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Abstract. Let k be a perfect field of characteristic p ≥ 3. We classify in
terms of Kisin modules the p-divisible groups over regular rings of the form
W (k)[[t1, . . . , tr, u]]/(ue + pbe−1u

e−1 + . . . + pb1u + pb0), where b0, . . . , be−1 ∈
W (k)][[t1, . . . , tr]] and b0 is an invertible element.

MSC 2000: 11G10, 11G18, 14F30, 14G35, 14K10, and 14L05.

1 Introduction

Let p ∈ N be an odd prime. Let k be a perfect field of characteristic p. Let
W (k) be the ring of Witt vectors with coefficients in k and let B(k) be the
field of fractions of W (k). Let r ∈ N ∪ {0}. We consider the ring of formal
power series

S := W (k)[[t1, . . . , tr, u]].

We extend the Frobenius endomorphism σ of W (k) to S by the rules

σ(ti) = tpi and σ(u) = up. (1)

If M is a S-module we define

M (σ) := S ⊗σ,S M.

Let e ∈ N. Let

E = E(u) = ue + ae−1u
e−1 + · · ·+ a1u + a0
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be a polynomial with coefficients in W (k)[[t1, . . . , tr]] such that p divides ai

for all i ∈ {0, . . . , e − 1} and moreover a0/p is a unit in W (k)[[t1, . . . , tr]].
The polynomial E is irreducible by the Eisenstein criterion applied modulo
the ideal (t1, . . . , tr).

We define
R := S/E · S;

it is a regular local ring of dimension r+1 with parameter system t1, . . . , tr, u.
The following definition is suggested by Kisin’s work on crystalline rep-

resentations (see [K], etc.).

Definition 1 A Kisin module relative to S → R is a free S-module M of
finite rank which is equipped with a homomorphism φ : M → M (σ) whose
cokernel is annihilated by E.

We note down that the cokernel of φ is then a free R-module. Indeed, since
S and R are regular local rings it follows that the depth of this cokernel over
S (or R) is equal to the of dimension R and thus the cokernel is free over R.

The goal of the paper is to prove the following result whose validity is
suggested by previous works of Breuil and Kisin (see [Br], [K], etc.).

Theorem 1 The category of p-divisible groups over R is equivalent to the
category of Kisin modules relative to S → R.

This theorem was proved by Kisin in the case r = 0 (see [K]). We prove
the generalization by a new method which uses the theory of windows and
displays developed in [Z3] and elementary matrix computations. One can
easily get a version of Theorem 1 for p = 2, provided one restricts to con-
nected p-divisible groups over R and to connected Kisin modules relative to
S → R. One can view Theorem 1 as a ramified analogue of Faltings deforma-
tion theory over rings of the form W (k)[[t1, . . . , tr]] (see [F, Thm. 10]). The
importance of Theorem 1 stems from its potential applications to modular
and moduli properties and aspects of Shimura varieties of Hodge type.

2 Kisin modules

Let a ≥ 1 be an integer. We define Sa := S/(uae); it is a torsionfree p-adic
ring. The element E of Sa (i.e., the reduction of E modulo (uae)) is not a
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zero divisor in Sa. The Frobenius endomorphism σ of S induces naturally
a Frobenius endomorphism σ of Sa.

We write
E = ue + pε, (2)

where ε := (ae−1/p)ue−1 + . . . + (a1/p)u + (a0/p) is a unit in S. We have
identities

Sa/(E) = S/(E, pa) = R/paR,

because uae ≡ paεa modulo the ideal (E).

Definition 2 A Sa-window is a triple (P, Q, F ), where P is a free Sa-
module of finite rank, Q is a Sa-submodule of P , and F : P → P is a
σ-linear map, such that the following two axioms hold:

(i) E · P ⊂ Q and P/Q is a free R/paR-module.

(ii) F (Q) ⊂ σ(E) · P and F (Q) generates σ(E) · P as a S-module.

We define F1 := (1/σ(E))F : Q → P . This makes sense because σ(E) is not
a zero divisor in Sa.

We have also the notion of a S-window. It has the same definition but
the index a is removed. In this case P/Q is a free R-module.

Each Sa-window has a normal decomposition:

P = T ⊕ L, Q = E · T ⊕ L. (3)

The map
F ⊕ F1 : T ⊕ L → P (4)

is a σ-linear isomorphism. Conversely such a σ-linear isomorphism defines
naturally a Sa-window. Choosing a Sa-basis of T ⊕ L, one can identify a
Sa-window with an invertible matrix with coefficients in Sa.

From the normal decomposition we see that Q is a free Sa-module. In-
deed, E is not a zero divisor in Sa. We see that the Sa-linear map

F ]
1 : Sa ⊗σ,Sa

Q → P (5)

induced by F1 is an isomorphism.
The notion of a Sa-window was first introduced by Kisin in the following

form:
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Definition 3 A Kisin module relative to Sa → R/paR (or over Sa) is a
free Sa-module M of finite rank which is equipped with a homomorphism
φ : M → M (σ) whose cokernel is annihilated by E and is a free R/paR-
module.

If P = (P, Q, F, F1) is a Sa-window, we can identify Q(σ) := Sa ⊗σ,Sa
Q

with P by (5). The inclusion Q ⊂ P induces a Sa-linear map φ : Q → Q(σ).
This is a Kisin module relative to Sa → R/paR.

Conversely let φ : M → M (σ) be a Kisin module relative to Sa → R/paR.
Then we obtain a Sa-window by setting:

P = M (σ) and Q = M.

The inclusion Q ⊂ P is given by φ and F1 : Q → P is given by the natural
σ-linear map M → M (σ) which takes m to 1 ⊗ m for all m ∈ M . Finally we
take F (x) = F1(Ex) for all x ∈ P .

Based on the last two paragraphs, we easily conclude that a Kisin module
relative to Sa → R/paR is the same thing as a Sa-window.

In this paragraph we consider the case a = 1. In S1 the elements E and
p differ by a unit. Therefore the notion of a S1-window is the same as that
of a window relative to the frame S1 → R/pR. By [Z3] Introduction Thm.
6 it follows that the category of S1-windows is equivalent to the category of
p-divisible groups over R/pR.

We relate Sa-windows to Dieudonné displays. Let S be a complete local
ring with residue field k and maximal ideal n. We denote by Ŵ (n) the subring
of all Witt vectors in W (n) whose components converge to zero in the n-adic
topology. There is a unique subring Ŵ (S) ⊂ W (S), which is invariant by
Frobenius F and Verschiebung V and which sits in a short exact sequence:

0 → Ŵ (n) → Ŵ (S) → W (k) → 0.

It is shown in [Z2] that the category of p-divisible groups over S is equivalent
to the category of Dieudonné displays over Ŵ (S).

There is a unique homomorphism

δ : S → Ŵ (S) (6)

such that for all x ∈ S we have wn(δ(x)) = σn(x). It maps ti 7→ [ti] and
u 7→ [u]. In the same way we obtain homomorphisms

δa : Sa → Ŵ (Sa).
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If we compose δ and δa with the canonical W (k)-homomorphisms Ŵ (S) →
Ŵ (R) and Ŵ (Sa) → Ŵ (R/paR) (respectively) we obtain homomorphisms

κ : S → Ŵ (R)

κa : Sa → Ŵ (R/pa).
(7)

We note that p is not a zero divisor in Ŵ (R).

Lemma 1 The element κ(σ(E)) ∈ Ŵ (R) is divisible by p and the fraction
τ = κ(σ(E))/p is a unit Ŵ (R).

Proof: We have κ(E) ∈ V Ŵ (R). Since κ is equivariant with respect to σ
and the Frobenius F we find:

κ(σ(E)) = F (κ(E)) ∈ pŴ (R).

We have to verify that w0(τ) is a unit in R. But we have:

w0(τ) = w0(κ(σ(E)))/p = σ(E)/p.

But since p ≥ 3 the last element is clearly a unit in R. �

We are going to define a functor:

Sa − windows −→ Dieudonné Displays over R/paR. (8)

Let (P, Q, F, F1) be a Sa-window. To it we associate a Dieudonné display
(P ′, Q′, F ′, F ′

1) over R/paR as follows. We define P ′ := Ŵ (R/paR) ⊗Sa
P .

We define Q′ to be the kernel of the natural homomorphism:

P ′ = Ŵ (R/paR) ⊗Sa
P → P/Q.

We define F ′ : P ′ → P ′ as the canonical F -linear extension of F . We define
F ′

1 : Q′ → P ′ by the rules:

F ′

1(ξ ⊗ y) = F ξ ⊗ τF1y, for ξ ∈ Ŵ (R/paR) and y ∈ Q,

F ′

1(
V ξ ⊗ x) = ξ ⊗ Fx, for ξ ∈ Ŵ (R/paR) and x ∈ P.

Using a normal decomposition one checks that (P ′, Q′, F ′, F ′

1) is a Dieudonné
display over Ŵ (R/paR).
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Since the category of Dieudonné displays over Ŵ (R/paR) is equivalent to
the category of p-divisible groups over R/paR (see [Z2]) we obtain from (8)
a functor

Sa − windows −→ p − divisible groups over R/paR. (9)

As we already noted this functor is an equivalence of categories for a = 1.

Lemma 2 For each integer a ≥ 1 the functor (9) is essentially surjective on
objects.

Proof: We prove this by induction on a ∈ N. By [Z3] Thm. 3.2 the Lemma
is true for a = 1. The inductive passage from a to a + 1 goes as follows.

Let P̃ ′ = (P̃ ′, Q̃′, F̃ ′, F̃ ′

1) be a Dieudonné display over R/pa+1R. We
denote by P ′ its reduction over R/paR. Then we find by induction a Sa-
window P which is mapped to P ′ by the functor (8). We lift P to a Sa+1-
window P̃ . This is possible since a Sa-window is simply given by an invertible
matrix with coefficients in R/paR which is liftable to an invertible matrix
with coefficients in R/pa+1R.

We apply to P̃ the functor (8) and obtain a Dieudonné display P̃ ′′ over
R/pa+1R. By [Z2] Thm. 3 we may identify the triples associated to the
Dieudonné displays P̃ ′ and P̃ ′′. We denote this triple by

(Ŵ (R/pa+1R) ⊗Sa+1 P̃ = P̃ ′, F̃ ′, Φ1). (10)

Here Φ1 : Q̆ → P̃ ′ is a Frobenius linear map from the inverse image of Q′

in P̃ ′. Since we use the trivial divided powers on the kernel of R/pa+1R →
R/paR, we have by definition Φ1([p

a]P̃ ′) = 0. On the other hand the com-
posite map:

Q̃
F̃1−→ P̃ → P̃ ′ τ

→ P̃ ′,

coincides with the composite map

Q̃ → Q̆
Φ1−→ P̃ ′.

We define Q̃∗ ⊂ P̃ as the inverse image of the map P̃ → P̃ ′/Q̃′ deduced
from (10). The images of Q̃ and Q̃∗ by the canonical map P̃ → P are
the same. Therefore for each y∗ ∈ Q̃∗ there is an y ∈ Q̃ such that we
have y∗ = y + uaex for some x ∈ P̃ . Since F̃ (uaex) = 0 we conclude that
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F (y1) = F (y) ∈ σ(E) · P̃ . This proves that P∗ = (P̃ , Q̃∗, F̃ , F̃1) is a Sa+1-
window.

We claim that the image P∗ by the functor (8) coincides with the Dieudonné
display P̃ ′. For this we have to show that the map

Q̃∗ F̃1−→ P̃ → P̃ ′ τ
→ P̃ ′,

coincides with the map

Q̃∗ → Q̆
Φ1−→ P̃ ′.

This follows again from the decomposition y∗ = y + uaex and the fact that
the image of uaex in Q̆ is mapped to zero by Φ1. We conclude that P̃ ′ is in
the essential image of the functor (8). This ends the induction. �

3 Lifting Isomorphisms

We consider the rings:

T := S[[v]]/(pv − ue) and Ta := S[[v]]/(pv − ue, va).

In these rings we have E = p(v+ ε) and therefore the elements p and E differ
by a unit. We have isomorphisms:

T /pT ∼= (R/pR)[[v]] and Ta/pTa
∼= (R/pR)[[v]]/(va).

We extend the Frobenius endomorphism σ to T and T0 by the rule:

σ(v) = ue(p−1)v.

By very definitions we can identify T1 = S1 = S/(ue).
We have the notion of a Ta-window and equivalently of a Kisin module rel-

ative to Ta → Ta/pTa. For instance, a Ta-window is a quadruple (P, Q, F, F1),
where P is a free Ta-module, Q is a Ta-submodule of P such that P/Q is a free
Ta/pTa-module, F : P → P is a σ-linear map, and F1 : Q → P is a σ-linear
map whose linearization is surjective (and thus an isomorphism).Moreover
for each y ∈ Q we have an identity F (y) = pF1(y).

It follows from a normal decomposition of (P, Q, F, F1), that Q is a free Ta-
module and therefore the notion of a Ta-window and a Kisin module relative
to Ta → Ta/pTa are the same.
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Definition 4 A normal decomposition of a Kisin module φ : M → M (σ)

relative to S → R is a direct sum decomposition

M = U ⊕ L

such that we have an identity M (σ) = (1/E)φ(U) ⊕ φ(L).

A normal decomposition is obtained as follows. We consider the short
exact sequence:

0 → M
φ
→ M (σ) → T̄ → 0. (11)

We choose a lift of T̄ to a free S- module T and a lift T → M (σ) of the S-
linear epimorphism M (σ) → T̄ . Let L̄ ⊂ R ⊗S M be an R-submodule which
maps isomorphically onto the kernel of the R-linear map R ⊗S M (σ) → T̄ .
We have a direct decomposition M (σ) = T ⊕ φ(L). The kernel M of the
S-linear map M (σ) → T̄ (i.e., φ(M)) is then isomorphic to E · T ⊕ φ(L).
Taking U := φ−1(E · T ), we get the normal decomposition M = U ⊕ L.

We define a normal decomposition of a Kisin module relative to S1 →
R/pR as above. A Kisin module (M, φ) relative to S → R induces by
tensorization with S/(ue)⊗S a Kisin module (M̆, φ̆) relative to S1 → R/pR.
One can easily see that each normal decomposition of (M̆, φ̆) lifts to a normal
decomposition of (M, φ).

Proposition 1 Let φ1 : M1 → M
(σ)
1 and φ2 : M2 → M

(σ)
2 be two Kisin

modules relative to S → R. Let (M̆1, φ̆1) and (M̆2, φ̆2) be the induced Kisin
modules relative to S1 → R/pR. Let ᾰ : M̆1 → M̆2 be an isomorphism of
Kisin modules relative to S1 → R/pR (i.e., a S/(ue)-linear isomorphism
such that we have an identity φ̆2 ◦ ᾰ = (1 ⊗ ᾰ) ◦ φ̆1).

Then there is a unique isomorphism

α : T ⊗S M1 → T ⊗S M2

which commutes in the natural sense with φ1 and φ2 and which lifts ᾰ with
respect to the S-epimorphism T → S1 that maps v to 0.

Proof: We choose a normal decomposition M̆1 = L̆1 ⊕ Ŭ1. Applying ᾰ
we obtain a normal decomposition M̆2 = L̆2 ⊕ Ŭ2. We lift these normal
decompositions to S:

M1 = U1 ⊕ L1, M2 = U2 ⊕ L2.
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We find an isomorphism γ : M1 → M2 which lifts ᾰ and such that γ(L1) = L2

and γ(U1) = U2. We identify the modules M1 and M2 by γ and write:

M = M1 = M2, U = U1 = U2, and L = L1 = L2.

We choose a basis e1, . . . , ed of U and a basis ed+1, . . . er of L. Then
1 ⊗ e1, . . . , 1 ⊗ er is a basis of M (σ). We write φi : M → M (σ) for i = 1, 2
as matrices with respect to these basis. It follows from the properties of a
normal decomposition that the matrices have the form:

Ai

(

E · Id 0
0 Ic

)

for i = 1, 2, where A1 and A2 are invertible matrices in GLr(S) and where
c := r − d. By the construction of γ, the S-linear maps φ1 and φ2 coincide
modulo (ue). From this and the fact that E modulo (ue) is a non-zero divisor
of S/(ue), we get that we can write

(A2)
−1A1 = Ir + ueZ, (12)

where Z ∈ Mr(S). We set

C :=

(

E · Id 0
0 Ic

)

.

To find the isomorphism α is the same as to find a matrix X ∈ GLr(T )
which solves the equation

A2CX = σ(X)A1C (13)

and whose reduction modulo the ideal (v) of T is the matrix representation
of ᾰ i.e., it is the identity matrix. Therefore we set:

X = Ir + vY (14)

for a matrix Y ∈ Mr(T ).
As E/p = v + ε is a unit in the ring T , the matrix pC−1 has coefficients

in T . Thus D := pC−1ZC ∈ Mr(T ).
From the equations (13) and (14) we obtain the equation:

p(Ir + vY ) = pC−1A−1
2 (Ir + σ(v)σ(Y ))A1C.
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By inserting (12) and the definition of D in this equation we get:

ueY = ueD + (uep/p)pC−1A−1
2 σ(Y )A1C.

Since ue is not a zero divisor in T we can write:

Y − (ue(p−1)/p)pC−1A−1
2 σ(Y )A1C = D. (15)

The σ-linear operator Ψ(F) = (ue(p−1)/p)pC−1A−1
2 σ(F)A1C on the T -module

Mr(T ) is topologically nilpotent. Therefore the equation(15) has a unique
solution Y =

∑

∞

n=0 Ψ(D) ∈ Mr(T ). Therefore X = Ir +vY ∈ GLr(T ) exists
and is uniquely determined. �

3.1 Reductions modulo powers of u

There is a canonical homomorphism

Sa → R/paR

whose kernel is the principal ideal of Sa generated by E modulo (uae). Let

Sa ⊂ Sa ⊗ Q

be the subring generated by all elements une/n! over Sa with n ∈ {0, . . . , a}.
Then Sa is a p-adic ring without p-torsion. There is a commutative diagram

Sa

$$J

J

J

J

J

J

J

J

J

��

Sa
// R/pν(a)R,

where ν(a) = inf{ordp(p
n)/n! | for n ≥ a} The lower horizontal map maps

une/n! to (pn/n!)(−ε)n with the notation of (2). By [Z3] Sa → R/pν(a)R, is
a frame which classifies p-divisible groups over R/pν(a)R.

Both Sa and Ta are naturally subrings of Sa ⊗ Q. Due to the identity

une

n!
=

pn

n!

(

ue

p

)n

=
pn

n!
vn

we have the inclusion of rings:

Sa ⊂ Ta.
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The Frobenius morphism σ on S induces a morphism

Sa → Spa.

It maps the subalgebra Ta ⊂ Sa ⊗Q to Spa ⊂ Spa ⊗Q. We denote this map
by

τa : Ta → Spa.

Lemma 3 Let φ1 : M1 → M
(σ)
1 and φ2 : M2 → M

(σ)
2 be two Kisin modules

relative to S → R. Let G1 and G2 be the corresponding p-divisible groups
over R, cf. the functors (9). Then each isomorphism γ : G1 → G2 is induced
by a unique homomorphism of Kisin modules relative to S → R.

Proof: Since the category of Kisin modules relative to S1 → R/pR is equiv-
alent to the category of p-divisible groups over R/pR, the reduction of τ mod-
ulo p induces an isomorphism of the induced Kisin modules (M̆i, φ̆i) relative
to S1 → R/pR with i = 1, 2. Due to Proposition 1 we obtain an isomorphism
of Kisin modules relative to T → T /pT . As in the proof of Proposition 1
we can identity normal decompositions M1 = U1 ⊕ L1 = U2 ⊕ L2 = M2 and
we can represent the isomorphism of Kisin modules relative to T → T /pT
by an invertible matrix X ∈ GLr(T ).

The matrix X has the following crystalline interpretation. We denote by
Xa the reduction of X over the ring Ta.

The homomorphism Ta → (R/pR)[[v]]/(va) is a pd-thickening. (This is
not a frame in the sense of [Z3] because σ modulo p is not the Frobenius
endomorphism of Ta/pTa!) We have a morphism of pd-thickenings

Sa
//

��

Ta

��

R/pν(a)R // (R/pR)[[v]]/(va).

(16)

For crystals associated to p-divisible groups we refer to [M]. We know by
[L] and [Z3] that the crystal of Gi evaluated at the pd-thickening Sa →

R/pν(a)R coincides with Sa⊗Sa
M

(σ)
i . Let Ği be the pushforward of Gi by the

canonical homomorphism R → (R/pR)[[v]]/(va). The diagram (16) shows

that Ta ⊗Sa
M

(σ)
i is the crystal of Ği evaluated at the pd-thickening Ta →

(R/pR)[[v]]/(va). The isomorphism γ : G1 → G2 induces an isomorphism of
Sa-windows αa and via base change an isomorphism βa : (P1,a, Q1,a, F1,a, F1,1,a) →
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(P2,a, Q2,a, F2,a, F2,1,a) of Ta-windows. We note that after choosing a normal
decomposition an Sa-window is simply an invertible matrix with coefficients
in Sa and the mentioned base change only applies to the coefficients the ho-
momorphism Sa → Ta. The sequence of morphisms (βa)a∈N induces naturally
a morphism of Kisin modules relative to T → T /pT :

β : T ⊗S (M1, φ1) → T ⊗S (M2, φ2). (17)

We continue the base change (16) using the following diagram of pd-thickenings:

Ta
//

��

S1

��

(R/pR)[[v]]/(va) // R/pR.

(18)

From αa we obtain by base change the morphism ᾰ since windows associated
to p-divisible groups commute with base change. But this shows that the
isomorphism β coincides with the isomorphism α of Proposition 1, which we
have represented by the matrix X ∈ GLr(T ). In other words for each a ∈ N,
the Ta-linear isomorphism Q1,a → Q2,a is defined by the matrix Xa and the
isomorphism βa (i.e., P1,a → P2,a) is induced naturally by σ(Xa).

We will show by induction on a that the matrix Xa has coefficients in
Sa. As we have inclusions Sa ⊂ Sa ⊂ Ta and as the isomorphism αa of
Sa-windows induced by γ is determined by the matrix σ(Xa) (cf. previous
paragraph), this would imply the Lemma.

The case a = 1 is clear. The inductive passage from a to a + 1 goes as
follows. We can assume that Xa has coefficients in Sa.

Therefore the invertible matrix τa(Xa) ∈ GLr(Spa) defines an Spa-linear
isomorphism

Spa ⊗S M
(σ)
1 → Spa ⊗S M

(σ)
2

which respects the Hodge filtration i.e., it is compatible with the R/pν(pa)R-
linear map Lie G1,R/pν(pa)R → Lie G2,R/pν(pa)R induced by γ.

Since τa(Xa) has coefficients in Spa, we obtain a commutative diagram:

Spa ⊗S M
(σ)
1

//

��

Lie G1,R/pν(pa)R

��

Spa ⊗S M
(σ)
2

// Lie G1,R/pν(pa)R.
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Since ν(pa) ≥ a + 1 we obtain a commutative diagram with exact rows:

0 // Sa+1 ⊗S M1
//
Sa+1 ⊗S M

(σ)
1

//

��

Lie G1,R/p(a+1)R

��

0 // Sa+1 ⊗S M2
//
Sa+1 ⊗S M

(σ)
2

// Lie G1,R/p(a+1)R.

(19)

The left vertical arrow is induced by σ(Xa+1). On the kernels of the horizontal
maps we obtain an Sa+1-linear map

Sa+1 ⊗S M1 → Sa+1 ⊗S M2. (20)

Since E is not a zero divisor in Ta+1, the tensorizations of the exact sequences
of (19) with Ta+1 are as well exact sequences. This shows that the tensoriza-
tion of the Sa+1-linear map (20) with Ta+1 is given by the matrix Xa+1. Thus
Xa+1 has coefficients in Sa+1. This completes the induction. �

4 Proof of Theorem 1

From (9), by taking the limit a → ∞ we deduce the existence of a functor

S − windows −→ p − divisible groups/R. (21)

This functor is essentially surjective on objects (cf. Lemma 2) and obviously
it is faithful. To show that this functor is fully faithful, it is enough to show
that it is surjective on isomorphisms. But this is implied by Lemma 3. This
ends the proof of Theorem 1.
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