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Introduction:In [GGPS] the name duality theorem is given on the one hand to something
which nowadays is called Frobenius reciprocity for (co-)induced representations and on the
other hand to the interplay between automorphic forms and automorphic representations,
which up to now has kept this name. In the classical version it is only given under a suitable
multiplicity one and dimension one assumption. In [Takase] there is given a version for
multiplicity one K — types which need not be one dimensional. In this paper we indicate, how
the multyplicity one condition can be removed. For this, the characterization of automorphic
forms by an eigenequation has to be substituted by saying that they span a finite dimensional
module of a certain Hecke algebra. For an application see also [Be-Bd].

The first two sections are devoted to the relation of the restriction of a representation =
of a locally compact group G to a compact subgroup K on the one hand and associated
representations of certain convolution algebras on the other. The key lemnma for our duality
is Lemma 2.1 which characterizes a K — isotype within a G'— isotype by its behavior under
a certain convolution algebra. In section 3 the duality theorem is proven.

We mention a differential version of the duality for Lie groups and give a general reciprocity
theorem which allows a reinterpretation of the dimension formula given by the duality
theorem.

0 Notation All vector spaces are over C. For a vector space V we will write V* for
the dual space, so V* = Hom(V, C). All topological vector spaces will be assumed locally
compact and Hausdorff. For topological vector spaces V and W we write Hom®(V, W) for
the set of continuous linear maps from V to W. We write V' for the topological dual, i.e.
V' = Hom®(V, C). A representation on a topological group G means a weakly continuous
representation on a topological vector space. It will be called irreducible if it admits only
the trivial invariant closed subspaces.

A G— module is a vector space with G acting by linear maps. There is a functor from the
category Rep(G) of G— representations and continuous linear G— maps to the category
Mod (G) of G— modules and linear G— maps by forgetting the topology. The morphisms in
Rep (G) will be denoted Hom% (A, B),A, B € Ob(RepG) and those of Mod (G) simply by
Homg(A, B). If not otherwise stated the term unitary representation will imply the topological
vector space to be complete, i.e. a Hilbert space.

1.1

Let G denote a locally compact unimodular group and I' a closed unimodular subgroup. Let
(p,U) denote a representation of I'. The continuously induced representation CS(p) of G
is defined on the space CEU of all continuous functions f : G — U with f(yz) = p(y)f(z)
for all 4 € I. This space is endowed with the topology of locally uniform convergence and
the representation of G by right shifts, ie. Ry f(z) = f(zg).

Assuming (p,U) to be a unitary representation and fixing Haar measures on G and ' we
define the unitarily induced representation I€(p) to live on the space I$(U) of measurable
functions f : G — U with f(yz) = p(7)f(z) and ||f]| square integrable. On IE(U) we

have the scalar product (f,g) = [ (f(z),g(z))dz. The group G acts as above by right
TG

shifts.



1.2.

For any locally compact group L the set of isomorphism classes of irreducible unitary
representations is denoted by L. Concerning elements of [, we do not distinguish between a
class and a representative. For (7, V) € L and any representation (p,V) of L we denote
by V(x) The =— isotopic component of V, ie. the closure of the sum of all T'(V;) with
T € Homg(Vy, V). If the space Homg,(Vy, V) is finite dimensional we denote its dimension
by [p: 7] and call it the multiplicity of = in p.

1.3.

Back to our previous seiting let (7, V,) denote an unitary representation of G. The group
homomorphism = : G — GL(Vy) gives rise to a representation, also denoted w, of the
convolution algebra C.(G) of compactly supported continuous function G.

Let K denote some fixed compact subgroup of G. Fix some (7,V;) € K such that 7
occurs in 7|g. Such a 7 is called K -type of w. If 7 has finite multiplicity in = |g then
the pair (#,7) will be called an admissible pair. If = is irreducible we say (r,7) is an
irreducible admissible pair. Since K is compact the space V; is finite dimensional and we
have an isomorphism

Homg(Vs,Vs) ® Vs — Vi(6)

(1.3.1,) T ® v T(V).

Define a function e, € C(K) by e-(k) = (dim 7)¢r 7(k). Then for any unitary representation
(o,V,) of K the operator o(e,) is just the orthogonal projection onto V, (7).

For any h € C(K) and f € C(G) we write
h* f(z) =I{ h(k)f(k='z)dk,
f*h(z) =4 h(k) f(zk)dk

1.4.
Let (m,7) be an admissible pair and set w,  (z) := trr(e;)m(z) for z € G. Itis
known [Gaal,p.475], that 1, , = ¥+ implies (x,7) = («',6') if 7,7’ € G.

For (=, Vz) € G the Hilbert space V; decomposes under K as a direct sum of isotypic
components. The algebra C.(G) does not respect this decomposition, but the subalgebra

CAR) ¥ = {f € Co(G)|f(zk) = f(kz) for k € K,z € G}

does so, since for f € C.(G)X and k € K we have =(f)rn(k) = n(k)r(f). By this we
conclude that CC(G)K acts on Homg (V;, V) for any 7 € K. Denote this representation
by axr. A vector v in V; is called cyclic if Vy is the closure of the span of #(G)v.

Proposition Let (z,1) be an irreducible admissible pair. Then the representation o . is
irreducible. Given a second admissible pair (n', ') such that Vi(7') contains a cyclic vector
for Vir and ox . = ax o then (z,7) = (2, 7).
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Proof: The first claim follows from Proposition 12,p.471 in [Gaal]. An irreducible finite
dimensional representation o of the algebra C.(G)¥ is given by its character x,. We get
by (1.3.1.)

(L61) X, ()= g [ S(@hbrr(z)d

Since ax(f) = axr(er * fxe;) we get 7 = 7. By Lemma 5,p.484 in [Gaal] it follows
that 1, , is determined by a, .. Now let C.(G), denote the convolution algebra of all
f € C(G) that satisfy e, * f x e, = f. This algebra acts on Vi(7) and the trace of this
action is also given by the right hand side of (1.5.1.)Hence the spaces Vx(7) and Vy.(7) are
equivalent under C.(G),. Let v’ be a cyclic vector of Vi(7)} and v its image in Vy(7)
under some C(G),— isomorphism. As in the proof of Thm.18,p.475 [Gaal] we conclude

(m(z)v,v) = («'(z)v',v") forz e G.

By Proposition 17,p.455 [Gaal] we get the claim. ®

2.1. Lemma: Let (p,E) be an unitary representation of G. Let (7, 7) be an irreducible
admissible pair. We denote by E(r)(t) the 7—isotypic component of (p|i,E(x)). Then
E(m)(1) = E(an,.), where on the right hand side we take the oy .-isotypic component with
respect to the action of CC(G)K.

”

Proof: The inclusion “C” is clear by 1.4. For "> " let v be some nonzero vector in
E(cx,r). Then Proposition 1.4. applied to = and the cyclic space generated by v gives the
claim. : ®

2.2. Lemma Ler (7, Vy) be an unitary representation of G. Any finite dimensional CC(G)K-

submodule of Vy is semisimple

Proof: Consider the involution f*(z) := f(z=!) on CC(G)K. Then = includes a -
representation of the -algebra C.(G)X. Solet W c V C V; be C.(G)®-modules then
WL+nNV alsois CC(G’)K -stable, hence a complementary to W in V. ®
2.3. Lemma Let (7,V;) be an unitary representation of G. (r,V;) € K and 0 # v €
Va(T) such that TF(CC(G)K)V is a finite dimensional irreducible CC(G)K-module. Then v
generates an irreducible G-representation.

Proof: Let V := n(L}Y(G))v C V. Let L(r) := e, *L'(G)*e,. Forthe K-type T we get
V(ir) = T (LH@))v (1)

AT

= K — spanw (Ll(r)o)v
= K —spanC,(3)%v

by Proposition 4,p. 483 in [Gaal]. Here L!(7)" means the set of all f € L(7)° that satisfy
f(kz) = f(zk) for k € K,z € G. Tt follows that V(r) is irreducible under the action of
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C(K)® CC(G)K. Hence for any proper submodule W C V we have W(7) = 0. Let W
denote the closure of the sum of all proper submodules of V' then W('r) =0, hence W is
proper again. Thus W+ ~ V is a nontrivial submodule since it contains V(). But V(r)
generates V, so W =0 and V is irreducible. ®

3. Automorphic forms

3.1.
We recall the space II(?' V, = L? (F\G, p) of functions f : G — V, such that

1) flyz) = p(7)f(z) foryeTl

2 [f@Id <.
G

An irreducible representation = of G that occurs as subrepresentation of IpGp is called
automorphic.

3.2

Let V be a module of the algebra A. A vector v € V is called A-finite, if Av is finite
dimensional space. The same terminology is used for group actions.

The space of automorphic forms A(I‘\G , p) is by definition the space of all f € L2 (I‘\G, p)
such that

1) f is K-finite

2) f is CC(G)K-ﬁnite.

3.3.
We have a direct sum decomposition into K -types

AR) =@ an(re)

rek
Since CC(G-’)K respects this decomposition we get by 2.2. and 2.3.
AMr) =@@  a(rC0n)

r=K x€G
(m,7) admissible

Here A, (I‘\G, 2 7r) is the space of all ¢ € A, (I‘\G, p) that lie in the #-isotopic component

of L? (I‘\G, p).The elements of A, (F\G, p) are called automorphic forms of weight 7 and
level p. Summarizing we can state this as our Gelfand Duality:
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Theorem Let Co(G)X := e, % Co(G)¥, then the convolution algebra Co(®)E acts on the

T

automorphic forms of weight T and level p. The OC(G’),I.( -isotypic components are precisely
the spaces of automorphic forms that belong to the same automorphic representation. The
multiphicity of a CC(G)f -module equals the multiphicity of the corresponding automorphic
representation. We have

dim A, (F\G,p, 7r) = [Ilg(p) : w] [7lg : 7]dimT.

34.

For applications, the algebra CC(G),}.( often is too large. One seeks for finitely generated
algebras that suffice to do the job. This can be achieved in the case of a real reductive Lie
group G. Solet K be a maximal compact subgroup of G, denote by g the L1c algebra of
G and by U(g) its universal enveloping algebra over C. The algebra U( g) of Ad(K)-
invariants in U(g) is finitely generated since its graded version is so.

Proposition: The space A (I‘\G, p) equals the space of K-finite, U( g)K -finite differentiable
vectors in L2 (I‘\G, p)- Theorem 3.3. holds with CC(G)f replaced by U( Q)K

Proof: The analogue of Lemma 2.1. is in Proposition 3.5.4. in [Wall]. The analogue of
Lemma 2.2. holds because also U(g)¥ is a - algebra with X* = —X for X € g®C.
The analogue of Lemma 2.3 holds because of Lemma 3.5.3 in [Wall]. ®

3.5. Remark. As in [Takase] it is possible to define a different space of automorphic forms
A;.( TG p, 7} consisting of Homg(V;,V,)-valued functions on G such that

— f(yzk) = p(¥)f(z)r(k) fory € Ik € K.
~ f is CC(G)K-ﬁnitc of type an -
— f is L%-integrable

and it clearly follows

dim A’ (P\G,p, 7r) = [IIGp : 'JT] [wlg = 7).

3.6. The reciprocity law.

In this section we assume the quotient ['\C to be compact. For any unitary representation
(w,Vx) of G let V¢ denote the G-span of the K-finite vectors in V. The representation
7 is called admissible if every 7 € K occurs in n|x with finite multiplicity, i.e. (m,7)
is an admissible pair.

Theorem Assume (w,V;) € G admissible. We have an isomorphism of vector spaces
Homs, (V,,, IEU) , Homp(V2, ).
Especially for trivial p we get

[Ilgl : ﬂ'] = dim (Vo))"



Proof: At first note that by restriction we get

Homg, (Vy, I§U) — Homg (Vi IEU)
Since Vi is admissible we get for the K -finite vectors Vi g in Vi that Vy g = (Ce(G) Vi) g
Hence any G-morphism from V; to IIG U will map V¥ into the space of continuous functions
CEU in IFU. So it makes sense to define

é: Homg;(v,:,ff"u) — Homp(VE, U)

¢(F)(v) == F(v)(1)

and

¥ : Homp(V,U) — Homr (V,‘,IIQU)

P((u)g) = f((g)u)

The only thing we have to show is that (f) is bounded for any f since then it automatically
follows that ¢ and 1 are inverse to each other. So let f € Homp(V,¢,U). Consider %(f)
first as a map from V; i to I€U. The space Vj x splits into an orthogonal sum of finite
dimensional spaces. Let (-,-) denote the scalar producton V; g. Let (-,-) denote the second
scalar product defined by (z,y) = (¥ (f)z,¥(f)y). Since also under (,) the decomposition
of Vi i is orthogonal there is a linear operator B such that

(z,y) = (z, By).

The algebra C.(G)g of on both sides K-finite functions acts irreducibly on V; g and B
commutes with this action hence B is a scalar and we conclude that (f) is bounded on
Ve kx and G equivariant, hence bounded on V. ©)

3.7. Remark The map of the theorem extends to an isomorphism of bifunctors on the
categories of admissible unitary semisimple representations of G and finite dimensional
unitary representations of I'.

3.8. Corollary For the space of automorphic forms we get
r
dim A, (F\G, Py 11') = dim (V,rc’* %) U) 7|k : 7]dimT.
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