Schrodinger semigroups - geometric
estimates in terms of the occupation
time

M. Demuth
W. Kirsch
I. McGillivray

Max-Planck-Institut fiir Mathematik
Gottfried-Claren-Strafie 26
53225 Bonn

Germany

MPI / 93-58






Schrodinger semigroups - geometric
estimates in terms of the occupation time

M. Demuth W.Kirsch
Max-Planck-Arbeitsgruppe Fakultat fiir Mathematik
Fachbereich Mathematik Ruhr-Universitat
Universitat Potsdam - D-4360 Bochum 1

Am Neuen Palais 10
0-1571 Potsdam

[.McGillivray
Fachbereich Mathematik
TU Berlin, SFB 288
Strafle des 17 Jumi 136
D-1000 Berlin 12

May 31, 1993

Abstract

The difference of Schrodinger and Dirichlet semigroups is expressed
in terms of the Laplace transform of the Brownian motion occupa-
tion time. This implies quantitative upper and lower bounds for the
operator norms of the corresponding resolvent differences. One spec-
tral theoretical consequence is an estimate for the eigenfunction for a
Schrodinger operator in a ball where the potential is given as a cone
indicator function.
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1 Introduction

The Feynman-Kac formula is a powerful tool in stochastic spectral analysis
to study spectral properties of partial differential operators. In this article
we shall consider the Laplace transform of the occupation timeof the Wiener
process in certain regions I' of IR?. These considerations have several spec-
tral theoretical consequences, in particular one can give quantitative upper
"and lower bounds for the resolvent differences of Schrodinger operators and
Dirichlet operators in terms of the height of the positive part of the potential.

In some more detail, this means the following. Let Hy be the self-adjoint
realisation of —1A in L?(IR?). Let W = W, — W_ be a potential in Kato’s
class. The positive part of the potential W, is assumed to be high on a set
I'C RY. Let U= W,l1r and V = W1 ga_r — W_. Schrédinger operators of
the form

H=H0+V+U,

U positive and large on I' arise naturally in several physical models, for
instance, in N—body models, in solid state physics with periodic potentials
and in atomic systems. The main feature in all these examples is that I" is an
unbounded region in R* having in general non-smooth boundaries. Replacing
the potential U by MU where M represents the height, we compare the
physical system given by Hy = Ho+V + MU with an artificial system where
the potential barrier MU is of infinite height (M = 00). The corresponding
Hamiltonian of this artificial system is the Dirichlet operator Hy = (Ho+V)g,
¥ = R? — T, the self-adjoint operator in L%(X) generated by the differential
expression -%/_\ + V with Dirichlet boundary conditions on dI'. Because
these operators act in different Hilbert spaces we introduce the restriction
operator J where Jf := f |s.

We now explain the connection between these Schrodinger or Dirichlet
operators and Brownian motion. Let X = (2, F, P,, X;) be Brownian motion
in IR® with expectation denoted by E,. The occupation time of Brownian
motion in ' is defined as

Tir:=|{s€[0,1]: X, €T} | (1)

(| - | is Lebesgue measure). The operator norm of the semi-group difference
Je~tHM _e=tHz J can be estimated by the Laplace transform of the occupation
time t.e.
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which will be one of the central objects of study in this article. Suppose I’
and I'® satisfy a uniform cone condition i.e. there exist angles a (resp. ')
and heights k (resp. h’) such that for any point y € 9I" we can find a cone C
of angle « and height & (resp. a cone C’ of angle o’ and height A’) contained
in ' with vertex y (resp. contained in I'®). Then the asymptotics of the
Laplace transform for I' is governed by the Laplace transform for the cone

C:

E'oe_MT‘vC (2)
We give upper and lower bounds for this quantity of the form
1 t
a(Mt)MO) < Epe~MTic < b(—lﬁf )4 (3)

for some a,b > 0 and Mt > 2. The cone constant A(C) is defined in terms of
the lowest eigenvalue of the Laplace-Beltrami operator on $4~! — (S4-1n ()
(S9! the unit sphere in IR?) with Dirichlet boundary conditions. Because
the cone condition is uniform on 9I', A(C) is always smaller or equal to 1/2.

The estimate (3) has several spectral theoretical consequences, since one
has quantitative error estimates in M, not just the bare convergence. The
most important consequence is that for regular resolvent values

| J(Har +a)™' — (Hg +a)™'J ||< eM (/279 (4)

for some € > 0, ¢ = ¢(a, V, ¢,d). This in turn can be used to give quantitative
estimates for the limiting absorption principle

1 ()™ (J(Hy + X £i0)" ~ (He + A £:0)7J){z) ™" | (3)

with (z) = (1+ | z |*)"/2, @ > 1/2, which provides error estimates for the
spectral measures and scattering matrices. These and further applications
will be described in a forthcoming article.

Here we mention another spectral application. Let C be a cone with
vertex at the origin. Let (Ho + M1¢)g be the Dirichlet operator in L*(B)
where B is a ball in IR?. Denote by ¢, the eigenfunction corresponding to
the n—th eigenvalue of this operator. Then the value of the eigenfunction at
the origin may be estimated via

| 6.(0) |< C(n)Eoe_MTl.c



In M\ 4y
< e(n)(5r) ()

A typical feature in stochastic spectral analysis is the following: the as-
sumptions and models come from physical situations and do not involve any
stochastic element, as also the results, as in (4) and (6), but the method of
proof relies heavily on the theory of stochastic processes. Here we studied in
detail the Wiener trajectories in cones using known and new results in this
theory.

The article is organised as follows. In section 2 the asymptotics of the
occupation time in a cone is estimated from above and below. This entails
upper (section 3) and lower (section 4) bounds for the operator norm of
semigroup and resolvent differences. Our convergence results are restricted
to a certain class of Lipschitz domains; we provide an example to show that
for certain singularity regions I' the convergence fails (section 3).

Acknowledgements. The authors are grateful to the DFG. This field of
research was supported in the project ”"Schrédinger operators” (Kirsch, De-
muth 1990-92) and is supported by SFB 288 "Differential geometry and quan-
tum physics” in Berlin and Potsdam.

2 Asymptotics of the occupation time in a
cone

We shall examine here the precise asymptotics of the Laplace transform of
the occupation time in a cone, which is determined by the cone constant A
depending on the angle of the cone.

A cone C in IRY, d > 2 is a set of the form

C={ze R :(z,e)2p|z |}, —Ll<p<] (M)

Here (-,-) is the standard inner-product in R? and e; := (1,0,...,0). The
angle of the cone is defined to be « := 2arccos p. Let F be the closed subset
of $%!, the unit sphere in IR? centred at the origin, given by F := CN S9!,
Let (X}, Pr) be Brownian motion in IR%. Then the total occupation time of
Brownian motion in I' C IR? up to time t > 0 is defined by Tir :=| {s €
[0,t] : X, € C} |. We shall denote by | - | the d—dimensional Lebesgue



measure. Given any Borel set B C IR?, the first hitting time of B is defined
by o(B):=inf{t > 0: X, € B}.

Definition 2.1 The cone constanl is defined via

A (F€)

A= A(C):= RN DT, (8)

where v := d/2—1 and A\|(F*) is the lowest eigenvalue of the Laplace-Beltrami
operator —31A on F° := S%! — F with Dirichlet boundary conditions on 9F°.

Proposition 2.2 Let C be the cone (7). There exists a positive constant c
such that for allt > e

Int

Po(Tio < 1) < ()" (9)

Proof. Let v € S%' Nint(C) be a vector from 0 to the interior of F' and fix
a > 0 for now. Denote the first hitting time of av + C by o,. Then

PO(Tt,C S 1) = PD(T},C S 17020 S t) + PO(T!.C S 1,020 > t) (10)

We estimate the first term on the right-hand side. It is clear that there exists
A > 0 such that

71+ Qa CC —(2av+C)foralln€av+dC

where @, is the cube of side-length a) centred at the origin. We therefore
have that

PO(Tt,C S lao'Za S t) = PO(To'.,.C + T‘t—aa.C o oaa S 1:Ja < 092, 5 t)
< PO(TO‘Q“—UG,C o 00., < l) - EOPX.,a (Tagu,C < 1) < PU(O'(Q::;) < 1)

Let Pél) be the law of one-dimensional Brownian motion starting at 0 and 7
the first exit time of [—1,1]. We now use the classical estimate

there exists £ > 0 such that for all ¢t > 0, Pél)('r <t) < kemV/2 (11)
After a time-change we obtain

Po(Tic < 1,02, < 1) < ce™¥¢/? (12)
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for a constant ¢ > 0. The second term on the right-hand side of (10) may be
estimated using (8] proposition 2.3 by

2
Po(Tic € 1,00, > 1) < C(i‘ft-)" (13)

Put a® = 24 Int, then (12) and (13) yield

P(Tie £1) < C(lnTt)A =

We now give an improved version of [2] Theorem 5.4.

Theorem 2.3 Let C be the cone (7). There ezists a constant ¢ > 0 such
that for all t > 0 and all M > 0 with Mt > e

In Mt

Epe™70 < o —==)* A= A(C)

Proof. Let €, :== e ™, n=0,1,... Note that Po(T,c < €,1) = Po(T(;x'c <1).

Thus
_MT;c — Z/ _MGPO(Tt,C € da)

n=0 Y tn41t

< Z ~Mte=™D p (T, o < &™)

n=0
n
- —(n+1
<CZC Mie—( )( )A
- en
n=0

© _Miemr, T4
<c e (=)'dz
1 er

1
= C/ MY | ylny |* y~'dy
0




using | In 4 || In Mt | (14 | Inz [) if Mt > eand 2> 0. O

We now demonstrate that the upper bound on the Laplace transform of the
occupation time in a cone is almost optimal by providing an accompanying
lower bound.

Lemma 2.4 Let C be the cone (7). There ezists a positive constant ¢ such
that
Po(Tic <) > et™, t>2

Proof. Denote by Fs the §—neighbourhood of F in S%! and by Cj the cone
generated by Fs. We will take § sufficiently small so that S9! — F5 # 0. We
then have by {8] 2.3

P[)(Tt'c < l) 2 PQ(X] € B(O,l)ﬂC;,O’(C)Ool >t - l)
- / p(1,0,7)Py(0(C) > t — 1)dy
B(0,1)NC§

> p(1,0,7)¢( ~Adp
/B(O.l)ncg ’ | 7 |2)

zc] p(1,0,7) | 7 [ dy t=4 O
B(0,1)NCS

We can now obtain a lower bound on the Laplace transform of the occupation
time in a cone as an easy corollary of the last lemma.

Proposition 2.5 Let C be the cone (7). There ezists a positive constant ¢
such that for Mt > 2
Eoe~MTue > o(Mt)™4

Proof. The result follows easily from the observation

Eoe~MTue > e Po(Taec < 1) 2 C(Mt)-A o

Remark. Let H := {z € IR : z; > 0} denote the half-space in IR?. By
the arc-sine law [5] proposition 4.4.11 there exist positive constants c, ¢’ such
that ¢(Mt)~1/? < Ege=MTun < ¢/(Mt)~"/? for large Mt. This together with
our results in 2.3 and 2.5 allow us to deduce A = A(H) = 1/2 independently



of the dimension d and hence that A,(H), the bottom eigenvalue of the
Laplace-Beltrami operator —2A on §%! with Dirichlet boundary conditions
has the value 3(d —1). Let C, be the cone of angle o, 0. < a < 7 and
suppose d > 3. Then A(FS) | 0 as a | 0. For, let (F,£) be the Dirichlet
form on L3(S%!,7) (7 surface area measure on S%°!) corresponding to the
Laplace-Beltrami operator —%A on 5% ! and Cap the associated capacity.
Then because the Brownian motion does not hit points, Cap(F£) | 0, a } 0
implying that | J Fr, is £&;—dense in F (see [7],[4]) where Fr, = {uv € F :
u=07—a.e. on F}. It follows from this and the min-max principle that
M(FE) 1 0, « | 0. Since the function A(C') is monotone increasing in C, in the
sense that A(C’) < A(C) whenever C' C C we can deduce that A(F?) < cd
for some constant ¢ > 0 independent of d, and 0 < o < m, d > 2.

3 Upper bound on semigroup and resolvent
differences

In this section we are interested in perturbed operators Hps of the positive
Laplacian Hp := —3A in L*(IR?), d > 2 of the form

Hy=Ho+V+MU

where V is a potential uniformly bounded below and U = 1r for T a closed
subset of IR? (the singularity region) and M is an arbitrary positive param-
eter. The mapping J : L3(IR?,dz) — L*(Z,dz), & := R* — T, is the obvious
restriction. Hy will denote the operator Hp on L*(E,dxz) with Dirichlet
boundary conditions on 9X

We recall here the definition of uniform Lipschitz set from [2]. Given a closed
set I' C IR? define

Ol := {z € R* : d(z,0T) <1}, >0

Definition 3.1 A closed set T' C IR® is said to be a uniform Lipschitz set if
there ezist 0 < § <r < o0, 0< L <00,0< ! <00, me& IN and a countable
collection By of open balls of radius r covering o', such that

for all k, OV N By, is locally the graph of a Lipschitz function with
Lipschilz constant L;



forallz € OT, d(z,B{) > § > 0 for some k;
each z € O, belongs to at most m sets By.

Remark. Given any uniform Lipschitz set as above there exists a cone C =
Cint (the subscript 7int” stands for "interior”) of angle @ = 2arctan L7,
0 < a<7and r > 0 such that

for each y € OT there is a rigid transformation (translation, rota-
tion) S, of IR? such that S,C'N B(y,r) CT and S,(0) =y.

(see [10]). We quote the following from [2].

Proposition 3.2 Let ' be a uniform Lipschitz set in IR®. Then there exists
a positive constant ¢ such that

sup Po(t —e < o(T) < t) < ce'?(1 +¢71/7)
T€L

for any 0 < e < L.

We now come to the main theorem of this section. We use the estimate, see

[6] eq.1IT 2.8

| JemtHa — e=tHe J ||< sup E (e MTr : o(T) < 1) (14)
el

We note that the asymptotics in A and ¢ of E.(e"MTer : o(T') < t) are the
same if [ is a cone, but different in general. Since I' is Lipschitz o(T) =
o(int(T')) P. — a.s. so that T;r > 0 on {0 < t}; applying the monotone
convergence theorem we see lima_o E.(e"MTtr 1 g < t) = 0 for t > 0 fixed.
On the other hand, for z € I' E e~M7tr > e=MEsTer. if T' is compact then
limimoo E-Tir = 1 > 0 and so limy_o Eze™MTor = =M1 5 0 (see [2], [6]) for
M > 0 fixed.

Theorem 3.3 Suppose that T' is a uniform Lipschitz set and that A =
A(C)<1/2, C =Cint. Then foreach0 <y <1,0<t <00

| Jemt i — =2 ) ||< up()M ™4, M > 1

oo

for some function u,(t) satisfying cy(a) := [~ e™u,(t)dt < oo foralla >0,
and

| J(a+ Hy) ™' = (a+ Hs) ' TS ()M M > 1



Proof. For the sake of brevity we write o := o(I'), 7 := ¢(B(0,r)¢) where r
is as in definition 3.1, z := X,. Then for ¢ > 0

E(eMTr o <t)=E (e MM o<t &o+7108,)

+E:(8_MT"‘" to<o+T100, <t,T00, <€)
-E-E,:(e_MT"F t0<a+T100, <t,T0l, > ¢)
< B (E,eMTi-05:0) : ¢ < t) 4 Po(r < €) + Ege™MTec (15)

Let 7, := 1 — 27", Consider the expression Eoe—MT(“’"“)"C. If M(1 —
Tnt1)t > € we can use 2.3 and the estimate (]¥l)“1 < ¢(B)z7P4 for some

c(B) > Owhere0 < B < 1,z > e. f M(1~7,41)t < 1 then Ege™MTi-mnc <
(M(1 = 7,41)t)"P4. Note that M(1 — 7,4,) belongs to the interval (1,e) for
at most two n’s and for such n, Ege™T0=mtnt¢ < (M (1 —7,43)t)"84. With
these remarks and 3.2 we see

oo
Ex(E.e™MTi=05:0) 10 < t) = Y Eo(E.e™MT-050) : rt < 0 < Topt)

n=0

o0
S Z EOE-MT(]_T“‘H)"CP:(Tnt <o < Tﬂ+1t)

n=0

< CZ(M(I - 1r'n+l)t)-ﬁA(("'n+1 - Tn)t)llz(l + t_]ﬁ)

< (M) TPAL 4+ 172) 3 (1g0 = 1) 7P < o0 (16)

n=0

because A < 1/2. Returning to (15) we see that
E(eMTir .o <) < cM7PAPA 4 72 4 d(Me)™PA + e~ 4
assuming Me > e. Now put e = M=, a > 0 to obtain
< eMTPATPA(L 4 72 o M I=edBA o pg-PA

< (1 4+ t7PA 4 712 M- (1-e)pA

for M'~® > ¢, independently of z. Note that [°e™%'u,(t)dt < oo for all
a > 0 where u,(t) = ¢(1 + t7#4(1 + t~"/?)). The resolvent upper bound is
obtained by integrating the result for the semi-group. O

10



Corollary 3.4 Let T’ be a uniform Lipschitz set and assume in addition that

forallm —e < a <7 (e>0) there ezist r(a) > 0 such that for

all z € 9T

5:Co N B(z,r(a)) CT (17)
where S, is a rigid tranformation of R? and C, is a cone of angle
a.

Then foreach0 <y <1, 0 <t <@
| JemtHM — e=tHe g < 0w ()M ™2 for all large M > 0

for some function u,(t) satisfying c,(a) = [;° e™*u,(t)dt < 0o for alla > 0,
and

| J(a+ Hy)™' = (a+ Hg) ™" ||< ey (a) M2, for all large M > 0

Proof. Pick m—e¢ < a < 7,0 <4 < 1. Then apply 3.3 to obtain the estimate
with exponent YA(C,). Since A(C,) — 1/2 as o — w,and 4 can be chosen
arbitrarily close to 1 we have the result. O

Remark. We note that if I' is compact with smooth boundary the last corol-
lary applies.

We give an example to show that there are singularity regions I' for which
the semi-groups e 'HM do not converge to e"'*= in operator norm.
Define a singularity region [y, by

Tgp:={rz:z2€8 ' =B, 1<r<1+b}, a,b>0 (18)

where ¢, := (1,0,...,0) and B, := §¢°! - 54-1 N B(e;,a) and let T,y =
R* —Ta.

Lemma 3.5 There exist ¢ > 0, 1 > 0, r > 0 such that given any n € IN
we can find a,b > 0, ¢ € L*(Ea;dx), || ¢ llr2(zandn)y= 1 such that for all
z € B(0,1/2)

Eo(e ot ¢(X,) : o(Tas) < t < o(B(0,7)%)) > ¢ (19)

11



Proof. Let p > 0, then we can estimate
| Eule Tt §(X,) : o(T) < £ < 0(B(0,7))) = Bu(Xy) |

<| Eo(e " Traet ¢(Xy) : 0(Twp) < t < 0(B(0,7)))—E (e Tavt ¢(X,) : 0(Tap) < t) |
+ | B(eT™ et (Xy) 1 0(Tap) < 1) = Eg(e7" ot ¢(X1)) |
+ | Eo(e7 et §(X0)) — Ezg(X,) |
=| E.(e " Trast$(X,) : 0(Tas) < t,0(B(0,7)°) < 1) |
+ | Ex(e™™ st §(Xy) : 0(Tas) > t} |
+ | Ex(1 — e et )g(Xy) |

<l ¢ lloo Pe(a(B(0,7)%) < )+ [ ¢ lloo Pe(0(Tas) > 1)+ || 6 floo Ball—e " Tarr)
We thus have that

E (e rast ¢(X,) : 0(Tas) < t < o(B(0,7)°))

> E.¢(X)) — Po(0(B(0,7)°) < t) — Po(0(Tap) > t) — Ex(1 — e "Trast) (20)

assuming || ¢ |loo= 1. Note that the right-hand side of (20) only depends on
n through the last term. We now estimate each of the terms in (20). Let
¢ := 14, where Ay, := {sz: 7€ 59 !,14b< s <c}and cis chosen so that
m(Ap) = 1. Then

E.d(X,) = ] p(t,,9)$(y)dy
> crt—_dne—c’/zt(cd _ (1 + b)d) (21)

Let Pé” denote the law of 1—dimensional Brownian motion started at 0. It
is clear there exists {(r) > 0 such that

z + [~ I(r),[("))* € B(0,r), z € B(0,1/2) (22)

Thus
P.(o(B(0,7)°) < t) < Po(o((z + [-1(r), I(r)]%)) < )
< PO(o([=I(r), In)]) < 1) = PO ([=1,1)%) < I(r)7)
< ke-—l/zl(r)-’t — ke-l(r)’/m (23)

12



for all z € B(0,1/2) by (11).
Now

Po(a(Tas) > 1) = Po(0(Tap) > t,0(S4") < t) + Po(o(Tap) > t,0(S4Y) > t)
The first term can be estimated by
Po{o(Tap) > t,0(5%") < t) < Po(X,(54-1) € Ba)
< 297(B,) (24)

for z € B(0,1/2) by [9] theorem 3.1, where T is surface measure on S,
Note that there exists a box of side-length 2R such that

B(0,1) C z 4+ [-R, R)%, = € B(0,1/2) (25)
Thus for all z € B(0,1/2)
P.(o(Ta) > t,0(S% 1) > t) < P(a(S7Y) < 1)
< Poo((z + [- R, B*)) > t) < P{(o([-R, BI) > 1)
= PO(a([-1,1)%) > R7%)? < Ke Rt (26)

for some A > 0 by [8] p.120
The domain [y is a subset of the annulus Ay, = {rz : 1 <7 < 1+ b} thus
Tr‘ab;t S TAb.t‘ SO

E (1 — e Trant) < Ey(1 — e7" o)
Moreover by symmetry E.(1 — e™"T4s+) is constant on 8B(0,1/2) and
Ey(1 — e Taet) < E,(1 — 74

for y € B(0,1/2), £ € 3B(0,1/2). We know that by letting b get sufficiently
small E;(1 — e "T4st) can be made arbitrarily small thus it is possible to
choose a = a(n),b = b(n) so that

E(1—erat) <9, z € B(0,1/2) (27)

for any n > 0. Substituting (21), (23),(24), (26),(27) into (20) we see that
for z € B(0,1/2)

Eo(e"ravt ¢(X,) : 0(Tap) < t < o(B(0,7)°)) > 2= 2 (o (1 4 b)Y

13



_ ke—l(r]’/?t _ 2dT(Sd-l _ Fab) _ I‘re—tR'ztd _p (28)

By choosing r, {(r), t large and 7(B,) small, the right-hand side of (28) can be
uniformly bounded below by a positive constant € > 0 for all z € B(0,1/2).
0 .

Corollary 3.6 For ¢, t, r as above choose a,, b, such that (19) is true.
Define
[:=U2 {3rne; + Tou.}, := R =T (29)

Let H, := Ho+nly where Hy is the Laplace operator, Hy, the Laplace operator
with Dirichlet boundary conditions on I'. Then the semi-group differences
Je~tHn — e=tHr J fail to converge to 0 in L*(IRY) as n — oo.

Proof. Let ¢ be as in the lemma and define ¢, := ¢ o ¢! where 1, is
translation in the e,-direction by 3rn. Then

| mthin — o7tz |22 (emtHn — e~tHm)g |
= [N Bl ™o gn(X) 0 < 1) [ do
Z

> / | Ez(e_"T"Fcﬁu(X,) : 0(Tans,) < t < o(B(a(0),7)%) |* dz
¥ B(0,1/2)

2 €| B(0,1/2) |

so fails to converge to zero. O

4 Lower bound on semigroup and resolvent
differences

In this section we shall consider perturbations of the positive Laplacian H,

in L2(IR?), d > 2 of the form
Hyi=Ho+ V + MU

where V is a potential uniformly bounded above by a constant b, U is the
indicator function of a singularity region I' satisfying

14



there exists 'y C II' with positive surface measure and a cone
C = Cy such that for each 2z € I'g there is a rigid transformation
S, of R? such that

S.C°— {2z} C R*-T; (30)

M is an arbitrary positive parameter. The subscript "cov™ stands for "cov-
ering” to emphasize that Cin; C Cep where Ciy, is the cone appearing in
Theorem 3.3. and these cones are not the same in general; Cin; is always
contained in I', at least locally, while C.,,, contains I.

We want to get lower bounds on || Je=t#» — e=tHz J || to counterpart the
result of the last section. Since we are working with the L?(IR?)—operator
norm we automatically have the lower bound >|| e=*HM¢ — J=e=tHz J¢ || for
¢ € L3R, || ¢ le2(rey= 1. By the Feynman-Kac formula this translates
into

- / | By{eMTur=Jo VX4 X ) (D) < ) 2 da
b

Theorem 4.1 Assume that assumption (30) is in force. Fizt > 1. Given
p > 1 there exists a constant k(t) such that

| Je~tHm — e=tHe 7 ||> k()M P4
for all sufficiently large M > 0.

Proof. We shall take V = 0 to simplify the proof; it is only a slight modifi-
cation to deal with V as in (30). We suppose also that [y has finite surface
measure. Let ¢ € L*(IRY) N L(R?), ¢ 2 0, || ¢ |lr2a(rey< 1. Let us once
more adopt the notation of the proof of 3.3. Then for 0 < 8 < 1

([ 1 Be™rg(X) 10 <0 do)'”
> {/ | E,(e'MT"‘"qﬁ(Xt) 0t <o <tz €Ty |2 da:}”2
>

2 {/ | Ex(Ez(e-MT(l-o)"rqs(Xf—U)) 0t <o < t,Z € FO) |2 d$}1/2
z
Note that for any y € IR?
== ] — > ] -_ i bt c
6= jnf 6+ (6= inf 8} 2 inf 6= {inf 6~ ¢}lagu)

B(Vvl) B(L"l
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This and the triangle inequality give > I, — I; where

I = {/E | Be(B.(e7MTo-onr inf ) :6t <o <t,z€To) [ da}!/® (31)

Ip = { / | EL(E.(e”MTu-onr( Anf ¢ = d(Xeo)) a0 Xeo :
> =

0t <o <t,zely)|*dz}'/? (32)

Define g, := P.(z € To;0t < o < t); then g, < P(0(To,) < t) < e'E.e~?(To)
where Ty is the e-neighbourhood of Ty. Let (F,&) be the Dirichlet form
associated to d—dimensional Brownian motion. Since ['g, is relatively com-
pact, ['o has finite £ —capacity and moreover p}qw = E.e~?To.) is a version
of the equilibrium 1—potential of I'o, (see [4]); in particular py, € L*(RY)
so that g, € L*(X). Let b, :=|| g; ||z2(s). Since I is a uniform Lipschitz set,
b, > 0.

Define ¢ = (M, t) := t-"M~498~! where 7, g, 8 are undetermined positive
constants, and ¢ := 1 1g(5,,r) Where o is some point in I'p and R = R(M,1)
is chosen so that || ¢ ||z2(gey=11ie. R = cp~14 where ¢ > 0 constant. For
now we assume that

B(z,1) C B(wo, R) for all z € Ty (33)

UB (1 —7)R) C B(zo, R) for some 0 <7 < 1 (34)

zelg

We can estimate [, using proposition 2.5 and (33) by
I > cbp(M(1 - 9)t)~4 (35)

if M(1—0)t > 2. We now bound I; from above using (34) and [8] (3g) via

I < ¢{j£ Bo(P.(Xeeo & Blzo, R)) : 0t < & < 1, 2 € To)dz}?

< ¢{/ P.(o(B(z, (1= R)) < (1= 0)t): 0t < o < t, 2 € To)2dz}'/?

36
< cbt¢e—(l—ﬂ)?R2/2(l—9)t ( )
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(1-n)*R?

< ela+ 1)bap{ =0y 1

(37)
From (35) and (37) we obtain
| Je~tHm—e™tHe 1 ||> cbp(M(1-0)t) "4 —¢ (a+1)1bap(1—n) "2 (1—0)* R~2* ¢

=chtTTM™AIBT (M(1 - 0)t)~4
—c(a+ Dbt "TM~A871(1 — )72 (1 = )2 (1T M AI g2 dpe
= ch 71 = 0)~ A1 A M (144
(o4 )BT — )2 (1 — g)grHe20v/d pp—Aa(14+20/d)
For ¢ > 0,0 < 8,7 < 1 fixed, choose «, 8, v, and M large enough so that

(1+2a/d)g=1+gq (38)
Y+ A<y+27/d—a (39)

57 (1= 0)A = et DIFTHN(1 — ) (1 = 0)F  (40)
14 68(To) < R =c"g"4/4pmAdl (41)
(1—-n)R+8(To) < Rie n7'8(To) <R (42)

Here (41) and (42) guarantee (33) and (34) respectively; 6(I'g) is the diameter
of I'o C O'. We thus have

1
| JemtHn — e=tHo T ||2 b BT (1 — 0)ATTTAMTIHOA (4)

= k(t)M 74
forp=1+4¢>1 and all large M. O

Theorem 4.2 Assume (30). Let p > 1. Then for each 0 < a < oo there
ezists a positive constant c(a) such that for M sufficiently large

| J(a+ Hp)™' = (a + Hg) ' T ||> cla)M P4
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Proof. Fix to > 1,k > 0 and let ¢ := ¢;"M =493~ where 7, ¢, 8 are unde-
termined positive constants and let ¢ = ¥1p(;, r) where zq is some point in
To and R is chosen so that || ¢ |[z2(rey= 1. Let 7 := o(B(0,(1 — n)R)°) and
suppose that

U B(z (1 = n)R) C B(zo, R) (44)

z€le
for some 0 < 7 < 1. We then havefor 0 < 8 < 1

| J(a+ Hp)™" = (a+ He) ' T |12] (J(a+ Har)™' = (a + He) 7' )¢ lamy
= { / / e E (e MTr g0 X, : 0 < t)dt) dz}'/?
to+h
Z {/(/ e_atE,:(e-th'°+"’r¢° Xt ‘o< to)dt)2d$}1/2

)

to+h

> { / ( / e~ E (e MTothT g o X, : Bty < 0 < Lo,z € [p)dt)?dz}'/?
]

to+h
> lb{/(Ex(e-MT"’”'r (f e-atlB(:o.R)°Xtdt) 10ty <o <1,z € 1-‘0))2d-"’}]/2
z

to
to+h
> 1,/)/ e'“‘dt{/(Ex(e'MT'O“"“ :1700, > h+ (1 =0,
to z

Bto <o <tz € Fo))2d$}l/2

a)v{ /v (Eo(Eye~MTo-000nr s 1 > ht(1—0)to) : 0to < 0 < Lo, z € T'p))?dz}'/?
a)¢{/E(Ex(Eze‘MT““)‘O*“'-F 20ty < 0 < to,z € Ty))?dz}/?

~c(a){ /2 (Eo(E,eMTu-0004nr + 1 < b4 (1=8)to) : Oto < 0 < to, z € Tp))?dz}'/?
‘2 c(a)z/){/;(EI(E,e'MT("’)‘O“'-") 0ty < 0 < 1o,z € Ig))dz}'/?

—c(a)z/;{/z E.(P.(6(B(z,(1-9)R)) < (1=0)to+h) : 0ty < 0 < 1o,z € I'g)2dz}/?

18



Denote the first and second terms of the last expression by I; and I, respec-
tively and note the similarity to (31) and (36). Argueing as in the proof of
4.1 we obtain

Iy > ¢a)byp(M((1 — 0)to + k)™
and
(1 —9n)*R?

(1-0),+ h}—a

Iz < c(a)(a + 1)1y {
if (44). Continuing as before
| J(a+ Hp)™' = (a+ He) ™' |12 c(a)bop(M((1 = O)to + £)) ™
(1 — 1])2R2 }—ar
(1—8)to+ A
= c(a)bitg "M~ B (M((1 — 0)to + h))™*
—c(a) (o + )by tg"M™AB7H 1 = )72 ((1 = 0)to + h)° (15" M A5 yte/4
> c(a)b, 8711 — 0)~ Aty A M- (1494
—c'(a)(cr + 1)!btoﬁ-l-4a/d(l _ 1])_2':'(1 _ a)atg‘v+a—4o‘v/dA{-Aq(l-}uia,’d)

—c(a)(a+ 1) {

For ¢ > 0, 0 < 8,77 < 1 fixed, choose «, 3,7, and M large enough so that
(1+4a/d)g=1+¢
Y+ A<y+4day/d—«a

5e@)87 (1= 04 = (a)a+ BN — ) (1 - 0

1 +6(1’\0) < R — cHﬁ?/dt(z)‘T'/dM‘ZAqfd
(1= )R+ 6(Ty) < Ri.e. 5~'6(T) < R

We thus have
| J(a+ Hy)™"' = (a+ He) ' T ||

> %c(a)btoﬁ‘l(l — 9) A A A
= k(a)M P4
where p=14¢>1and M is large. O
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The above results are by no means optimal if the singularity region I' is
taken to be a cone of angle a > 7. The following results give an improvement
in such cases.

Let T' be a closed subset of IR? and suppose surface area measure 7 is
defined. Let us assume in addition that

there exists a cone C, closed sets I'j C 9I', r, > 0, n € IV,
rn, — oo with 7(I'5) = 1, §(T5) = 1 such that for each n and
z € T} there exists a rigid transformation S, of IR? such that

(S5:.C°—{z}) N B(z,7,) C&; (45)

moreover, the function ¢ := P(z € [}, 0t < 0 < 1), 0 <t < o0,
0 < 0 < 1 satisfies inf, b} > 0 where b} :=|| g7 ||12(5)-

Theorem 4.3 Let " be a singularity region satisfying (45). Fizt > 1. Given
p > 1 there ezists a constant k(t) such that

| Je= s — e=tHe 1 |[> k()M P4 (A = A(C))
for all sufficiently large M > 0.

Proof. Define 7, := o(B(0,7,)°). For ¢ >0, ¢ € L*(IR?), | ¢ ||12(rey=1 we
have
” Je-tHM _ e—tH;;J ”2

{ [2 E.(Bx(eMTa-onr §(X,_,)) : 0t < & < t,z € T)%dz}"/?
> {/E E (B (e MTu-0trd(X,_,) i1y > (1—0)t): 0t < o0 < t,z € T2)2dz}/?
> { /}: E(E (e MTu-005:40) (X, ,) : 7o > (1-0)t) : 0t < 0 < 8,z € T})%dz}'/?
> { fz Eu(Eu(e=MTo-orsu@ (X, )) 01 < o < 1, 2 € T2)2dz)}'/?
—{/E E(E (e MTu-onsx¢(X,_,) i 7a < (1-0)t) : 0t < 0 < t,z € T})2dz)}'/?
> {/v(Ez(e‘“’%-a)'-sm¢(Xt-a)) 0t <o <t,z€g)dz}'/?
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— ceTA/(1=0)tpn (46)

Denoting the first term in the last expression by / we have as in 4.1 that
I > It — I3 where

= {/ E (E.(e”MTo-0uss(0) Bl(nf])qﬁ) 0t <o <t zeTlp)de}'?

_ {/ E —MT(]-O}: Sx(C)( ]nf ¢ ¢(Xt a))lB(z l)COXt—

B(z,1)
0t <o <tz €Ty de}'/* - ce~" (M /(1-n)t i g5 llzax)

Using exactly the same argument as in 4.1 we obtain
1
1> Ecb’;ﬁ-‘(l — §)" A A M4

The constants ¢, 8,0, 7,q can be chosen independently of n. By hypothesis
b} is uniformly bounded below. Thus the above inequality is valid for all
M bigger than some number not depending on n. So I > k(t)M~?4 where
p=1+4¢> 1. Finally

|| JemtHm — eHe J |[> k(t)M P4 — ce~mn /(1=

valid for all n. Since b} is uniformly bounded in n, we let n — oo to get the
result. O

Theorem 4.4 Let I' satisfy (45). Then for each 0 < a < oo there ezists a
positive constant c(a) such that for M sufficiently large

| J(a+ Ha)™ = (a+ He) ™' |2 (@) M4 (A = A(C))
Proof. As in 4.2 we have

| J(a+ Ha)™' —(a+ Hg) ™' T |12

G){/(Ez( —J'v’fT(l—o)tO"'hl"n Bl([;lfl) qs) 0t0 <o< t(],z € l'\g))zdm}lf?

—c(a)p] f Py(0(B(z,(1=1)R)%) < (1=0)to+h) : Oto < o < to, z € T2)2dz}"/?
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Denoting as in 4.3 7, = o(B(0,r,)°) the first right-hand term may be esti-
mated

> C(a){[E(Ex(Eze_MT('—o)‘°+h'rg Al i > (1—0)tot+h):

Mo <o <tp,z€ Fg)zd:ﬁ}”z

> C(a){/:E(Ez(Eze—MT(l-e)coﬂ,s.(C) Bi(;:fl) i (] — 0)7:0 + h) .

0to < 0 < to,z € T7)2dz}'/?

> C(a){/};(Ex(Eze-n.fT(l-e):oﬂ,t‘g Bi([:fl)) :0tg < o0 < 19,2 € F3)2d$}1/2

—c(a){/(E,(EZC_M'I}“"W*"'PB‘ inf 17, <(1—0)to+h):
z

B(z,1)

0to < o < to, 2 € Tg)2dz}'/?

> c(a){ / (Eo(E e~ MTo-onotnry Jnt )i0to <o <toz€ I7)}dz)'/?
) o
_C(a)e—r?./((l—ﬂ)ro+h)
We thus have
| J(a+ Ha)™' = (a+ Hg)™'J |2

c(a){ /E (Eo(E.e M Ta-orosnrg Jnl ) 0t <o < to,z € T5)*dz)'/*

~ca)b{ | B PAo(B(z,(1 =mRY) < (1= 0)to + ) :

Oty < o < to, 2 € T})?dz}!/?

_C(a)e—rf./((l—-ﬂ)toM)

Now argue as in 2.3 to obtain the conclusion. O
Note that any cone I satisfies (45) for C = H, the half-plane so it follows
immediately
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Corollary 4.5 Let ' be a cone of angle a, 0 < o < 27. Fizt 2 1. Given
p > 1 there ezists a constant k(t) such that

| Je~tHu — e=tHe g ||> k(t)M P/

for all sufficiently large M. For each 0 < a < oo there erists c(a) > 0 such
ahat for all large M

| J(a+ Ha)™' = (a+ He)™' T |2 c(a)M~*/?
Conjecture. P.Duclos [3] has shown
| J(a+ Har) ™' = (a+ He)™ T ||S (a) M~

where I is any cone. Together with the last result the expected rate of decay
is O(M~'/3). In the light of 3.4 one would expect this also for a large class
of Lipschitz domains.

5 Application to decay of eigenfunctions

Let B be an open ball in IR%, d > 2 centred at the origin, and C be a
cone. Let Hps be the operator Hpy = —%A + Mlg, M > 0 on L*(B) with
Dirichlet boundary conditions on dB. The operator Hps has eigenvalues
0< A3 < )\"M“, n=1,2,... and A}, < A" where A" is the n-th eigenvalue
of H := —2A on L*(B) with Dirichlet boundary conditions on dB. Let
¢%, be a normalised L?—eigenvector with eigenvalue A};. Denote by TM the
L*—heat semi-group for . By [1], TM has an integral kernel pM (¢, z,y)
which is jointly continuous on (0,00) x B x B and TM¢?%, is continuous so
that ¢%, = e*m'TMg3, is continuous.

Proposition 5.1 Fizn. There erists a positive constant c¢(n) such that

In M
M

| 3:(0) < e(n)( Y M >e

where A = A(C') is the cone constant.

Proof. We first estimate | ¢}, | as follows.
) = e [ M08y (")
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< e”’{/ pM(1,z,y)dy}'
B

< e”M{/ p(1,2,y)*dy}/?
B

where p(t,z,y) is the integral kernel of the heat semi-group associated to
H the last line following by the Feynman-Kac representation of TM. Thus
| $3¢(z) |< c(n). It then follows from (47) that

| 634(0) |< c(n) / M (1,0,5)dy

= C(R)Eo(e_MT"C o> 1)
< c(n)Epe~MT1c

lnM)A
M

Here o is the first hitting time of B¢, O

< e(n)(
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