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Abstract

Deleting and contracting a link in a graph determines an equiva­
lence relation in the Abelian group frecly generated by graphs: modulo
this relation a graph is equivalent to the sunl of itself with deleted edge
and itself with contracted edge. Tuttc's theorem states that any graph
is equivalent to thc unique linear cOlllbination of graphs without links.
We call this linear combination the Thtte decomposition of the orig­
inal graph. Recent devclopluents in the knot theory and the theory
of Abelian avalanches and sandpilcs led to thc Tutte decOInposition
for graphs with weighted vertices allel edgcs. We provo that this de­
composition is also unique .and disCllSS the Hopf algebra structures
underlying it.

A dass of graph invariants introduced by Tuttc in early fourties had been
thouroughly investigated since that time. It hael proved that a large amount
of natural functions on graphs satisfies Tutte relations. The chromatic poly­
nomial, thc dichromat, the number of spanning trees anel so on are among
them.

Recent developments in knot invariants [1] anel the theory of avalanches
and sandpiles [2, 3] leel to functions on graphs with additional structure.
This additional structure is a weight assigned either to vertices of the graph
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(in the ease of knot invariants) Of both to vertiees and edges (in the ease
of avalanches). The functions arising appcar to be very elose to the original
Tutte invariants.

This progress produeed a new point of view on thc Tutte relation. It had
been understood, for example, that there exists a deep eonnection between
the Tutte relation and the Jacoby identity for Lie algebras [1].

In the first three sections we describe Tutte deeomposition for all three
types of objeets. In Sec. 2 also a Negami-like extension of the weighted
invariants is given. The eonstruction of the universal Tutte invariant for
symmetrie matrices in Sec. 3 is new. In Sec. 4 we diseuss Hopf algebras
underlying the Tutte decomposition in all thrce eases. Sec. 5 is devoted to
the description of a model unifying the Tutte easc of Sec. 1 and the weighted
case of Sec. 2.

The work on this paper was started during the allthor's visit to Univcrsite
Bordeaux I in 1993, and eompleted during the visit to Max-Planck Institute
für Mathematik, Bonn in 1996. The author is grateful to both these insti­
tutions for their hospitality and fruitflll atmosphere. Thanks are also due to
V. A. Vassiliev who attracted the author's attention to the Negami paper [4]
and to S. V. Chmutov and S. V. Duzhin, thc coathors of [1]' for numerous
discussions.

1 Tutte decomposition for graphs

1.1 Definitions

Agraph may contain loops (edges whosc ends coincide) and Inultiple edges.
An edge which is not a loop is called a link. A Tutte invariant (or, a V­
function, following [6]) is a function on graphs satisfying some relations. The
funetion takes values in some cOInmutative associativc ring K with unity.

Let Adenote a link in a graph r. The graph r~ is obtained from the
graph r by removing thc edge A.

The graph r~ is obtained from thc graph r by contracting the edge A.
After contracting an edge its ends becoIne one and the same vertex. All other
edges whose both ends coincide with thc cnds of A becoIne loops.

A loop may not be deleted Of contractcd.
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Both deletion anel contraction decrease the number of cdges in the graph
by one.

We say that a function f satisfies the Thtte relation if

f(r) = f(r~) + f(f~d

for any graph fand any link A in it.
Consider the free Abelian group G generateel by all the grapbs as free

generators. Elements of G are linear combinations of graphs with integer
coefficients. Any function on graphs with values in ]{ can be extended to a
linear function G -t ]{.

Consider the subgroup GT c G generated by all expressions of the form
f - r~ - r~ for every graph fand for every link A in it. Denote by Xk the
grapb ·consisting ·of·one-vertex·and ·k~loops. Any clelnent-of G is equivalent,
modulo GT, to a linear combination of graphs Xk anel their elisjoint unions.
Indeed, according to the Tutte relation, any graph is equivalcnt modulo GT
to a sum of two graphs with less number of links, and we can proceed by
induction.

There is a buge number of ways for subsequent deletion and contraction
of links in the graph. Different ways can provide, in principle, different
decompositions. The main theorem by Tutte (see below) states, however,
that thc decomposition is unique. It is callcel the Thtte decomposition of a
graph. The theorem is proved by constructing thc universal Tutte invariant.

1.2 The universal Tutte invariant

Let u denote the operation of disjoint union of graphs. A function f is called
multiplicative if

f(f 1 u f 2) = f(fdf(f 2 )

for any pair r 1, f 2 of graphs.

Definition 1.1 A function f is called a Tutte invariant if it is multiplicative
and satisfies tbe Tutte relation.

Each Tutte invariant cau be obtainecl frmn the universal one which we
are going to construct oow.

Let TO, Tl, T2, ... denote an infinite set of cOlnlnuting formal variables. The
universal Tutte invariant we are going to dcscribe is a fllnction on graphs
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taking values in tbe ring Z[ro, rl," .] of polynomials in these variables witb
integer coefficients.

Let r be a connected graph with tbc first Betti number (== number of
independent cycles == cycloluatic nUluber) k == bl (r). We set t(r) == rk.
For example, t(Xk) == rk. For an arbitrary graph r we set t(r) == ITri t(f i ),

where the product is taken over all connected components f i of the graph r.
The function t thus takes any graph to a Iuonoluial, which we call the Tutte
monomial.

A spanning subgraph of a graph r is an arbitrary subgraph of r containing
all vertices of r.

Definition 1.2 The universal Tutte invariant T is thc function defined by

T(f) == L t(,),
'Y

where the sum is taken over all spanning subgraphs , of thc graph f.

For example,

Theorem 1.1 [6]

1. The universal Tutte invariant is a Tutte invariant.

2. Let K be an associative commutative ring with unity. Substituting arbi­
trary elements 01 !< instead 0/ each element Ta, rl, 1'2, ... in the lunction
Tone obtains a Tutte invariant with val11.es in K.

3. Any Tutte invariant with values in !( can be obtained in this way.

Thc Tutte theorem means in particular that a Tutte invariant may take
arbitrary values on the set {Xk} of graphs, anel it is uniquely determined by
this set of values.

Corollary 1.1 The Tutte decomposition is unique.
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2 Tutte decomposition for weighted graphs

2.1 Weighted invariants

A theory we are going to construct now is parallel to the theory of Tutte
invariants, but it works with slightly different objects. It appeared in [1] in
connection with Vassiliev knot invariants.

Definition 2.1 A weighted graph is a graph f having 110 loops or multiple
edges endowed with a rnapping w : V(f) -r N U {O} to be called a weight
taking each vertex of the graph r to a non-negative integer. The weight w(r)
of the graph r is the surn of the weights of all its vertices, w(r) = L w(v).

vEV(r)

For an edge A of the graph r the graph r~ is obtained froln r by rernoving
the edge A just as above. The weights of the vcrtices do not change.

The contraction r~ of an edge A is dcfined as follows:
1) thc edge A is contracted into a vertex A of the graph r~;

2) if multiple edges arise they are rcplaced by unique edges;
3) thc weight w(A) of the new vertex A is set to bc equal to thc surn

of the weights of thc ends of the edge A in the original graph r; weights of
other vertices da not change.

Definition 2.2 A function f on weighted graphs satisfies the weighted Tutte
relation if

for any weighted graph rand any edge A in it.

Consider the ffee Abelian group lV generated by all \veighted graphs
as free generators. Let WT c W be the subgraup generated by all the
expressions of the fonn r - r~ - r~. Denote by Yn, n = 0,1,2, ... the
wcighted graph consisting of one vertex of weight n. Since both deletion and
contraction decrease the number of cdges in thc graph, any weighted graph
is equivalent, Inodulo WT, to a linear cOInbination of graphs Yn and there
disjoint unions. In fact, this linear combination is unique (see the theorem
below). We call it the Thtte decomposition fOT weighted graphs.
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2.2 Homogeneity of weighted Tutte relations

Fix an integer n anel consider a weighted graph r of weight n. Then for any
edge A of r both graphs r~ and r~ will be of the same weight n.

This allows one to consider the hOInogeneous cornponent Wn C W gen­
erated by weighted graphs of weight n anel the hornogeneous cornponent
WTn c Wn generated by all Tutte expressions for graphs of weight n.

One obviously obtains

Statement 2.1 The groups Wand vVT can be represented as direct sums
0/ their homogeneous components:

W = Wo ffi VV1 EB W2 EB ...

1VT = 1VTo Ei) l-VT1 Ei) vVT2 Ei) ..•

The hornogeneity of Tutte relations for weighted graphs is their main
difference from the situation with ordinary graphs.

2.3 The universal weighted Tutte invariant

The definition of rnultiplicativity for a function on weightecl graphs coincides
with that for orclinary graphs.

Definition 2.3 A function f on weighted graphs is called a weighted Thtte
invariant if it is multiplicative and satisfies thc weighted Tlltte relation.

The universal wcighted Tutte invariant acts frorn the set of weighted
graphs into the ring Z(so, SI, S2, ... ].

For a connected weighted graph r with thc first Betti Ilumber k = b1(r)
and the weight w = w(r) we set wt(r) = (-l)k sw ' For an arbitrary weighted
graph f we set wt(r) = TIri wt(f i ), where the product is taken over all
connected cornponents f i ofthe graph r. We caU thc functioll wt the weighted
Thtte monomial.

Definition 2.4 The universal weighted Tutte invariant wT is defined as fol­
lows. For any weighted graph f set

wT(r) = L wt(,),
"I

where the surn is taken over all spanning subgraphs I of thc graph r.
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Theorem 2.2 [1]
1. The function wT is a weighted Tutte invariant.

2. Let!( be an associative commutative ring with unity. Substituting ar­
bitrary elements of !( for each element SI, 82, S3, ... in the function wT
one obtains a weighted Tutte invariant with values in K.

3. Any weighted Tatte invariant witk values in ]( can be obtained in this
way.

Corollary 2.1 Any weighted graph admits the unique Tutte decomposition.

2.4 A Negami-like extension of the weighted invariant

S. Negami [4] introduced a modification of thc Tutte relation for ordinary
graphs. The relation of Negami looks likc

j(r) == xj(r~) + yj(r~).

As a result, the invariant under consideration becolnes a polynomial in two
additional variables, x and y.

The decomposition of weighted graphs described in thc present section
admits a similar extension, namely, we can consider functiolls satisfying

j(f) == f(f~) + Yf(r~)

for weighted graphs. Modulo the corresponding equivalence relation on
graphs any weighted graph becomes equivalellt to a linear combination of
graphs Yn and their disjoint unions with coefficients in Z[y].

Note that preserving the factor x in thc first term would lead to a non­
unique decomposition. Thc simplest exalnple is given by the triangle with
vertices of weights 1, 1, 2.

Theorem 2.3 Any weighted graph admits the unique decomposition mith re­
spect to the extended Tutte relation.

The proof is also achieved by constructing thc universal invariant similar
to that of Sec. 2.3. The only difference is in thc definition of the weighted
Tutte monomial. Wc set wt(r) = (_l)k swyE(r)-k for a connected weighted
graph r of weight w with E(r) edges. Here k is the first Betti number of the
graph G. This universal invariant takes values in the ring Z[Yi So, SI, .••] and
is obviously more subtle than that of Sec. 2.3.
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3 Tutte deeomposition for symmetrie matri­
ees

3.1 Symmetrie matriees and ve-weighted graphs

In this seetion we will eonsider symmetrie square Inatriees 9 = (gij) , i, j =
1, ... ,m; gij = gji with non negative integer entries. The diInension m of a
matrix may take arbitrary values m = 1,2,3, .... Matriees are considered up
to a common permutation of eolumns anel rows.

Tutte decomposition for such matrices has been introdueed by A. Gabrie­
lov [2, 3] in conneetion with the theory of Abclian avalanchcs and sandpiles.
We construet the universal Thtte invariant for these matriees and prove thus
the uniqueness of the Tutte deeomposition.

Remark. The eonstruetions below ean be easily generalized to the ease of
non symmetrie matriees as weIl. We do not present such a generalization for
the sake of clari ty.

A symmetrie matrix can be pres€uted as a graph with weightcd ver­
tices and edges (a ve-weighted graph), diagonal elements corresponding to
thc weight of vertices. Ir 9ij = 0, i =j:. j, there is HO eclge between vertices i
and j. Otherwise the corrcsponding edgc has the weight 2gij (01' there are 9ij

edges of weight 2 eaeh between vertices i and j). VVe will use further both
thc language of Inatriees and that of graphs.

Definition 3.1 [2] The deletion of thc edge ij provides thc m x m matrix
g' (ij) given by thc following formulas:

g' (ij)ii := 9ii + 9ij; g' (ij)jj := 9jj + 9ji

g' (ij)ij := 0; .0' (ij)ji := 0

with all other elelnents not ehanged.
The contraction of the edge ij provides thc (m - 1) x (m - 1) matrix

9" (ij) given by the following formulas:

g" (ij)ii := 9ii + gjj + 9ij + 9ji

g" (ij)ik := 9ik + 9jk; g" (ijhi := 9ki + gkj
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for k =1= i, j with j-th row and column removed and all other elements not
changed.

A funetion f on symmetrie matriees satisfies the Tutte relation if

/(g) = /(g' (ij)) + gijf(g" (ij))

for any matrix 9 and any edge ij in it.
Consider the free Abelian group S generated by an symmetrie matriees

as free generators. The subgroup ST c S is generatecl by an expressions of
the form 9 - g' (ij) - gijg" (ij). Both deletion and contraetion decrease the
nUlnber of nonzero nondiagonal eleluents in the matrix C' nurnber of edges").
It means that any symmetrie matrix (or allY element of S) is equivalent
modulo ST to a linear combination of diagonal-Inatrices. In fact, sueh linear
eombination is unique. We can it the Tutte decomposition 0/ the symmetrie
matrix.

3.2 Weight invariancy of contraction and deletion

We may set the weight w(g) of asymmetrie Inatrix 9 to be equal to the sum
of an elelnents of g. Tbe weight w(i) of the i-th row is equal to the surn of
elements in the row. Both eontraetion anel deletion obviously preserve the
weight of the matrix.

Denote by Sn C S the subgroup generatecl by an Inatriees of weight n;
the subgroup STn C Sn is generated by all Tuttc expressions for matriees of
weight n.

Similarly to tbc weighted case we havc

Statement 3.1 The groups Sand ST are represented as direct sums 0/ the
eorresponding weight homogeneo'US subgroups:

S = So EB SIEB S2 EB ...

ST = STo EB ST1 EB ST2 EB ...
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3.3 Cünstrueting the universal invariant für symmetrie
matriees

Denote by 9 U h the direet sum of symmetrie matriees 9 and h. A funetion
f on symmetrie matriees is multiplicative if f (g U h) = f (9) f (h) for any two
lnatriees 9 and h.

Definition 3.2 A funetion f on symlnetrie Inatriecs is ealled a ve-weighted
Tutte invariant if it is multiplieative allel satisfies the Tutte relation for any
rnatrix 9 and any edge ij in it.

We are going to eonstruet the universal vc-weighted Tutte invariant veT
with values in the ring Z[so, Sb S2, ...]. Let 9 bc a symmetrie matrix and d be
an arbitrary partition ·of -the set of rows of.g -into a disjointunion of. subsets,
d = dl U d2U ... U dk · We set vetd(g) = Cd l Cd2 ... Cd/.: Sw(dI)Sw(d2) ... Sw(dk )' Here
Cdi is an integer eonstant. For the subset di this eonstant is defined as follows.
Associate with ~ the square matrix obtained by interseeting the rows from
di with the eorresponding eolumns. Considcr the set of a11 elements of the
matrix lying above the diagonal. "Vc set cdi to bc equal to thc symmetrie
function of degree #(di ) -1 in these elclnents cqual to the sum of all products
of different elements in number 1~1-1. Here ldil denotes the number of rows
in di .

For example, if d is the set of all rows of the square lnatrix

( ~: :~ ~~) 1

C2 C3 a3

then vetd = (Cl C2 + C2 C3 + C3 cdSai +a~+(13+2cl+2c~+2c3'

Definition 3.3 V'le eall the monomial vetd the universal ve-weighted Tutte
monomial eorresponding to the partion d. The fUIletion

veT(g) = L vetd

d

is ealled the universal ve-weighied Tuttc invariant.

Theorem 3.2 1. The universal ve-weighted Tutte invariant is a ve-weight-
ed Tutte invariant.
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2. Let K be an associative commutative ring with unity. Substituting ar­
bitrary elements 0/ K /or each elernent So, SI, 82,83, ... in the /unction
veT one obtains a ve-weighted Tutte invariant with values in K.

3. Any ve-weighted Tutte invariant with values in !( can be obtained in
this way.

Proof.
The universal invariant constructecl above is obviously multiplicative. We

need to prove that it satisfies the Tutte relation, i.c. that

veT(g) = veT(g' (ij)) + gijveT(g" (ij))

for any symmetrie matrix 9 and any eclge ij in it.
All partitions d of the set of rows of the Inatrix 9 can be separated ioto

two dasses: those for whieh rows i anel j belang to one an the same set of
the partition; anel those for which rows i and j belong to different sets.

Let a partition d belong to the first dass. Then it corresponds to a
partition d of the set of rows of the matrix 9', and one obviously has vetd =
vetd' .

In the case the partition d belongs to the second dass it corresponds
to a pair d, cf' of the partitions of the sets of rows of matrices g' and g"
correspondingly. Let dk , dk , d~ be the sets of thc corresponding partitions
containing both rows i and j. Then the constants Cd", Cd', ,Cd',' in the definition

k k

of the ve-weighted Tutte monomial satisfy thc equality

what ends the proof.
The second and the thircl statements of the theorem follow from the fact

that any symlnetric matrix is equivalent modulo thc subgroup ST to a linear
combination of diagonal Inatrices.

Corollary 3.1 Any symmetrie matrix admits the unique Tutte deeomposi­
tion.

I am obliged to Yu. Volvovskii for the following remark.
Remark. Theorem 2.2 for weighted graphs follows from thc proof of The­

orem 3.2 for ve-weighted graphs by thc following trick. We can consider a
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weighted graph as a ve-weighted graph with edges 0/ weight zero. Such a
graph can be described by a syrnmetric rnatrix with two different kind of ze­
roes: those coming from existing edges, and those coming from non-existing
ones. After that the summing in the definition of the universal ve-weighted
invariant is taken not over all partitions d of the set of rows, but over all
partions d such that each component 0/ the underlying graph is connected.

4 The Hüpf algebra structures

In his original paper [7] Tutte introdueed a ring of graphs. In the terms of
the present paper this ring is simply the group G equipped with the multi­
plication indueed by the disjoint union of graphs. This ring is commutative
and the empty graph serves the unity for it. Theorem 1.1 shows that the
quotient ring GIGT is isomorphie to the ring of polynornials in an infinite
set of variables.

SimilaI' statements are valid for the other two situations. It rneans, in
partieular that all thc rings GIGT, WIl'VT, SiST are mutually isomorphie.
Unfortunately, the iSOInorphism between GIGT and the other two rings does
not seern to be a natural one, since no natural wcight can bc defined in G IGT.

Besides multiplieation all the groups GIGT, vVIWT, SIST can be en­
dowed with a comultiplieation operation making them not just rings, but
bialgebras (Hopf algebras, in fact, see definitions in [5]). We describe the
comultiplication for the ring W/WT, for other rings it is defined similarly.
Our description follows that of [1].

The comultiplication is a linear mapping

defined on a weighted graph f as

tt:fH L f 1 ®r2,
v(r)=v(rt)uv(r~)

where the sum is taken over all partitions of the set of vertices V(f) into
a disjoint union of sets V(ft}, V(f 2 ), the graphs f 1 and f 2 heing complete
subgraphs of f with the corresponding sets of vertices. Proving that G
becomes a Hopf algebra is a technical exercise.
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The ring Z[So, SI, S2, .•.] has a natural structure of a Hopf algebra as weIl.
The comultiplication is defined on a monomial SkI Sk] .•. Skm , k1 ~ k2 ~ •.. ~

km as follows:

1 ® SkI Sk] ... Skm + Ski ® Bk] ... Skm

+Sk] ® SkI Sk3 .•. Skm + .
+SkI Sk] ® Sk3 ... Skm + + Skl Sk] ... Skm ® 1.

The homomorphism given by the universal invariant is, in fact, an iso­
morphism of Hopf algebras. Thus we havc.

Theorem 4.1 The groups G/GT, W/WT, B/ST carry a {commutative and
cocommutative} Hopf algebra structure making thern isornorphic to the Hopf
algebra of polynomials in an infinite set of variables, one variable of each
order.

5 Graphs and weighted graphs, a unified ap­
proach

Let us unify graphs and weightcd graphs by cOllsiclering graphs (loops and
multiple edges allowed) with weighted verticcs. The deletion of a link is
defined as usual, anel the contraction of a link is the cOlnbination of two
contractions: the topology of the underlying graph is defined as in the case
of ordinary graphs, while the weight of the resulting vertex becomes the surn
of the weights of two link ends.

Denote the Abelian group freely generatecl by these objects by U. The
definition of the Tutte relation and thc Tutte decolnposition in U is standard.
A multiplicative function satisfying the Tutte relation will be called a unified
Tutte invariant. Thc result of a Tutte decomposition is a linear combination
of the graphs Xk,m having one vertex of weight m and k loops and their
disjoint unions.

We are going to show tbat tbe Tutte decomposition in this case is unique.
The universal invariant looks like

uT(r) = L ut(,),
'Y
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t, '

where the sum in thc right hand side is takcll ovcr all spanning subgraphs 'Y
of (the underlying graph of) f, and ut(,) = D')'/(-1)b}eY)Pbd')")Ow(-yI). This
invariant takes its values in the ring Z[po, PI" ... ' 01, 02,.' .]. The univer­
sal invariant for ordinary graphs can be obtained from it by setting Pi =
(-1 )iri , i = 0, 1, 2, ... ; aj = 1, j = 1, 2, 3, .... Sinülarly, the universal invari­
ant für weighted graphs is thc result of specializing Pi = 1, i = 0,1,2, ... ; Oj =
Sj, j = 1,2,3, ....

Thc same nlethoels as above lead to the following theorem.

Theorem 5.1 1. The function uT is a unificd Tutte invariant.

2. Let K be an associative commutative ring with unity. Substituting arbi­
trary elements of ]( for each element Po, PI, . .. ,al, a2, ... in the func­

- tion uT. one··obtains a-unified Tutte·invariant with ,values in ](.

3. Any unified Tutte invariant with values in K can be obtained in this
way.
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