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MODULAR FORMS WITH RATIONAL PERIODS

Introduction

Classically, one of the main reasons for the importance of
modular forms in number theory was the fact that spaces of modular
forms are spanned by forms with rational Fourier coefficients and
that these coefficients are often arithmetically interesting
functions - one need only think of the numbers of representations
of integers by quadratic forms (coefficients of theta series),
the sums of powers of divisors of integers (coefficients of
Eisenstein series), and the Ramanujan tau-function (coefficients
of the discriminant function). The appearance of interesting
functions as Fourier coefficients, coupled with the finite
dimensionality of the spaces of modular forms, leads to non-
trivial identities and congruences with a wide range of applica-
tions (asymptotics of numbers of representations by quadratic forms,
partition identities, p-adic L-functions, connections with finite
simple groups and representations of Lie algebras, examples of
non-isometric isospectral Riemannian manifolds, coding theory, etc.).

On the other hand, spaces of modular forms have natural

rational structures other than those given by the rationality of

Fourier coefficients, namely those defined by the rationality

of periods. Specifically for f ¢ S2k = SZk(SLZ(z)) (we shall

for simplicity consideronly the full modular group in this paper,
th

and therefore suppress it in the notations) one defines* the n

® i
The usual definition of r, (f) as f; f(z)z"dz differs from our

definition by a factor iP*l; we have preferred a normalization
which is real for real f.



period of f by

(
rn(f) =z J FCit)t" at (0<n=w: = 2k-2);
0

then the results of Eichler and Shimura, reviewed in Chapter 1,
imply that there exist forms all of whose even or odd periods
are rational. More precisely, their work implies that each of

the @-vector spaces

+
8 o1 {f 682k]rn(f) €Q for 0<n=w, n even},

5;k {f'682k|rn(f) € Q for 0<n<w, n odd},

gives a rational structure on S (i.e. s;k ® €3 S,_ ). Thus

2k 2k

S2k has two natural rational structures besides the usual

rational structure

0

2miflz
%ok

= {fes, |f(z) = I a(f)e ,a(l) €@ for 221},
2=1

The purpose of this paper is to give examples of functions
and $_ whose periods are arithmetically

k 2k
interesting expressions—relating to Bernoulli numbers, to

belonging to S;

binary quadratic forms, to zeta functions of real quadratic
fields, to modular forms of half-integral weight, and to Hilbert
modular forms . It is to be hoped that the Q-structures coming
from rationality of periods will be a rich source of relations
between modular forms and arithmetic, just as the more familiar

Q-structure coming from rationality of Fourier coefficients has

been in the past.

The contents of the paper are as follows:



The Eichler-Shimura isomorphism and the periods of R

1.1 The Eichler-Shimura theorem
1.2 The periods of R

1.3 Bernoulli polynomials as period polynomials
1.4 Rankin's method

The periods of fk,D
2.1 Modular forms of half-integral weight

2.2 Sums of powers of reduced quadratic forms as period
polynomials

The periods of fk D. A
] b
2.4 Restrictions of Eisenstein series on Hilbert modular
groups

Hyperbolic periods

3.1 Periods around closed geodesics
+ -
3.2 The scalar product of fk,D LA and fk,D A
3.3 Applications to zeta functions of real quadratic fields

Complements

4.1 Reinterpretation of formulas and extension to non-cusp forms
4.2 Explicit description of the map A



Chapter 1. The Eichler-Shimura isomorphism and the periods of Rn

1.1 The Ejichler-Shimura theorem. In this section we review the

Eichler-Shimura theory in a fair amount of detail. The following

notations will be used here and throughout the paper.

\_acting in the usual way on tfhe_;x_gge; half-plane & ;/

I' = the full modular group PSLQ(Z); elements of T
will be denoted (2 b) rather than #(2 b);
cd c d
- 0 -1 - l -1 - 11
S = (1 0), U = (1 0), T = (0 l) €T
2 3 )
(thus S™ = U =1, U = TS);
¥ = PGL.(® = ruer, ¢ = 3+
2 ’ 017}
k = an integer 21, w = 2k - 23
M2k (resp. SZk) = space of modular (resp. cusp) forms

of weight 2k on T;

L(f,s) (feS,) L-series of f = analytic continuation
- o :

of [ a(1)2™%, where £(z) = | al)g* (q = &™%);
2=1 L=1

-n-1

r (f) = [Cf(i)tdt = n1(2m)7" "L(f,n*l) (Csn=w);

(f,g) = f f(z)g(z§y2k-2<b<dy = Petersson scalar product
¢
of £ and g; W
V(K) = v2k—2(K) = Sym (K®K) = {polynomials of degree

<=w 1in one variable with coefficients in K}, where K 1is any
subfield of € (the letter K will sometimes be omitted from the
notation if it is clear which field - usually € or @ - is

meant). The space V(K) 1is acted on by PGLZ(K) via



- LW aX+b . ¢ab
(Ply)(X) = (cX+d) P(cX+d) (P(X) € V, y = (c d)).
In particular, V(K) is stable under T for any K. The element
€ acts by (P|le)(X) = P(-X) and splits V up into the direct

+ -
sum of the spaces V and V of even and odd polynomials,

respectively. The action of T on V(K) extends to an action

~of the group algebra @QI[T]; we define

= = : 2
W= W, , * ker(1+S) N ker(1l+U+U°)
= (Pev| P+Pls = P+ PlUu+ PIU? = 0}.
From €Se = S and eUe = SU2S it follows that Wle = W,

so W=W @W (W = wnv¥). Explicitly, the relations

defining W are

w n n-1 w
aX €W = a =(-1) a » J e a =0 (0snsw),
n n w-n n=0 mn m
&) if m=2 n,
c =
mn
M-M if m=<n
w-n

Since these have rational coefficients, the space W is defined

over @, i.e. W(Q) @ K 3 W(K) = W(€) N V(K).
Q

If f£f(z) is a cusp form of weight 2k on T, we define

the period polynomial r(f) € V(€) by

iew W oW
r(£)(X) = I £(z)(%-2)"dz = ]

1T Wye (pyxYOR,
0 n n.n

0

We also set



n n-1
T (f) = § (-1) (”)r O, 276 = § D 2 M (£)XD,
O=n<w 0<n<w non

n even n odd

-~

so that »* ¢ V¥, p = ir' + r”. For Y = (: g) € I we have

(e (£)]y)(X) £(z)[aX+b-2(cX+d) 1V dz

"
[ —
o b
8

oo
I (-~cz+a)2kf(z)[X-~y'l(z)]w
0 (cz-a)

-1
Yy () W
= J f(z)(X-2z) dz,
7_1(0)

where the final integral is taken over the geodesic (semicircle

or vertical line) joining the cusps 7-1(0) and y-l(w). Hence

i 0 2 i 0 1
r(£)|(1+8) = I + f = 0, r(£)|(1+usu?) = I + J + I = 0,
0 Jie

so that r(f) Dbelongs to the subspace W. We thus have two maps

+

r :S2k ;k 2(C) The basic result of Eichler-Shimura is the
following:

Theorem (Eichler / Shimura) . The map r :S2k + W (e)

is an isomorphism. The map rt PSop * W' (e) is an isomorphism

onto WE(C), where w; cwt is a subspace of codimension 1,

defined over @, and not containing the element po(X) = X¥-1.
The injectivity of r implies that we can define two

. +
rational structures 52k on SZk by



85, (K0 = (r")"HV(KD) = {feS, |r (£) € K for O0=nsw, (-1 =21},

The assertion about the image of r® then implies that we have

isomorphisms

2k-2

+
(r ,po)

(xX), s;kcx) ® K —0, yt

2x-2 ¥

- r—
ﬁzk(K)——+ 1]

(the second map sends (f,c) to r+(f)(X) + cpo(X) €V). This

describes the rational structure $  completely - it is isomorphic
- . . +

to W - but does not quite describe % : we know only that

there is an exact sequence
00— s;k--r w+(Q)—-A> Q— 0

with a certain map A such that A(po) # 0. The theorem defines
A up to a non-zero constant but does not say what it is, i.e.
what extra relation is satisfied by even periods of cusp forms
besides the relationsdefining W. We will determine the missing
relation A in Chapter 4.

The proof of the Eichler-Shimura theorem will not be given

in this paper. Good expositions can be found in [190l or [ 41].

Examples. For 2 =k =5 and k = 7 one easily checks that

W 2 ° {0} and that W is spanned by po(x), in

2k~ 2k-2
accordance with the theorem and the fact that S2k ={0}. For

k = 6 the space SZk is one-dimensional, with generator



A = qn(l-qn)2u € 532. Hence there must exist constants w, with

1 + 10
10 X

p; = x® - 3x® + 3x* - x* and the space w;b by p, = ux? -
5 3

25X7 + 42X° - 25X + 4X, so we must have w:1r+(A) E'on + Qpla

oirT(a) € sz. In fact the periods of A are given by

A € 5?2. The space W -1 and

“1

is spanned by Py *

n | O0Oorl0 lor9 2o0r8 3o0or7 4or6 5

192 384 16 8
Tnl8) | FaT 04 TFou. T3 ey 40w qgre, 32

with suitable real constants w, = .0214460667... and
-1 + 192 16
s, . [2 = - 132 5.
w_ 0000482774800 (ef. [22]), so w, r (4) =31 Po *3Py°

w_r (A) = 192 p,.
The fact that there exist constants w, such that m;lb
has rational periods - obvious here because the dimension of

812 is one - generalizes in the following way to higher weights:

Theorem (Manin [ 11]). There is an action of the Hecke algebra

of S, on V, ,(Q) preserving the subspaces vi,vT,W, and

ep, (explicitly, p0|T£ =z 02k_1(2)p0, where °2k-l(£) =

§ dzk—l) and compatible with the period mappings r¥:s, — v,
dig -

2k

Corollary. If f € S2k is a Hecke eigenform, then there exist

two constants w, = w,(f) such that w;lrn(f) is an algebraic

=3

number for 0 =n =w, (-1) = 1. More precisely, if f is

a normalized Hecke eigenform and Kf the number field generated

by its coefficients, then there exist real numbers wt(f) such

that u. n(f)-lrn(f) € K

"for 0 =n = W, and these numbers
(-1) :

f




can be chosen so that w
(-1)

(f°>‘1rn(f°) = (u n(f)“lrn(fn"

n (-1)

for all ¢ € Aut K.
Manin's proof of the theorem is entirely explicit: he
writes rn(fsz) as a linear combination of periods rm(f)
(0O=m=<w, m = n(mod 2)) with integral coefficients given in
terms of certain continued fraction expansions. The theorem also
will be a consequence of the results of this paper (in particular,

of §1.4). Notice that the corollary implies that

; a’ tw, (fo)-lfo(z) belongs to %> (@) for any
0€GallK /@) 2k

a € K; these functions, as f ranges over a set of non-conjugate
normalized eigenforms and o over a basis of Kf/Q, give a
basis for S;k(Q).

We end with a result which follows from a theorem of
Rankin [ 12] that also implies a large part (indeed all, when
suitably generalized [22]) of the Eichler-Shimura theorem, even
though it antedates it by several years. This theorem and its

corollary will play a central role in the paper.

Theorem. The numbers w,(f), w_(f) (f €S, ~a normalized Hecke

eigenform) can be chosen in such a way that w,(flw_(f) = (f,f).

Proof. The theorem of Rankin just mentioned is the identity

= (-n"
(£,65,821-n’ ST “20-1(8) T (6)
for % <ns<k-=-2 and f ¢ S2k a normalized Hecke eigenform,

where



= _ _2n . )
Gzn(z) = ot % ozn_l(z)q (n22)
L=1
(B = 2n-th Bernoulli number) is the normalized Eisenstein

2n
series of weight 2n. (The proof of this identity will be

reviewed in §1.4.) Since GznGZk—Zn has rational coefficients,

the left-hand side equals af(f,f) for some a. € K with

f f
- o, - ~m~1
afo = (ag)"; moreover ag # 0 (r (f) = m!(2m) L(f,m+1) # 0
for m =2 k because the Euler product for L(f,m+1) converges).

It follows that B, = w, (Hw_(£)/(£,f) 1is an element of K;
satisfying B; =B o for all o € Gal(Kf/Q), and dividing

f
w,(f) or w_(f) by Bg gives a new choice having the desired

property.

Corcollary. The spaces 5+ and 52k

2k
the Petersson scalar product, i.e.

are dual with respect to

¥

Fe% . o (F,6) € @ for all G ¢ 8oy

2k

. t .
Proof. Since 52k are rational structures on the same space

S, and ( , ) 1is non-degenerate, it suffices to show that
(F,6) is rational for F ¢ s;k’ G € s;k' By the remark

following Manin's theorem we have

P(z) = § § oau, (£%72:%2), 6tz) = § § e (£ % 2)
(flg £+ [f]czx f-

for some numbers af, Bf € Kf, where the outer sums run over a
set of representatives f of nonconjugate normalized Hecke

eigenforms and the inner sums over o € Gal(Kf/Q). Since the



11

functions f° are pairwise orthogonal and Kf is totally real,

we have
(7,0 = I ] af8du, (£ _(£7)7Hg9,£%)
[f] o -
= ] Tr (a.B.) € Q.
[(f1 KL
1.2 The periods of Rn
We have just seen that a function in S2k whose scalar

products with elements of SZk are rational itself belongs to
- set of . .
Sék. Clearly a spanning) such functions is given by
{RnIO =n =w, (-»H)" = +1}, where Rn is the cusp form character-
ized by

rn(f) = (f,Rn) (vf ESZk).

Therefore the periods rm(Rn) for m # n (mod 2) are rational
numbers. Our object in this section is to compute these numbers,
thus obtaining an explicit description of the structure of the

spaces S;k and the dudiity between them.

Theorem 1. Let m and n be integers of opposite parity,

0 =myn <w. Then

(-l)kz ww!r (R)
m n
n-m-1 n+m-1 n+m+l
= (-1) 2 n‘m!Bn + (-1) 2 nimg~ + (-1) nim!g_ ~
+ 1)m-g-1"" ' + 1)L nl__va__!ﬁisneg (5. +(-1)K )
m+l
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where m = w - m, n=w- n,

B .

+ .
T if nz -1, nodd,
Bh =
0 otherwise,
_ _th . . .
(Bn = n Bernoulli number = coefficient of o7 in % ), and
) e -1 .

§:: is the Kronecker delta symbol.

13

Proof. The numbers rm(Rn) have the symmetry properties

rm(Rn) (Rn,Rm) = (Rm,Rn) rn(Rm),

n (R ) L% (R, PRy = DX (R,

all of which are shared by the formula given in the theorem.
Hence it is sufficient to prove the theorem under the restriction
D<sm<¢< n=< % w =k - 1; note that under these restrictions

the U4th, 6th, 7th and 8th terms of the formula in Theorem 1
always vanish, while the 3rd is non-zero only for m = k-2,
n=k-1 and the 5th only for m = 0. We will use the
following representation of Rn as an infinite series, due to

Henri Cohen:

Lemma (Cohen [3]). For 0 < n < w, Rn(z) is given by

R(z) = et §  (az+p) M (ezear ML,
n N ab
( ) €T
c d
where ¢ = {K+12-w(w) .

k,n n



13

Proof. Except for details of convergence, this formula is easily

checked:

-n-1
(£, } z°°%|,.MN
YEr 2k

n
Hh
~
]
~

™
3
1
-
<
N
x
I

rw

j f(x+iy)(x+iy-21y)-n-ldx)dy

[]]
[ S
<
g
%
T

w L

= j yw(?-l,r-i f(n)(2iy))dy (Cauchy's
0 n theorem)

2mi ®
= ( ) I f(21y)dy (n-fold integra-

n! (w-n)' 0 tion by parts)
_ a=W.n+l w _ —w.-g—l w
= 2 i (n)ﬂ rw_n(f) =271 (n)ﬂ rn(f).

-n-1, 2. .2-~n-1

To justify the steps, one notes that E (a2+b2) (c“+d%)
ad-be=1

converges for 0 < n < w and therefore the series in the lemma
converges uniformly absolutely on sets of the form y2 2 ¢ +
2
sz (cl’c2>0).
We now prove the theorem, assuming 0 < m< n < k - 1. By

the lemma, we have

m

(et 1 t
r (R) = (- > )dt.
k nm n JO 2 ad-be=1 (ai't:+b)n+1(ci‘cﬂi)ﬁr+1

The contribution from the terms with bd = 0, i.e.

" ™

Jo(zgx G T L | gz (niern)Pl

at,
(-it)“*i)

n-m-1 n+m-1

~o 2 ~e
i ck n((‘l) n!m!Bn_m + (-1) n!m!B?{_m),
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as one sees easily using Lipschitz' formula

.Vl .
I (z+2) v-1 = izzﬂ%l——— Y e2n1£z (vz21l, z €¢¥),
LEZ v: 221
the integral representation
-s ® .s-1 ) —2mAt
(2m) "T(s)g(s-v) = I t ) 2’ e )dt (s>1+v),
0 21
and the identity
z(n) = (--l)n/2 2n—lvn8n_1 (n2>2 even).

We have to show that the remaining terms give zero unless m = 0
or m+n=w - 1.

The integral over the terms with bd # 0 we write as

1 lim S with
2 €
e-ro

( ) dt.
e ad-be=1 (ait+b)™(cit+d

bd#0

l/E 'tm
j i+l

Here we may interchange the order of summation and integration,
since the series converges uniformly absolutely. We also
replace a, d and t by their negatives in the terms with

bd < 0, getting

l/¢ - m
s_ = (I +I ) ot o
€ ad-becl Je -1/¢ (ait+b)" *(eit+d)™
bd>0
We write fi/e + :ile = [T =I5 - :i/e - I;/e and observe
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that the (convergent) integral from <« to - is zero by the
residue theorem, because the integrand has only one pole if

ac = 0, while if ac # 0 there are two poles but both lie on
the same side of the real axis because of bd > 0 and ad -bc =1.
In the integrals from 1/¢e to <« and from - to -1/€ we

replaée Tt by ‘1/t. This gives

S 2 - E I
€ ad-be=1 J-¢ (ait+b)n+l(cit+d)
bd>0

FFI 9t

~a

€ il
) ad-£c=1 f~e ﬁ+{ ReT 9t-
ac>0 (ait+b) (cit+d)

Since -ad - bec =1, we have ac+bd = adebc 2 0. Hence bd 2 0
in the second sum, s0 we can write Se =z S; + S; + S:' with

~

, € tm

S' = - E S - dt

€ ad-be=1l J-e (ait+b)’ﬁ+1(ci't+d)n+l ’
ac>0,bd=0

s" o= E I,e t"dt

€ ad-bec=1 - (aJ'.tﬂ:o)n'P‘]'(cit+d)n;1
~aec=0,bd>0

gm - (Ie _J_:md‘t + Je tmd‘t )

t . ).

€ ad-Be=1V —e (ait+b) T(cit+d) L )¢ (ait+b) T (eit+a)PTT
bd>0 -

The suﬁf“Sé~»we.write(separating the cases b =0 and d = 0,

and replacing t by zet) as
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v . o.ntl Fen-1f 5 (Y P01,
221 /-1 (L+itet)?

~ « 1 n-m-1
+ 2 i—n+1 en-mrl[% Z I t dt+1]'
2=1 J-1 (1+iget)”

The expressions in square brackets are Riemann sums for the

integrals
J‘” J'l t?’n—n-l o 1 tn-m—l
——— dt dx and f I — T dt dx
0 /o1 (1+ixt) T 0 1.1 (rixe)™ ’

respectively. Hence the limit as € =+ 0 of the first term is

zero unless ™M = n+l, i.e. m=k-2, n=k-1, when it
equals
k (=l 1 ik
2 i —X dt dx = k-1
}o }-1 (1+ixt) -
. . -n+1l . .
and similarly the second term gives 27i /n if m=n-1

and 0 otherwise. This gives the third and fourth terms of the
formula in Theorem 1. A similar argument shows that (under our

assumptions on m and n) 1lip S" = 0. Finally, the first term
exl "¢

of Sg' equals

1 m
m 1 t dt
2 € ) “j?‘ﬁr"%ﬁ ) I ]
b,a50  b" M % e Sl (ueiet/paritet) ™ aritet) T 1)’
(b,d)=1 d

where in the inner sum (a,c) denotes a fixed solution of
ad - be = 1. Again the expression in square brackets is a
Riemann sum with a finite limit as € + 0, so this whole

expression tends to 0 wunless m = 0, in which case it equals
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1

-n-1.-n-1 [~ dt _ Z(n+1)L(n+l) 4w
2 X b n d J J dx =
7K e T
D0 —e 11 (1+ixt) ¢
s -
k. w ntl iR B~
= 2 . S:_]:u_o c . (—l) 2 nn .
w! k,n (w+153w+1

The second term in S;' always gives 0 since m < w. This

completes the proof of Theorem 1.

'AS a numerical check, one can verify that the right-hand
side of the formula in Theorem 1 is zero for the 13 pairs (m,n)

with 0 =m<n=k-1=<4U4, m#Zn (mod 2), while for k = 6
and the 9 pairs with 0 < m< n = 5 the values rm(Rn) equal
rm(A)rn(A)/m+(A)w_(A) with the values rm(A) given in 1.1

(note that dim 812 = 1 implies Rn = (A,A)-lrn(A)A in this case).

1.3 Bernoulli polyﬁomials as period polynomials

By an elementary calculation, the result of the last
section can be rephrased as a formula for the odd or even

t period polynomial of the cusp form Rn:

Theorem 1'. The odd period polynomial of R~ for n even,

0 =ns=w, 1is given by

k+D W
2 =W, - - 1 0 X~ o ,1,.. 1 .0
(-1)  “e27%erT(R I(X) = ~=23 B (X) -5y Bn+l(x)-+E+l 1 (X)

W o 1
) ShE =
+?{*1 Bfr~{+1(x)

1 wil m

) (Gnao-&ﬁio). IW+Ij#w+1 mZ-l Bnfi"

— e

) ) T e e .-
We would like to thank R. Sczech, who suggested the use of

Riemann sums in evaluating 118 S
£~ €
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The even period polynomial of R, for n odd, 0 < nc<w, is

given by
-1
k+9———- W |
- 2 . —wO + - -—]-'-._ 0 4 -.-X—-. 0 l —-}- 0
(-1) 277er (R ) (X) =7 Be1 X0 557 By (R +'ﬁ+1 B., (X
W P By
X 0 1, _2k n+l n+l

2k n+l T+l

Here ™, ™, B, have the same meaning as in Theorem 1, po(X) =

Xw-l, and BE(X) is the n-th Bernoulli polynomial without

its Bl—term:

B%(x) = (Mp,.x+1 - (Mg, x"1,
n i1 0<i<n 1

0
1 i even

w et s

e o

The first equation needs a bit of explanation if n = 0

or n = wW, since then not all terms on the right are in V2k_2.

If, say, n equals w, then the first term - A BO (X) has
7K1 wtl “wtl
a leading coefficient -~ %=1 of too large a degree for an
w
element of V, while-ihe second term - éTT Bg+l(§) contains
a negative power - %f‘T‘ These two terms are cancelled, however,
by the end terms m = -1 and m = w+1l of the following sum.

Similar remarks apply if n = 0.
In this section we will check directly that the expressions

on the right of the formulas in Theorem 1' belong to W, at

t

the same time getting a better understanding for the structure
of period polynomials.

Assume first that 0 < n < w, to avoid the difficulties with

-1 x2k-1

the powers X 7, just mentioned. Since we know that
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+
po(X) € W, we must check that the polynomial

e [B L) 7 X wp0 (-:-L-)]-F———[B-v (x)::x"&g (

n+1 n+l X < ne (%)

b Lo

belongs tbf'w*} where (-1)" = 31. Since f£(X)r> X7 £(3 1) is

the action of €S on V (notations as in §i.1) and Bg+l’
’ . . N s ) . * +
Bﬁ+1 are eigenfunctions of € with eigenvalue -1H" 1. 1,

this polynomial can be rewritten as

1 1] 1
(+ —= B + — B. .1l (1-8)
ntl "n+l | ¥+l nfl‘I ’

from which it is clear  (since 82 = 1) that it is

annihilated by 1 + S. We must check that it is annihilated

by 1+ U+ n? or (equivalently) that it is in the image of

1l - U,
Let .
: n+l o
fexy = AzB T 0 oy v A BL (0
n+ nt’ e+l +1

R 0 . . n+l on
Thewpolynomlaiw~Bn41(X) differs by only the monomial =5 X
from the usual Bernoulli polynomial B (X), whose most

n+l
important property (the one that led Bernoulli to introduce it) is

. - : s X - R n
Bn+1(x+l) - Bn+1(X) = (n+l)X .
Hence

(8, (x>-+“;1 X1 - [B_,, (X)-Eil(x n"3

0 0
BreafX) = By (X-1)

L XM x-DM,

so (-1)"*1

£f(X) - £(X-1) -——7———[X +(X-1) ]'*~[X +(X-l) 1.
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Combining this with the identity

®-D" = DD = DM Nyt
gives
n+l ~ ~ n
fla-t™h = SR Zxn o Lymytly, =Xt e 2Pyt
= gla-uh,

where g(X) = %(x"-+(-1)“+1x“). The fact that our original

polynomial f|(1-S) is in Im(1-U) is now a formal calculation:

1

£](1-5) £](1-U) + £|(1-T ) |U

£1(1-w) + gja-uU"hHju = (g |-V

This proves what we wanted. Furthermore, the last calculation

generalizes immediately to give

Theorem 2. Let f,g be two polynomials in V satisfying the

identity

1

(%) fla-T™h = gla-v?

).

Then f|(1-S) € W. Conversely, given any h € W there exist

f, g € V satisfying (*) and £|(1-S) = h; the element ¢

can be chosen to satisfy g|S = -g.

Proof. The first statement follows from the formal calculation

just given, which shows that

£](1-8) = (£f-g)|(1-U) € Im(1-S) N Im(1-U) = W.
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For the second, suppose h ¢ W and set f = % h, g = % hl(Uz-U).
Then

fa-r™h = zna-st™h = gnaw’ = -1y,

g -u™h = Injwlou = - Ly,

and clearly f|(1-8) = h. The last statement follows if we note
that we can subtract from f and g any polynomial invariant
under S without changing fl(l-S) = h or affecting the relation
(*); applying this remark with the polynomial % gl (1+S) 1leads
to f and g with g|S = -g.

Notice that the essential element of the pair (f,g) in
Theorem 2 is g, since f is determined by g wup to a constant
(the kernel of 1 - T-1 consists of periodic polynomials, hence
constants) and changing f by a constant changes h = f‘(l—S)

only by a multiple of pO(X) = X"

- 1, the "trivial" element of
w2k_2. Conversely, the only condition on g in order that there
should be an f € V satisfying (*) is that g](l-U_l) have
degree <w. If we assume - as we may by the last statement of the
theorem - that g|S = -g, +then gI(l-UTl) = g|(1+T-1), which

has the same degree as g. Hence the requirements on g become:

i) g‘S = -g, ii) deg(g) < w, and we have a map from the set

of such g to W/<p0> defined by

1 1

g £[(1-8), where f£|(1-T"7) = g|(1+T 7).

A basis for polynomials g satisfying i) and ii) is clearly

given by (g = %(Xn-*(-l)n+lxn) | 0<n<w}, and the calculations
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preceding Theorem 2 show that the corresponding elements of
W/<p0> are just the period polynomials of the Rn’ 0 < n<w,

It remains to discuss the anomalous cases n = 0O,w. By
symmetry we may suppose that n = 0. The formula for

(-l)k2-wr-(R0)(X) can be written

0 1
[‘Bl(X) + ;ﬁ_—i- W"’ (X)] '(1 S) - z—-T)—‘:I C (X)
where w
2k-1 m
c, (X) = 8 X {k=20).
The fi 0 1 0 . .
e first term (.B1 M Bw+1)|(l—S) is not a polynomial,

but it is annihilated by 1 + S and 1 + U + 02 by the same

calculation as for 0 < n < w. The function ck(x) is also
clearly annihilated by 1 + S (since it is odd and symmetric),
so to check that the whole expression is in W, , we must

check that Cye is annihilated by 1 + U + U2, i.e.

W X=1 1% 1 -
ck(X) + X Cy —?~)+ (X-1) ck(T:?) =0 ‘k>’0%

The numbersBn (n2 ~1) are the Laurent coefficients of

% coth % around t = 0, so we have the generating series

b 2k-2  _ mmtn _ 1 t Xt
kgo ck(X)t = nz-l Bman t = 3 coth 5 coth 5.
Hence
1 [e, (X) + X7X° LR+ (x-1)2 k(Ili)]t2k'2
k=0 -
. 1 t Xt Xt (X-1)t (X-1)t
= u[coth 5 coth -T'+ coth‘7r co“"—i__ + coth = coth

1
U’

and the assertion follows.

-t
'T]
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1.4 - Rankin's method

By the result of Manin quoted in §1.1, we know that the Hecke
operators Tk (£ 21) preserve 5;k(Q) and hence that the numbers
rm(Ranz) (mZ n (mod 2)) are rational. Knowing these numbers
will give an explicit description of the spaces szk (and

hence also of S, ) as modules over the Hecke algebra. By the

2k
self-adjointness of Tz, we have
rm(Rang) = (Ranl,Rm) = (Rm’Ranz)
= (leTz’Tn) = rn(RmITz)’

i.e. the.numbers rm(Rn|T2) ,arq symmetric in m and n. To
compute .them, we.could use the same method as in the case

2 = 1, 'simply noting that “Rnlrz' is given by a formula like
that in the lemma iﬁ §1.2 but with the sum taken over matrices

(2 g) of determinant &. The calculation then proceeds much as
before exéépt:fﬁat there are extra fefmé coming from the fact
that ad - be = £ no longer implies that ad°bc 2 0 (as for

£ =1, and_fhe terms with ad+bec < 6 must be treated separately.
We prefer, however, to give a completely different proof, based
on Rankin's method, since this‘ﬁill also permit the introduction
of several ideas used in the sequel. |

We begin with a property which is a formal consequence of the

. eas oL ' +
definitions of the rational structures $

0
2k and s?k'

Proposition. Let n be an integer satisfying 0 s ns=sw

and
let P :S2k -+ SZk be the linear map defined by the property:
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p (£) = r (f)

p, Mmaps ]

if f is a normalized Hecke eigenform. Then
0
2

f
n
to & where (-1) = 21.

N D

k k?

Proof. This is essentially a restatement of Manin's theoremn,

since by linearity we see that
coefficient of q¢* in p (£) = r (£]T)) (¢ = 1,2,3,...)

for any f ¢ S and for f € § the numbers on the right

2k’

are all rational. More explicitly, an arbitrary function in

Sék can be written as | af°m+(f)-lf(z), where the sum is over
£ +

all normalized Hecke eigenforms and the ae are algebraic

numbers satisfyin (ag)? = o for all o € Gal(§/Q); the
g £ p

f
image of such an element under P will be ] Bff(z) with
f
Bf(= af-rn(f)/wi(f)) € Q, (Bf)0 =B e and this is the typical
f

form of an element in Sgk.

. t
By the identity above, the number rn(leTz) is the &P

Fourier coefficient of pn(Rm). From the definition of R_, we

have the eigenfunction expansion

1

R (z) = ] »w (£)-(f,£) "f(2),

f

where as usual ] denotes a sum over normalized Hecke eigen-
f
forms and (f,f) is the Petersson scalar product. Hence

) -1
o (R = [ r (Hr ()(£,6)7'f,

f

i.e. pn(Rm) is the cusp form characterized by the property

(f,pn(Rm)) =z rm(f)rn(f) (f = normalized Hecke eigenform).
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If we can construct a modular form with this property, then its
Fourier coefficients will be the numbers we are looking for.
To construct this function, we use Rankin's identitv -

already quoted and used in§l.l -

P ¢]
) = ("'1)

(f,G G ;m sz_z(f)rzn_l(f),

2n 2k-2n

where f is a Hecke eigenform and k/2< n < k - 2. The proof
is simple: for n = 2 we have

B
G, (z) = - 2 ) (cz+d)™?™  (I_ = <T> ¢T)
2n 4n b ®
2 Dxr\r
c d )

and therefore

_ un - =,4y~2n 2k dxd
B, 5:82nCok-2n" * I f) 1 ez, oy T

2n I\ ab y
(C d)e roo\ r
- ) 2k dxd
= Ip\x i ) flyz) G, , yZ) Imlyz) —;71
(chTQT
. 2k dxd
: j £(z) By pn2) ¥ gF
T \¥¢ y
® % Yy 2k-2
= I al@)o,, . _(R)e” Y 2574 gy
Io N 2k-2n-1
Jx-2)r 5 3B on (W)
vy 2R-1 g2y g 2k-1
= 2D panyh Lig, 2x-1)L(E, 200,
(4m)
where {az} are the Fourier coefficients of f, L(f,s) =
- -]
) a(2)2™% its L-series, and the last line of the calculation

1



26

(the only one that requires f +to be an eigenform) follows
from the properties of the Euler product of L(f,s). The

conditions n > % and n < k - 2 are needed to make the series

absolutely convergent and to make G a modular form,

2k-2n
respectively. The relations rn(f) = n!(Zm'n-lL(f,n+l) and
Z(2n) = (_1)n‘132n(2“)2“/2(2n)3 now complete the proof.
Rankin's identity actually remains true for n = %
(although the above proof breaks down), and then by the symmetry

property r_ = (-1)k rm for all 2 = n= k - 2; it is true

W
also for n =1 or n = k'- 1 if the function G2n§2k—2n is
replaced by 6,6y » * FHI(RETY Ogk-z» ¥here C; = - g *

Zol(l)qz. (The function 62 is not a-modular form, but instead

satisfies
az+b - 2 12¢
Gz(m) = (cz+d) G2(Z) + m (cz+d)

ab . . . 1
for (c d) € T, from which it easily follows that G2f'+ﬁFIH £!

is a modular form of weight h + 2 for any £ ¢ Mh(r).) We
will need a further generalization of Rankin's identity, proved
in [22] and which we shall quote without proof. To state it,
we need certain differential operators Fm which were

introduced by Cohen [ 21].

(a,b)
m

For meZ,, and a, b ¢ R, let F be the (-1)"-

0
symmetric bilinear form on smooth functions defined by

F(a,b)
m

m-i my r(a+m) Ir'(b+m) (i) (m-1)

Nt

i

e~

0

where f(n) denotes the nth derivative of f. Then Cohen shows:
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i) 1if f,g are modular forms of weights a and b on
some group [' ¢ PSLZ(IR), then Fm(f,g) i= F;a’b)(f,g) is a
modular form of weight a + b + 2m on T' and is a cusp form

if m> ¢ (FO(f,g) is simply the product fg);

ii) if f 1is a modular form of weight a on some group
rr<r, then

(a,2)

F (£,6.) := P2 (fa )+ B (org) ™1 glmtD)
m 2 m 2

2(a+m)
is a modular form of weight a + 2 + 2m on TI' and a cusp

form if m > 03

‘s . w(2,2) m, m! .v=m=1 ,(m+1)
is a modular form of weicht 4+2m on T and a cusp form if

m>0 .

The generalization of Rankin's identity proved in [22 is then
that the scalar product of a Hecke eigenform f with a function
Fv(G l,Gznz) of the same weight is up to a simple factor the
product of two periods of f (Rankin's identity was the case

V = 0). More precisely, if m and n are integers of opposite

parity with 0= m< n= k - 1, then the function

k+n-m+1
- 2 2k-1 (w-m)
xm,n = (-1 2 Wi F (k- m-n-1Cn-m+1’
‘g k_ Pnt1 Boen-1 o
m,0 Box N+l 2k-n-1 "2k

has the property
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(f,X ) = rm(f)rn(f)

2K Also, xm,n is

itself a cusp form (this is the reason for subtracting a multiple

for all normalized Hecke eigenforms f € S

of G2k when m = 0, which does not affect the scalar product
with f € 82k but makes XO,n vanish at infinity) and has

rational Fourier coefficients (by the definitions of G2r and
of the operators Pm). By the remarks at the beginning of this

section, we must have Xm,n = pn(Rm) = pm(RnL This proves:

Theorem 3. For 0<m<n=<k-1, mZ n (mod 2), let

Xm.n € 5gk be the function defined above and let g be a
2
positive integer. Then rm(Rang) is the 2™ Fourier

coefficient of X .
——— = “m,n

Looking at the explicit formulas for the Fourier coefficients

of Pm(G2nl’G2n2)' we easily see that the case & = 1 of this
gives Theorem 1, while for £ > 1 one obtains equally explicit

formulas. In particular, for m =0, 3 =n=k -1 odd

(i.e. the case of Rankin's identity) we obtain

+1
k + 024
2 ,-2k+1l
(-1) 2”2 (R |Ty)
B B~
= coefficient of q° in G_..G~ + X _ntl n+l g
n+l n+l sz n+l Nel 2k
2-1

B~ B._.
n+l n+l -

) =
=] 3(n+g

h

+ K Pney PRy Oar (R)
B, nfl ~ 92k-1
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for 2% 2 1, where D =w-n asin §1.2. The formulas for
rm(RnJ?z)' are similar, but the numbers ox(h)g (2-h) are
mu;tiglied by a coefficient which is an homogeneous polynomial
of wéiéht m in z' and h with rational coefficients.
rﬂptice:that our explicit formula for Xm,n proves that
pn(gm? pgstrational Fourier coefficients and hence implies
the proposition at,the-beginning of this section and (working
backwardé) Manin's thedrem on the invariance of N under

2k
the Hecke algebra.
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Chapter 2. The periods of f

k,D

2.1 Modular forms of half-integral weight

Let D> 0 be a discriminant (i.e. an integer congruent to

0 or 1 modulo 4) and k a positive even integer. The function

k-l
2 2 K
. 2 .1 -
fk,D(Z) = %L : ) (az"+bz+c) ,
k-1 b ~#ac=D

where the sum is over all triples (a,b,c) ¢ 23 with b2-uac = D,

belongs to S This function was introduced in [19] (Appendix

2k°
2 ) 1in connection with the Doi-Naganuma lifting from elliptic
to Hilbert modular forms, and shown in [ 81, [ 71 to be the
D-th Fourier coefficient of the holomorphic kernel function for
the Shimura-Shintani correspondence between modular forms of
integral and half-integral weight. In this section we will use

this property of f to show that it belongs to S;k and

k,D
compute its even periods.

To state the result, we will need the number-theoretical
function H, (D) defined by H. Cohen [ 2]. This is defined
either as the D-th Fourier coefficient of an appropriate
Eisenstein series of weight k + % or as a special value of a
Dirichlet L-series: if D is a fundamental discriminant (i.e.
either 1 or the discriminant of a real quadratic fie'd), then

Hk(D) = L(l-k,(?)), while if D is an arbitrary discriminant

we write D as Dof2 with D0 fundamental and f € IN and set

D 4 D
- Oyy . 0y4k-1 f
H(k,D) = L(1-k,(-7)) d}f wld)(z)a e, ().
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The polynomials p0(= X"-1) and Bg have the same meaning as

in Theorem 1. Then we have:

Theorem 4. Let k and D be positive integers, k even. Then

R B
+ -
P, DX =] (axiebxeed T 4 Ko m (mip (0
’ a,b,cex 2k

a<0<c

bzeuac=D
1,.0 w0, -1 . _ 2
£(B, (mX) -X"B (mX"7)) if D =m’,

0 if D # square.

e . +
In particular, fk,D belongs to &, .

Notice that the sum on the right is finite, since
0 > ac > -D/4, |b]| < /D. Notice, too, that the theorem is
vacuous if D is not a discriminant, i.e. if D= 2 or 3

(mod %), because then f 'Hk(D) and the sum in the theorem

k,D’
all vanish. o
If k :,2 or 4, ‘then Sox © {0} and consequently
fk,D = 0. Rgstricting to thé case that D is the discriminant
of a real quadpatic field,'and computing the coefficient of XV

on the right of Theorem 4, we obtain

Corollary. Let K be a real quadratic field, D its discriminant,

;k(s)' the Dedekind zeta-function of k. Then cK(-l) and

;K(—3) are given by the formula
B. 2
- 2 D-b -
CK(l-"k) = T z ok-l(—_lr-) (k = 2,’4),'
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where the sum is over integers b satisfying |b] < /D,

b= D(mod 2) and o) _;(n) as usual denotes { k-1,
' cin

>0
This identity was proved by Siegel [13] (in a somewhat

different form; for the above formula see [ 1] or [20]) by
studying the restriction to the diagonal of the Eisenstein series
of weight k for the Hilbert modular group of K; the relation
of this method to ours will be discussed briefly in §2.4.

We observe that the Eichler-Shimura theorem implies that
the 0th period can be expressed in terms of the periods r
(0<n<w, n even). Hence Theorem 4 implies the existence of

a formula of the type

2 2
- 2 D-b
t(l-k) = ] 'X.-o gk,j(b sDI0y 123 (==

for every k, not just k = 2 or 4, where Z has the same
b

meaning as in the Corollary and the are universal homo-

%k, 3
geneous polynomials of degree 3j in two variables. For

instance, for k = 6 we have

2 2
- 691 D-b D-
CK("S) = IX) [m c_( m ) + 3—6'4(91) —D)O (=1
or
SR (18335 Ts T“) - 521 -1up?pep?)a (B2 %3,

However, to give canonical and explicit formulas of this type
for general k we need to have a description of the map A

discussed in§l.1; this will be given in Chapter 4.
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Proof of Theorem 4, Let S 1 denote the space of cusp forms of

ktz
2
weight k + % on ro(u) whose nth Fourier coefficients for

nZ 0, 1 (md 4) vanish, Then the following facts are known:

i) the map 31' which sends J eln)q" to
k-1 2 nal
J €7 a7 eln /dz))qn maps S 4 to S2k([6 ] 3 the map Sl
nzl din k+§
is a slight modification of the 1ifting map defined by Shimura

in [16]);

ii) the function

k/2 _3k-1 7

a(z,1) = (-DF2, D(z)e"’“iDT (z, 1 €H)
D>0

fk,

belongs to § ; as a function of 1 ({81, Th. 2) and is the

k"'-z'

holomorphic kernel function of S, (1, i.e.

(5,8(2) = <g,0,(-Z,:)> = % J g(r) 2, (-z,1) V32 qu av
ro(u)\x
(g €s 10 T F utiv €¥).
k2
It follows that Qk is also the holomorphic kernel function for
the adjoint map S$*:S5,, + S 3 1in particular
1 "2k 1
k2
3 —
_ -3k+1l o - 2wiD _ 2m7iDT
(-1)° 2 Sj(R) = D§0<Rn, f,,0”> © = DZO (e p) e

is in S 1+ So to prove the theorem we have to identify the

k3

function Si(Rn). By definition, it is the unique cusp form in
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S

k*% satisfying
*
<g, S(R_)> = r S.g) Vg € S .
’%1 'n 1 k+%

Using the fact that rn(f) is essentially equal to the L-series
of f at s = 2k-1-n, we see that rn(slg) is up to a

simple factor the value of } cmHm™S at s = 2k-1 -n, i.e.

mz1 .
the convolution of the L-series of g and of @(t) =] e2mimt
m
at s = 25—%12. By Rankin's method and its generalization as
already used in the proof of Theorem 3, this number, for

n even and <k, 1is essentially the scalar product of g with

% . . .
n/2(9 Gk n), S0 Sl(Rn) is a multiple of the cuspidal part

of Fn/Z(G’Gk-n)’ The exact computation gives

S§(Rn) - 23]( -1, k"l (w—n)' (W/Z)' [ (6(1:) G ('41.‘)) -

w! (w/2-n/2)!
B

'
s H ()]
nd B,y k+1

(n even, 0 Ensk-2),

where
H .1 B2k 2miDT
ktz(1) = - &£+ T H (De
D>0
is the Eisenstein series of weight k + % introduced by Cohen
[ 2]. Comparing the coefficients of e?™DPT 5n the two sides

of this equation gives the theorem.

Let us discuss the result and the relationship between SZk
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and S in a little more detail. It is known [ 6] that

k+5
2
there is a natural action of the Hecke algebra on S 1 and that
k+_
2
i) the map Sl 18 4 - 82 is Hecke-equivariant;
Ktz 2K
2
ii) S8 and S are isomorphic as Hecke modules
2k k+l
2

(it is not known whether S1 gives the isomorphism; this is
equivalent to the non-vanishing of L(f,k) for all eigenforms
f es

Zk)‘ Hence there exists a basis -gi (l=j=sr) of S 4

corresponding to the basis fﬁ(].sj <r) of normalized Hecke

eigenforms in S where 1 = dim S =dim S ,. The g;

2k’ 2k K+l 3
can be chosen to have algebraic Fourier coefficients (more

precisely, Fourier coefficients in the same field as fj)' If

we write
D
(z) = c.(D)
g; DZO 5(D)a”,
D=0,1 (mod 4)
then Sl(gj) = cj(l)fj. The gj are mutually orthogonal

with respect to the Petersson scalar product, so the kernel

function Qk of Sl is given by

r
-1
= .3 8. . o, (1)f, .
Qk(z,r) jZl (gJ,gJ) gJ(T) 3 J(z)
and therefore
ST(R) = ] (g.,2.)" 1 v (£.) c.(1) g.(1)
1"n ] | n j J -

or (taking the Dth Fourier coefiicients on both sides)
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k
7 ,3k-1

-1
- 2 = ) » » [
(-1) Pn(fk,D) § (gj,gj cJ(l) cJ(D) rn(fj)

The fact that this is rational for m even means (since cj(l)
and cj(D) are algebraic numbers and transform appropriately
under Gal(§/Q)) that the scalar product (gj,gj) is an
algebraic multiple of w+(fj), the algebraic factor transforming
in the usual way under o € Gal(§/@) (i.e. mapping to the
corresponding factor for gj,, where fg = fj,). This fact

was proved previously by Shimura [ 17] and the authors (81].

+ S defined by

One could also study the map SD' : S 2k

2 :
I etmq” = J ¢ § (BHd®?t @y p1aqh,
n>g0 n>0 dln

where D' > 0 1is a second (say, fundamental) discriminant; this
would replace the numbers cj(l)cj(D) in the above discussion by
cj(D)cj(D') and the funcF;?z) Fnlz(G(T), Gk_n(u )) in the

proof of Theorem 4 by TrTO(MD') (Fn(G(D'T), Gk_n(r))) (cf. the
computations in [ 8]), while the Eisenstein series discussed in

§2.4 would have to be replaced by Eisenstein series associated to

a non-trivial genus character; we do not carry out any of this.

2.2 Sums of powers of reduced quadratic forms as period polynomials

This section is the analogue of §1.2: we shall check directly
that the polynomial occurring on the right-hand side of Theorem 4

+ » .
2k-2° For convenience we avoid the case

belongs to the space W
+
that D is a square; then (since py belongs to W ) we

must check that the polynomial
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Py D(X) z X (aX2+bx+c)k-1
’ a,b,c€Z
bz-uac=D
a>0>c
bel to W'
elongs to 2k<2"

- Recall that an indefinite binary quadratic form [a,b,c] =
aX2 + bXY + cY2 is said to be reduced if

a>0, ¢>0, b>atc.

There are only finitely many reduced quadratic forms of discriminant
D, and each TI-equivalence class of forms of discriminant D
contains at least one reduced form (the reduced forms in a given
class naturally form a cycle, corresponding to the period of a
continued fraction; this will be discussed further in $8.1). Let

(x) = ) (ax?-bx+e)*7 1,
[a,b,c] reduced

bz-uac=D

an element of V Now one checks easily that

2k-2"
{(a,b,e) | a>0>c}
= {-(a-b+c,-2at+b,a) | [a,b,c] reduced}
U {(e,b-2c,a-b+tc) | [a,b,c] reduced},
the two sets on the righé being reduced. Applying this to the

triples with discriminant D and summing the (k-1)-st powers

of the corresponding quadratic forms gives
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P, (X) = ) (-Q(x-1,-x)%"1 4 Q(1,x-1)%"1)
disc Q=D
Q reduced

2
Qk’D(X) | (-u+u).

2 .
+U+ = . =
Hence Pk,D | (1+U+U°) = 0. Since clearly pk,Dls Pk,D
(replace b by -b in the definition of Pk,D) and Pk,DlS =
-Pk,D (replace (a,b,c) by (-c,b,-a)), it follows that
Pk,D € w2k , @as desired.

We also find

-1 -1

Pk’D | A-T"") = Pk’D | (1-sU™™)
_ -1
= k D | (1+U™)
= q | Cuuhawh
b
- -1
= k D | (1-U")
- . =1 N
and P|(1+S) = 2P, so the pair f = 5 Pk,D’ g= -3 Qk,D
exhibits Pk D in the form described in §1.2 (Theorem 2).
]
2.3 Periods of fk,D,A
The fact that fk D is a modular form comes from the
b

invariance under T of the set of binary quadratic forms of

discriminant D. By the same argument, the function defined by

k-3 )
fk D A(z) = —272—7- -% (az2+bz+c)- ’
i w('k:l) [a,b,cleA
where is a T-equivalence class of quadratic forms of

and k any positive integer (not necessaril eve
discriminant D~ also belongs to S, early f ; fk DA’
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where the sum is over the finitely many equivalence classes of
forms of discriminant D. 1In this section we will refine the
results of §2.1 by computing the periods of the individual
fk,D,A; the proof will be considerably harder because we no
longer have available the interpretation of these functions as

the coefficients of the kernel function for the lifting to half-

integral weight. Actually, what we calculate is not the nth

period of f

K.D.A’ but rather of
? 3

£ -

K,D,A froa * f

£ i(f f

k,D,4' T Ix,p,A N k,D,A')’

(depending whether n is even or odd), where
A' = {[a,-b,c] | [a,b,c] €A}

is the image of A under e¢. (Under the correspondence between
equivalence classes of binary quadratic forms and ideal classes

in QWD), A and A’ correspond to conjugate ideal classes.)

+
These periods turn out to be rational, so that fk D.A belongs
3 ]

+
to Szk.

To state the precise result, we introduce the polynomial

- v _1yk-1
Q,p,a® = I QDI e v

Q reduced
. . . . . dt
(so i Qk,D,A is the function Qk,D defined in §2.2) an he
zeta-function defined by meromorphic continuation of

T, (s) = Qo(m,n)"s (Re(s) > 1),

(m,n)E%zlrQ

Qo(m,n)>0 0



4§

where Q0 is any quadratic from in A and PQO its stabilizer
in T. If D> 1 is a fundamental discriminant, so that A
corresponds to an ideal class in a real quadratic field, then

ZA is the usual zeta-function of that ideal class; in any case

£, (s) extends to a meromorphic function of s (holomorphic

except at s = 1) and satisfies
Z tp(s) = z(s)Ly(s),

where the sum is over all A of discriminant D and LD(s)
is the L-function defined for arbitrary D € Z in [22], the

value of which at s = 1 - k 1is the number Hk(D) which

occurred in §2.2. Then:

Theorem 5. Let k=2 2 and A a Tr-equivalence class of

binary quadratic forms of discriminant D> 0, D not a

square. Let A* denote the class of forms

A* = {[-a,b,-c] | [a,b,cle€A} = {-Q | Q €A'}.

Then
. 4 o . Ta(1-K)
v (fy p, ) T e poad T Qe p At p ) | CUYUD) * ey Py

The formulas for o (f ) and r (f,

k,D’A k)D’A
can be obtained by looking at the even or odd terms on the

) separately

right, respectively. That Theorem 5 really generalizes Theorem 4
follows from the formulas in §2.2 and the identity

B
Z CA(l—k) s -

H. (D) (k >0 even).
A k

=l
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Theorem 4 was stated only for even k because fk D vanishes

b
for k odd (fk,D, 4 and fk,D,A'* cancel), but Theorem 5
is valid for all k 2 2. One can also give r~ (fi D A) when

3

D is a square, but this case is less interesting and we have
omitted it. As with Theorem 4, Theorem 5 gives explicit
formulas for ;A(l—k) if Sox = {0} (i.e. for k = 2,3,4,5 or
7), since then the expression on the right must vanish. One

such identity, obtained by looking at the constant term in

Theorem 5, is:

Corollary. TFor k ¢ {2,3,4,5,7} and D> 0, D not a square,

EEE ;él-k) = Z ((a-b+c)k 1-ak—l)
2k [a,b,cleA
reduced
+ (-1)K ) ((a-b+e)K7L _ oK1y,
[a,b,cleA®
reduced

As with the corollary to Theorem 4, this could also be proved by

Siegel's method of restricting Hecke-Tisenstein series (cf. §2.4).

Theorem 5 was used by D. Kramer [9] to show that the functions fk D.A
| Rt }

& . . . .
(or even fk D.A with a fixed choice of sign) generate 82k as D runs over
My
all discriminants and A over all classes of forms of discriminant D . In
fact, it is sufficient to restrict to D of the form Dof2 with D fixed.

It is also conjectured, but not known, that for k even the functions fk D

span SZk ; this is equivalent to the question mentioned in §2.1 whether S is
an isomorphism.

Proof of Theorem 5. The method is similar to that used in

§1.1. We set

-k
., 2k-2, .2
ck,D - I k-l) D ",
so that

2 ® n v

n t _dt
r (£} J ( t )—
% 0% Tk, D0 0 [a,bgcleA [a,b,élfk’ (atit)?+bit+c)”

™ ,l/e.

ard write the intesral as i Nn the comn~nr+ interval



[8,6—1] we may interchange the order of summation and integration
n

since the series converges sbsolutely uniformly. If (-1) = %1,
we therefore have
_.2 | tl/e (- n
2i~" ¢ pf (fi D A) = 1lim S_, S = ) (J +j ) g dt %*
2 n 2 e+0 e[a,b,c]eA € -1/e (-at +bit+c)

Write jg/e + ii/e as [T - ]:lie - fie -\jiye. In the
integrals from -~ to -1/¢ and 1l/e¢ to « we replace t by
1/t and [ec,-b,al by [a,b,c] (which is in the same class A
since S € T). In the integral from -» to o theonly terms
which contribute are the finitely many ones with ac < 0, since
if ac > 0 the two poles of the integral lie on the same side of

the real axis (ac = 0 cannot occur since D 1is not a square).

Hence S = S, + S' with
€ £

1
5. = ) (e t'dt
1 J 7. K °
[a,b,cl€A J-» (-at +bit+c)
c<qQ
st = - Ic M KD - at
€ [a,bocl€A J-g (-at’+bit+c)

(n=w-n as inf§l.1). We claim that the integral in S1 equals

2i”M ()" sign(a) a4, (c,-b,a),

where dk n(a,b,c) denotes the coefficient of X' in
H]

(aX2+bX+c)k—1. Assuming this, we find the contribution of S1
+ .
to rn(fk,D,A) to be



[n/2] w,-1
(-1) (") ¢ d, (c,-b,a) - ) d
D" la,bycled Kom T [a,b,cleA XD

~abc a<0<c

(c,-b,a)),

. . +, 4+ - -
and the contribution to r (fk,D,A) + r (fk,D,A) therefore

(axZ-px+e) T -

[a,b,c]eA
a<ike

é (axz-bx+c)k'l,
[a,b,cleA

a0>c

: - 2 _ .
which equals (Qk,D,A +Qk,D,A*)’(-U*U ) by the same calculation
as in §2.2.  To check

the claim we use the residue theorem:

[ t"dt sgn a 1 ak-1 P
- = 273 —E—E-° ~- —
o (-at’+bit+e)™ ak DT g kT (+.1 b=/Dyk|,_; b+/D
=1 73 - 2a
= (ifi)! -SE£ a -(ﬁ)"l coefficient of X" ™ in
a
. b+/D
e(X,1i 7a )
where
k-1 W
(X, 1) = Ly XL
313 (_t_. b‘/.ﬁ)k
L 33

Expanding (X+t)Y = [(x+i b‘/ﬁ) + (t-i b—/ﬁ)]w

e by the binomial

theorem, we find



1,

k-1

3 w . b-/Dw-j . b=/D,j-k
p(X,t) = - () (X+i =5==) (t-i —z=)
’ atE 1 j=0 J a a
k-1 . .
= (-D¥? L ity i BBy BpdByi- 2kl
J:
-n¥ 1o b-vD, k-1 b- /Dy -2k+1 k-1
W (X+1i 7a )T T (-1 "—23—) (X+t) ’
o(x.1 DDy . -1k L (i/D)—2k+1(aX2+ibX-c)k—l
’ 2a - (k-1)! a a

and hence

® t"dt n W o, ,Wy-1 -k+%
= 2ri sgn(a)(, " . )()"T D d, (e,-b,a),
J-m (-at+bit+c)” k-1""n k,n
whence the claim.
We still have to studyq¥3rm Sé. We write
f€ n _ k ;l‘
€ [a,b,cleA [a,b,cleA'* J_¢ (-at“+bit+c)

c>0 o0

and apply the following lemma, whose proof will be given at the

end.

Lemma. Let C be a T-equivalence class of forms of non-square

discriminant D > 0. Then for 0=< m< 2k - 2 one has

lim ) Je that = 5 520 -——-TC ¢
e+0 [a,b,c]€C J-¢ (-at2+bit+c;k m,0 2k-1 £(2k

c>0

Taking into account the identity ;A,(s) = CA(s) and the

functional equations



¢ pS/2 r(%)z(cA(s)+cA*(s)) = (same with s=+1-s),
778 0% 132, (s) - 1 ,(s)) = (same with s+l-s),

we deduce

. - _ 27 k
i-;:xcx'\ se' = (6n’w 6n,0) ZR=D (I (CA(k) +(-1) CA*(k))
22,7 =% G4 (1K)

giving the last term of the formula in Theorem 5. It remains to

prove the lemma, i.e. to compute 1lim Le’ where

e+0
L = At 1 +"at
€ € Z R j . k
(a,b,eleC J-1 (a(iet) +biet+c)
c>0
1 m
= ¢t -k t"at
T fapere [e ety 2 j 1 D’ 2 k].
a C n —_— - .
e>0,b(mod 2¢) 2c {;-?+(1+n51t) }

The inner sum is a Riemann sum for the integral

r Jl that 4.

—w o1 eixn)®®
Hence 1lim L. = 0 wunless -m = 0, when it equals
>0
27 z -k
: c
Zk=1 " ra,b,cleC

¢>0,b(mod 2c)

(the integral already occurred in the proof of Theorem 1l). The

sum equals Cc(k)/C(2k) by the argument given in [ 221, p.131,
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namely:
C—k = {1 0
[a,b,c]eC Q€C/< 1 1)>
c>0,b(mod 2¢) Q(0,1)>0

Q(o,l)'k

-k
(Q.,°A)(0,1) (Q.€C fixed)
A€r \r;<(i %> 0 ’ %
0

Q
...k .b
S (b,d) a = ¢ Py
(b,d)egzlr % - d
Q
Qo(b,d)>0
(b,d)=1

2207t g0,

This completes the proof.

2.4, Restrictions of Hecke-~Eisenstein series

Let A be a narrow ideal class of a real quadratic field
K, corresponding to a r-equivalence class (also denoted A)
of binary quadratic forms of discriminant D = disc K. For an

integer k 2 3 define the Hecke-Eisenstein series of weight k

associated to A by

—

Gi’A(z,z') - Wk I, — v (2,2 €n),
(A,u)exxa/U  (Az+u) (A'z'+p') |
(A,u)#£(0,0)

where ® is any ideal in the class A (the definition does
not depend on the choice) and ut  is the group of totally

positive units of K. Denote by

(z) = €%z,2) € M. (D)

Gk,D,A k 2k -



its restriction to the diagonal. These restrictions (or at least
the sums Gk,D = { Gk,D,A) were studied by Siegel [13] in

order +to obtain formulas for the zeta-values [,(1l-k) (O

A
CK(l-k)). Specifically, the fact that (2)

ARSI 95 39
has rational (actually, integral) Fourier coefficients and
constant term %- afl~k) implies the rationality of, and explicit
formulas for, CA(l-k). On the other hand, we have obtained
formulas of the same sort for CA(l-k) by studying the functions

K.D.A* The relation between the two approaches is given by:
9 ’

Theorem 6. For k,D,A as above we have

A z (1 k) - +
Gk,D,A(Z) = —m 2k(2) + Pok- 2(fk,D,A(Z))’

where Pok-2 :S2k + S2k is the map introduced in §1.4.

Since Pox-p MapSs S;k to sgk, this relates the fact

used by us that fk D,A has rational even periods to the fact
used by Siegel that Gk D.A has rational Fourier coefficients.
]

Using the known formula for the coefficients of G we also

k,D,A?
can deduce (by comparing coefficients of qm in Theorem 6) a

formula for r2k 2(fk D, AlT ); the case m = 1 generalizes the

special case n=0 of the result for r (fk D, A) proved

in §2.3.
Proof. From the definition, we have

(z) =4 N(x)¥ ") Mz? ¢ Gz ¢ NC(u) ) K
(A,u)(' \{0 OJIU

Cx,D,A




“t<

(A') = conjugate of A over Q). Choose an oriented Z-basis

a,8 for & (i.e. one with a'8 - B'a > 0) and let
Qp(x,y) = Nlaxtay)/N(x)

be the corresponding quadratic form. Then Q €A and PQ
0

+
can be identified with U . Each (A,u) € ®« x &« can be

represented as (a,8)M for some unique M € PQ \M2(2r40}, and
0

under this correspondence

N LINOYZZ + e )z ¢ N@)T = Qe M) (z,1).
The.efore
£-k -k
g:ﬁ % G (z) = (Q.°M)(z,1)
(k-1 k,D, A Mer \MZ (Z)~{ 0} 0
Qp 2
_ (m)
- mgz Gk’D’ A(Z),
where
6™ (2 = I (Qgemez,n7k,
»DA MET "\ A
QO m

A, = {MeM(Z) | det M

m, M #0}. For m2 1 clearly

(m) (-m) 3 . -k . -k
G, p,Al2) * 6 piala) = ] EA (QyeM)(z,1) +r 'EA (QjeM)(z,1)
QQ m QO m
o =2k+1,
= m zck,D(fk,D,A(2)+fk,D,A'(Z)) | T(m),

t
where Qé = Q0 og and T(m) denotes the m h Hecke operator

in S defined by f|T(m)=o*' ] f| the constant

M.
2k’ 2k’
MESNA



and
Athe formula for g (k)/C(?k) given at the end of §2.3.

~Putting together the formulas for the various Gémg A and using
the identlty - e

we flnd - 1
k D, A(z) =z 3 cA(1-k) 'Ezk(Z)

oo,‘
o (2k=2)1 T o2k

ok
+(-1 ) T
o 261 e p At pand | Ty

m=1

_ k
(notice that. fk D,A' (-1) fk,D,A*

part of this, we compute the Petersson scalar product with a

). To identify the cuspidal

normalized Hecke eigenform f = Za(m)qm € S

2%’
%%%gg;;(f'gk,D,A) i} mzl' e N AW
= ;Zl aHeslr £y poa)
- ;Zl a_m e, f;,D,A)
B OLCE,2LEE, £y o)

oy 2l +

= sy T (D) 5(f, MR

Therefore if f. (z) = Z'aff(z) - (sum over normalized Hecke

k, D A s
eigenforms), then the cuspidal part of G . 1is
Ll ] x,D,A
o +
; ac r2k_2(f) f(z) = p2k—2(fk,D,A)'
The theorem follows.
N~— \f ok g2 2k=1 -~k +3
TV (k) (L) g, (k) = D z, (1-k),
A A (k=117 A




c is defined as in the proof of Theorem 5.

x,D
For m = 0 we write

(0) -
G pAlzx) = ) ) (QgeveM)(z,1)7k

MET\A, yerQO\r/rM ’

where Y runs over a set of representatives of T/, which are

M
inequivalent under left multiplication by the generator of T

Q

and = {N€l|NM = M}. It is easily seen that a set of rep-

I‘M
resentatives for I’\A0 is

{(g g> | m>0,n€Z, or m=0,nz0)

and the isotropy group FM of any M in this set is T = <T>,

Therefore (denoting as usual by Z' a sum with the zero term

omitted)
(0) m n -k
G (z) = ! (Q.eve( ))(z,1)
k,D,A m,;GZ 3 zr/r°° 0 00
QO
= 3 I« 3o -1* T ) Qmzn,007F
m,n€Z Q€A T, QeA'«-/rco
= (G 10 (22 + (-Dk ;o ax
m,n [a,b,c]€A [a,b,c]eAr*
a>0 a»o
b(mod 2a) b mod 2a

1

k
(z, () + (-1 CA*(k))E2k(z),

1

where EZR(Z) = (% z(1-2k))"~ sz(z) = 1 +.,. denotes the normalized

Eisenstein series and the last line follows from the identity

I' mzend™ ™ = g2 - E,

m,n

(z)

N =

k



Chapter 3. Hyperbolic periods

3.1. Periods around closed geodesics

The periods rn(f) of a cusp form f € S, are integrals
of f along a certain geodesic in ¥, namely the one joining
0 to iw., All geodesics in ¥ have the form of semicircle
from o to B, where a,8 are distinct points in R U {«}
and the semicircle degenerates to a vertical line if a or 8
is infinite. If a and B are rational, then there is a
sequence ag = @y Gyyeeerly T B of elements of Q U {«} such
that the geodesic from e 1 to a, is T-equivalent to the
geodesic from 0 to iw, so integrals of f from a to B
can be expressed as linear combinations of the numbers rm(f)
(this is the basis of Manin's proof of the formula for Pn(flTl))'
If the pair {a,8} is not defined over ¢, then the image of
the geodesic from a to B 1is dense in T'\¥X, and the integral
of f along this geodesic makes no sense. There remains the
case that o and B8 are not individually rational but that
{a,8} is defined over Q (i.e. Gal(IR/Q)-invariant); this
occurs when o and B are conjugate quadratic irrationalities,

i.e. when o and £ are the roots of an equation
ax2 + bx+c¢c =0, a, b, c ¢, (a,b,c) = 1.

In this case the geodesic C Jjoining o and 8 is given by

the equation

a|z|2+bx+c=0 (z = x+ iy € X).



Since o« and B are real, we must have D = b2 - Lac > 03
moreover, D should be a non-square since we want ¢ and 8 to

be irrational. We write C=C,, where Q is the quadratic form

Q

(a,b,c]. There is an infinite cyclic subgroup PQ of T, corres-
ponding to the group of totally positive units of K = Q(/D),

preserving Q and hence C.; this group is generated by the

Q’

matrix

-12—(1: -bu) —cu
= € r N

Tq
au %(t+bu)

where (t,u) 1is the smallest positive solution of Pell's
equation tz-Du2 = 4, One checks that the expression

f(z) (a22+bz*c)k-1 dz

is invariant under YQ’ so the number

r . (f) = J f(z) (élzz-i'bzh:)k“1 dz
Q ro\C
Q' Q
makes sense. (There isa slight question of orientation;
we orient the geodesic from :%élﬁ to :%gfﬁ, i.e. from

left to right if a > 0 and from right to left if a < 0;

then the oriented integral will go from 2z, to R where

z is any point of CQ). Replacing Q by a Tr-equivalent form
replaces CQ by a T-translate and YQ by a conjugate group
and does not change either the curve I‘Q\CQ c T'\¥X or the

number rQ(f). We therefore also write CA for I‘Q\CQ
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(a closed geodesic in T\X) and r,(f) for r (f), where

Q

A denotes the TI-equivalence class of the form Q.
The relation of the "periods around closed geodesics" rA(f) and
the cusp forms £, A(z) studied in Chapter 2 is given by the
] ?

following proposition ([14]), [71) :

Proposition. Let A be a TI-equivalence class of primitive

binary quadratic forms of discriminant D > 0, D not a square.

Then for any f ¢ S, ~we have

_ . 2k=2
QA(f) = 2 (f’fk,D,A)'

Proof. By the usual unfolding argument, we have

-k k-2

(£,f £(z) y2¥~? axdy

(Q-v)(z,1)

X,D,A’ \r

c |

k,D MK Yer,
I £(2) (az’+bz+c) ¥ yzk'2 dxdy,
PQ\K -

where Q = [a,b,c] is any element of A and c¢ has the same

k,D
meaning as in 2.3. Let

- z-8
8 arg(z_u),
where a and B8 are the roots of a22 + bz + ¢ = 0, with
a <B. Then 0 <6 <7 and @6 is invariant under FQ
-2
. . z-a t+u4D
(replacing z by sz multiples Z 8 by (—-—2—-—) ). Also



de

R e VD T e P R I
Im[(z:g- z-a)dZ]

/D Im[—-g—————]
- az +bz+c‘:
so

/D

dz de —y dx dy
az“+bzZ+c ’

and

2 N T S
4 57 = %fsihz 6.
+bz+c]|

—3
| az

Therefore

1l

-k 2k-2 7-k 2 k-1 . 2k-2

2+bz+c) dxdy = D f(z)(az"+bz+c) sin e dzde.

f(z)(az

For each 8 € (0,1) .the integral of f(z)%(azz+bz+c)k'1

from 2 to YoZq’ where z, € ¥ is any point with

z.-8 , . o
arg(zo_a) = 8, is rA(f), independent;of : 8. Hence
0 % k m 2k
Ck;D(f?fk,D,kl = D rA(f),fd sin”” 16 @8,
and the theorem follows.
Now Theorem 5 (§2.3) tells us that f; D,A belongs

to Szk and therefore has rat10na1 scalar product w1th any
f ¢ SZk By the above proposition, this scalar product is
a rational multlp;e 9f A rA(f) + rA,(f) or 1(rA(f)-rA,(f))
Hence it should be péssiﬁle‘to write (f) "as ‘a rational
linear combination of odd periods of f plus i times a

rational linear combination of even periods. This is the



content of the following theorem.

Theorem 7. Let A,D be as in the proposition, k > 1,

€
£ SZk' Then

W
r () = ngo i QY p,4 Tnlf)

(n)

where %, D,A is the coefficient of x" in the polynomial

Q.p,alX) (Q p, as in §2.3).

Proof. We may assume that the form Q = [a,b,c] € A in the
definition of rA(f) is a reduced form, since every class of
forms contains a reduced representative. The reduced forms

in A form a cycle Q0 = Q, Ql,...,Q; = QO’ where each Qj

is related to its predecessor by Q. = Q. , * M. with
m. 1 3 -1 3

Mj = ( J ) for some integer nﬁ > 23 the mj are determined
-1 ©

by the continued fraction expansion

b+D _ | _ 1
Za 1

which is pure periodic (mj = m, ) because Q 1is reduced ({23].

jtr
Choose z, c & and set zj = Ml...szo, so z, = YQZO'
Then
z
Yo%o k-1
rA(f) z I £f(2)Q(z,1) dz
z

£(2)Qy(z,1) 7" dz

n
[N
1"~y
(]
S——
N
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r M.z
) f 370 £(2yq. €z, )X 4z,
z j-1

3=l ‘z,
where in the last line we have acted on z by Ml"'“j-l'
Now szo = -ng - éL. Since this formula is true for any
0
z, € ¥, we can let z, tend to 0, so szo + ie, Then

H}

- 3 im k-1
r [ £(2)Q, (2,105 4z
AT 531 b -1

joo
j £(2) Q p 4(-2) dz,
0 } Xadlt ]

(n) i

W
- nzo -n»" UG .D,A }0 £(z)z" dz,

as was to be shown.
In view of the proposition preceding the theorem, an

equivalent formulation is

(n)

£ Ax,D, A

Rn(Z)'

-W g l-n
(z) = 2 i*”
k,D,A n=0

. 1 -'.
Replacing A by A' replaces fk,D,A(Z) by fk,D,A( z).

Since Rn(-f) = Rn(z), we find

w
_ -w .n-1 (n)
fk,D,A'(Z) s 2 nZO i 9 p,A R (2)
and therefore
% 3-2k 2 n
- - R 3
fk,D,A (z) 2 o<ben (-1) 9.D,A nt2)
(-1)P=31

which gives f; D.A @as an explicit rational linear combination
24

of the functions R belonging to S;k.



3.2. The scalar product of f and f_

k,Dl,A1 k, D A
We have proved in .3 and again in 8.1 that the cusp form

t + . + -
fk,D,A belongs to Szk. Since 52k and $2k are dual Q-vector
spaces, it follows that the scalar product (fk D, A, f; D. . A0

1 *T222

is rational for any classes Al, A2 of quadratic forms of dis-
criminant Dl, D2. The various formulas proved so far in this
paper would permit us to give various expressions for this number —
for example, we could express f; A as a rational linear

combination of R (n 0dd) by theresults of §3.1 and then

compute (R fk D A ) by the formulas in §2.3, or we could express

both f in terms of the R and use the results of Chapter
k,D. A, n

1. The most natural formula, however, is obtained by writing

l—2k(r

the scalar product as 2 +r, ) (f~ ) and computing
A k,D,,A

AL A
the integral around the geodesic. This was done by S. Katok in

her thesis [ 5 ]. The calculations are somewhat analogous to those
in §§ 1.4 and 2.3 of this paper. One first uses an "unfolding
argument" to write the integral as a sum of integrals parametrized
\T/T

by the set of double cosets T , Where Qi is a form in

Q" T,
the class Ai. All but finitely many of these integrals are zero
because their integrands are rational functions all ¢f whose poles
lie on the same side of the path of integration. The remaining

double cosets are those corresponding to the intersections of the

geodesics CA U CA' and C, in T\X. The final result, which
1l

we do not state in detail, expresses the scalar product as a sum
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of local contributions from these intersection points, each given
as a simple multiple of Pk_l(cos 6), where 06 is the angle between
the two geodesics at their intersection points and Pk-l denotes

the (k-1)st Legendre polynomials.

3.3 Applications to zeta-functions of real quadratic fields

Another way to combine the formulas proved so far is tu compute
(via the results of Chapters 1 and 2) the periods of both sides of

the identity

n-1

s _2k+1 771 ()
= 2 - R
k,D,A Osgsw (-1) 9,D,A Tn
(-1)7=31
proved in §3.1. In particular, taking the 0-th period of f; D.A®
? 3

we find after a short calculation:

Theorem 8. Let A be an equivalence class of quadratic forms of

non-square discriminant D and CA(S) the corresponding zeta-

function. Then for k 2z 2 we have

B
£.(l-k) = - § (2 @ Le(b-a-er*h
A [a,b,c]¢€A
reduced
O o G B, Doy Pen By g,
n=1 2k 'n+l N+l i,n 2k-2 n+l N+l k,n
n odd

where dk n(a,b,c) denotes the coefficient of X" in (aX2+bX+c)k-1.
= , ‘

As an example, we have

1 5

g,(=5) = ) [691a
A 2¢.3%.5.7.13 [a,b,cl¢A
reduced

+ 691(b-a-c)®



3

+ 3(2ube” - s0abed - 25b3c* + 30albe? + 20abde + by,

By applying other periods than rys we obtain other identities
among the coefficients of Q(X,Y)k-l, where Q runs over the
reduced polynomials in the class A. We do not give these explicitly,
since the reader can easily work them out if he so desires.

A formula for CA(l—k) of the same type as Theorem 8 was
proved by D. Kramer in his thesis [ 9]. His proof was based on
the method of [ 211}, in which formulas for CA(l-k) in terms
of rational (rather than polynomial) functions of the coefficients
of reduced polynomials were given. This method did not use the
theory of modular forms or their periods but was based instead
on a certain decomposition of the zeta-function ;A(s) into
simpler Dirichlet series; this decomposition, first given in
{ 18], was gzeneralized by Shintani to arbitrary totally real
number fields and the special values of their zeta-functions [ 15].

Finally, we can use Theorem 7 to obtain results on modular
forms of half-integral weight. By the results quoted in

§2.1 we have

k/2,3k-1 _ -1

where the fj are the Hecke eigenforms in S2k and

n

g. = c.(n)q

j RIS
nz0,1(mod &)

the corresponding eigenforms in S 1 Thus we have
K+
2



by

k/2,3k-1,. . (f,f)
(-1) 2 (f’fk,D) = rg—:E)-C(l)C(D)

for any Hecke eigenform f, where we have omitted the index j.

On the other hand, by the results of §3.1 we have

n-1
- - . ¥ 7 _(n)
(f,fk,D) = E r,(f) = ; nZO (-1) e, D, A r (f)
n odd

22k--1

(the terms with n even drop out when we combine the classes

A and A'). Hence we find

n-1
_ k/2.k (g,g) 9 -7
c(l)glz) = (-1)""*2 T§:§7 nzo (-1) * r_(£)¥ (2)
n odd
where
2xiDz
¥ (z) = ( ) d, (Q))e
n Dgo disc Q=p KoB

D=0,1(mod 4) Q reduced

(dk,n(Q) = coefficient of X" in Q(X,l)k'l, as usual). Since

the numbers rn(f) (0<n<w, n odd) are not linearly independent,

it does not follows from this formulas that the functions Vn(z)

belong to S ,, and indeed by looking at examples one sees that
‘7

they do not. On the other hand, the formula shows that all

functions in S are linear combinations of the ?n, so these

1
k+7

functions - which can be thought of as theta series with respect
to the indefinite ternary form bz-uac and the spherical polynomials

d, n(a,b,c) — are very related to forms of half-integral weight;
1}

it might be of interest to study thew further.
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Chapter 4. Complements

4.1 Reinterpretation of formulas and extension to non-cusp forms

As pointed out in §1.1, the Eichler-Shimura theorem gives

natural isomorphisms

—— W , $.,0) — W (D)
r 2k (r+,p0)

52k
rather than simply Sgk ~ W5(Q) . Thus one might expect that to
any naturally occurring example of a cusp form fEZS;k there is
associated a rational constant ¢ such that the polynomial
e (E) (x) + c:po(X) is a simpler polynomial than r'(£) (X) itself,
i.e. that the formulas for rn(f) involve correction terms for
n=0 and n=w . This is indeed what we found for the various

special functions treated in this paper: the even period polynomial

of (-1) 2 2" Rn(z) (0O<n<w, n odq, il=w-n) was

1 .0 1 0 2k Bn+1 Bp+gq
— B + =——B (1-8) -~ Pa(X)
( SRl Bok n+#1 f+1 0

(Theorem 1') and that of fk D(z) ( D the discriminant of a real
r’
quadratic field K) was
P (X)) - =X~ ¢ (1-k) pp,(X)
k,D B2k K 0

+
(Theorem 4), while for fk,D,A

with ik replaced by the corresponding partial zeta function

{z) there was a similar result

tp (Theorem 5). Thus if we define a map

3 +
IT i 5 @0 ——— Wy ,(0)
by
+ 2k
(f,c) — r (f)(X) + C p,y(X) ,
B 0
2k
where the factor éﬂ& has been included to simplify the formulas,

2k



then we have

-1
= -w Bne1 Baag ot 1.0 1.0
CEN 7 20R, 7= = =) GngBna PR [ 0108)

n+1 n+1

( £ 1 o (1-k)) N S (X)
k,D ' 2 %k k,D

and more generally (Theorem 5)

+ r? a2y 1E
( fk,D,A' CA—(1-k) ) ——b (Qk'D’A"'Qk'D"A )|( U+U )l 2

In other words, the formulas for the period polynomials force us
to "augment" thg modular forms R , f and £} by the

- n k,D k,D,A
(-1) Z 2% Bn+1 Bp+1

1 -
constants T T RET Y YCK(1 k) and g4(1 k), respectively.

In the same spirit, we notice that the formulas obtained for the
images of our special functions in 5;k under the maps Pm defined

in the Proposition in §1.4 involved an extra multiple of G, (z)

for m=0 and m=w. For example, the function pm(Rn) (05m<ns%w)
was shown in §1.4 to be a multiple of FolGoxem-n-1’Sn-m+1’ fOF
m=0 but a linear combination of Gox-n+1%n+1 23nd Gy for m=0,

and similarly po(f; D A) in §2.4 turned out to be a linear combi-~
r ’

nation of Gk,D,A and G2k . In each case the coefficient of GZk

in po(f) was the same as the multiple of Py occurring in rt(f) .

Thus as well as the augmented period map r* we have an augmented

version of Po given by

~ + ~
DO: SzkeQ — ﬂzk(Q)
(£,c) ——— po(f] -2 ca

( mgk = space of modular forms with rational Fourier coefficients);

then we have the commutative diagram



1), (@)
constant term 4 coefficient of t.]1

©
ol
P~

(where the map XA , defined by the diagram, will be given explicitly

in §4.2) and our two basic examples become

]

BB (-1 2 27VR (z,R21

Nt

Bn+1 Bﬂ+1) Bn+1 +Bii+1
n+1 n#+1 n+1 A+

and
16 (2
e k) e gy, (), 2 0m0) — T o (O
’ Ibl</D
l / b=D (2)
Pk,D(X)
(and similarly for Gk,D,A) e
However, augmenting (-1) z 2_wlg‘ and f, o by the
14

Bn+1 Bii+q 1
TEFT F+7 2anrd 3 L,(1-k) in this way is a purely

constants
ad hoc construction, based on the forms of the formulas for their
period polynomials. To see in a natural way where these constants

come from, we give a different and more natural interpretation of

the somewhat artiiicial space S;k@Q . By the last theorem of §$1.1,



there is a natural identification of s;k with HomQ(S;k,Q) giver

by the Petersson scalar product; we wilfl" extend this to an identif!
+ - -
cation of SszQ with HomQ(NZk,Q) , where le is a rational

structure on M2k extending s;k" - To do this we notice that

the periods rn(f) (0snsw) can be defined for any f = } a(1%) q”
0

€ M, » Dot just cusp forms, by the formula

!
r (£) = —2° ___ L(f,n+1) ,
n (Zn)n”

where L(f,s) is the meromorphic continuation of the series

-]

-s
ga(n)z . For fE€S,

of rn(f) as a period integral, so we only have to calculate the

this definition agrees with the definitic

new periods for £ =G2k . We have
= N -s = -
L(Gy ,8) = ; Oop-1 () 2 t(s) t(s-2k+1) ,
SO
nl ' =
— T z(n+1) ¢(~-n) (0<nsw, i=w=-n),
(2n)
r, (G,,)
2k o= ' (-2k+2) (n=0) .

or - using the functional equation' and special values of 1r(s) -

(-1)k_1w!
TolGyy) = ?'E_?TE:T ¢(2k-1) = a, say,
_ _a1 Kk

rw(sz) = ———7—- g(2k-1) = (-1) " a,

(2mn)
rn(GZk) = 0 (0<n<w, n even) ,

n+1 B B4

_ (-1 7 Bn+1 Basr1 (o

r (GZK) = 5 e e (O<n<w, n odd) .

t

Thus if we define pd as the space of modular forms f €M2k suc

2k
that rn(f) is rational for all n with (-1)“-:1 , then

- + + =1
Mok = Fox @ @Gy ¢+ Wy = S5 ® 01 Gy .



(As an amusing sidelight, note that these formulas and the expected

duality between the plus and minus spaces suggests that (sz'GZR’

should be a rational multiple of a for any reasonable extension
of the- Petersson scalar product to non cusp forms, and this is

indeed true for the extension given in ([24), pp. 434-5.) It is

Bn+1 Bfied
n+1 fi+1

are related: the former describes the action of r, on SZk and

now clear in what sense the cusp form R, and the number

the latter on sz . More precisely, if we define an isomorphism

1 S;k ®Q HomQ(m;k,Q)

by

k-1
wf,e)lgre' G, ) = ¥ (£,9) + (-1)2 cc!

(fES;k, ges-z-kl clc.eo) ’
w Bfl Bn+1 Bp+1 +
then the pair (2 Rn . (=1) 'ETTTFT) € SZkOQ ({ n odd) which
occurred somewhat unnaturally before simply corresponds to the
map r : l;k—-uq) . (The factors 2" and (-1)k-1/2 in the definition
of 1 were included to make this simple statement true.) The other pair we
encountered, namely (f » T,(1-k)) , corresponds under 1 to the
k,D,A’"A

integral-around-a-geodesic map AL studied in Chapter 3. Indeed, for cusp

forms this is the content of the Proposition in §3.1, while for the Eisenstein

series we have the following calculation:

k ’~A -
rA(G2k) = (-1) "(2k-1)1! Z' (aZZMw)k 1 az
I‘Q\CQ (21:)ZE 22 J{21} (mz+n)
1% (2-1) 1 C (az?bzsc) !
2m X va;rQ Cq  (mzm)
(this nstheuumal'hnﬁﬁwungtziCkﬂ
_ =0¥(2x-1)1 vo(k-1) 12 ot
(2x) z’gro (Z-1)1 (an*-bm+cm®)¥
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(the integration is performed by making tbg,sgbstitution t = m;tn

8
if n#0 to get an integral of the form [ (tfq% ' e-p)* T ae,
; a
which after the substitution ¢t =a + (B-a) x becomes a standard beta

integral)

k 2 k-3 .
. (D x-11%D a1k
= (2“2]( ; (g,(k) + ( 1) cA,,(k) )

(-nk
2

gp1-k) .

4.2 Explicit description of the map )

The main result of this section is the following theorem.

Theorem 9. Define rational numbers 1,  (k22, 0sns2k-2, n even) by
) ?

2k-1, _  2k-1 2r-1
Nen = B L1 (T -4 net) 1 * 2r§1‘ ) (52 ByrBay oy -

Then

D Men = " N, 2k-2n 7
2k=2
lﬁ (-1)*/2 Ao T, () =0 for all fE€S,, .

n=0
n even

Since Ak,O = —lk,Zk—Z = -3(2k-1)B,, # 0, this theorem yields
a relation among the coefficients of period polynomials which is
not satisfied by the polynomial p,(X) and therefore ‘exhibits the

map A:W, o + @ discussed in §§1.1 and 4.1:

2k-2 ,
2k-2 n 1
n=0 n n ) 24k n k,n n
n even

The first few coefficients xk n are given in the following
’

table, where for convenience a‘common denominator of the xk n
’

7 31
has been chosen for each k (thus 14,0 =10 ¢ g2 'TF) . As



k | denaom n=0 n=2 n=4 n=6 n=8
1 1 0

2 10 3 -3

3 -14 5 0 -5

4 90 63 155 -155 -63

5 -66 135 854 - 0 -854 -135
6 2730 22803 263781 327166 -327166 -263781
7 -90 4095 74404 212325 0 -212325
8 1530 488295 12754911 62018627 55137531 -55137531
9 -3990 11186085 396185430 2880943650 5467320254 0
10 6930 209009367 9625959997 97060379284 298093976908 217739243986

Table of the coefficients A

k,n

a numerical check of part ii) of the theorem, we have (using the

values for rn(A) given in §1.1)

w2, 192 16
nZO DTRg T (A 2. 2730(22803~691 263781+3% + 327166- 105)
n even
= O L

Proof of the theorem. For the proof of part i), and for later

purposes, it is convenient to define the ) for all k and

k,n
n satisfying 0sns2k-2 by

Mea = By (DR - A0 22< e, 8, - ()8 B

2r 2k-2r (n+1) n+1 n+1

where fi =2k-2-n as usual. Then

1 2r-1, . 2r~1 2%
7O a8 = DBy Z GO IATH+CT DB, By o0 = GyDB L Bgy

r=1
so
© 2k~-2
1 X 1 Z n 2k-2-n
(A ot o)
Z L@ Lt Tken T Tk, 2k-2-n
2k-1 2k~ 2r-1
- +y B Bog 23 1 X
y 2k ! X +y * 2 22r§ (28)1 (x+y) s,O y
21
820
2r=-1 B B
2s-1 2r-1 _ y _ n+l “fi+4l nd _ 1
*x (xey) 8,0 %! nz 521 e T @i * Y %

’



= -1— __1-.._ — - _2. z - 3 l z .—tz—-—z-— - 1 -— -_2.
3 %F (coth 2“ + coth 7 ) + A coth 2 (coth 7 x ) -(2 coth 7 )
1 X xty 2, _ 1 y_.2 _1 x_2 1-3 -1
+ A coth 2 (coth 5 . ) 3 (t:ot:h2 ) -(4 t::ot:h2 )(coth2 A

We remark that an identity similar to i) was proved by D. Kramer
in his thesis [9 , proof of Theorem 4].

For ii) we give two proofs. The first is based on an identity
of Haberland's expressing the Petersson scalar product of two cusp
forms in terms of their periods. The second is direct but rather
computational.

Haberland's identity, proved in Chapter 7 of [ 41, is

NH-m
- 1 _ w, N —
(f,9) = T2 omgnSw( 1% () (m)x (£) T (g}
m#n {mod 2)
(£, g €5,,)

(actually, he states this only for f=g a Hecke eigenform; his
formula must also be corrected bf a factor E%i ). His proof uses
the language[group cohomology but can be given purely in terms of
the period polynomials. We will do this here, at the same time
generalizing the formula by allowing one of the forms, say g ,
to be non-cuspidal. Then taking g to be G2k , which is ortho-
gonal to cusp forms, will give a non-trivial relation among the

periods rn(f) .

It is convenient to introduce the pairing
w w \%
' n n w,-1
(g a1 1 bpx ) = I P anbo,
0

on V2k-2 . This pairing is easily checked to be symmetric,
non-degenerate and Tl-invariant (i.e. (Fly,G|y) = {¥,G) for

F,GE€V, Yy€Tl). Then Haberland's formula can be written
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-621)%% 1V (£,9) = Lrp)|iT-TH ,T@Y .

where 1x(g) (X)

it, we define

r(g) (X) = ;‘ ol (m rn(9) "™ . To prove

(-]

Flz) = £(u) (u-2)¥ au ,

N Sy e

so that Egéfl = -f(z) (z-Z)¥ . Then, denoting by 0 the

standard fundamental domain for T \H , we have

(21)%%" 1 (£,q) - f £(z) §12) (2-2)" dz az

alF(z) g(z) dz ]

i
|

F(z) g(z) dz

S)

by Stokes' theorem. Since F and g are periodic, the
integrals along the vertical sides of 3D cancel and we
can replace 30D by its bottom side C , an arc going from
2 _ wi/3 _ 1 +i/3

P to p (p =e = —5—) . Also, S maps

C to itself with the orientation reversed, so

2 21) %" 1(£,q)

J [F(z) g(z) dz - F(Sz) g(Sz) d(Sz) ]

J (F(z) - EwF(-%))g!zi dz .
C

But
1 o0

1
F(Z)-EWF(-'%) = I f(u) (u-Z)¥au = r(£)(Z) ,
4]

so the right-hand side equals { r(f),H) with

w -
H(X) = § (-Dn(:) x' [zng(z) dz = fg(z) (z-xVaz ,
n=0 C ¢



where now the path of integration from p? to p can be
choosen arbitrarily since the integrand is holomorphic. If

g as well as f is a cusp form, then we can write H = H&-H '

where
joo
HZG(X) = I/g(z) (z=X)¥ dz (z, €EH) .
Zy
Y (i=)
Then HzolY = !1 g(z) (z=x)¥dz for YET , so
Y (24)

ie
le(lﬁU) = ([ +[)se@ @X:z = r(@®
[} 0

and HpIT =H:2 . On the other hand, using the period relations,

we have

r() -1 = x(8) |(1+5T7 ") = £(£) [(14u%) = Tr@-mlauh

SO

{x(£),0)

€303 ,ﬁpl('r-n) = (x| -1 JE )

L]

3 s -0, E[a-u)

-:!5- <r(f) | (Ts -ST-i) , () >

-% e -ThH TR

completing the proof of Haberland's formula (the proof being, as
with
we said, his, but‘the terminology of cohomology of groups removed).

If g is not a cusp form, but has instead a Fourier development
Z azq2 » then the analytic continuation of the L-series of g

=0
is given by



(21)7°T(s) L(g,s) = J(g(ito)—ao) e57Tae + (-0 f (eCit)-ape?€ T g
& t;1

t2k-s

- a (-'£+('-1)k 0 ) (an t, €ER)
° s 2k-s T %o ’

so the period polynomial as defined in §4.1 is given by

i
It
]

r(qg) - H o(X)IS (any z, €H) ,

Z, Sz
where now

w+i _xw+ 1

ir W (X-24)
H, 0 = zl (g(2) - a,) (z-0"dz + a, 220l
[

In particular rl(g) = Hp - szls = sz - HpIS as before, and

we still have H = H , -H ; the difference is that now H , =
P wHl_ W+l P
(x+1) ~ =X
HpIT + a,E , where E(X)

W . A calculation similar

to the one for cusp forms now gives

-6 20) %V (£,9) = (o) [r-rTh,E@D - 25, &(H),E)

w+1 wt1
where E, = El(1+T'1) - (X+1) -(X-1)

. In particular, for

w+ 1
g = G2k we obtain
{rif), r(G,) | (-1 -E&E) = 0
’ 2k 2k 1 !

and in view of the formulas for rn(G in §4.1 this is

2k!
equivalent to the identity ii).
We now turn to the second proof of ii). By Theorem 1, we have

_12} k+m+1

0%r (- 22V (@ Rr) = cn)-c  (modd,n even)

where

- .y = B! n! _ B P
c(n) = c(k,mjn) = —+ 8 _ +=rB o S, w (k-D)By °



Since the functions Rm with m odd span Szk . and in view of
part i) of the theorem, it suffices to show that z Ak nc(n) =0
’

for each odd m . We have

W .
2k
nzo )‘k.nc(n) = tk,m * tk,fr‘n 3 (m+1) Bm-|-1 Bfﬁ+1 ’
n even
= L
where Ce,m = @I lZln! Bpem ‘k,n + Using the identity
N-1
J (%) Bys = N+ 6y ,) (N2 1 odd)
§=0 J J ’
we find
e = B [_1_ §imetyg L 2kety 2k, % B2j ]
k,m 2k mj-=0 2j 25 2 m =0 m+2j
k 2k, ,2r~-1 2k
! Exﬂ 20) Ca )BZrBZk-Zr + (o) Bpet Baer -
r‘-—-—
2

The following lemma (with N = 2k-1) tells us that the expression

in square brackets equals % [-1+ (2km'1) - (213“:11)] , SO tk =

'm
1 3,2k
7 *k,m 3 (m+1) Bpyq Bgeq  With A ,m (modd) defined as in the
proof of i); the antisymmetry of lk n under me~ M then gives
14

the desired result.

Lemma. Let m,N be integers satisfying 1 smsN-1. Then

(23581

-1 N, ,N-n - 21 N
OSjZSEEE[m m+2J {m) (Zj)]sz ?[(m-p‘l)""‘] .

Proof. Fix N22 and let

N .
a(x) = ] )} L@ty g
w1 0sjsim ™ A 23 '
B(x) = rf Lo moot @ (5 By, &,
m=1 osjsniﬂ el J



1 N1 N m
y(x) = 3 20 [(m+1)+1]x
mﬂ

We want to show that the polynomials B(x) -a(x) and y(x) differ
by a constant. For this, it suffices to show that their difference
is periodic. Now

1

=1
N .

g=1 * j=0

[ k-1

B;(x) + constant ,

£=1

SO

N N N
a(xt) - alx) = -;{(x+1)£-1+x2.—1] - (x+12)x-1 . 2,(‘::::5
21

by a property of B; mentioned in §1.2. Similarly,

By = 1 s, 1 3R
0sj<N/2 J 1smsN-2j ]
1 . .
23-1 N~-2
= ]« XyB,. e5377 {(1+xt) -1} ae
osjsns2 230 4 !o
1
N-1 0 1 0.1
= fo t ( By(x+3) - By(p)) de
so by the same property of Bg as before
. 1 (D e )N 1 s (xeeyV! x+2)N-1 )N
B(x+1) -B(x) = NIO 5 dt = Sy
N N
_ {x+1)7-1 x -1
Finally, y(x) = 3% ‘+ 3 x=17 SO
N _ N _
viel) -y = SEELSL X 21 o gpan) -0 - alxe) ralx)

This proves the lemma and completes the proof of Theorem 9.
By combining Theorem 9, which expresses the 0th and w-th
periods of a cusp form in terms of the even periods rn with

0snsw, with Theorem 4 (resp. Theorem 5) for the periods of fk D
14
(resp. fk D A)' we obtain a formula-~similar to Theorem 8 and to
14 r
the formulas in (9] -- for the zeta-values ;K(1-k) (resp. cAH-k) )

as sums of polynomials in the coefficients of reduced quadratic forms.
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