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On the Mordell-Weil group and the Shafarevich-Tate

group of modular elliptic curves

Victor Alecsandrovich Kolyvagin

The main purpose of this paper is to describe some recent results pertaining to the

diophantine analysis of elliptic curves. A new element is an extension of the set of explicit

cohomology cla.sses see section 2.

1. The Conjecture of Birch ud Swinnerton-Dyer and the Hypothesis of Finiteness of the

-Shafarevich-Tate group.

Let E be an elliptic curve defined over the field of rational numbers ~,for example,

by its Weierstra.ss equation y2 = 4x3-g2x-gg . Let R be a finite extension of Q. We are

interested in the group E(R) called the Mordell-Weil group of E over Rand the

Shafarevich-Tate group ill(R,E) . The group ill(R,E) is, by definition,

ker(H1(R,E) --+ n H1(R(v),E)) t where v runs through the set of all places (equiva-
v

lence classes of valuations) of R, R(v) is the v-adic completion of R. For an arbitrary

extension L of ~ , we let L denote an algebraic closure of L. If V/L is a Galbis exten­

sion, then G(V/L) denotes its Galois group, and H1(L,E) = H1(G(L/L),E(L)) .

Let Y be some set of algebraic curves over R. By definition, the Hasse principle

holels for Y, if for all X EY one has: X(R) is nonempty ~ X(R(v)) is nonempty for

each v. The group ill(R,E) is the obsiacle to the Hasse principle for the set Y(R,E)
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of main principal homogeneous spaces over E defined over R. In partieular, the Hasse

principle holdB for Y(R,E) if and only if the group ill(R,E) is trivial.

Aecording to the Mordell-Weil theorem, E(R) ~ F)(11r(R,E) ,where F ~ E(R)tor is

a finite group, and r(R,E) is a nonnegative integer ealled the rank of E over R. Con­

cerning the group ill(R,E), it is conjeciured that it is finite. In general, it is known that

ill(R,E) is a torsion group (being a subgroup of the torsion group H1(R,E)) and for a

natural M its subgroup ill(RJE)M ia finite. If A is an abe1ian group, we let AM de­

note its subgroup of all elements of exponents M. Only recently in works of Rubin and the

author, the finiteness of ill(RJE) was proved for same E and R. We shall diseuss

these reaults later.

The elements of E(R)tor ean be effectively caleulated. For exampleJ let R be ~

and let E be defined by an equation u2 = w3 + ow +ß ,where o,ß E 11, 6 = 403 +
27rr *0 (this is always possible). According to the Nagell-Lutz theorem, if P E E(~)tor

is nonzero, then u(P) = 0 Ol u(P)2 16 . Mazur determined all possible types of E(Q)tor J

in partieular, [E(Q)tor] ~ 16 .

We are interested here in the ease R = ~ . No algorithm is known in general for cal-

eulating r(~,E) and generators of E(Q)/E(~)tor' But reeently here and in the study of

ill(R,E) essential progress was made.

More specifieally, it ia eonneeted to advances towards proving the Bireh-Swinnerton­

Dyer eonjeeture (BSD) whieh prediets a conneetion between the arithmetie of E and its

L-funetion.

We let L(E,s) denote the L-funetion of E over q, defined for Re(s) > 3/2 as

tu

nLq(E,s)= l ann-8, an E11.
q n=1
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Here q runs through the set of rational primes. Let NEIN be the conductor of E. If

(q,N) = 1, then Lq(E,s) = (l-aqq-iJ+ql-2S)-1, where aq = q+l-[~(ll/qll)], ~

being the reduction of E module q (E has the good reduction at q). If q IN, then

L (E,s) = 1,(1:i:q-fi)-1 depending on the type of bad reduction of E at q.q

A8sume that E is modular, that is there exists a weak Weil parametrization

7 : XO(N) --+ E [12]. Here Xo(N) is the modular algebraic curve over q

parametrizing classes of isogenies of elliptic curves with cyclic kernel of order N.

According to the Taniyama-Shimura-Weil conjecture, every elliptic curve over ~ ia

modular. Then L(E,s) has an analytic continuation to an entire function on the complex

plane which satisfies a functional equation

Z(E,2-fi) = fZ(E,s) (1)

where Z(E,s) = (2~)-fiNs/2r(S)L{E,s) and f =:i:1 depends on E.

An analogeous L-function L{R,E,s) of E over R can be defined (it8 definition is

essential for UB only up to a finite product of Euler factors), having analogons properties.

We let ar{R,E) denote the order of vanisbing L{R,E,s) at s = 1 . According to BSD,

one conjectures the identity:

r{R,E) = ar{R,E) . (2)

Moreover BSD connects the first nonzero coefficient of the expansion of L(R,E,s) around

8=1 with the order of ill(R,E) (using the hypothesis that ill{R,E) is finite) and

other parameters of E , but we do not go into ibis here.

In the sequel we will omit the letter ~ in the notations ill{q,E), r{~,E),

ar{«l,E) . It follows from (I) that ar{E) is even when f = 1, ar(E) is odd when

f = -1. E ia called even or odd, reapectively.
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For R = ~ the current state of conjecture (2) and of the hypothesis of finitencss of

ill(E) is expressed by the result:

Theorem 1. The equality r(E) = ar(E) holds and ill(E) is finite if ar(E) ~ 1 .

We remark that empirical material shows that curves with ar(E) > 1 compose a re­

latively smaIl part in the set cf all curves. Apparently (taking into a.ccount the Taniyama­

Shimura-Weil conjecture), Theorem 1 covers a substantial part of all elliptic curves over

~.

Further we <liscuss ascheme of the proof of Theorem 1, formulate earlier results and

give some examples.

Let D be a fundamental discriminant of the imaginary-quadratic field K = Q({TJ)

such that D:: c(mod 4N), D 'f -3,-4 . As E ia modular, there exists the Heegner point

PD E E(K) (which will be defined later), it satisfies the condition:

(3)

where e = exponent of E(~)tor' (f is the generator of G(K/~). The author proved

[6] -[8]:

Theorem 2. The equality r(E) = ar(E) holds and ill(E) is finite if 1) ar(E) ~ 1, 2)

3 D IPD has infinite order.

From the Gross and Zagier results [5] it follows

Theorem 3. H (D,2N) = 1 ,then ar(K,E) ~ 1 , ar(K,E) = 1~ PD has infinite order.
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Waldspurger [21] for ar(E) = 1 and, independently, Bump, Friedberg, Hoffstein

[2] and M. Murty, B. Murty [14] for ar(E) = 0 proved

Theorem 4. If ar(E) ~ 1 ,then (D,2N) = 1 and ar(K,E) = 1 for an infinite set of values

of D.

So from Theorems 3. 4 it then follows that condition 2) in Theorem 2 follows from

condition 1), that is Theorem 2 is equivalent to Theorem l.

From (1) we have that ar(E) = 0 ~ E =1, M(E) = 1 ~ E =-1 . Using (3), we de­

duce from the conditions: PD has infinite order, r(K,E) = 1 ,and ar(E) ~ 1 , that

r(E) = ar(E). The kerne! of the natural homomorphism ill(E) -----i ill(K,E) ia

ill(E) n H1(G(K/~),E(K)) Cill(E)2 which is a finite group.

Thus Theorem 2 is a consequence of the author's result [8]:

Theorem 5. The equality r(K,E) = 1 holds, and ill(K,E) ia finite, if PD has infinite

order.

We note that Theorems 5, 3 give (1) for R = K when M(K,E) = 1 . The inequality

r(E) ~ 1 when ar(E) = 1 followB already from Theorem 3 and Waldspurger's result.

A subclaBS in the class of modular e1liptic curves is formed by elliptic curves with

complex multiplication: End(E) f 11 and then End(E) is an order with class number one

of an imaginary-quadratic extension k of ~. We let W' denote this subclass. The

modular invariant j = g~/(g~ - 27g~) , which TUnS through all rational numbers on the set

of elliptic curves over ~,takes on 13 values on the set W' .

The specific property of a curve from W' is the p08sibility to use, in studying it, the

theory of abelian extensions of k because E(GUtor (E(kab) for E EW' . In particular,
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by using 80 called elliptic units, Coates and Wiles [3] proved (2) for E EW' ,

ar(E) 'f 0 . Recently Rubin [17], also using elliptic units (we will come back to tbis later),

proved under the same condition that ill(E) is finite. This gave the first exampIes of

finite groups ill(E) . Moreover he proved that, for E EW' , ar(E) = 1 :::} r(E) 5 1 .

2. Explicit Cohomology Classes.

Now we discuss brießy the method of proof of Theorem 5.

Für an arbitrary extension L of Q the exact sequence 0 ---+ EM ---+ E(L) ---+

E(L) ---+ 0 (EM = E(~M) induces the exact sequence

(4)

The Selmer group SM(R,E), by definition, is the subgroup of H1(R,EM) consisting

of elements whose image in H1(R(v),EM) lies in E(R(v))/ME(R(v)) for all places v of

R . In particular, (4) induces the exact sequence

0---+ E(R)/ME(R) ---+ SM(R,E) ---+ ill(R,E)M ---+ 0 . (5)

It is known (the weak Mordell-Weil theorem) that SM(R,E) is a finite M-torsion

group. In particular, ill(R,E)M ia a finite group as we remarked before.

Let R =K . H P =PD has infinite order, then we define C = CD to be the maxi­

mal natural number dividing the image of P in E{K)/E{K)tor ~ 7lr(K,E) . We let C = 0

if P E E(K)tor . Thus P has infinite order ~ C f 0 . We let SM denote the factor

.group of SM(K,M) modulo the aubgroup generated by P. Taking into acconnt (5) and
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the Mordell-Weil theorem: E(K) ~ FXllr(K,E) , with F finite, Theorem 5 will follow

from the existence of e'E IN such that C I SM = 0 VM EW.
*The non-degenerate alternating Weil pairing [ , ] M : EMxEM~ J.'M = ~M

induces a pairing

For v = m the field K(m) ~ ( and the corresponding cohomology groups are trivial.

For v 4= m the group H2(K(v),,uM) is identified ca.nonically with lltMll by local class

1 def
field theory. If a,b E H (K,EM) , then (a,b)M = (a(v),b(v)M ' where a(v), b(v),v ,v

are the localizations of &, b . According to global dass field theory (the reciprocity law)

(a,b) M f. 0 only for a finite set of places v and the following relation holds:,v

(6)

Relation (6) cau be considered aB a condition on a if an element b is fixed. To use

(6) for the study of SM(K,E) it is necessary to find explicit elements b. This was my

strategy. Thus I constructed a set T of explicit elements of H1(K,EM) by using Heegner

points over ring dass fields of K. The special properties of these elements allowed to de­

duce from (6) with a E SM(K,E) and b E T the relation C I SM = 0 for same e'E IN ,

the divisor and main component of which is C.

Now we describe the construction of an element from T. First we define the Heegner

points. Fix an ideal i in the ring of integers 0 of K such that O/i ~ ll/Nll (i exiats in

view of the a&sumptions on D). If ..\ EIN, then K..\ denotes the ring class field of K of

conductor '\. It ia a finite abelian extension of K . Let 0..\ be 1l + ..\0, i..\ = i n 0,\ . If

("',N) = 1 , we define the point z'" EXN(K"') as corresponding to the dass of the isogeny



-8-

(/0.-\ --+ (/ri1 , where i.-\1 is the inverse of i.-\ in the group of proper O.-\-ideals. We

let YA = r(z.-\) E E(K.-\), P = PD = the norm of Yl from K1 to K. The points y.-\,

P are called Heegner points (corresponding to the parametrization 7 : Xo(N) -+ E ,

K=~({U) and i).

We use the notation p (or p with (a subscript) for rational primes which do not

divide N and remain prime in K. We let Ar denote the set of all products Pl,..Pr with

(IJ r
distinct Pm' A = U A .

n=1

Let .-\ E A, G~ = G(K~/Kl) . The group G~ is the direet produet of t~e Bub-

groups GA,p = G(K~/K~/p) for p I~ . The natural homomorphism G~,p -+ Gp is an

isomorphism. The group Gp is isomorphie to the group ll./{p+l)ll.. For each p, we fix a

generator tp E Gp j t p E G~ ,p denotes the corresponding generator of G;\,p' We let

p m

Trp = l t~ . Recall that l ann-ß = L(E,s) for Re(s) > 3/2 . For pl;\ one finds the

j=O n=1

relation:

(7)

These relations (7) are the basis for the definition of explicit cohomology classes.

Let ä;\ denote the ring II [G A] . We define a &A-module B;\ in the following

way. Let F.-\ be the direct sum l äq , where G;\ acts on ä,., by the natural homo­

,.,IA
morphisID ä;\ -+ ä1] . Let 11] denote the unit of &,." HAbe the ä .-\-ßubmodule of F;\

generated by the elements Trpl fJ - apl,., Ip for all pi fJ 1;\ . Then B..\ = F ;\/H;\ .

It ia not difficult to prove that (B ..\)tor = 0 "Let 1~ be the image of 1,., in B.-\,

the"n {1~,fJ IA} ia a system of generators of BA aver ~;\' By (7) 3! homomoprhism
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p

<p:B~~E(K~) suchthat l~~Yl1' Welet Ip=-~ jt~EA~, I~=rJpl Ip ' Let
j=l

Q;t be the element l;t 1~ .

For MEIN we define A(M) as the subset of A consisting of elements ~ such that

MI (p+l) , MI ap Vp I~ . Furlher, Ar(M) = Ar n A(M) . We claim that (l-g)Q~ E MB ~

for ;t EA(M) and g E G~ . It is enough to verif"y this for g = t p ,where p I~ . It is clear

that

(8)

Thus, we have (l-tp)Q~ = 1~/p(l-tp)lpl ~ = 1~/p(Trp-{p+l))l ~ = = 1~/p(apl ~/p ­

(p+l)l~) E MB~ .

AB (B ~)tor = 0 , there exists a unique element ((l-g)QJ.)/M E BJ. . We define the

element 'T~(M) E H1(Kl'EM) to be the dass of the cocycle: '

,,: g 1---+ (g-l)(f,O{QJ.)/M) + CP«((l-g)QJ.)/M) ,

where g EG(K1/K1) . The element T~(M) EH1(K,EM) we define as the corestriction of

'T~(M) . We call T the set {'TJ.(M),M E IN,J. E A(M)} .

Let (b) denote the image of b EH1(K,EM) in H1(K,E)M' cJ.(M) = (T~(M)) .

That is, CJ.(M) is the corestriction of the element of H1(Kl'E)M defined by the cocycle,

g ..........-+ CP«(l-g)Q,\)/M). H ~ E Ar(M) , then the automorphism u E G(K/~) acts on

cJ.(M) by multiplication by (_l)r+l E • The symbol (a,b)M,v depends only on (b), if

a E SM(K,E) .

The elements Cp(M) were defined first see [6J. This allowed to prove the relation

C' (u+E)SM(K,E) = 0 , which is equivalent to the finiteness of E(Q) and ill(E) when

f = 1 J and to the finiteness of E(D)(~) and ill(E(D)) when f =-1 . Here E(D) is
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the elliptic curve (the form of E over K) defined by the equation Dy2 = 4x3 -

gr:- g3 .

In [8] there were defined elements T ~ (M) for some subset of the set {M E IN,'\ E

A(M)} containing the set {M I(M,d) = 1,'\ EA(M)} , where d = exponent of E(K)tor'

IK is the composite of the K,\ I for ,\' EA . By using here the modu1es B,\ and the

property (B,\)tor = 0 we shake off the additional restrictions on (M,'\) when

(M,d) > 1. The relation (6) with (b) = c,\(M) when ,\ EAr(M) , r ~ 2, allowed to

prove the relation c' SM = 0 .

We note that an application of the elements 'T~(M) when ~ EAr with arbitrary

r ~ 0 allowed in [8] to pass from a relation of the type C ill(K,E) = 0 to a relation of

the type [ill(K,E)] IC2 . Because of the existence on ill(K,E) of a non-degenerate

(as ill(K,E) is finite) alternate Cassels pairing with values in ~rll., it then follows that

the second relation implies the first relation.

In [20] Thaine used the cydotomic units for a new proof of annihilating relations in

the ideal dass groups of real abelian extensions of ~. Rubin [16] adapted Thaine's

approach, using elliptic units instead of cyclotomic units, for proving annihilating relations

in the ideal class groups of abelian extensions of the imaginary-quadratic field

k = End(E) 8 ~ when E EW' . By using the natural connection between ideal dass

groups and the Selmer group SM(Q,E) Rubin proved an universal annihilating relation for

SM(~,E) by the condition that ar(E) = 0 .

A comparison of the approaches of Thaine [20] and of the author [6] for proving

annihilating relations in the ideal dass groups and in the Selmer groups, respectively, sug­

gested the possibility in [7] of combining them into a single general framework. A further

step was a construction and use in [8] of sets of cohomology classes of the type T, both

in the theory of modular elliptic curves and in the theory of ideal class groups of abelian

extensions of ~ or an imaginary-quadratic extension of ~. For information on this theo-
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ry and some further applicationB we refer to the papers [8], [1], [4], [9], [10], [11],

[13], [15], [18], [19].

3. Examples.

Example 1, Rubin [17]. For the curves with complex multiplication

(k = ~({=f)) y2 = x3 - x, y2 = x3 + 17x we have: r(E) = ar(E) = 0, ill(E) =0 ,

11./271. + 71./271 , respectively.

Example 2, Kolyvagin [7]. Let E: y2 = 4x3 - 4x + 1 . It ia an odd modular curve

without complex multiplication, of conductor N = 37. Let (D,2N) = 1. The curves

(9)

are even and have no complex multiplication. For computation of L(E(D),l) and CD the

following identity can be used:

(I)

~ &n[DJ 2L(E(D),1) = 2 L n n exp(-2rn/( ID I{M)) = (20--,{U)CD
n=l

(10)

where n_ - the imaginary period of E, [~J -the Legendre symbol. See [22] for (10);

the connection between L(E(D),l) and CD is a consequence of the results of Grass and

Zagier [5].

Let L(E(D),l) f 0 or, equivalently, CD f 0 . Then E(D)(~) ia finite and, more­

over, is trivial because always E(D)(~)tor = 0 . That ia equation (9) has no solutionB in
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rational numbers. Further, ill(E(D)) is finite and CDill(E(D)) = 0 . For example, if

D = -7, -11 then CD = 1 ,80 ill(E(D)) = 0 . See [7] for further information on this

example.

We recall that CD f 0 for an infinite set cf values of D according to a result of

Waldspurger.

It is a classical fact that E(~) ~ 1l. is generated by the point (y=l, x=O) . Of course,

ar(E) = 1 ,see [22], for example. The author proved [8] that ill(E) = 0 .
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