On the Mordell-Weil group and the Shafarevich—Tate

group of modular elliptic curves

by

V.A. Kolyvagin

Max—Planck—Institut Steklov Mathematical

fiir Mathematik Institute

Gottfried—Claren—-Strae 26 Vavilova 42

D—5300 Bonn 3 117966 Moscow, GSP—1
USSR

Federal Republic of Germany

MPI/90-69






On the Mordell-Weil group and the Shafarevich—Tate

group of modular elliptic curves

Victor Alecsandrovich Kolyvagin

The main purpose of this paper is to describe some recent results pertaining to the

diophantine analysis of elliptic curves. A new element is an extension of the set of explicit

cohomology classes see section 2.

1. The Conjecture of Birch an innerton—Dyer and the Hypothesis of Finiteness of the

“Shafarevich—Tate group.

Let E be an elliptic curve defined over the field of rational numbers § , for example,
by its Weierstrass equation y2 = 4x3—gzx—g3 . Let R be a finite extension of Q . We are
interested in the group E(R) called the Mordell-Weil group of E over R and the
Shafarevich-Tate group || |(R,E). The group | [|(R,E) is, by definition,
ker(Hl(R,E) — T T HI(R(v),E)) , where v runs through the set of all places (equiva-

v

lence classes of valuations) of R, R(v) is the v—adic completion of R . For an arbitrary
extension L of Q, welet L denote an algebraic closure of L. If V/L is a Galbis exten-
sion, then G(V/L) denotes its Galois group, and HI(L,E) = HI(G(II/L),E(E)) .

Let Y be some set of algebraic curves over R . By definition, the Hasse principle
holds for Y ,if for all X € Y one has: X(R) is nonempty & X(R(v)) is nonempty for
each v . The group ||](R,E) is the obstacle to the Hasse principle for the set Y(R,E)
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of main principal homogeneous spaces over E defined over R . In particular, the Hasse
principle holds for Y(R,E) if and only if the group | | [(R,E) is trivial.

According to the Mordell-Weil theorem, E(R) % Fxzf(R:E) , where F = E(R)t or 18
a finite group, and r(R,E) is a nonnegative integer called the rank of E over R. Con-
cerning the group || |(R,E), it is conjectured that it is finite. In general, it is known that
]1](R,E) is a torsion group (being a subgroup of the torsion group Hl(R,E) ) and for a
natural M its subgroup |||(R,E)y is finite. If A is an abelian group, we let A,  de-
note its subgroup of all elements of exponents M . Only recently in works of Rubin and the
author, the finiteness of || |(R,E) was proved for some E and R . We shall discuss
these resultis later.

The elements of E(R) can be effectively calculated. For example, let R be Q

3+aw+,3,where aBEl, 6=4a3+

tor
and let E be defined by an equation u® = w

27;6"‘2 # 0 (this is always possible). According to the Nagell-Lutz theorem, if P € E(Q);,,
is nonzero, then u(P)=0 or u(P)2| 6 . Mazur determined all possible types of E(Q),
in particular, [E(Q)tor] <16.

We are interested here in the case R = § . No algorithm is known in general for cal-
culating r(Q,E) and generators of E(Q)/E(Q),, - But recently here and in the study of
11](R,E) essential progress was made.

More specifically, it is connected to advances towards proving the Birch-Swinnerton-
Dyer conjecture (BSD) which predicts a connection between the arithmetic of E and its
L—function.

Welet L(E,s) denote the L—function of E over @, defined for Re(s) > 3/2 as

Es) Ean a €1 .
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Here q runs through the set of rational primes. Let N € N be the conductor of E. If
(q,N) =1, then Lq(E,s) = (l—aqq—ﬂ+ql_'2a)-l , where 3, = q+1-[B@/qm)), B
being the reduction of E modulo q ( E has the good reduction at q ). If g|N, then
Lq(E,s) = 1,(1=l:q_s)_1 depending on the type of bad reduction of E at q.

Assume that E is modular, that is there exists a weak Weil parametrization
7! XO(N) —E [12]. Here XO(N) is the modular algebraic curve over Q
parametrizing classes of isogenies of elliptic curves with cyclic kernel of order N.
According to the Taniyama—Shimura—Weil conjecture, every elliptic curve over Q is
modular. Then L(E,s) has an analytic continuation to an entire function on the complex

plane which satisfies a functional equation
Z(E,2—8) = €Z(E,s) (1)

where Z(E,) = (2x)_st/ 2I‘(s)L(E,s) and € = %1 dependson E.

An analogeous L—function L(R,E,;s) of E over R can be defined (its definition is
essential for us only up to a finite product of Euler factors), having analogous properties.
We let ar(R,E) denote the order of vanishing L(R,E,8) at s =1. According to BSD,

one conjectures the identity:
r(R,E) = ar(R,E) . (2)

Moreover BSD connects the first nonzero coefficient of the expansion of L(R,E,s) around
s=1 with the order of |||(R,E) (using the hypothesis that |||(R,E) is finite) and
other parameters of E , but we do not go into this here. |

In the sequel we will omit the letter Q in the notations || |(Q,E), r(QE),
ar(Q,E) . It follows from (1) that ar(E) is even when e=1, ar(E) is odd when

¢ =—1. E is called even or odd, respectively.
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For R =@ the current state of conjecture (2) and of the hypothesis of finiteness of
| LI(E) is expressed by the result:

Theorem 1. The equality r(E) = ar(E) holds and | | |(E) is finiteif ar(E) <1.

We remark that empirical material shows that curves with ar(E) > 1 compose a re-
latively small part in the set of all curves. Apparently (taking into account the Taniyama—
Shimura—Weil conjecture), Theorem 1 covers a substantial part of all elliptic curves over
Q.

Further we discuss a scheme of the proof of Theorem 1, formulate earlier results and
give some examples.

Let D be a fundamental discriminant of the imaginary—quadratic field K = Q(y/D)
such that D = o(mod 4N), D # —3,—4 . As E is modular, there exists the Heegner point
Py € E(K) (which will be defined later), it satisfies the condition:

where e = exponent of E(Q)tor , o is the generator of G(K/Q). The author proved
[6]-[8]:

Theorem 2. The equality r(E) = ar(E) holds and || |[(E) is finiteif 1) ar(E)<1, 2)
iD| Ppy has infinite order.

From the Gross and Zagier results [5] it follows

Theorem 3. If (D,2N) =1, then ar(K,E) 21, ar(K,E) =1 ¢ P has infinite order.
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Waldspurger [21] for ar(E) =1 and, independently, Bump, Friedberg, Hoffstein
[2] and M. Murty, B. Murty [14] for ar(E) =0 proved

Theorem 4. If ar(E) <1, then (D,2N)=1 and ar(K,E) =1 for an infinite set of values
of D.

So from Theorems 3, 4 it then follows that condition 2) in Theorem 2 follows from
condition 1), that is Theorem 2 is equivalent to Theorem 1.

From (1) we have that ar(E)=02e=1, ar(E) =123 ¢ =-1. Using (3), we de-
duce from the conditions: P has infinite order, r(K,E)=1, and ar(E)<1, that
1(E) = ar(E) . The kernel of the natural homomorphism || [(E)— || [(K,E) is

LLI(E) n BY(G(K/Q),E(K)) C | | |(E), which s a finite group.
Thus Theorem 2 is a consequence of the author’s result [8]:

Theorem 5. The equality r(K,E) =1 holds, and || |(K,E) is finite, if Py has infinite

order.

We note that Theorems 5, 3 give (1) for R = K when ar(K,E) = 1. The inequality
1(E) 2 1 when ar(E) =1 follows already from Theorem 3 and Waldspurger’s result.

A subclass in the class of modular elliptic curves is formed by elliptic curves with
complex multiplication: End(E)# Z and then End(E) is an order with class number one
of an imaginary—quadratic extension k of Q. We le¢ W’ denote this subclass. The
modular invariant j= gg/(gg - 27g§) , which runs through all rational numbers on the set
of elliptic curves over @, takes on 13 values on the set W’ .

The specific property of a curve from W’ is the possibility to use, in studying it, the

theory of abelian extensions of k because E(Q), C E(kab) for E € W’ . In particular,

tor
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by using so called elliptic units, Coates and Wiles [3] proved (2) for EEW’,
ar(E) # 0. Recently Rubin [17], also using elliptic units (we will come back to this later),
proved under the same condition that || |(E) is finite. This gave the first examples of
finite groups | | | (E) . Moreover he proved that,for EE W’ , ar(E)=13r(E)<1.

2. Explicit Cohomolo 1
Now we discuss briefly the method of proof of Theorem 5.

For an arbitrary extension L of Q the exact sequence 0 — Eyy — E(L) —

E(L) — 0 (Ey; = E(Q)y,) induces the exact sequence
0 — E(L)/ME(L) — B(L,Ey;) — BY(L,E)y; — 0. (4)

The Selmer group SM(R,E) , by definition, is the subgroup of HI(R,EM) consisting
of elements whose image in H'(R(v),E,) lies in E(R(v))/ME(R(v)) for all places v of

R . In particular, (4) induces the exact sequence
0 — E(R)/ME(R) — Sy(R,E) — | | |(R,E)py — 0. (5)

It is known (the weak Mordell-Weil theorem) that S,,(R,E) is a finite M—torsion
group. In particular, J__|_|_(R,E)M is a finite group as we remarked before.

Let R=K.If P= PD has infinite order, then we define C = CD to be the maxi-
mal natural number dividing the image of P in E(K)/E(K), = Z"®E) Welet ¢ =0
if P€E(K),  .Thus P has infinite order ¢ C#0. Welet Sy denote the factor

‘group of 8,(K,M) modulo the subgroup generated by P . Taking into account (5) and
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the Mordell-Weil theorem: E(K) ~ FxZ"®®) | with F finite, Theorem 5 will follow
from the existence of C’ € N such that C’Sy; =0 VMEN.

*

The non—degenerate alternating Weil pairing [, ]y : BygxEyy— sy = Q'M

induces a pairing

(Y aty : BUK() By ¥B (K (v),Epy) — B(K(v),p1y)

For v= o the field K(w) 2~ € and the corresponding cohomology groups are trivial.
For v# o the group HZ(K(V),[JM) is identified canonically with H/MZI by local class

def
field theory. If a,b € HI(K,EM) ,then (a,b)pr o = (a(v),b(v))yy , » Where a(v), b(v)
are the localizations of a, b. According to global class field theory (the reciprocity law)
(a,b)M v # 0 only for a finite set of places v and the following relation holds:

) (@b, =0 (6)
vio

Relation (6) can be considered as a condition on a if an element b is fixed. To use
(6) for the study of Sy(K,E) it is necessary to find explicit elements b. This was my
strategy. Thus I constructed a set T of explicit elements of HI(K,EM) by using Heegner
points over ring class fields of K . The special properties of these elements allowed to de-
duce from (6) with a € Sp(K,E) and b €T the relation C’Sy =0 for some C’ €N,
the divisor and main component of whichis C.

Now we describe the construction of an element from T . First we define the Heegner
points. Fix an ideal i in the ring of integers O of K such that O/i ¥ Z/NT (i existsin
view of the assumptionson D). If A €N, then K, denotes the ring class field of K of
conductor A . It is a finite abelian extension of K . Let OA be Z + A0, i,\ =in 0,\ I
(A,N) =1, we define the point z ) € XN(K A) as corresponding to the class of the isogeny
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€/0), — lI/i"A'1 , where i;l is the inverse of i, in the group of proper O ,~ideals. We
let y,=z,) €EE(K,), P=Pp=thenormof y, from K, to K. The points y,,
P are called Heegner points (corresponding to the parametrization 7: XO(N)—aE,
K=Q(yD) and i).

We use the notation p (or p with (a subscript) for rational primes which do not

divide N and remain prime in K . Welet A" denote the set of all products p,..p, with

e T
distinct p_ , A=TUA".
n=1

Let A€A, G,=G(K,/K,). The group G, is the direct product of the sub-

groups G,\,p = G(K,\/KA/p) for p|A. The natural homomorphism GA,p — Gp is an

isomorphism. The group Gp is isomorphic to the group Z/(p+1)Z . For each p, wefixa

generator tp € Gp ; tp €G 1 denotes the corresponding generator of G Ap° We let

P © ¥

Trp = z til’ . Recall that 2 ann_s =L(E,;8) for Re(s) > 3/2. For p|A one finds the
j=0 n=1

relation:

TrpyA=apyA/p. (7)
These relations (7) are the basis for the definition of explicit cohomology classes.

Let A, denote the ring Z[G ’\] . We define a A,-module B, in the following

way. Let F, be the direct sum 2 A q’ where G j, actson A " by the natural homo-

n|A
morphism A P Aﬂ . Let 1’7 denote the unit of A . H 1 be the A A—-submodule of F 1
generated by the elements Trplﬂ -2 p1 7lp
It is not difficult to prove that (B,), .

then {1 1’7,n| A} is a system of generators of B , over A 3 By (7) 3! homomoprhism

forall p|n|A.Then By =F,/H,.
— / : +
=0. Let 11; be the image of 11; in B,,
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A A n n P Z p-A’ 7A mp

Q, bethe element I, 13 .

For M €N we define A(M) as the subset of A consisting of elements A such that
M{(p+1), Mla, Vp|A. Further, A'(M) = A" N A(M) . We claim that (1-g)Q, € MB,
for A € A(M) and g€ G, - It is enough to verify this for g = tp , where p| A . It is clear
that

(1= )1 = Tr ~(p+1) . (8)

Thus, we have (1-t )QA = IA/p(l —t ) A/p(Tr —(p+1))1A == IA/p( A/p
(p+1)1}) € MB, .

As (B,),,, =0, there exists a unique element ((1-g)Q,)/M € B, . We define the
element T:\(M) € HI(KI,EM) to be the class of the cocycle:

¥ g — (E-1)(P(Q,)/M) + W(1-8)Q,)/M) |

where g € G(K,/K,) . The element 7,(M) € Hl(K,EM) we define as the corestriction of
-r:\(M) -Wecall T theset {7,(M),M €N, € AM)} .

Let (b) denote the image of b€ H'(K,Ey) in H(KE)y, c,(M)=(r,(M).
That is, ¢ ,\(M) is the corestriction of the element of Hl(Kl,E)M defined by the cocycle,
g— ¥(1-8)Q,)/M) . If A€ AY(M), then the automorphism o € G(K/Q) acts on
c,(M) by multiplication by (_1)r+1€ . The symbol (a,b)M,V depends only on (b), if
a € S (K,E) .

The elements cp(M) were defined first see [6]. This allowed to prove the relation
C’(0+¢€)Sp(K,E) = 0, which is equivalent to the finiteness of E(Q) and ]| |(E) when
€ =1, and to the finiteness of E(D)(Q) and J_]_]_(E(D)) when € = -1 . Here E(D) is
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the elliptic curve (the form of E over K ) defined by the equation Dy2 = 4x
BoX — &g -

In [8] there were defined elements 7 A(M) for some subset of the set {M EN,A €
A(M)} containing the set {M|(M,d) =1,A € A(M)} , where d = exponent of E(K), _,
K is the composite of the K A’ for A’ € A. By using here the modules B A and the
property  (B,),,, =0 we shake off the additional restrictions on (M,A) when
(M,d) > 1. The relation (6) with (b) =c,(M) when A€ AT(M), r<2, allowed to
prove the relation C’ Sﬁ =0.

We note that an application of the elements 7 "(M) when A € A" with arbitrary
r2 0 allowed in [8] to pass from a relation of the type C | | |(K,E) = 0 to a relation of
the type [ || |(K,E)] |C2 . Because of the existence on | | |(K,E) of a non—degenerate
(a8 || |(K,E) is finite) alternate Cassels pairing with values in Q/Z , it then follows that
the second relation implies the first relation.

In [20] Thaine used the cyclotomic units for a new proof of annihilating relations in
the ideal class groups of real abelian extensions of Q. Rubin [16] adapted Thaine’s
approach, using elliptic units instead of cyclotomic units, for proving annihilating relations
in the ideal class groups of abelian extensions of the imaginary—quadratic field
k=End(E)®Q when E € W’ . By using the natural connection between ideal class
groups and the Selmer group SM(Q,E) Rubin proved an universal annihilating relation for
SM(Q,E) by the condition that ar(E)=0.

A comparison of the approaches of Thaine [20] and of the author [6] for proving
annihilating relations in the ideal class groups and in the Selmer groups, respectively, sug-
gested the possibility in [7] of combining them into a single general framework. A further
step was a construction and us.e in [8] of sets of cohomology classes of the type T , both
in the theory of modular elliptic curves and in the theory of ideal class groups of abelian

extensions of Q or an imaginary—quadratic extension of Q . For information on this theo-
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ry and some further applications we refer to the papers [8], [1], [4], [9], [10], [11],
[13], [15], [18], [19].

3. Examples.

Example 1, Rubin [17]. For the curves with complex multiplication
k=Qy )y’ =x>-x, y2=x3+17x we have: 1(E)=ar(E)=0, |||(E)=0,
/20 + T/21 , respectively.

Example 2, Kolyvagin [7]. Let E: y2 =4x5 —4x + 1. It is an odd modular curve
without complex multiplication, of conductor N =37. Let (D,2N)=1. The curves
E :

(D)
Dy? = 4x® —dx +1 9)

are even and have no complex multiplication. For computation of L(E(D),l) and CD the

following identity can be used:

1]
&, (D .
LEpyD) =2 § 32 [3)exp(-2m/(ID| v3T) = (20_/¥D)CH (10)
n=1
where {1 _— the imaginary period of E, [%] — the Legendre symbol. See [22] for (10);

the connection between L(E(D),l) and Cy, is a consequence of the results of Gross and
Zagier [5].
Let L(E(D),l) # 0 or, equivalently, CD # 0. Then E(D)(Q) is finite and, more-

over, ig trivial because always E(D)(Q)t or = 0 - That is equation (9) has no solutions in
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rational numbers. Further, _I_LL(E(D)) is finite and CDJ_I_]_(E(D)) = 0. For example, if
D =-7,-11 then C =1, 50 J_|_|_(E(D)) = 0. See [7] for further information on this
example.

We recall that CD #0 for an infinite set of values of D according to a result of
Waldspurger.

It is a classical fact that E(Q) ~ Z is generated by the point (y=1, x=0) . Of course,
ar(E) = 1, see [22], for example. The author proved [8] that || |[(E)=0.
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