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DISTRIBUTION THEOREMS FOR SAITO-KUROKAWA
LIFTS

BERNHARD HEIM

Abstract. A Siegel modular cusp form F of weight k and degree 2 is a
Saito-Kurokawa lift if and only if F satisfies the Maass relations. Recently
it has been shown that this is equivalent to the requirement that F satisfies
the Hecke duality relations. In this paper we prove that if the Hecke duality
relations are fulfilled for all primes outside a set of primes with Dirichlet
density smaller 1/8 then the cusp form is a Saito-Kurokawa lift. Further,
for every weight k, there exists an effective constant c such that, if for
all prime p ≤ c the Hecke duality relation is satisfied, then the form is a
Saito-Kurokawa lift. Moreover we indicate further perspectives suggested
by results of M. Manickam, B. Ramakrishnan and T.C. Vasudevan.

1. Introduction and statement of results

Let S2
k be the space of Siegel modular cusp forms of weight k and degree

2 with respect to the Siegel modular group Γ2 := Sp2(Z). Let A(T ) be the

Fourier coefficients of a cusp form F ∈ S2
k , where T = [n, r,m] =

(
n r

2
r
2
m

)
runs through the set of half-integral positive definite matrices T . Then F is
a Saito-Kurokawa lift if and only if the Fourier coefficients satisfy the Maass
relations

(1.1) A[n, r,m] =
∑

d|(n,r,m)

dk−1 A
[nm
d2
,
r

d
, 1
]
.

Here d is summed over positive integers dividing the greatest common divisor
of n, r and m, and we take the usual convention that A(T ) = 0 for T not
half-integral positive definite. See [3], [22], [10], [11] for more details and a
summary. In [5],[6] we proved that F is a Saito-Kurokawa lift if and only if

(1.2) A [n, r, pm]− A [np, r,m] = pk−1

(
A

[
n

p
,
r

p
,m

]
− A

[
n,
r

p
,
m

p

])
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for all T = [n, r,m] and primes p. For a fixed prime p, the collection of
such relations for all T we call the p-Hecke duality relation, since it reflects
a duality property of Hecke operators for elliptic modular forms ([5], [4]). If
F satisfies the p-Hecke duality relation for all primes p, say that F satisfies
the Hecke duality relations. Employing a deep result of Chai-Faltings [2] on
the Ramanujan conjecture for Siegel modular forms, Pitale and Schmidt [16]
have recently extended this result. They have shown among other things
that finitely many p-Hecke duality relations can be omitted. In this paper we
extend these results in the Hecke duality aspect in two directions. First, we
show that the p-Hecke duality conditions for a set of primes with Dirichlet
density smaller than 1/8 can be omitted. Further, we show that, for fixed
weight k, the p-Hecke duality relations need be checked only for finitely many
primes p, which can be explicitly determined.

Theorem 1.1. Let R be any set of primes with Dirichlet density smaller than
1/8. Let k be a positive even integer. Then we have the following property.
For F ∈ S2

k, F is a Saito-Kurokawa lift if and only if for all primes p outside
R the p-Hecke duality relation (1.2) is satisfied.

Finite sets have Dirichlet density 0. Hence this theorem contains the already
mentioned results of [5] and [16].

Complementary to this result, we have:

Theorem 1.2. For a positive even integer k there exists a constant c(k),
depending only upon k, such that F ∈ S2

k is a Saito-Kurokawa lift if and only
if the p-Hecke duality relation is satisfied for all primes p with p ≤ c(k).

The method used in this paper makes it possible to transfer multiplicity one
theorems [18], [20], [21], [15] from elliptic modular forms to the space of Siegel
modular forms of degree 2. Of course once this new method is established
the main ingredient is in this case the beautiful and strong result of Ramakr-
ishnan [20]. The second theorem indicates that there are sets R of density 1
(depending on k). The constant c(k) is effective.

It is interesting to ask if the p-Hecke duality relation (1.2) for fixed prime
number p itself, which contains infinitely many relations and is related to
infinitely many Fourier coefficients, has an effective finiteness property. Of
course since the vector space of Siegel modular forms of fixed weight k has
a dimension asymptotic to k3, we would somehow expect this, but it is not
clear how to design such an algorithm in accordance to the p-Hecke duality
relation. It is maybe interesting to note that the p- Hecke Duality relation of
a cusp form F can be encoded in saying that F is in the kernel of an operator
|k on T (p). Here T (l) (l ∈ N) is related to the Hecke operator of elliptic cusp
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forms. We prove

(1.3) (F |k on T (l)) = 0⇔
(

(F |k on T (l))
)
|k on T (l) = 0.

Then we have

Theorem 1.3. Let k, l be positive integers. Let k be even and F ∈ S2
k. Then

(1.4) ((F |k on T (l))) |k on T (l)

is a Siegel modular form with respect to a congruence subgroup

Γ2(N) :=
{
γ ∈ Sp(4)(Z)|γ ≡

(
I2 0
0 I2

)
mod N

}
,

where the level N = N(l) is effectively computable.

This has applications towards Siegel modular forms F and the functions
(F |k on T (p)). In this case we can choose the level to be equal to p2.

Theorem 1.4. Let k be a positive even integer and let p be a prime number.
Let

(1.5) M :=
⌊k · [Γ2 : Γ2(N(p))]

10

⌋
.

Let F ∈ S2
k and let F |k on T (p) 6= 0. Then there exists a ν0 ≤M such that the

Taylor expansion is given by

(1.6) (F |k on T (p)) ( τ zz τ̃ ) =
∞∑

ν=ν0

χF |konT (p)
ν (τ, τ̃) z2ν

with χ
F |konT (p)
ν0 6= 0.

From this we obtain by involving the differential operators D2ν (see (2.20)
for a precise definition) the following application.

Corollary 1.5. Let F ∈ S2
k be a Siegel modular form of even weight k and

degree 2. Then F satisfies the p-Hecke duality relation if and only if for ν =
0, 1, . . . ,M the image of F with respect to D2ν is contained in the kernel of the
operator T (p)⊗ id− id⊗ T (p), i.e,

(1.7) (F |k on T (p)) = 0⇔
M⊕
ν=0

D2ν(F )|k+2ν

(
T (p)⊗ id− id⊗ T (p)

)
= 0.

Let pk,2ν(a, b) be the ultraspherical polynomial as defined in (2.19). Then

(1.8) D2ν(F )(τ, τ̃) =
∞∑

n,m=1

∑
r,r2<4nm

pk,2ν(r, nm) A[n, r,m] e2π i nτe2π imτ
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is an element of Sym2 (Sk+2ν). Let (fj)j be the primitive Hecke eigenbasis of
Sk+2ν then

(1.9) D2ν(F ) =

dimSk∑
i,j=1

αi,j fi ⊗ fj (αi,j ∈ C).

Let dk be the dimension of Sk. Let

L(τ, τ̃) =
∞∑

n,m=1

B(n,m) e2π in e2π im ∈ Sym2 (Sk+2ν) .

Then L = 0 if for all B(n,m) = 0 for n,m ≤ dk+2ν . Hence there are only
finitely many conditions to check if Dk,2ν(F )|k on T (p) ≡ 0. Combining this
with the condition (1.8) demonstrates that the p-Hecke duality condition is
actually a criteria with finitely many condition in praxis.

To generalize this work to Siegel modular forms with level structure seems to
be a non trivial task. Nevertheless by the work of M. Manickam, B. Ramakr-
ishnan and T.C. Vasudevan [13] which analyses the space of Saito-Kurokawa
lifts inside the whole space of Siegel modular forms and also examines the
micro structure (newforms, old forms) inside the Saito-Kurokawa space, there
is hope to extend our knowledge on this very interesting subject, which has
many applications in the field of modern number theory.

Acknowledgements

This paper was partly written during the authors stay at the MPIM in Bonn
(Germany) and at the GUtech in Muscat (Oman). It is a pleasure to thank the
MPIM and GUtech for its excellent working atmosphere and financial support.

2. Proofs of the results

Siegel modular forms of degree 2 can be described in terms of tensor prod-
ucts of elliptic modular forms. This is one of the main results of [5]. In this
paper we demonstrate that this viewpoint can be used to obtain strong results
on the distribution of certain local properties, enabling us to decide whether
or not a Siegel modular form is a Saito-Kurokawa lift. Hecke eigenforms which
are not lifts are expected to satisfy the generalized Ramanujan conjecture.

We recall some notation and facts about modular forms. For a positive inte-
ger n, elements γ = ( a bc d ) of the symplectic group GSpn(R) with positive
similitudes, act on the Siegel upper half-space Hn of degree n by γ(τ) =
(aτ + b) (cτ + d)−1. Here Spn denotes the symplectic group. For a positive
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integer k, denote by Snk the space of Siegel modular cusp forms of degree n
and weight k. Elements are holomorphic functions F on Hn which, for all
γ ∈ Γn := Spn(Z), satisfy the functional equation

(2.10) F (γ(τ)) = det(cτ + d)k F (τ).

Then F has a Fourier expansion

(2.11) F (τ) =
∑
T∈An

A(T ) e2πi tr(Tτ),

where T runs over the set of all half-integral positive definite matrices. We let
|k be the Petersson slash operator with the normalization:

(2.12) F |kγ(τ) := det(γ)h det(cτ + d)−k F (γ(τ)),

where γ ∈ GSpn(R) and h = k
2
. We also could put h = k − 1. Then in the

case n = 1 the eigenvalues and Fourier coefficients of primitive Hecke eigen-
forms coincide. But in this work we want to have the center of GSpn(R) to
act trivially. Then (2.10) is F |kγ = F for all γ ∈ Γn.

For convenience, we drop the index n = 1 in the case of elliptic modular
forms. The vector space Sk is equipped with an action of Hecke operators Tm,
indexed by non-negative integers m, defined by
(2.13)

Tmf(τ) := m1− k
2

∞∑
n=1

 ∑
d|(n,m)

dk−1a
(nm
d2

) qn, where f(τ) =
∞∑
n=1

a(n)qn.

with q = e2π iτ . These operators commute and are self-adjoint with respect to
the Petersson inner product

(2.14) 〈f, g〉 :=

∫
Γ\H

f(τ) g(τ) Im(τ)k−2dτ.

Hence, there exists a basis of simultaneous Hecke eigenforms. It is easy to see
that Hecke eigenforms can be normalized such that the first Fourier coefficient
is 1. Then the m-Fourier coefficient coincides with the m-th eigenvalue. A ba-
sis with this normalization property is denoted a basis of primitive newforms.
The eigenvalues determine a newform uniquely. Since the algebra of Hecke
operators at p is locally generated by the Hecke operators Tp for p prime, the
associated eigenvalues λ(p) of an eigenform uniquely determine the cusp form.
This is the multiplicity one property of the space Sk.
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A subset R of the set of primes is said to have Dirichlet density δ when the
limit

(2.15) lims 7→1+

∑
p∈R p

−s

log
(

1
s−1

)
exists and is equal to δ. Then we ask the following question.

Let f, g ∈ Sk two primitive newforms such that the eigenvalues for the
operators Tp with p outside R are equal. For which sets R does this imply

f = g?

Finite sets R have this property [14],[8]. This is the strong multiplicity one
theorem . In this case the set R has Dirichlet density 0. But much more
is known. Ramakrishnan [19] has proven that every set R with Dirichlet
density at most 1/8 satisfies the strong multiplicity one condition. Certain
improvements have also given by Rajan [17], [18]. Ramakrishnan’s proof is
based on analytic techniques. Rajan uses the Galois representation attached
to a modular forms and invokes the Chebotarev density theorem.

On the other hand, given a weight k, there exists a constant ck such that
for all non-zero f ∈ Sk there is at least one Fourier coefficient a(m) 6= 0 for
1 ≤ m ≤ ck. This follows from the finite-dimensionality of Sk. Non-trivial
bounds are known (see for example [15]).

In the case of Siegel modular forms of degree 2 it is convenient to identify the

index T =
(
n r

2
r
2
m

)
for the Fourier coefficients with the quadratic form [n, r,m].

2.1. Proofs of Theorem 1.1 and Theorem 1.2. As indicated in the intro-
duction, F ∈ S2

k is a Saito-Kurokawa lift if and only if F satisfies the Maass
relations (1.1). We have shown in [5] that this is equivalent to the requirement
that F satisfies the infinitely many duality relations attached to the classi-
cal Hecke operators T (l), (l ∈ N) acting on elliptic modular forms. This can
be further developed. Let j : Sl2(R) × Sl2(R) ↪→ Sp2(R) be the standard
imbedding

(2.16)

(
a b
c d

)
×
(
a′ b′

c′ d′

)
7→


a 0 b 0
0 a′ 0 b′

c 0 d 0
0 c′ 0 d′

 .

Identify j1 and j2 with the separate embeddings of Sl2(R) given by j1(γ) =
j(γ × I2) and j2(γ) = j(I2 × γ). If γ1, γ2 ∈ Γ2 ∈ GSp1(R) have the same
factor of similitude then it also makes sense to consider γ1 × γ2 as an element
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of GSp2(R). Let Mat(2,Z)l be the set of all integral 2 × 2 matrices with
determinant l. Then Mat(2,Z)l is the union of finitely many left cosets Γ γj,

where Γ = Sp1(Z). Let γ̃j := l−
1
2 γj, and define, for i = 1, 2,

ji (T (l)) (F ) :=
∑
j

F |kji(γ̃j).(2.17)

In [5] we have proven that F ∈ S2
k is a Saito-Kurokawa lift if and only if

(2.18) j1 (T (l)) (F ) = j2 (T (l)) (F ) for all l ∈ N.

Since the algebra of operators containing T (l) is generated by T (p), the prop-
erty (2.18) is equivalent to the p-Hecke duality j1 (T (p)) (F ) = j2 (T (p)) (F )
for all primes p. A straightforward calculation [6] translates this property into
an identity among Fourier coefficients. We have j1(T (p)(F )) = j2(T (p)(F )) if
and only if (1.2) is satisfied. Ultraspherical polynomials pk,2ν are defined as
follows. Let ν ∈ N0 and a and b be elements of a commutative ring. Then

(2.19) pk,2ν (a, b) :=
ν∑

µ=0

(−1)µ
(2ν)!

µ!(2ν − 2µ)!

(k + 2ν − µ− 2)!

(k + ν − 2)!
a2ν−2µ bµ.

Specializing the parameters, we have pk,0 (a, b) = 1 and pk,2ν (0, 0) = 0 for
ν ∈ N. Write (τ, z, τ̃) for the point ( τ zz τ̃ ) ∈ H2. Define differential operators

(2.20) Dk,2νF (τ, τ̃) := pk,2ν

(
1

2πi

∂

∂z
,

(
1

2πi

)2
∂

∂τ

∂

∂τ̃

)
F

∣∣∣∣∣
z=0

(τ, τ̃).

In the case ν = 0 we get the pullback F (τ, 0, τ̃) of F on H×H. Then we have
the imbedding

(2.21) Dk :=

b k
10
c⊕

ν=0

Dk,2ν : S2
k ↪→

b k
10
c⊕

ν=0

Sym2 (Sk+2ν) .

Here b∗c is the greatest integer less than or equal ∗. It follows from [5], that
F is a Saito-Kurokawa lift if and only if for all ν ∈ {0, 1, . . . b k

10
c} and for all

primes p we have

(2.22) (Tp ⊗ id) (Dk,2ν (F )) = (id⊗ Tp) (Dk,2ν (F )) .

For every ν let (f νi )i be a basis of primitive newforms in Sk+2ν . Let λνi (p)
be the eigenvalues of f νi with respect to the Hecke operator Tp and Dk,2νF =∑

i,j α
ν
i,j f

ν
i ⊗ f νj with ανi,j ∈ C. Let Rk,ν ⊆ P be any subset of the set of

primes of Z with the property that, if λνi (p) = λνj (p) for all primes p outside
Rk,ν , then i = j. This is for example fulfilled for the set given in [19].
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If (2.22) is satisfied for all primes p outside Rk,ν , then

(2.23) Dk,2νF =
∑
i

ανi,i f
ν
i ⊗ f νi .

Hence, F is a Saito-Kurokawa lift. Let Rk := ∩b
k
10
c

ν=0Rk,ν , where Rk,ν sat-
isfies the properties just described. As noted in the introduction of section
2, every set R of primes with Dirichlet density at most 1/8 satisfies the
properties of Rk,ν (not depending on k and ν), hence we can also choose
for Rk this R. Hence we obtain: F is a Saito-Kurokawa lift if and only if
j1(T (p))(F ) = j2(T (p))(F ) for all primes outside R. This proves Theorem
1.1. The eigenvalues of f νi , f

ν
j are the same for all 0 ≤ ν ≤ b k

10
c and primes

2 ≤ p ≤ dimSk+2b k
10
c. Hence Theorem 1.2 is obvious.

2.2. Properties of the Hecke duality operator. Let F ∈ S2
k and let p be

a prime number. Then the p-Hecke duality relation is given by

A [n, r, pm]− A [np, r,m] = pk−1

(
A

[
n

p
,
r

p
,m

]
− A

[
n,
r

p
,
m

p

]
,

)
where T = [n, r,m] runs through all positive definite binary quadratic forms
nx2+rxy+my2. This relation is satisfied if and only if j1T (p)(F ) = j2T (p)(F ).
This can be put together to the following useful definition.

Definition. Let k, l ∈ N. Let F be a holomorphic function on H which has
the property (F |kj1(γ1)) |kj2(γ2) = F for all γ1, γ2 ∈ Γ. Then we define the
Hecke duality operator |k on by

(2.24) F |k on T (l) := j1 (T (l)) (F )− j2 (T (l)) (F ).

By abuse of notation we say that |k on T (l) is an operator on the space
of modular forms. Let F ∈ S2

k . Then F ∈ S2
k satisfies the p-Hecke duality

property if and only if F is in the kernel of |k on T (p). At this point we
note that in general we can not assume that F |k on T (l) is a Siegel modular
form for some congruence subgroup of Γ2. This makes it somehow difficult to
determine the vanishing order with respect to the variable z. Here we assume
the standard parametrization of an element Z = ( τ zz τ̃ ) ∈ H2 in the Siegel upper
half-space of degree 2. Nevertheless we have the following surprising result.

Proposition 2.6. Let k, l ∈ N. Let k be even and F ∈ S2
k. Then

(2.25) F |k on T (l) = 0⇔ (F |k on T (l)) |k on T (l) = 0.
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Proof. Note that the iteration of the operators on T (l) is well-defined, since
H := F |k on T (l) is invariant with respect to |kj1(γ̃) and |kj2(γ̃) for γ ∈ Γ.

Let G be a holomorphic function on the Siegel upper half-space of degree 2.
Then G ≡ 0 if and only if Dk,2ν(G) ≡ 0 for one even positive integer k and all
ν ∈ N0. If F ∈ S2

k then we have

F |k on T (l) ≡ 0 ⇔
∞⊕
ν=0

Dk,2ν(F |k on T (l)) ≡ 0

⇔
∞⊕
ν=0

Dk,2ν(F )|k+2ν (T (l)⊗ id− id⊗ T (l)) ≡ 0.

Let
(
f

(ν)
i

)
i

be a Hecke eigenbasis of Sk+2ν with T (l) eigenvalues λ
(ν)
i (l). Let

Dk,2ν(F ) =
∑dimSk+2ν

i,j=1 α
(ν)
i,j f

(ν)
i ⊗ f

(ν)
j . Then

F |k on T (l) ≡ 0 ⇔
∞⊕
ν=0

dimSk+2ν∑
i,j=1

α
(ν)
i,j

(
λ

(ν)
i (l)− λ(ν)

j (l)
)
f

(ν)
i ⊗ f

(ν)
j ≡ 0

⇔ α
(ν)
i,j

(
λ

(ν)
i (l)− λ(ν)

j (l)
)

= 0

for all ν, i, j.

Now we put H := F |k on T (l). Then

H|k on T (l) ≡ 0 ⇔
∞⊕
ν=0

Dk,2ν(H)|k+2ν (T (l)⊗ id− id⊗ T (l)) ≡ 0

⇔
∞⊕
ν=0

dimSk+2ν∑
i,j=1

α
(ν)
i,j

(
λ

(ν)
i (l)− λ(ν)

j (l)
)
f

(ν)
i ⊗ f

(ν)
j

|k+2ν (T (l)⊗ id− id⊗ T (l)) ≡ 0

⇔
∞⊕
ν=0

dimSk+2ν∑
i,j=1

α
(ν)
i,j

(
λ

(ν)
i (l)− λ(ν)

j (l)
)2

f
(ν)
i ⊗ f

(ν)
j ≡ 0

�

Once the tool of invertible differential operators [5] is available the proof
is straightforward. The main point here is the existence of the property and
some consequences.
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One application one might be interested in is given by the following obser-
vation. Let l ∈ N be square-free and larger then one. Then it is not possible
to embed T (l) via j1 or j2 into Sp2(Q) or even GSp2(Q). This has been the
reason why we had to take roots in our definition of j1(T (l) and j1(T (l)). This
has the consequence that we can not assume in general that |k on T (l) maps a
Siegel modular form to a Siegel modular form (for some congruence subgroup).

Now let F ∈ S2
k and let p be a prime. Then we fix a disjoint Γ-left coset

decomposition of Γ
(

1 0
0 p

)
Γ with representatives (γi)i. Then we have

H := (F |k on T (p)) |k on T (p)

=
∑
i,j

F |kj1

((
p−1 0

0 p−1

)
γiγj

)
+ j2

((
p−1 0

0 p−1

)
γiγj

)
(2.26)

−2
∑
i,j

F |k (γi × γj) .

But this shows that H =
∑

t F |kgt is a finite sums with gt ∈ GSp2(Q). Each
summand is a Siegel modular form with respect to Γ2(Ni), for Ni ∈ N suitable.
We put N = maxiNi. Then H is a Siegel modular form with respect to Γ2(N).
It is obvious that N can be effectively computed. Hence this proves Theorem
1.3.

2.3. Vanishing orders.

Theorem 2.7. Let k be a positive even integer. Let F ∈ S2
k(Γ

2(N)) with
Taylor expansion

(2.27) F ( τ zz τ̃ ) =
∞∑
ν=0

χ2ν(τ, τ̃) z2ν .

Let Dk,2ν(F ) ∈ Sym2(Sk+2ν(Γ
2(N)) be the associated modular forms. If

(2.28) Dκk,2ν(F ) := ⊕κν=0Dk,2ν(F ) = 0,

where κ = bk·κ(N)
10
c with κ(N) the index of Γ2(N) in Γ2, then F = 0.

Proof. If h ∈ Γ2(N) then F |kh = F and if gi runs through a representative
system of Γ2(N)\Γ2 then F |kgi is well-defined. We put

(2.29) G :=

κ(N)∏
i=1

F |kgi ∈M2
k·κ(N)(Γ

2).

In [5], section 2 we have proven the following: let H ∈ S2
k(Γ

2) and m ∈ N0

then

(2.30)
(
χH2ν(τ, τ̃)

)m
ν

= 0 if and only if (Dk,2ν(τ, τ̃))mν=0 = 0.
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Moreover let m ≥ b k
10
c and let

(
χH2ν(τ, τ̃)

)m
ν

= 0 then H = 0. Hence we can
deduce that G = 0 if and only if all the Taylor coefficients

(2.31)
(
χG2ν(τ, τ̃

)b k·κ(N)
10
c

ν=0
= 0.

It is obvious that G = 0 if and only F = 0. Now we assume that (2.28) is
satisfied and deduce that G = 0, which implies the claim of the theorem. Let
Gi := F |kgi. Then

χG2n =
∑

(ni)i∈N,∑
i ni=n

κ(N)∏
i=1

χGi2ni
.

Let G1 = F then χG1
2l = 0 for 0 ≤ l ≤ bk·κ(N)

10
c. But this leads to χG2n = 0 for

0 ≤ n ≤ bk · κ(N)

10
c.

Hence we obtain G = 0. �

Proof of Theorem 1.4
Let G := F |k on T (p). We have shown that G 6= 0 if and only if H := G|k on
T (p) 6= 0. Moreover H is a Siegel modular form of degree 2 and weight k with
respect to the congruence group Γ2(N(p)). Therefore we can apply the result
of Theorem 2.7. Since the vanishing order of G with respect to the variable z
is not larger than the vanishing order of H with respect to the same variable
we have proven the theorem.
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[4] P. Garrett, B. Heim: Hecke duality of Ikeda lifts. Preprint.
[5] B. Heim: On the Spezialschar of Maass. ArXiv: 0801.1804v1 [math.NT].
[6] B. Heim: A strong symmetry of Eisenstein series. ArXiv: 0801.18104v1 [math.NT].
[7] T. Ikeda: On the lifting of elliptic cusp forms to Siegel cusp forms of degree 2n. Ann.

of Math. 154 no. 3 (2001), 641-681.
[8] H. Jacquet, J. Shalika: On Euler products and a classification of automorphic repre-

sentations, I and II. Amer. J. Math. 103 (1981), 499-558 and 777-815.
[9] N. Kurokawa: Examples of eigenvalues of Hecke operators on Siegel cusp forms of

degree two. Inventiones Math. 49 (1978), 149-165.
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