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Sergei K. Lando*

Abstract

Deleting and contracting a link in a graph determines an equiva-
lence relation in the Abelian group frecly generated by graphs: modulo
this relation a graph is equivalent to the sum of itself with deleted edge
and itself with contracted edge. Tutte’s theorem states that any graph
is equivalent to the unique linear combination of graphs without links.
We call this linear combination the Tutte decomposition of the orig-
inal graph. Recent developments in the knot theory and the theory
of Abelian avalanches and sandpiles led to the Tutte decomposition
for graphs with weighted vertices and edges. We prove that this de-
composition is also unique.and discuss the Hopf algebra structures
underlying it.

A class of graph invariants introduced by Tutte in early fourties had been
thouroughly investigated since that time. It had proved that a large amount
of natural functions on graphs satisfies Tutte relations. The chromatic poly-
nomial, the dichromat, the number of spanning trees and so on are among
them.

Recent developments in knot invariants {1] and the theory of avalanches
and sandpiles [2, 3] led to functions on graphs with additional structure.
This additional structure is a weight assigned either to vertices of the graph
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(in the case of knot invariants) or both to vertices and edges (in the case
of avalanches). The functions arising appear to be very close to the original
Tutte invariants.

This progress produced a new point of view on the Tutte relation. It had
been understood, for example, that there exists a deep connection between
the Tutte relation and the Jacoby identity for Lie algebras [1].

In the first three sections we describe Tutte decomposition for all three
types of objects. In Sec. 2 also a Negami-like extension of the weighted
invariants is given. The construction of the universal Tutte invariant for
symmetric matrices in Sec. 3 is new. In Sec. 4 we discuss Hopf algebras
underlying the Tutte decomposition in all three cases. Sec. 5 is devoted to
the description of a model unifying the Tutte case of Sec. 1 and the weighted
case of Sec. 2. ‘

The work on this paper was started during the author’s visit to Université
Bordeaux I in 1993, and completed during the visit to Max-Planck Institute
fiir Mathematik, Bonn in 1996. The author is grateful to both these insti-
tutions for their hospitality and fruitful atmosphere. Thanks are also due to
V. A. Vassiliev who attracted the author’s attention to the Negami paper [4]
and to S. V. Chmutov and S. V. Duzhin, the coathors of [1], for numerous
discussions.

1 Tutte decomposition for graphs

1.1 Definitions

Agraph may contain loops (edges whose ends coincide) and multiple edges.
An edge which is not a loop is called a link. A Tutte invariant (or, a V-
function, following [6]) is a function on graphs satisfying some relations. The
function takes values in some commutative associative ring K with unity.

Let A denote a link in a graph T'. The graph I"; is obtained from the
graph I' by removing the edge A.

The graph I, is obtained from the graph I' by contracting the edge A.
After contracting an edge its ends become one and the same vertex. All other
edges whose both ends coincide with the ends of A become loops.

A loop may not be deleted or contracted.



Both deletion and contraction decrease the number of edges in the graph
by one.
We say that a function f satisfies the Tutte relation if

FT) = F(T,) + F(T7)

for any graph T" and any link A in it.

Consider the free Abelian group G generated by all the graphs as free
generators. Elements of G are linear combinations of graphs with integer
coefficients. Any function on graphs with values in K can be extended to a
linear function G — K.

Consider the subgroup GT C G generated by all expressions of the form
I' — I, — I, for every graph I and for every link A in it. Denote by z; the
graph -consisting of-one-vertex-and -k-loops. Any element-of G is equivalent,
modulo GT, to a linear combination of graphs z; and their disjoint unions.
Indeed, according to the Tutte relation, any graph is equivalent modulo GT
to a sum of two graphs with less number of links, and we can proceed by
induction.

There is a huge number of ways for subsequent deletion and contraction
of links in the graph. Different ways can provide, in principle, different
decompositions. The main theorem by Tutte (see below) states, however,
that the decomposition is unique. It is called the Tutte decomposition of a
graph. The theorem is proved by constructing the universal Tutte invariant.

1.2 The universal Tutte invariant

Let L denote the operation of disjoint union of graphs. A function f is called
multiplicative if

f(Tule) = f(T)f(T2)
for any pair ['y, I'; of graphs.

Definition 1.1 A function f is called a Tutte invariant if it is multiplicative
and satisfies the Tutte relation.

Each Tutte invariant can be obtained from the universal one which we
are going to construct now.

Let rg, 71,72, . .. denote an infinite set of commuting formal variables. The
universal Tutte invariant we are going to describe is a function on graphs
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taking values in the ring Z{rp,ry,...] of polynomials in these variables with
integer coefficients.

Let T be a connected graph with the first Betti number (= number of
independent cycles = cyclomatic number) & = b (I'). We set ¢(I") = r.
For example, t(zx) = r. For an arbitrary graph I' we set ¢(I") = [Ty, ¢(I';),
where the product is taken over all connected components I'; of the graph I'.
The function ¢ thus takes any graph to a monomial, which we call the Tutte
monomial.

A spanning subgraph of a graph I is an arbitrary subgraph of " containing
all vertices of I.

Definition 1.2 The universal Tutte invariant T is the function defined by
T(F) = >_t(7),
v

where the sum is taken over all spanning subgraphs v of the graph I'.

For example,

T(zs) = i (:)Tk.

i=0
Theorem 1.1 [6]
1. The universal Tutte invariant is a Tutte invariant.

2. Let K be an associative commutative ring with unity. Substituting arbi-
trary elements of K instead of each element ro, 71,79, ... in the function
T one obtains a Tutte invariant with values in K.

3. Any Tutte invariant with values in I{ can be oblained in this way.

The Tutte theorem means in particular that a Tutte invariant may take
arbitrary values on the set {z;} of graphs, and it is uniquely determined by
this set of values.

Corollary 1.1 The Tutte decomposition is unique.



2 Tutte decomposition for weighted graphs

2.1 Weighted invariants

A theory we are going to construct now is parallel to the theory of Tutte
invariants, but it works with slightly different objects. It appeared in [1] in
connection with Vassiliev knot invariants.

Definition 2.1 A weighted graph is a graph I' having no loops or multiple
edges endowed with a mapping w : V{(I') = N U {0} to be called a weight
taking each vertex of the graph " to a non-negative integer. The weight w(T)

of the graph T is the sum of the weights of all its vertices, w([') = ¥ w(v).
veV(T)

For an edge A of the graph T" the graph I, is obtained from I by removing
the edge A just as above. The weights of the vertices do not change.

The contraction I, of an edge A is defined as follows:

1) the edge A is contracted into a vertex A of the graph I';

2) if multiple edges arise they are replaced by unique edges;

3) the weight w(A) of the new vertex A is set to be equal to the sum
of the weights of the ends of the edge A in the original graph I'; weights of
other vertices do not change.

Definition 2.2 A function f on weighted graphs satisfies the weighted Tutte
relation if

J(0) = f(Ty) + £(T)
for any weighted graph [' and any edge A in it.

Consider the free Abelian group W generated by all weighted graphs
as free generators. Let WT C W be the subgroup generated by all the
expressions of the form ' — Iy, — I';. Denote by y,,n = 0,1,2,... the
weighted graph consisting of one vertex of weight n. Since both deletion and
contraction decrease the number of edges in the graph, any weighted graph
is equivalent, modulo WT, to a linear combination of graphs y, and there
disjoint unions. In fact, this linear combination is unique (see the theorem
below). We call it the Tutte decomposition for weighted graphs.



2.2 Homogeneity of weighted Tutte relations

Fix an integer n and consider a weighted graph I" of weight n. Then for any
edge A of I' both graphs I, and I, will be of the same weight n.

This allows one to consider the homogeneous component W,, C W gen-
erated by weighted graphs of weight n and the homogeneous component
WT, C W, generated by all Tutte expressions for graphs of weight n.

One obviously obtains

Statement 2.1 The groups W and WT can be represented as direct sums
of their homogeneous components:

W=W0®M/1®W2®...
WI=WheWlheWlhae...

The homogeneity of Tutte relations for weighted graphs is their main
difference from the situation with ordinary graphs.

2.3 The universal weighted Tutte invariant

The definition of multiplicativity for a function on weighted graphs coincides
with that for ordinary graphs.

Definition 2.3 A function f on weighted graphs is called a weighted Tutte
invarient if it is multiplicative and satisfies the weighted Tutte relation.

The universal weighted Tutte invariant acts from the set of weighted
graphs into the ring Z[s, s1, s2, . - ..

For a connected weighted graph [’ with the first Betti number & = b, (T')
and the weight w = w(T") we set wt(T") = (~1)*s,,. For an arbitrary weighted
graph I' we set wt(I') = [Ir, wt(T;), where the product is taken over all
connected components ['; of the graph I'. We call the function wt the weighted
Tutte monomial.

Definition 2.4 The universal weighted Tutte invariant wT is defined as fol-
lows. For any weighted graph I' set

wT(T) =3 wi(y),

where the sum is taken over all spanning subgraphs v of the graph T
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Theorem 2.2 [1]

1. The function wT is a weighted Tutte invariant.

2. Let K be an associative commutative ring with unity. Substituting ar-
bitrary elements of K for each element sy, $9, 83, . .. in the function wT
one obtains a weighted Tutle invariant with values in K.

3. Any weighted Tutte invariant with values in K can be obtained in this
way.

Corollary 2.1 Any weighted graph admits the unique Tutte decomposition.

2.4 A Negami-like extension of the weighted invariant

S. Negami [4] introduced a modification of the Tutte relation for ordinary
graphs. The relation of Negami looks like

f(O)=zf(La) +yf(T4)
As a result, the invariant under consideration becomes a polynomial in two
additional variables, z and y.
The decomposition of weighted graphs described in the present section
admits a similar extension, namely, we can consider functions satisfying

F(0) = £(Ta) + yf(T)
for weighted graphs. Modulo the corresponding equivalence relation on
graphs any weighted graph becomes equivalent to a linear combination of
graphs y, and their disjoint unions with coefficients in Z[y].
Note that preserving the factor z in the first term would lead to a non-

unique decomposition. The simplest example is given by the triangle with
vertices of weights 1,1, 2.

Theorem 2.3 Any weighled graph admits the unigue decomposition with re-
spect to the extended Tutte relation.

The proof is also achieved by constructing the universal invariant similar
to that of Sec. 2.3. The only difference is in the definition of the weighted
Tutte monomial. We set wt(l") = (—1)*s,yZ~* for a connected weighted
graph I of weight w with E(I") edges. Here k is the first Betti number of the
graph G. This universal invariant takes values in the ring Z{y; so, s1,...) and
is obviously more subtle than that of Sec. 2.3.
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3 Tutte decomposition for symmetric matri-
ces

3.1 Symmetric matrices and ve-weighted graphs

In this section we will consider symmetric square matrices g = (gi;),%,7 =
1,...,m; gi;; = g; with non negative integer entries. The dimension m of a
matrix may take arbitrary values m = 1,2, 3,.... Matrices are considered up
to a common permutation of columns and rows.

Tutte decomposition for such matrices has been introduced by A. Gabrie-
lov [2, 3] in connection with the theory of Abelian avalanches and sandpiles.
We construct the universal Tutte invariant for these matrices and prove thus
the uniqueness of the Tutte decomposition.

Remark. The constructions below can be easily generalized to the case of
non symmetric matrices ag well. We do not present such a generalization for
the sake of clarity.

A symmetric matrix can be presented as a graph with weighted ver-
tices and edges (a ve-weighted graph), diagonal elements corresponding to
the weight of vertices. If g;; = 0,7 # 7, there is no edge between vertices 1
and j. Otherwise the corresponding edge has the weight 2g;; (or there are g;;
edges of weight 2 each between vertices ¢ and j). We will use further both
the language of matrices and that of graphs.

Definition 3.1 [2] The deletion of the edge 7j provides the m X m matrix
g (i) given by the following formulas:

g (65)i == g + 9ij; g (15);5 = gj; + 95

g (i3)i5 = 0,9 (19)5: := 0
with all other elements not changed.

The contraction of the edge ij provides the (m — 1) x (m — 1) matrix
g (i) given by the following formulas:

g (i1)ii = gss + 95 + 9ij + G5
g (@5)ik 2= gix + Gin; ¢ (19)ki = i + Ok
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for kK # 1,7 with j-th row and column removed and all other elements not
changed.

A function f on symmetric matrices satisfies the Tutte relation if
f(9) = £(9'(i9) + 95:S (9" (i)

for any matrix ¢ and any edge ¢j in it.

Consider the free Abelian group S generated by all symmetric matrices
as free generators. The subgroup ST C S is generated by all expressions of
the form g — ¢ (ij) — gi}-g" (zj}. Both deletion and contraction decrease the
number of nonzero nondiagonal elements in the matrix (?number of edges”).
It means that any symmetric matrix (or any element of S) is equivalent
modulo ST to a linear combination of diagonal matrices. In fact, such linear
combination is unique. We call it the Tutte decomposition of the symmetric
matriz.

3.2 Weight invariancy of contraction and deletion

We may set the weight w(g) of a symmetric matrix g to be equal to the sum
of all elements of g. The weight w(¢) of the i-th row is equal to the sum of
elements in the row. Both contraction and deletion obviously preserve the
weight of the matrix.

Denote by S, C S the subgroup generated by all matrices of weight n;
the subgroup ST,, C S, is generated by all Tutte expressions for matrices of
weight n.

Similarly to the weighted case we have

Statement 3.1 The groups S and ST are represented as direct sums of the
corresponding weight homogeneous subgroups:

S=565050...
ST=STy&ST1 & ST ® ...



3.3 Constructing the universal invariant for symmetric
matrices

Denote by g U h the direct sum of symmetric matrices g and h. A function
f on symmetric matrices is multiplicative if f(gU L) = f(g)f(h) for any two
matrices g and h.

Definition 3.2 A function f on symmetric matrices is called a ve-weighted
Tutte invariant if it is multiplicative and satisfies the Tutte relation for any
matrix g and any edge ij in it.

We are going to construct the universal ve-weighted Tutte invariant vel
with values in the ring Z[sg, $1, Sz, .. .]. Let ¢ be a symmetric matrix and d be
an arbitrary partition.of the set of rows of ¢.into a disjoint union of subsets,
d = diUdyU.. . Udx. We set vety(g) = Ca,Cd, - - - Cdy Sw(dy)Swide) - - - Sw(dy)- Here
cq, is an integer constant. For the subset d; this constant is defined as follows.
Associate with d; the square matrix obtained by intersecting the rows from
d; with the corresponding columns. Consider the set of all elements of the
matrix lying above the diagonal. We set ¢4, to be equal to the symmetric
function of degree #(d;}—1 in these elements equal to the sum of all products
of different elements in number |d;| — 1. Here |d;| denotes the number of rows
in d;.

For example, if d is the set of all rows of the square matrix

a; Cp Cg
i G C3 )
Ca C3 (U3

then vety = (0102 + cac3 + CSCI)Sa1+ag+n3+201+2cz+2t:3-

Definition 3.3 We call the monomial vety the universal ve-weighted Tutte
monomial corresponding to the partion d. The function

veT(g) = Y vety
d

is called the universal ve-weighted Tutte invariant.

Theorem 3.2 1. The universal ve-weighted Tutte invariant is a ve-weight-
ed Tutte invariant.
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2. Let K be an associative commautative Ting with unity. Substituting ar-
bitrary elements of K for each element sg, s1, 83, 83, ... in the function
vel one oblains a ve-weighted Tutte invariant with values in K.

3. Any ve-weighted Tutte invariant with values tn K can be obtained in
this way.

Proof.
The universal invariant constructed above is obviously multiplicative. We
need to prove that it satisfies the Tutte relation, i.e. that

veT'(g) = veT (g (47)) + giveT (g (i5))

for any symmetric matrix g and any edge ¢ in it.

All partitions d of the set of rows of the matrix g can be separated into
two classes: those for which rows ¢ and j belong to one an the same set of
the partition; and those for which rows 7 and j belong to different sets.

Let a partition d belong to the first class. Then it corresponds to a
partition d of the set of rows of the matrix ¢, and one obviously has vety =
vely.

In the case the partition d belongs to the second class it corresponds
to a pair d,d’ of the partitions of the sets of rows of matrices ¢ and g"
correspondingly. Let dk,d'k,d',; be the sets of the corresponding partitions
containing both rows ¢ and j. Then the constants c,,, Cd s Cdf in the definition

of the ve-weighted Tutte monomial satisfy the equality
Cdy, = cd:k -+ g,-jcd:,

what ends the proof.

The second and the third statements of the theorem follow from the fact
that any symmetric matrix is equivalent modulo the subgroup ST to a linear
combination of diagonal matrices.

Corollary 3.1 Any symmetric matriz admaits the unique Tulte decomposi-
tion.

I am obliged to Yu. Volvovskii for the following remark.
Remark. Theorem 2.2 for weighted graphs follows from the proof of The-
orem 3.2 for ve-weighted graphs by the following trick. We can consider a
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weighted graph as a ve-weighted graph with edges of weight zero. Such a
graph can be described by a symmetric matrix with two different kind of ze-
roes: those coming from existing edges, and those coming from non-existing
ones. After that the summing in the definition of the universal ve-weighted
invariant is taken not over all partitions d of the set of rows, but over all
partions d such that each component of the underlying graph is connected.

4 The Hopf algebra structures

In his original paper [7] Tutte introduced a ring of graphs. In the terms of
the present paper this ring is simply the group G equipped with the multi-
plication induced by the disjoint union of graphs. This ring is commutative
and the empty graph serves the unity for it. Theorem 1.1 shows that the
quotient ring G/GT is isomorphic to the ring of polynomials in an infinite
set. of variables.

Similar statements are valid for the other two situations. It means, in
particular that all the rings G/GT,W/WT, S/ST are mutually isomorphic.
Unfortunately, the isomorphism between G/GT and the other two rings does
not seem to be a natural one, since no natural weight can be defined in G/GT.

Besides multiplication all the groups G/GT,W/WT,S/ST can be en-
dowed with a comultiplication operation making them not just rings, but
bialgebras (Hopf algebras, in fact, see definitions in [5]). We describe the
comultiplication for the ring W/WT, for other rings it is defined similarly.
Qur description follows that of [1].

The comultiplication is a linear mapping

1w W/WT — W/WT @ W/WT
defined on a weighted graph I as

p:T 3 ey,
V(I)=V(T1)uV ()

where the sum is taken over all partitions of the set of vertices V(I') into
a disjoint union of sets V'(I'1), V(I'y), the graphs I'; and [’y being complete
subgraphs of I' with the corresponding sets of vertices. Proving that G
becomes a Hopf algebra is a technical exercise.
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The ring Z|so, 1, S2, - - -] has a natural structure of a Hopf algebra as well.
The comultiplication is defined on a monomial sg, g, ... Sk, k1 L ko < ... &£
k.. as follows:

,u(sklsk, ce Skm) = 1@ 5k, 8k, - Sk, T Sk @ Sk, - - Sk
8k, @ Sk, Sky -+ Sk -
+8k, Sk, ® Sky .- Sk, T+ Sk Sky - Sk, L.

The homomorphism given by the universal invariant is, in fact, an iso-
morphism of Hopf algebras. Thus we have.

Theorem 4.1 The groups G/GT,W/WT,S/ST carry a (commutative and
cocommautative) Hopf algebra structure making them isomorphic to the Hopf
algebra of polynomials in an infinite set of variables, one variable of each
order.

5 Graphs and weighted graphs, a unified ap-
proach

Let us unify graphs and weighted graphs by considering graphs (loops and
multiple edges allowed) with weighted vertices. The deletion of a link is
defined as usual, and the contraction of a link is the combination of two
contractions: the topology of the underlying graph is defined as in the case
of ordinary graphs, while the weight of the resulting vertex becomes the sum
of the weights of two link ends.

Denote the Abelian group freely generated by these objects by U. The
definition of the Tutte relation and the Tutte decomposition in U is standard.
A multiplicative function satisfying the Tutte relation will be called a unified
Tutte invariant. The result of a Tutte decomposition is a linear combination
of the graphs z,, having one vertex of weight m and % loops and their
disjoint unions. :

We are going to show that the Tutte decomposition in this case is unique.

The universal invariant looks like

uT'(T) = ) ut(y),
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where the sum in the right hand side is taken ovo all spanning subgraphs v
of (the underlying graph of) ', and ut(y) = T1,(-1) B0y (410w This
invariant takes its values in the ring Z[pg,pl, ...,01,09,...]. The univer-
sal invariant for ordinary graphs can be obtamed from it by setting p; =
(-1)'ry,1=10,1,2,...; 0; =1,7=1,2,3,.... Similarly, the universal invari-
ant for weighted graphs is the result of specializing p; = 1, =0,1,2,...; 0; =
$;,7=1,2,3,....
The same methods as above lead to the following theorem.

Theorem 5.1 1. The function uT s a unified Tutte invariant.

2. Let K be an associative commutative ring with unity. Substituting arbi-
trary elements of K for each element py, py,...,01,09,... in the func-
- tion uT. one-obtains a-unified Tutte-invariant with values in K.

8. Any unified Tutte invariant with values in K can be oblained in this
way.
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