only the fixcd points of thc fortn c.pp. By (5.4) and (3.4a):

Next, turn to thc evaluation of the I.h.s. of (4. 7b). Directly fi'oln (3.4b) \Vc gct

V ..,k(Af.) = sin(.1l" (1' -=- 2e + l)/k) rr sin
2

(1l". (1' + 2 - j)/k)
sln( Jr (r + 1) / k) j=l sIn2 (7r J / k)

1" k( ,f.) sin(Jr ('f - C)/k) sin(Jr (F + 2)/k) sin(Jr (r - 2e)/k) sin(7r e/k)'D' J-f =_....:.....-....:.....-_....:.....-~=---......:........~--:....;,.-..:...-=-~....:.....- __.:.....:....-~-~.:.....:....-.....:....

sin(7r/A:) sin2 (7r (e + 1)/k) sin(7r (f + 1)/1",.)

x rr sin
2

(1l" Ci' + 2 - j)/k)

j=l sin
2 (rr j / k;)

'Dr,k(Af.) = rrf. sin(7r (f + 1 j)/h:) .
j=l sin(7rjjk)

(5.6)

(5.70.)

(5. 7b)

(5.7c)

Consicler first tbc CHSC k .2: '"P. Stirling's fOl'lnula teIls us ('~') < 211/ /~ für all
rn .2: e2: 1. Hence using (5.5b ), wc find

valid for all I Erd, and all F, k. By (5.5a): (5.6) and (3.4a) we see that

n - 2 i' 'D I' k ( Jl) / -]J:!' ! 'P .,.

(5.7d)

(5.7e)

is an incrcasing function of h:, für fixeel f anel p. Thus it sufficcs to show (5.7e) is greatcl'
than 1 at k = ,r.

\Ve begill by rellloving thc dependellce of (5.7e) (at k = f) on p, by showing tbat thc
1'.h.5. of (5.6) is a. decreasing function üf p = 1,2, ... at k = f. Illcleed, llsing (5.4), this 18
equivalcnt tü showing

_1_ ITj: \1 Sill( Jr j /2p)j / Jl

J2 TIj=l sill(rr j /(2p + 2))j/(p+l) < 1 .
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Now, elel11cntary calculus teIls us f( .7;) = (sin fx )'/:, für 0 < .1; < 1, has a llllique luini1l1UIU
at son1e point. x = :1: 111 (~ 0.25); f decreases for :t: < :1; 111, an cl increases for :1: > :c 111 •

T\10reover, f(x m ) > 0.78, so j2f(x) > 1 for all x. Now return to (5.8a). Choose the

e E {O: ... ,]J - I} for which ~ < '''C m < f.;1. Bccause pil < *< 1,1.i 1 wc ll1ay rcwritc
(5.8a) as

TI f(j/p) 1 il f(j/p)
(j=J f(j /(]) + 1))) (.j2 f( (e + 1)/(p + 1))) (j=e+l f«(j + l)/(p + 1))) < 1 .

(5.8b)

Thus we neecl only to consicler p = f/2 whcn f is even, anel p = 7'/2 whe11 f is adel.
\~Thcn f is eveu \ve get froln (5.6) anel (5.4) that

. (JrJ)f(JSln - -
2f

(5.Se)

for 1""7 2: 10, u8ing the fact that cot( 7f /20) /10 > 0.63 (:1:: cot:c is a deercHsing flll1etion). \'Vh~n

:r is odd thc saUle argluuent works, exccpt the (5.Sb) calculation is nceded to replacc f( f.)
\vith f( +.) or f( j~l ); f odd (anel grcatcr than 10) also obeys the 10wer bound of (5.Se) (in
fact it obeys a sonlewhat sb·onger inequality).

Collecting cverything, \vhat wc have shown thus [ar is that (for f ~ 10)

(5.8e!)

valid for all cp E F d , a11 cl < f elividing 'r, all f Erd, anel all k 2: F. \"TC find that the r.h.8.
of (5.Sd) is greatcr than 1 for f ~ 2S. To handle f < 28, return to (5.7c ), find the slnn11es t
k: .2: 'r, ca11 it. kr,p, Inaking (5.7e) at least 1 (p < f ll1Ust divicle f, anel :p /]J divide h:). In
11108 t CRses k ",1) = 'r j w hen k 1',]1 > f 1 tightell this estil1li:l.te by gOillg back to (5.7a): (5. 7bL
(5.7c), to COlnpute cach ~VI', k(cpP) /Vr,k (/). \~Te find thc rcsults giyen in the statcl11cnt of
the propositiol1 for k .2: r.

By (5.1h), the proof for 1 < k < 'r rcduces to that of k > F: when cpll E P+~

T(rpJl) = i.(;kJl/f. •

Proposition 5.1 ancl LCllllnas 3.2(b), 3.3(b) give us Proposition 5.1' as stated in section
4 - the cxcep tions are the pairs (1', k:) Ested in (i)-(x) . Ncxt we will see t hat in ahnos t <.'lJI
cases, (4.8) forces a /V E [/\ 1].

PR.OPOSITION 5.2. Let W be the set of all 1/ E P+, 1/ f/. [/\1); <with Dr,k(l/) = V1"k(/\J).
Par (Lny l' .2: 1: k .2: 2: the only nonempty Ware:

(30) W := [A3] for ('1', k) = (8, 3) and (8: 15);
(b) W = [( k~ - 3)Ao + 3A d f01' er J k) = (2: g) anel (14,9);
(c) W = [(k: - 2)1\0 + 21\2] for ('1',k) = (3,6) and (5,4);
(cl) W = [1\4] for ('1', k) = (7,4) anel (7,6);
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(e) W = [(k - 4)Ao + 4Ad for Cr, k) = (3,8) and (5,8).

P7YJOj. Begin by considering, for :;: 2: 3 and k 2:: 3, the quotient

Vr,k ((k~ - 2)Ao + AI + A2 )

Vr,k (/\ 1)
sin( Ir f)k)
sin( Ir 3/k)

(5.9a)

This is always 2:: 1, \vith equality ifff = 301' k = 3 - in which case (/;.;-2)1\0+1\1 +1\2 E [/\1].
Now supposc /\ E P+ has at least 3 non-zero Dynkin labels Ai (so necessarily '1, k 2:: 3).

By taking various b = Ai - Aj in (5.2c), we finel SOlllC weight J1 of thc fonll Il = (k - 2)Ao +
Am + An, for 1 :::; -rn < n :::; 7', with V7"~'(/\) 2:: VI',k(p), anel equality iff /\ E [1'-]. Consielcl'
T(f.-L) = (f - n)Ao + (71. - -rn)A1 + '111.A2 ; takillg b = An - Al anel b = Ao - ;\2 in (5.2c) anel
using (5.Ib), we get

using (5.9a). Thus, vr,k(/\) 2:: V1'l k (/\l) for any such /\, with equality iff /\ E [Al].
On thc other hand, if /\ has only 1 non-zero label, then VI', k (/\) = V7',k (/\ 1) \vou1d

require [/\1] = [AO] = [/\], by (5.3b). Thc1'eforc any 1/ E W lllust lie in thc S-orbit OfSOll1C

ab def (' ) \ \1/ = ti.~ - a 1 0 +ai b .

\VC can dCll1and 1:::; a:::; k/2, anelI:::; b:::; :;:/2. Note that T(v alJ ) = i/ba.

Consider next
Vl'l k (V22 )

V",k (/\ 1)
sin( 7f /k) sin2 (7f -r/k)

=
sin2 (27f / h:) sin(37r / k)

(5.9&)

\Ve 1113.y suppose k 2:: 4, l' 2:: 4. This can bc analyzecl using (5.5a} anel wc find that i t is
1ess than 1 iff (-r,/i:) = (4,4), (4,5),01' (5,4) anel equals 1 iff Cr,k) = (4,6) (i,nd (6,4). Fronl
this \ve clecluce, in the now farniliar way frenn (5.2c) anel (5.1 b), that the on1y I/ob E W
with both a > 1 anel &> 1 is 1/

22
.

It thus suffices, using (5.1b), to consider 1/ I b = Ab for b ~ 'r/2. vr,k (Ab) is COlllputed
in (5.7c). First note that

(5.10a)

'~Trite Qb = V7',k (Ab) /Ty,k (/\ 1). \~Thcn 'r ~ 3 \ve need to consider on1y Al : we find that
Q 1 = 1 iff Al E [Al]. Asslune now that 'r ;::: 4. Frolll (5.5c), QI < Q2 < 1, except for
k = 2, when A2 E [/\ 1]. ',Ve find, USillg (5.5aL (5.5c), that Q:\ 2:: 1 except for -r = 6: 7 anel
S, for a11 k, allel -r = 9 for 4 ~ k ~ 14. Thus fronl (5.10) the on1y other possib1e Ab E W is
A<1 for f = S allel any k, 01' for :r = 9 allel 4 ~ k: ~ 14. These possibilitics a.re hanclled in
thc usual \vay. •

6. Fusion coefficient calculations. In this seetion we conclllde thc proof of
Theorelll 2.1 for lUOS t pairs (.,., k). In particu1ar, let "NI be a AV [ 7- type invariant wi th
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3 (1\1) = 3d. \"".Te wi 11 use the fusion-generator r d for all .,., k. Prop. 5.1' says t hat for
each '"'I Erd, there exist \veights Cf'"'1 E Pd, a, rt :Fd, such that ('"'I, (f'"'j) i8 l\l-rnonogornous.
Proposition 5.2 teIls U8 a /\ 1 E [/V], for nlust (1', k). Our first ta8k will be to show er ,,\ 1 E

["V]d. Using this, wc \vill show that aA' E ["V']d anel (replacing 1\1 if necessary by C· 1\1)
apj E [p.J]d' Frorn this wc can obtain O'A 1'ld E [A1'ld]I. As indicated at thc end of scction
4, this \vill conclude the proof of Thcorenl 2.1 for those (1', k). Our lnain tool in this scction
will be /n.';ion coeffic'ients (3.4e).

L(~1) has clOlninant weights:\J (nlltltiplicity 1) and 0 (nulltiplicity 1", as seen by e.g.
the \Neyl clilnension fonnula). Thercfore (3.4f) ilnplies

for 11 = fI
if 11 = Ai - Ai - 1 - Aj + 1\j-1 + tL for S0111e i #- j ,

othcrwise
(6.1)

wherc n,(v) denotes thc nt11nber of Dynkin labels Ili #- 0, und wherc we put A1' = Ao. Fronl
(3.12b) \ve see that: for 3011 '"'I,,', '"'I" Erd: thcre is a (;('"'1, '"'t', ,") > 0 such that

(6.2)

(each c(" ,', '"'1") = 1 when (1', k) avoids those pairs listed in Props. 5.1,5.2, but we will bc
nl0re general here ).

PROPOSITION 6.1. Sft]J]Josc (Ilt '"'I Erd CL1'C 1\1-m,onogo7/l,o'/l,S anel Cf /\ I E [/\ 1]. Thcn
therc cxist..; Cl. e E {O, I} s'nch. that) f01' alt '"'I Erd,. , #- A1'/d) wc havc er, E [ce,} cl.

P1'OOf. To begin we find froln (G.1) that (dcfining A0 = A0 ancl cliscarding fl·O)

1V;1,>,t #- 0 iff 11 E {/\t: ,,\C-1, ,,\C+I: pt: pt.-I, Cllc, GII/- I
, /\1 + ,,\( - AO}. (6.3)

Therefore (f lnust pernnlte the 3d-orbits of these v: if it fixes [/\l]d anel [/\f]d. Note also
that

(,,\1 +pl,,\i +p) =2i(r+ I-i) + (plp)

(pi + p Ipi + p) = 2f + 2 + 2j (f - j) + (p Ip)

( ,,\ 1 + ,,\!I _ A0 + P I ,..\ 1 + ,..\!I - A0 + p) = 2'r + 4 + 217. ('r + 1 - h) + (p Ip)

(6.40)

(6Ab)

(GAe)

for 0 ~ i ::; 'r/2, 0 < j ::; .,./2, anel 0 < 11. ::; ';:/2. The point of (6.4) is (3.Ga): Cf lnnst
preserve nonns (nlod 2k).

Now let HS show a,,\1 E [/\1L,. (3.4e) anel (4.1c) tell us that

(6.5)

\Vc know frenn Proposition 5.2 that 17/\] = Ja,,\l, for sonlC a. So, fronl (6.1), (G.2) and
(6.5) we obtain

o # L lvfl~~l = e(,,\ 1,,\1/\ I) L 1vf!;1~~O >.1 = e(A!,,\ 1,,\1) L lvf<~~ >,1 (6.G)
JEJrl JE:!<! JE:!d



Using (6.3), (6.4) anel (6.6) we get G/\] E [/\1]d.
By ineluction on C, we find fronl (6.3) a,ncl (6.4) that 0" nlust fix each [/\']d, and

[Gpt] d E {[pt] d: [CPC] d } . Replacing 1\11 if necessary wi th C . Ai, we rnay snppose t hat 0"

also fixes [pI] ti.

Now note fn>111 (6.3) tha.t

iff
C {+ lei -C -C+ 1 - - -

iJ E {J1 ,Ti , J1 - , A ,/\ ,A2 + AC-1 + A,.-c,

A2 + At + A,·_ C- 1 , 21\1 + 1\e-1 + A,·-c, 2A 1 + Ar. + Ar-f-I,
- - - - -1 -C -1 -C+1 -1 -f.
A2 + Af. + A,.-f. + Ar, /\ + A 1"\ +,,\ ,/\ + p. } . (6.7)

La.bel these weights consecutively 11 I = P f., ... , IJ]:.I = A1 + pt - Ao. vVhcn wc 1UUSt rnnke
eexplici t, we will wri te these as IJ

U
( C). Assluue incluetivcly that 0" f.ll = 1--'1 , ... , 0" pt = pe,

anel S11ppose for contradiction tha.t. 0" pt+] = C f./'+ 1. \\Te are interested here in I,: 2: 3,r 2: 5,
1 S; e~ ~ - 1. The question is, whcn can CllC+1 E [IJ

a (R)]d for S01ue a 2: 6?
Salving this is straightfarward anee one rcalizes that we can ignore IJ

6 (1), lJ
G(2), IJ i (I),

v 8 (1), v 1O( 1) - in these cases va (e) equals one of /\{+1 ,{/', flC+l, 01' /\ 1 + /\ C+ I - Ao. This
1Ueans that the j\ j for ca.ch D in (6.7) are writ ten in non-decreasing orcler of inclices, 1l1aking
cOlllparison ,vi th .Im CpF.+ 1 easy. Notc also that we can ignore lJ I land lJ 12 for all C, as
C pJ·+1 lies in their Jd~orbit iff J-1(+1 cloes. Also, for k 2: 7 we find that. (CJ-1t+l)O = 1~-3 > vi
for 'i > O. So the only possibilities a,re 3 ~ k ::; 6.

One solution is k = 4, f = 12, anel C = 3, where wc have G'f.lC+1 = J- 3 1J 10 • But
Gp4 I- C p4 because both cl = 1 anel cl = 3 violat.e (4.4). Sirnilarly, when k = f = 6 and
e= I, we have G'p2 = J- l

lJ
I3

, hut d = 1 violatcs (4.4).
Thc only other solution is A: = 3, e= .p/3: we find Cf.le+l = J rI3 IJG. Howcver: if

0"//+1 = Cf.le+1 in this case, thcn by (6.7) anel (3.12b) wc woulcl neeel to havc pt+l E
[ua(C - l)]d for sorne (L, d, anel t.his <:loes not happen here.

Thus in all cases Gpf.+ 1 E [pC+ 1]d, anel our proposition is proved. •

Fronl (3.12a), we find that Proposition 6.1 tells as

(6.8a)

But these "I fonl1 a fusion-generator for Jl, so (6.8a) ilUplics G/\ E [/\]1 for all /\ E PI, by
the recarsive tu:gulnent in the proof of Lell1ll1a 3.3{a). By the argtUllcnt given in thc proof
ofProp. 4.1(b), ",,re also see that (6.8a) i1uplies

(6.8b)

anel all J.l E )td. These two observat.iolls, together with the fact (see the proof of Prop.

4.1(b)) that A E )t(}I) = Pd, imply G/\ E [A]d for all /\ E PI. Hencc by (3.12a), (6.8b) holels
in addition for all f.l E Pd. Maltiplying (6.8b) by LJE..71 S;,JJ! (which vanishcs for /\ r/:. Pd
ancl SUlllllling over all /\ E P+: we find Gf.l E [p]I' In particlliar this holels for /l E Arid:
whieh gives us Proposition 6.1' as stateel in section 4.
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7. Anol1101ous ranks and levels. In this section we concluele the proof of Theorelll
2.1 by addressing the few pairs (1', k) which slippcd through thc previous argulnents. In
the process \Vc \'li11 explicitly construct the E7-type exceptionals listed in section 2. Reca11
Proposi tion 4.2.

7.1. In this snbsection we nse nonn argulnents and tighten the q-di111ensiol1 argu­
111ents to cliscarel al1110st a11 relnaining pairs (1', k).

Consieler first Proposition 5.2. It is trivial to verify that (3.6a) is violated by thc
choice /\ = /\1, f-l = 11 for any 1/ anel (1',li:) listcel in (ö.)-(e). This givcs us Proposition 5.2'
statecl in seetion 4.

Next we turn to (i )-(x) in Proposition 5.1. Again (3.6a) is a sevcre constraint, as is
the requirel1lent (see (4.7a)) that

~1 °~ 11Jdli > V,\k (A) > 11 JdJ-l 11
• )..,1' #- 11 ~7d/\ 11 - Dr,k (p,) - 11 Jd 11

Morcovcr, if in acldi tion 1I Jd 11 / 11 JdJ-tll < (D7', k(J-l) + 1) /D7'! k(/\) then

(7.1a)

(7.1b)

Onee again wc will chonse thc fusion-generator r = r d when f ::; k, anel r = r~l whcn
f > h~ > 1. Using (3.6a), (7.1a), (4.4) anel Proposition 5.1, we fincl that .~1"tp = °f<:n' all
I E r anel I.p E :Fd, except possibly for:
(a)' (1', k, cl) = (1,4,1), '"'I = <P = /\ 1;

(1',k,d) = (1,16,1), f = /\1 anel r..p = (8,8);
(b)' (1',k,d) = (2,3, 1L f = <p = /\1;

er, li:, cl) = (2,9,1), I = /\J and <p = (3,3,3);
(c)' (1', h:, d) = (3,2,2), I = r.p = Al j

(.,., k, cl) = (3, 4, 2), -I = <P = A2
;

( 1', /;;, d) = (3, 8, cl) for cl = 1 or :2, -I = /\ 1 an cl <p E [(4, 0, 4, 0)] 1, anel (if d = 1) -I = 1,1, 1
allel r..p = (2 , 2,2,2);

(cl)' (1', k, d) = (4,5,1), I' = AL anel r.p = (1,1,1,1,1);
(e)' (1',k,d) = (5,6,2), I = pI, r.p = (2,0,2,0,2,0);
(f)' (1', k, d) = (7,4, d) for d = 201' 4, I = /V anel <p E [2Ao+2A4h, anel (if d = 2) / = Tr'Ft]

and cp = AI + A3 + A5 + A7 ;

(g)' (T, h:, cl) = (8,3,3), f = /\1 alld r.p = Ao + A:~ + AG;
(h)' Cl': k, d) = (15, 2,4), '"'( = /V and <p = 1\0 + A$;

(1', k, d) = (15, 2, S), '"'I = /V anel <p E [Ao +1\8]4.

7.2. In this subsection \VC find all the Ei-type exceptionals for A~l). This \'las first
clone in [4]. By thc previous subsection it suffices to consieler (k, d) = (4, 1) and (16,1).

First consieler k = 4. The problenl here is that /\ I is a fixed point. However, P1 =
[A0 ]1 U [/\1 ] 1, so (/\ 1 , /\ I) 111US t bc .~1-nlonogo1110US. Thus there is 110 excep tio11al here.

Next, c011sider k = 16. \"'rite <p = (8,8). Suppose 111 is exceptional. Thcn by
Proposition 4.2, both 1'1)..! ,tp #- 0 and l'1tp!)..! #- 0. By (7.1b) we find that in fact

(7.2(/.)
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The rClnaining entries of ld are fixcc1 by LClnnw. 3.1, (3.9) und (3.6a), cxccpt for 1i1'Pl'P.
111",.", = 1 is forced by Leuuna 3.2( a): we nlust have thc eigenvalue

(

171.
der

I'm = 1'( ~ (7 .2b)

equal to f/ cl = 2; by [14], r m 18 a strictly increasing function of rn. 2:: 0, and an easy
calculation gives 1'1 = 2.

7.3. In this subsection \ve find all the Ei-type exceptionals for A~l). This was first
done in [10]. Br subsection 7.1 it. suffices to consider (k, cl) = (3,1) and (9,1). k: = 3 is
handled by thc idcntical argluuent used on k = 4 in subsection 7.2.

So consieler k = 9, and HSSlune _~1 i8 exceptional. \~Trite <p = (3,3,3). Exactly as before
we lllUSt have (7.2a) satisficd. Therc are precisely 7 JI-orbits in PI; (3.6a) anel Lernnla.
3.2(b) force (.\ ...\) to be A1-l110110geHnous for each ...\ E PI cxcept for ...\ E [...V] U [<p] U [(0,3,6)];
cither (...\, ...\) 01' ( ...\, C ...\) will be .i\1-lnonogonlous for each A E [(0 , 3,6)]. The value of .~1'Pl'"

again is fixeel by t.hc (7.2b) arglllllcnt. Note that ((0,3,6), (0,3,6)) being !V[-lllOl1ogonlous
ilnplies 1i1 = E(2,9), whilc ((0,3,6), C(O, 3, 6)) being 111-11lonogeHnous inlplics ld = C·E(2,9).

7.4. In thi s subseetion wc fin cl all the Ei -type cxcep tionals für A~ I). By thc p revions
subsection it suffices to consider (k, d) = (2,2), (4,2), (8,2) anel (8,1). For bot.h k = 2
anel k = 4, the problclIl is that ...\kj2 is a fixed point. However in both cases (3.6a) farces
( ...\k j 2, ...\kj2) to be 1I1-rllonogolllons, anel so there are no exceptionals.

Consielcr next k = 8 and d = 2, anel supposc 1'1 is exceptional. Then l'1>"l.'P "# 0 fCJl'
sonle r..p E [(4,O,4,0)h. By (7.1b) we again have the aJlaJoguc of (7.2a) satisficel. \\Te find:
by (3.6a.) anel (7.1a.), that (2p,2p) lUllst be Al-luonogonl0US. V\fe ean show (see e.g. (3.4a))
that

SZp,)..l = -Szp,,,, "# °. (7.3)

However, this violates (3. 6b) evaluatccl at (...\ 1 , 2p). Thus A1 caunot be exccptional.
Finally, consielcr h = 8 anel d = 1, anel let lVI be cxceptional. PI consists of exactly 12

.lI-orbits; (3.680) anel (7.la) tell ns that the only way to have both l'l)..,J1 "# °anel ...\ rf. [/JJ I i5
ifeither "'\,fl E [pl]1 u[Cp:b u[2Ph 01' ...\,p. E [...\Ih U[r..ph, where r..p = (4,0,4,0). Because lvI
COlllluutes \vith C = 5'2, we see that. l'1,t1 ,2p = }dGjl 1,'2(1' By (7.1b) we find that lV/pI ,2p "# 0
iff

(7.4)

\~Thell .~1'11,2p #- 0, wc fix the valuc .~12p,2p = 2 by the asnal argulnent as In (7.2b).
Silnilarly, if J'l)..l ,'P "# 0, then we know aII [...\ I J U [r..p]-nnvs aJlel -cohUllns of ld.

The only renlaining question is whether J'1J1 1,21) "# °iff ld)..l,,,, "# O. That this is
so follo\vs illllllceliately frolll (7.3), anel thc fact tha.t (2.7a) will sa.tisfy (3.6b). Hence
A1 = &(3,8).

7. 5. In this snbscction we find a11 the E7 -type cxccptionaJs for A~ I) at h = 5, d = 1.

There are precise1y 6 31-orbits in Pt, anel exactly one fixcd point: r..p = p. The argunlcnt.
i8 exactly as for (r, k, d) = (1, 16, 1), anel we get that li1 = E( 4,5) .
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7.6. In this subseetion wc show thcre <lJ:C no E7 -type cxccptionals for A~l) at k = 6:
d = 2. Put cp = (2,0,2,0,2,0). By (e)' a,nd Prop. 4.2, any exceptionallvI would havc both
A1lt l,tp ancl1\1'P, jl l nonzero. Put /\ = 4Ao+AI + A2 ; by thc usual argulnents we find that in
fact (/\, JaC b1\) is 1\1-n1onogon10us for son1e (l, b E {O, I}. Rcplacing ~1 with I(.13t .eb . •~1

(1(.13) is an invertible lnatrix), we lnay asSllll1C (/\, A) is 1VI-1110nogornous. Frorn (3.6b) we
get 35>',111 = S>.,"P. Howcvcr its 1.h.s. is non-real, while the 1'.h.s. is real. So such an 111
cannot exist.

7.7. In this snbscctioll we find a11 the Ei-type exceptionals for A~l). By the previous
snbsection it. sufficcs to consider (k:, cl) = (4,4) and (4,2). Thc case k = d = 4 is handled
exactly as ('1", k: d) = (3: 8: 2) was (the analogue of (7.3) here is Silllply its rank-level clual­
see (4.2c)).

\iVhen (k:, cl) = (4~ 2): therc are prccisely 24 .1-orbits, inclucling four orbits of fixcel
points. Equations (7.10.) anel (4.6a) rcquire (.1Ao,.1AO) to bc ~~1-1110nogornous: so by
Lenlll1a 3.1(a) 111>',/1 = 1I1J>.,1It for a11 I\,P. The rClllaindcr of the argurncnt is exactly
as for ("1', k, cl) = (3,8,1).

7. 8. In this subscction wc find a11 the Ei-type exceptionals for A~l), when k = cl = 3.
There are 21 .1-orbits, and three fixed point.s. \\'e find fron1 (7.1a) and (4.6a) that:
replacing A1 with C . 1\1 if necessary, (JAo, .lAO) nlust bc 111-u10nogon10us, so by Lcnllna
3.1 (a) we know that 1\1>',jt = A1J >.. J It for a11 '\ 11 E P+, anel

(n10cl 9) (7.5)

Applying (7.5), (7.la) aud (4.6a.) to the relna.ining \veights in P3, anel using the fanüliar
arglullents, we can fix a11 values of A1, cxcept for detennining \vhether (pI, pi ) 01' (p.l , C pi)

is 111-lnonogon10us. However thc fonner 111Ust holel, becausc othcrwisc 11,1 - [(8,3) + 1(.J:d
would violatc Proposition 4.2.

7.9. In this subsection we find a11 the E7-type exceptionals for A~~), when k = 2 anel
d = 8 01' 4. Start \vith d = 8. Therc are 40 .14-orbits: with 8 containing fixed points. But
everything sin1plifies , as we OllCC again find (conjugating if necessary) that 1\1A, /l = AIJ >., J Jl

anel
(n10d 16) (7.6)

for a11 A, p- E P+ by thc nsnal argun1ents. \~TC can now quickly force J.\1 = E(15,2).

Thc case cl = 4 is con1pletely analogons to CI'; k, cl) = (1,16,1).

8. Conclusion. The problern of classifying a11 phys'ical inva1"ia,nts (sec Defini tiOll

3.1) for EI. given nontwistecl affine algebra )(I~1) ancl level k is a kcy step in thc classification
problell1 for R,CFTs. Though this problein rClnains open, progress i8 bcing nUlde, anel with

this paper thc end cOlllcl bc in sight, at least for thc algcbras A~.1). In particular, there is
a natural division of the problell1 into two pieccs, basecl Oll the structure of thc physical
invariant about the distinguisheel weight kAo. Onc subproblelll i8 to classify a11 physical
invariants 1\1 - they are called ADEi-tY]JC invariants - whose kAo-ro\v anel colurnll reflect
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thc synunetrics of the Dynkin diagra.nl of X~l) (see (1.3b) for a 1110re precise statelnent).
Alnlost a11 physical illvariants a,rc expcctcd to be of this type, including what seeIll to be
thc nI0st elusive cxcc]Jtional physical invariants. In this paper we develop an approach for

achieving the classificat.ion of AVEi-t.ype invariants for any algebra )[:.1): anel explicitly

solve it for the algebra A~.l) at all levels k. \>\Tc find that lUOst of these physical illvariants are
built up in a natural way froln the syunnetries of the Coxeter-Dynkill diagraIn, but SOllle
are not - the so-cal1ed Ei - typc cxcc]JtionaL-;. These exeeptional invariants are surprisillgly
rare.

The seconcl subproblelu, which relllains cornpletcly opeu apart fronl SOUle luinor spe-

cial cases (lUost notably A ~ 1) [4J and A~1) [10]), is to find those .y;.I) anel llJ for whieh a
physical invariant can have ~irregulc:lJ" values of j'1kA o ,>", A1>..,kA o ' In the language of COll­

fonual ficlel theory, this is the problenl of finding all possible exceptional chiral extensions
for the given affine algebra );~1) at level k. These also seenl to be quite rare: for A~.1) at
level k 1 these oceur at ('1', k) = er, l' - 1), (1', r +1), anel (1', T +3), anel probably only fillitely
luany other pairs (1', k). The solution to these two subproblenIs wüuld quiekly iluply the
classifieation of a11 physical invariants.

A natural fo11ow-up to this paper \vi11 be to extencl the results herc to the rClluüning

affine algebras. A~.I) is special because its Coxeter-Dynkin cliagralll is so sYl111netrical. In
SOllle ways this luakes the classification of ADEi-type invariants nlore clifficult (e.g. we are
inundated with possibilities at lIlOSt steps of the solution), hut in other ways it rnakes things
luuch silllplcr (c.g. q-clinlensions are casier to handle). In any case, it can be expectecl that

the classification for the rel11ainillg 9 = ~yrl) shoulel fo11ow the lllcthoel usecl here [13].
Another fo11ow-llp is thc classification of a11 physical invariants für A~.I) at levels :2 anel

3 (until now only level 1 is kllown). This follows frolll ThcorcIl1 2.1 in this paper, anel the
work in [10], and will be reportecl elsewherc.

Of course it woulcl be prcferable for a '\lllifonn prüof" uf the classification of AV[i~

type invariants for a11 ~y~.l) a.nel h:. At prescnt the dosest we cau COllie are thc lenlluas in
seetion 3. In fact it is far fronl clcar that cvcn a :'uniforIll" list of AVEi-type invariants is
possible - the probleIn of course are thc Ei-type exceptionals.

Another disappüinting feature of the proof givcn here is that it is cOluputer-<:l.Ssistccl
(although in a luinor \vay): sonle q-dilnensions (3.4b) were cornputed for sections 5 anel
7, and an 5 Inatrix elelnent was necclecl in scction 7.6. Round-off error is not a. prohlcrll
in these calculations (2 clecilual places suffice). Nevcrthelcss it woulcl bc niec if these
conlputations cnulel be replaceel by rnorc conceptual argllluents. Again, thc existence of
the Ei-type cxceptionals 111akes this l110re clifficult.

This paper hints that thc classification of a.ll physiea.l invariants, at least for silnple
~y/., luay not be far away. In thc proeess of sohring this problclu \ve are being forcecl to
investigate properties of the I(ac-Peterson IIHl,trices in sonle detail, a.nel it ca.n bc hoped
that. our analysis will also be of use to othcr problellls involving the nIoclular bchaviolll' of
the affine chal'acters.
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