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On the splitting problem for complex homogeneous
supermanifolds 1

E.G. Vishnyakova

Abstract. It is well-known that any Lie supergroup G is split, i.e. its
structure sheaf is isomorphic to the structure sheaf of a certain vector bun-
dle. However, there are non-split complex homogeneous supermanifolds. We
describe left invariant gradings of a complex homogeneous supermanifold
G/H induced by gradings of the Lie supergroup G in terms of so called split
grading operators. Sufficient conditions for a homogeneous supermanifold to
be split are given in terms of Lie superalgebras and Lie subsuperalgebras.

1. Introduction

A supermanifold is called split if its structure sheaf is isomorphic to the
exterior power of a certain vector bundle. It is well-known that any real
supermanifold is split. However, it is false in the complex analytic case. The
property of a supermanifold to be split is very important for several prob-
lems. For instance, if a supermanifold M is projective, then, obviously, its
underlying space is also projective. In [10] it was mentioned that almost all
flag supermanifolds are not projective, hence, the converse statement is in
general false. However, as was shown in [5] any split supermanifold with the
projective underlying space is projective. Another problem, when the prop-
erty of a supermanifold to be split is very important, is the calculation of the
cohomology group with values in a vector bundle on a supermanifold. In the
split case we may use the well elaborated tools of complex analytic geometry.
In the general case, several methods were suggested by Onishchik’s school:
spectral sequences, see e.g. [9]. All these methods connect the cohomology
group with values in a vector bundle with the cohomology group with values
in the corresponding split vector bundle.

How to find out, whether a complex supermanifold is split or non-split?
Several methods were suggested by Green, Onishchik and Koszul. In [2]
Green described a moduli space with a marked point such that any non-
marked point corresponds to a non-split supermanifold while the marked
point corresponds to a split supermanifold. The calculation of the Green
moduli space is a difficult problem itself, so the method is difficult to ap-
ply. Furthermore, for calculation of holomorphic vector fields over super-
Grassmannians Onishchik and Serov [6, 7, 8] considered so called grading
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derivations, which corresponds to Z-gradings of the structure sheaf of a su-
permanifold. For instance, it was shown that almost all super-Grassmannians
do not possess any grading derivations, (i.e. their structure sheaves do not
possess Z-gradings), hence, they are non-split. In [3] the following statement
was proved: if the tangent bundle of a supermanifold M possesses a (holo-
morphic) connection, then M is split. In fact, it was shown that we can
assign the grading derivation to any supermanifold with a connection, and
that this grading derivation is induced by Z-grading of a vector bundle.

In the present paper a Z-grading of the structure sheaf OM of a super-
manifold M, which corresponds to a vector bundle, is called a split grading.
A split grading is called left invariant if it is invariant with respect to all
left translations. The purpose of our paper is to describe grading operators
corresponding to left invariant split gradings on a homogeneous superspace
G/H which are compatible with gradings on G.

2. Lie supergroups and homogeneous spaces

We will use the word ”supermanifold” in the sense of Berezin and Leites,
see [1]. We will denote a supermanifold by M, its base by M0 and its
structure sheaf by OM. If p : M → N is a morphism of supermanifolds,
then we denote by p0 the corresponding morphism of the bases M0 → N0

and by p∗ the morphisms of sheaves ON → (p0)∗(OM).

2.1 Lie supergroups and super Harish-Chandra pairs. A Lie supergroup is
a group object in the category of supermanifolds, i.e., a supermanifold G
with three morphisms: the multiplication morphism, the inversion morphism
and the identity morphism, which satisfy the usual conditions, modeling the
group axioms. It is well known that the structure sheaf of a Lie supergroup
and the supergroup morphisms can be explicitly described in terms of the
corresponding Lie superalgebra using so-called super Harish-Chandra pairs,
see [11]. A super Harish-Chandra pair is a pair (G, g) that consists of a Lie
group G and a Lie superalgebra g = g0̄ ⊕ g1̄ such that g0̄ = Lie G, provided
with a representation Ad : G → Aut g of G in g such that: 1. Ad preserves
the parity and induces the adjoint representation of G in g0̄; 2. the differential
(d Ad)e at the identity e ∈ G coincides with the adjoint representation ad of
g0̄ in g.

If a super Harish-Chandra pair (G, g) is given, it determines the Lie su-
pergroup G in the following way, see [4]. Let U(g) be the universal enveloping
superalgebra of g. It is clear that U(g) is a U(g0̄)-module, where U(g0̄) is the
universal enveloping algebra of g0̄. Denote by FG0 the structure sheaf of
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the manifold G0. The natural action of g0̄ on the sheaf FG0 gives rise to a
structure of U(g0̄)-module on FG0(U) for any open set U ⊂ G0. Putting

OG(U) = HomU(g0̄)(U(g),FG0(U))

for every open U ⊂ G0, we get a sheaf OG of Z2-graded vector spaces (here
we assume that the functions from FG0(U) are even). The enveloping su-
peralgebra U(g) has a Hopf superalgebra structure. Using this structure we
can define the product of elements from OG such that OG becomes a sheaf
of superalgebras, see [4] for details. A supermanifold structure on OG is
determined by the isomorphism Φg : OG → Hom(

∧
(g1̄),FG0), f 7→ f ◦ γg,

where

γg :
∧

(g1̄) → U(g), X1 ∧ · · · ∧Xr 7→ 1

r!

∑
σ∈Sr

(−1)|σ|Xσ(1) · · ·Xσ(r). (1)

The following formulas define the multiplication morphism, the inversion
morphism and the identity morphism respectively:

µ∗(f)(X ⊗ Y )(g, h) = f(Ad(h−1)(X) · Y )(gh);

ι∗(f)(X)(g) = f(Ad(g)(S(X)))(g−1);

ε∗(f) = f(1)(e).

(2)

Here X,Y ∈ U(g), f ∈ OG, g, h ∈ G0 and S is the antipode map of the Hopf
superalgebra U(g). Here we identify the enveloping superalgebra U(g ⊕ g)
with the tensor product U(g)⊗ U(g).

We will identify the Lie superalgebra g of a Lie supergroup G with the
tangent space Te(G) at e ∈ G0. If T ∈ g, the corresponding left invariant
vector field is given by

(id⊗T ) ◦ µ∗, (3)

where µ is the multiplication morphism of G. Recall that this correspondence
determines an isomorphism of Lie superalgebras. Denote by lg (rg) the left
(or right) translation with respect to g ∈ G0. The morphisms lg and rg are
given by the following formulas:

l∗g(f)(X)(h) = f(X)(gh); r∗g(f)(X)(h) = f(Ad(g−1)X)(hg), (4)

where f ∈ OG, X ∈ U(g) and g, h ∈ G0.

2.2 Homogeneous supermanifolds. A supermanifold is called homogeneous if
it possesses a transitive action of a certain Lie supergroup. (More precisely,
see e.g. [12].) If a supermanifold M is G-homogeneous and G×M→M is a
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transitive action, then M is isomorphic to the supermanifold G/H, where H
is the isotropy subsupergroup of a certain point. Recall that the underlying
space of G/H is G0/H0 and the structure sheaf OG/H of G/H is given by

OG/H = {f ∈ π∗(OG) | µ∗G×H(f) = pr∗(f)}, (5)

where π : G0 → G0/H0 is the natural map, µG×H is the morphism G×H → G
induced by the multiplication map in G and pr : G×H → G is the projection.
Using (2) we can rewrite (5) in the following way:

OG/H =

{
f ∈ π∗(OG) | f(Ad(h−1)(X)Y )(gh) =

{
f(X)(g), Y ∈ C;
0, Y /∈ C.

}
,

where X ∈ U(g), Y ∈ U(h), h = LieH, g ∈ G0 and h ∈ H0. Now it is easy to
see that f ∈ OG/H if f is H0-right invariant, i.e. r∗h(f) = f for any h ∈ H0,
and Y (f) = 0 for all Y ∈ h1̄, where h = h0̄ ⊕ h1̄.

Sometimes we will consider also the left action H×G → G of a subsuper-
group H on a Lie supergroup G. The corresponding quotient supermanifold
we will denote by G\H.

2.3 Split supermanifolds. A supermanifold M is called split if OM ' ∧ E ,
where E is a sheaf of sections of a certain vector bundle. In this case OM
possesses the Z-grading induced by the natural Z-grading of

∧ E =
⊕

p

∧p E .
Such gradings of OM we will call split gradings.

Example 1. It is well-known that any Lie supergroup G is split. Indeed,
the underlying space G0 is a Lie subsupergroup of G, hence, there exists
the homogeneous space G/G0, which is isomorphic to the supermanifold N
such that N0 is a point pt = G0/G0 and ON ' ∧

(m), where m = dim g1̄.
By definition, the structure sheaf ON consists of all rg-invariant functions,
g ∈ G0. We have the natural map p = (p0, p

∗) : G → G/G0, where p0 :
G0 → pt and p∗ : ON → OG is the natural inclusion. It is well known that
p : G → G/G0 is a principal bundle. Using the fact that the underlying space
of G/G0 is a point we get G ' N × G0.

This statement follows also from the fact that any Lie supergroup is deter-
mined by its super Harish-Chandra pair. A different proof of this statement
is given also in [3].

Example 2. As an example of a homogeneous non-split supermanifold we
can cite the super-grassmannian Grm|n,r|s for 0 < r < m and 0 < s < n.

Denote by SSM the category of split supermanifolds. Objects Ob SSM

of this category are all split supermanifolds M with a fixed split grading.
Further, if X, Y ∈ Ob SSM, we put

Hom(X, Y ) = all morphisms of X to Y
preserving the split gradings.
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As in the category of supermanifolds, we can define in SSM a group ob-
ject (split Lie supergroup), an action of a split Lie supergroup on a split
supermanifold (split action) and a split homogeneous supermanifold.

There is a functor gr from the category of supermanifolds to the category
of split supermanifolds. Let us briefly describe this construction. Let M
be a supermanifold. Denote by JM ⊂ OM the subsheaf of ideals generated
by odd elements of OM. Then by definition grM is the split supermanifold
with the structure sheaf

grOgrM =
⊕
p≥0

(grOgrM)p, J 0
M := OM, (grOgrM)p := J p

M/J p+1
M .

In this case (grOgrM)1 is a locally free sheaf and there is a natural isomor-
phism of grOM onto

∧
(grOM)1. If ψ = (ψ0, ψ

∗) : M→ N is a morphism,
then gr(ψ) = (ψ0, gr(ψ∗)) : grM→ grN is defined by

gr(ψ∗)(f + J p
N ) := ψ∗(f) + J p

M for f ∈ (JN )p−1.

Recall that by definition every morphism of supermanifolds is even and as a
consequence sends J p

N into J p
M.

2.4 Split Lie supergroups. Let G be a Lie supergroup with the group mor-
phisms µ, ι and ε: the multiplication, the inversion and the identity, re-
spectively. Then grG is a split Lie supergroup with the group morphisms
gr(µ), gr(ι) and gr(ε). Let us describe the supergroup grG in terms of super
Harish-Chandra pairs. The universal enveloping superalgebra U(g) possesses
the following filtration:

U(g) = U(g)(m) ⊃ U(g)(m−1) ⊃ · · · ⊃ U(g)(0) ⊃ {0}, (6)

where m = dim g1̄ and U(g)(p) is the vector subspace generated by {Y ·X1 ·
· · · · Xq, q ≤ k}, where Y ∈ U(g0̄), Xi ∈ g1̄. This filtration induces the
filtration in OG = HomU(g0̄)(U(g),FG0):

OG = (OG)(−1) ⊃ (OG)(0) ⊃ · · · ,

where
(OG)(p) := {f ∈ OG | f |U(g)(p)

= 0}.
Clearly, (OG)(p) = J p+1, hence,

grOG ' HomU(g0̄)(gr U(g),FG0) ' OG′ := HomU(g0̄)(U(g′),FG0),

where gr U(g) is the graded superalgebra corresponding to the filtration (6),
G ′ is the Lie supergroup corresponding to the super Harish-Chandra pair
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(G0, g
′) and g′ is the following Lie superalgebra: g′ ' g as vector superspaces

and the Lie bracket is defined by

[X, Y ] =

{
[X,Y ], if X, Y ∈ g0̄ or X ∈ g0̄ and Y ∈ g1̄;
0, if X, Y ∈ g1̄.

(7)

The Lie supergroup G ′ is a split Lie supergroup with respect to the grading
induced by the isomorphism Φg′ . It is easy to see that grG ' G ′ as Lie
supergroups. Denote by µ′, ι′ and ε′ the multiplication, inversion and iden-
tity morphisms of G ′, respectively. Let us describe these morphisms more
precisely.

A direct calculation leads to the following lemma:

Lemma 1. Let g be a Lie superalgebra and Xi, Yj ∈ g1̄, i = 1, . . . , r,
j = 1, . . . , s. Assume that [Xi, Yj] = 0 for any i, j. Then we have

γg(X1 ∧ · · · ∧Xr ∧ Y1 ∧ · · · ∧ Ys) = γg(X1 ∧ · · · ∧Xr) · γg(Y1 ∧ · · · ∧ Ys),

where γg is given by (1).¤
From Lemma 1 it follows:

Proposition 1. If we identify the supermanifold grG ' G ′ with the su-
permanifold Hom(

∧
g1̄,FG0) using the isomorphism f 7→ f ◦ γg′, then the

supergroup morphisms of grG are given by

µ′∗(f)(X ∧ Y )(g, h) = f(Ad(h−1)(X) ∧ Y )(gh);

ι′∗(f)(X)(g) = f(Ad(g)(S(X)))(g−1);

ε′∗(f) = f(1)(e).

(8)

Here X,Y ∈ ∧
(g1̄), f ∈ Hom(

∧
g1̄,FG0), g, h ∈ G0 and S is the antipode

map of
∧

(g1̄).¤

3. Split grading operators

Let M be a supermanifold, grM the corresponding split supermanifold,
J be the sheaf of ideals generated by odd elements of OM, T = DerOM the
tangent sheaf of M and gr T = Der(OgrM) the tangent sheaf of grM. The
sheaf T is naturally Z2-graded and the sheaf gr T is naturally Z-graded; the
gradings are induced by the Z2- and Z-grading ofOM and grOM respectively.
We have the exact sequence

0 → T(2)0̄ → T0̄
α→ (gr T )0 → 0, (9)
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where
T(2)0̄ = {v ∈ T0̄ | v(OM) ⊂ J 2}

and α is the composition of the natural map T0̄ → T0̄/T(2)0̄ and the following
isomorphism

T0̄/T(2)0̄ → (gr T )0, [w] 7→ w̃, w̃(f + J p+1) := w(f) + J p+1,

where w ∈ T0̄, [w] is the image of w in T0̄/T(2)0̄ and f ∈ J p.
Assume that the sheaf OM is Z-graded, i.e. OM =

⊕
p(OM)p. Then we

have the operator w defined by w(f) = pf , where f ∈ Op. Such operators
are called grading operators. We will call a grading operator w on M a split
grading operator if it corresponds to a split grading of OM. The sheaf grOM
is naturally Z-graded. Denote by a the corresponding graded operator; it is
an even vector field on grM.

Lemma 2. A supermanifold M is split iff a ∈ Im H0(α), where

H0(α) : H0(M0, T0̄) → H0(M0, (gr T )0).

Proof. The statement of the proposition can be deduced from the following
observation doing by Koszul in [3], Section 1. Let A be a superalgebra
over C (in [3] the author considered more general algebras). Let m be a
nilpotent ideal in A. An even derivation w is called adapted to the filtration
A ⊃ m ⊃ m2 . . . if

(w − r id)mr ⊂ mr+1 for any r ≥ 0.

Denote by Dad
m the set of all derivations adapted to m. In [3] it was shown

that Dad
m is not empty iff the filtration of A is splittable.

In our case we consider the sheaf of superalgebras OM and its subsheaf
of ideals J except for A and m, respectively. The set Dad

m is in our case the
set of global derivations of OM adapted to the filtration OM ⊃ J ⊃ . . ..
Clearly, Dad

m is not empty iff a ∈ Im H0(α).¤
Example 3. Consider the supermanifold G\G0; its structure sheaf is iso-
morphic to

∧
(g1̄) (compare with Example 1). Denote by (εi) the system of

odd (global) coordinates on G\G0. An example of a split grading operator
on the Lie supergroup G is

∑
εiXi. Here (Xi) is a basis of odd left invariant

vector fields on G such that Xi(ε
j)(e) = δj

i . We may produce other examples
if we use right invariant vector fields or odd (global) coordinates on G/G0.

Denote by Aut(2)OM the group of automorphisms a of OM such that
gr a = id.
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Proposition 2. [Koszul] If M is a split supermanifold and w a certain
split grading operator on M, then any other split grading on M is given by
a ◦ w ◦ a−1, where a ∈ Aut(2)OM.

In particular, any split grading operator on a Lie supergroup G is given
by

∑
εiXi + χ, where

∑
εiXi is as in Example 3 and χ ∈ H0(G0, T(2)0̄) is

any vector field.

Proof. See Proposition 1.2 in [3].¤

4. Compatible split gradings on G/H
The aim of our paper is the study of split gradings on a homogeneous

superspace M = G/H induced by certain split gradings on Lie supergroup
G.

Definition. A split grading on a Lie supergroup OG0 =
∑

(OG)p is called
compatible with OM ⊂ OG if the following holds:

f ∈ OM ⇒ fp ∈ OM for all p,

where f =
∑

fp and fp ∈ (OG)p.

It is not clear from the definition that the grading (OM)p = OM ∩ (OG)p

of OM is a split grading on OM. However, the following holds.

Proposition 3. A compatible with OM split grading on OG is a split grading
on OM.

Proof. The idea of the proof is to show that α(
∑

εiXi + χ) = a, where∑
εiXi + χ is as in Proposition 2 and a is as in Lemma 2 for grM.
First of all note that grM ' grG/ grH, see [12], Theorem 3. Using (5)

and (8) we see that

OgrM ' Hom
(∧

(g1̄)/
∧

(g1̄)h1̄,FG0

)H0

.

as split supermanifolds. Here the split grading on the second sheaf is given
by:

Hom
(∧

(g1̄)/
∧

(g1̄)h1̄,FG0

)H0 '
⊕

p

Hom

(
p∧

(g1̄)/

p−1∧
(g1̄)h1̄,FG0

)H0

.

Denote by w the split grading operator on G corresponding to a compatible
with OM split grading on OG. By Proposition 2 we have w =

∑
εiXi + χ.

Furthermore,

α(
∑

εiXi + χ) = α(
∑

εiXi) =
∑

eiX ′
i,
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where ei = εi +J ∈ (OgrG)0 ' g∗̄1 ⊂ Hom(
∧

(g1̄),FG0) is a basis of g∗̄1 and X ′
i

are odd left invariant vector fields on grG such that X ′
i(e

j) = δj
i . Moreover,

using (3) and Proposition 1, we see that X ′
i(Hom(C,FG0)) = {0} for all i.

Therefore,
∑

eiX ′
i is the split grading operator on grG corresponding to the

natural split grading

OgrG '
⊕

p

Hom

(
p∧

(g1̄),FG0

)
.

Furthermore, the operator
∑

eiX ′
i leaves OgrM invariant and it is split be-

cause Hom (
∧

(g1̄)/
∧

(g1̄)h1̄,FG0)
H0 is obviously a vector bundle. The result

follows from Lemma 2.¤
Denote by v the split grading operator corresponding to a split grading

of OG. It is easy to see that this split grading is compatible with OM iff
v(OM) ⊂ OM. Therefore, our aim is to describe all split grading operators
on G which leave the sheaf OM invariant. First of all let us consider the
situation when a split grading operator w on G is invariant with respect to a
Lie subsupergroup H, i.e.

{
r∗h ◦ w = w ◦ r∗h, for all h ∈ H0;
[Y, w] = 0, for all Y ∈ h1̄.

(10)

Here (H0, h) is the super Harish-Chandra pair of H.

Proposition 4. If a split grading operator w on G is invariant with respect
to a Lie subsupergroup H, then h = h0̄.

Proof. By Proposition 2 any split grading operator on G is given by w =∑
εiXi + χ. If X is a vector field on G, denote by Xe ∈ Te(G) the corre-

sponding tangent vector at the identity e. Consider the second equation in
(10). At the point e, we have

[Y,w]e = (
∑

Y (εi)Xi −
∑

εiY ◦Xi −
∑

εiXi ◦ Y + [Y, χ])e =∑
Y (εi)(e)(Xi)e = 0, Y ∈ h1̄.

The tangent vectors (Xi)e form a basis in Te(G), hence Y (εi)(e) = 0 for all
i. Therefore, Y = 0. The proof is complete.¤
Example 4. It is well known that the supermanifold G/H, where H is an
ordinary Lie group, is split. (See [4].)

Consider now more general situation, when a split grading operator w
leaves OM invariant. Let f ∈ OM, then w(f) ∈ OM iff r∗h(w(f)) = w(f) and

9



Y (w(f)) = 0, where h ∈ H0 and Y ∈ h1̄. These conditions are equivalent to
the following ones:

(r∗h ◦ w ◦ (r−1
h )∗ − w)|OM = 0; [Y, w]|OM = 0. (11)

It seems to us that the system (11) is hard to solve in general. Consider
now a special type of split grading operators, so called left invariant grading
operators.

Definition. A split grading on G is called left invariant if it is invariant
with respect to the left translations. More precisely, if f ∈ (OG)p then
l∗g(f) ∈ (OG)p for all g ∈ G0.

It is easy to see that a split grading is left invariant iff the corresponding
split grading operator w is invariant with respect to left translations, i.e.
l∗g ◦ w = w ◦ l∗g, g ∈ G0. For example, the split grading operator

∑
εiXi

constructed in Example 3 is obviously a left invariant grading operator. Let
us describe all such operators. We need the following lemma:

Lemma 3. The map Φg : OG → grOG is invariant with respect to the left
and right translations.

Proof. Denote by r′h and l′h, h ∈ G0, the right and the left translation in grG
respectively. Let us show that

(r′h)
∗ ◦ Φg = Φg ◦ r∗h. (12)

Indeed, for Z ∈ ∧
g1̄, g, h ∈ G0 we have

(r′h)
∗ ◦ Φg(f)(Z)(g) = Φg(f)(Ad(h−1)(Z))(gh) = f(γg(Ad(h−1)(Z)))(gh) =

f(Ad(h−1)(γg(Z)))(gh) = r∗h(f)(γg(Z))(g) = Φg ◦ r∗h(f)(Z)(g).

Similarly, we have (l′h)
∗ ◦ Φg = Φg ◦ l∗h.¤

Lemma 4. Let (Zj) and (Xi) be bases of even and odd left invariant vector
fields respectively, εi and Xi be as in Example 3. Then any split grading
operator w on G, which is invariant with respect to the left translations, has
the following form

w =
∑

εiXi +
∑

f iXi +
∑

gjZj,

where f i are odd polynomials in εi with constant coefficient of degree grater
that 3, and gj are even polynomials in εi with constant coefficient of degree
grater that 2.

Proof. By Proposition 2, any grading operator has the following form

w =
∑

εiXi + χ, where χ =
∑

f iXi +
∑

gjZj,
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fi ∈ H0(G0, (OG)(3)) and gj ∈ H0(G0, (OG)(2)). We have:

l∗g ◦ w =
∑

l∗g(ε
i)Xi ◦ l∗g +

∑
l∗g(f

i)Xi ◦ l∗g +
∑

l∗g(g
j)Zj ◦ l∗g = w ◦ l∗g.

By definition, l∗g(ε
i) = εi. Therefore, l∗g(f

i) = f i and l∗g(g
j) = gj. Let us

decompose f i and gj using the coordinates εi and the sheaf homomorphism
Φg:

f i = f i
klrε

kεlεr + . . . ,

gj = gj
klε

kεl + . . . ,

where f i
klr, . . . and gj

kl, . . . ∈ Φ−1
g (FG0) and FG0 = Hom(1,FG0). The sheaf

FG0 = Hom(1,FG0) is obviously invariant with respect to the left translations,
see (4). By Lemma 3, the sheaf Φ−1

g (FG0) is also invariant with respect to

the left translations. Therefore, Φg(f
i
klr), . . . and Φg(g

j
kl), . . . are left invariant

functions on G0, hence, constants. The proof is complete.¤
It follows from the proof of Lemma 4 that we may identify the space of

vector fields, which are invariant with respect to all left translations lg, g ∈ G0,
with H0(pt,OG\G0)⊗ g. Furthermore, the Lie supergroup G (and hence any
Lie subsupergroup H of G) acts on the supermanifold G\G0 on the right. In
other words, H0(pt,OG\G0) is a G-module. The Lie superalgebra g is also a
G-module: the action is given by the following action of the corresponding
Harish-Chandra pair (G, g):

g 7→ (X 7→ r∗g ◦X ◦ (r−1
g )∗); Y 7→ (X 7→ [Y, X]),

where g ∈ G0, X,Y ∈ g and we identify g with the space of all left invariant
vector fields. If H is a Lie subsupergroup of G and h = LieH then g/h is a
H-module.

Lemma 5. Let w be as in Lemma 4. The vector field w satisfies (11) iff

w ∈ (H0(pt,OG\G0)⊗ g/h)H, (13)

where w is the image of w by the natural mapping

H0(pt,OG\G0)⊗ g → H0(pt,OG\G0)⊗ g/h.

Proof. Let w ∈ (H0(pt,OG\G0)⊗ g/h)H. It follows that

r∗h ◦ w ◦ (r−1
h )∗ − w ∈ H0(pt,OG\G0)⊗ h, h ∈ H,

and
[Y, w] ∈ H0(pt,OG\G0)⊗ h, Y ∈ h.

11



Hence, the conditions (11) are satisfied.
On the other hand, if the conditions (11) are satisfied, then the vector

fields r∗h ◦w ◦ (r−1
h )∗−w and [Y, w] are vertical with respect to the projection

G → G/H. Therefore, r∗h◦w◦(r−1
h )∗−w and [Y, w] belong to H0(pt,OG\G0)⊗

h.¤
Using the language of super Harish-Chandra pairs we may rewrite the

condition (11) in the following way:

w ∈ (H0(pt,OG\G0)⊗ g/h)H0 , w ∈ (H0(pt,OG\G0)⊗ g/h)h.

Our aim is now to describe the space (H0(pt,OG\G0)⊗g/h)H0 . More precisely,
we will show that H0(pt,OG\G0) ' (

∧
g1̄)

∗ as G0-modules. Indeed, it follows
from (4) that the vector space (

∧
g1̄)

∗ ⊂ Hom(
∧

g1̄,FG0) = OgrG consists
of all functions which are invariant with respect to the left translations.
Therefore, Φg induces the isomorphism between H0(pt,OG\G0) and (

∧
g1̄)

∗.
Assume now that εi = Φ−1

g (ei), where (ei) is a certain basis on g∗̄1. Denote
by L the linear combinations of εi. It follows from Lemma 3 that L is
G0-invariant and it is isomorphic to g∗̄1 via isomorphism Φg as G0-modules.
Hence, we have

H0(pt,OG\G0)⊗ g ' ∧
(g∗̄1)⊗ g as G0-modules,

H0(pt,OG\G0)⊗ g/h ' ∧
(g∗̄1)⊗ g/h as H0-modules.

The G0-module
∧

(g∗̄1) ⊗ g has a natural G0-invariant: the identity operator
from g∗̄1 ⊗ g. The corresponding to this invariant vector field is

∑
εiXi. The

result of our study is:

Theorem 1. The following conditions are equivalent:
1. w is the split grading operator corresponding to a left invariant grading

on G, which is compatible with OG/H.
2. w =

∑
εiXi+χ, where

∑
εiXi is described above, χ ∈ H0(G0/H0, T(2)0̄),

such that

χ ∈
(⊕

p≥2

p∧
(L)⊗ g/h

)H0

0̄

'
(⊕

p≥2

p∧
(g1̄)

∗ ⊗ g/h

)H0

0̄

, (14)

w ∈
(

p∧
(L)⊗ g/h

)h

. (15)

Recall that w is the image of w by the natural mapping

H0(pt,OG\G0)⊗ g → H0(pt,OG\G0)⊗ g/h.

12



5. An application

As above G is a Lie supergroup and H ⊂ G is a Lie subsupergroup, g

and h are the Lie superalgebras of G and H respectively, and M := G/H.
Consider the map ρ : g0̄ → H0(pt, TG\G0). Let us describe its kernel. We
have for X ∈ g0̄ and f ∈ H0(pt,OG\G0):

X(f)(Y )(e) = d
d t
|t=0f(Ad(exp(tX))Y )(exp(tX)) =

d
d t
|t=0f(Ad(exp(tX))Y )(e),

where Y = Y1 · · ·Yr, Yi ∈ g1̄ and t is an even parameter. Hence,

Ker ρ = Ker(ad |g1̄
),

where ad is the adjoint representation of g0̄ in g.
Furthermore, denote

A := Ker(G0 3 g 7→ lg : G/H → G/H);
a := Ker(g 3 X 7→ H0(G0/H0, TG/H)),

where lg is the automorphism of G/H induced by the left translation lg. The
pair (A, a) is a super Harish-Chandra pair. An action of G on M is called
effective if the corresponding to (A, a) Lie supergroup is trivial.

Theorem 2. Assume that the action of G on M is effective. If [g1̄, h1̄] ⊂
h0̄ ∩Ker(ad |g1̄

), then M is split.

Proof. Let us show that in this case the vector field w = v+0 =
∑

εiXi from
Theorem 1 is a (left invariant) split grading operator on M using Theorem
1. The condition (14) satisfies trivially, because χ = 0. Let us check the
condition (15). We have:

[Y, v] =
∑

Y (εi)Xi −
∑

εi[Y,Xi].

Since [g1̄, h1̄] ⊂ h0̄, we get
∑

εi[Y, Xi] ∈
∧p(L)⊗ h. Hence, we have to show

that
∑

Y (εi)Xi ∈
∧p(L)⊗ h.

We need the following well-known formula:

Y (f)(X)(g) = (−1)p(Y )f(XY )(g),

where X ∈ U(g), Y ∈ g, g ∈ G0, f ∈ OG and p(Y ) is the parity of Y .
Denote by P the Lie supergroup with the following super Harish-Chandra
pair (P0, p):

P0 := Ker(G0 3 g 7→ rg : G\G0 → G\G0);
p := Ker(g 3 X 7→ H0(pt, TG\G0)),

13



where rg is the automorphism of G\G0 induced by the left translation rg. The
Lie supergroup G\P acts on (pt,OG\G0) transitively. Hence, we may assume

that OG\G0 is a subsheaf of OG\P . Denote by X̃ the image of X by the map
g → g/p. By Lemma 1, we have for Y ∈ h1̄ and Xi ∈ g1̄:

Ỹ (εi)(γg(X̃1 ∧ · · · ∧ X̃r))(g) = −εi(γg(X̃1 · · · X̃r)Ỹ )(g) =

−εi(γg(X̃1 ∧ · · · ∧ X̃r ∧ Ỹ ))(g) = −ei(X̃1 ∧ · · · ∧ X̃r ∧ Ỹ )(g).

Here we use the fact that X̃i and Ỹ commute by assumption that the com-
mutator [g1̄, h1̄] is contained in Ker(g0̄ → H0(pt, TG\G0)). Hence,

Y (εi) = −ei(Y ) = Y ′(ei),

where Y ′ is the corresponding to Y left invariant vector field in grG. There-
fore, we have

∑
Y (εi)Xi = −

∑
ei(Y )Xi = Y ∈

p∧
(L)⊗ h.

The proof is complete.¤

References

[1] Berezin F.A., Leites D.A. Supermanifolds. Soviet Math. Dokl. 16, 1975,
1218-1222.

[2] P. Green On holomorphic graded manifolds. Proc. Amer. Math. Soc. 85
(1982), no. 4, 587590.

[3] J.-L. Koszul Connections and splittings of supermanifolds. Differential
Geom. Appl. 4 (1994), no. 2, 151-161.

[4] J.-L. Koszul Graded manifolds and graded Lie algebras. Proceeding
of the International Meeting on Geometry and Physics (Bologna),
Pitagora, 1982, pp 71-84.

[5] C. LeBrun; Y. S. Poon; R. O., Jr. Wells Projective embeddings of
complex supermanifolds. Comm. Math. Phys. 126 (1990), no. 3, 433452.

[6] A.L. Onishchik; A.A. Serov Holomorphic vector fields on super-
Grassmannians. Lie groups, their discrete subgroups, and invariant the-
ory, 113-129, Adv. Soviet Math., 8, Amer. Math. Soc., Providence, RI,
1992.

14



[7] A.L. Onishchik; A.A. Serov Vector fields and deformations of isotropic
super-Grassmannians of maximal type. Lie Groups and Lie Algebras:
E.B. Dynkin’s Seminar, AMS Transl. Ser. 2. V. 169. Providence: AMS,
1995. P. 75-90.

[8] A.L. Onishchik; A.A. Serov On isotropic super-Grassmannians of max-
imal type associated with an odd bilinear form. E. Schrödinger Inst. for
Math. Physics, Preprint No. 340. Vienna,

[9] A.L. Onishchik; E. G. Vishnyakova Locally free sheaves on complex
supermanifolds. arXiv:1110.3908v1, 24 pages, 2011

[10] I. B. Penkov; I. A. Skornyakov, Projectivity and D-affineness of flag
supermanifolds. (Russian) Uspekhi Mat. Nauk 40 (1985), no. 1(241),
211-212.

[11] E.G. Vishnyakova On complex Lie supergroups and split homogeneous
supermanifolds. Transformation groups, Vol. 16, Issue 1 (2011), P. 265
- 285.

[12] E.G. Vishnyakova On holomorphic functions on a compact complex ho-
mogeneous supermanifold. Journal of Algebra, Volume 350, Issue 1, 15
January 2012, Pages 174-196.

15


