DERIVED CATEGORIES OF COHERENT SHEAVES AND MOTIVES.

DMITRI ORLOV

The bounded derived category of coherent sheaves $\mathbf{D}^{b}(X)$ is a natural triangulated category which can be associated with an algebraic variety X. It happens sometimes that two different varieties have equivalent derived categories of coherent sheaves $\mathbf{D}^{b}(X) \simeq \mathbf{D}^{b}(Y)$. There arises a natural question: can one say anything about motives of X and Y in that case? The first such example (see [4]) - abelian variety A and its dual \widehat{A} - shows us that the motives of such varieties are not necessary isomorphic. However, it seems that the motives with rational coefficients are isomorphic in all known cases.

Recall a definition of the category of effective Chow motives $\mathrm{CH}^{\text {eff }}(\mathrm{k})$ over a field k. The category $\mathrm{CH}^{\text {eff }}(\mathrm{k})$ can be obtained as the pseudo-abelian envelope (i.e. as formal adding of cokernels of all projectors) of a category, whose objects are smooth projective schemes over k , and the group of morphisms from X to Y is the sum $\oplus_{X_{i}} A^{m}\left(X_{i} \times Y\right)$ (over all connected components X_{i}) of the groups of cycles of codimension $m=\operatorname{dim} Y$ on $X_{i} \times Y$ modulo rational equivalence (see [3, 1]). In [7] Voevodsky introduced a triangulated category of geometric motives $\mathrm{DM}_{\mathrm{gm}}^{\mathrm{eff}}(\mathrm{k})$. He started with an additive category $\operatorname{SmCor}(\mathrm{k})$, objects of which are smooth schemes of finite type over k , and the group of morphisms from X to Y is the free abelian group generated by integral closed subschemes $Z \subset X \times Y$ such that the projection on X is finite and surjective onto a connected component of X. There is a natural embedding $[-]: \operatorname{Sm}(k) \rightarrow \operatorname{SmCor}(k)$ of the category $\operatorname{Sm}(k)$ of smooth schemes of finete type over k. The category $\operatorname{SmCor}(\mathrm{k})$ is additive and one has $[X \amalg Y]=[X] \oplus[Y]$. Further, he considered the quotient of the homotopy category $\mathcal{H}^{b}(\operatorname{SmCor}(\mathrm{k}))$ of bounded complexes by minimal thick triangulated subcategory T, which contains all objects of the form $\left[X \times \mathbb{A}^{1}\right] \rightarrow[X]$ and $[U \cap V] \rightarrow[U] \oplus[V] \rightarrow[X]$ for any open covering $U \cup V=X$. Triangulated category $\mathrm{DM}_{\mathrm{gm}}^{\mathrm{eff}}(\mathrm{k})$ is defined as the pseudo-abelian envelope of the quotient category $\mathcal{H}^{b}(\operatorname{SmCor}(\mathrm{k})) / T$ (see $\left.[7,1]\right)$.

There exists a canonical functor $\mathrm{CH}^{\mathrm{eff}}(\mathrm{k}) \rightarrow \mathrm{DM}_{\mathrm{gm}}^{\mathrm{eff}}(\mathrm{k})$, which is a full embedding if k admits resolution of singularities ([7, 4.2.6]). Thus, it doesn't matter in which category (in $\mathrm{CH}^{\mathrm{eff}}(\mathrm{k})$ or in $\mathrm{DM}_{\mathrm{gm}}^{\mathrm{eff}}(\mathrm{k})$) motives of smooth projective varieties are considered. Denote the

[^0]motive of a variety X by $\mathrm{M}(X)$, and its motive in the category of motives with rational coefficients $\mathrm{DM}_{\mathrm{gm}}^{\mathrm{eff}}(\mathrm{k}) \otimes \mathbb{Q}\left(\right.$ and in $\left.\mathrm{CH}^{\mathrm{eff}}(\mathrm{k}) \otimes \mathbb{Q}\right)$ by $\mathrm{M}(X)_{\mathbb{Q}}$.

Conjecture 1. Let X and Y be smooth projective varieties, and let $\mathbf{D}^{b}(X) \simeq \mathbf{D}^{b}(Y)$. Then the motives $\mathrm{M}(X)_{\mathbb{Q}}$ and $\mathrm{M}(Y)_{\mathbb{Q}}$ are isomorphic in $\mathrm{CH}^{\mathrm{eff}}(\mathrm{k}) \otimes \mathbb{Q} \quad$ (and in $\mathrm{DM}_{\mathrm{gm}}^{\mathrm{eff}}(\mathrm{k}) \otimes \mathbb{Q}$)

Conjecture 2. Let X and Y be smooth projective varieties and let $F: \mathbf{D}^{b}(X) \rightarrow \mathbf{D}^{b}(Y)$ be a fully faithful functor. Then the motive $\mathrm{M}(X)_{\mathbb{Q}}$ is a direct summand of the motive $\mathrm{M}(Y)_{\mathbb{Q}}$.

The category $\mathrm{DM}_{\mathrm{gm}}^{\mathrm{eff}}(\mathrm{k})$ has a tensor structure, and $\mathrm{M}(X) \otimes \mathrm{M}(Y)=\mathrm{M}(X \times Y)$. One defines the Tate object $\mathbb{Z}(1)$ to be the image of the complex $\left[\mathbb{P}^{1}\right] \rightarrow[\operatorname{Spec}(\mathrm{k})]$ placed in degree 2 and 3 and put $M(p)=M \otimes \mathbb{Z}(1)^{\otimes p}$ for any motive $M \in \mathrm{DM}_{\mathrm{gm}}^{\mathrm{eff}}(\mathrm{k})$ and $p \in \mathbb{N}$. The triangulated category of geometric motives $\mathrm{DM}_{\mathrm{gm}}(\mathrm{k})$ is defined by formally inverting the functor $-\otimes \mathbb{Z}(1)$ on $\mathrm{DM}_{\mathrm{gm}}^{\mathrm{eff}}(\mathrm{k})$. The important and nontrivial fact here is the statement that the canonical functor $\mathrm{DM}_{\mathrm{gm}}^{\mathrm{eff}}(\mathrm{k}) \rightarrow \mathrm{DM}_{\mathrm{gm}}(\mathrm{k})$ is a full embedding [7, 4.3.1]. Therefore, we can work in the category $\mathrm{DM}_{\mathrm{gm}}(\mathrm{k})$. Moreover (see [7]), for any smooth projective varieties X, Y and for any integer i there is an isomorphism

$$
\operatorname{Hom}_{\mathrm{DM}_{\mathrm{gm}}(\mathrm{k})}(\mathrm{M}(X), \mathrm{M}(Y)(i)[2 i]) \cong A^{m+i}(X \times Y), \quad \text { where } \quad m=\operatorname{dim} Y
$$

Suppose, one has a fully faithful functor $F: \mathbf{D}^{b}(X) \rightarrow \mathbf{D}^{b}(Y)$ between derived categories of coherent sheaves of two smooth projective varieties X and Y of dimension n and m respectively. Any such functor has a right adjoint F^{*} by [2], and by Theorem 2.2 from [5] (see also [6, 3.2.1]) the functor F can be represented by an object on the product $X \times Y$, i.e. $F \cong \Phi_{\mathcal{A}}$, where $\Phi_{\mathcal{A}}=\mathbf{R} p_{2 *}\left(p_{1}^{*}(-) \stackrel{\mathrm{L}}{\otimes} \mathcal{A}\right)$ for some $\mathcal{A} \in \mathbf{D}^{b}(X \times Y)$. With any functor of the form $\Phi_{\mathcal{A}}: \mathbf{D}^{b}(X) \rightarrow \mathbf{D}^{b}(Y)$ one can associate an element $a \in A^{*}(X \times Y, \mathbb{Q})$ by the following rule

$$
\begin{equation*}
a=p_{1}^{*} \sqrt{\operatorname{td}_{X}} \cdot \operatorname{ch}(\mathcal{A}) \cdot p_{2}^{*} \sqrt{\operatorname{td}_{Y}} \tag{1}
\end{equation*}
$$

where td_{X} and td_{Y} are Todd classes of the varieties X and Y. The cycle a has a mixed type. Let us consider its decomposition on the components $a=a_{0}+\cdots+a_{n+m}$, where index is the codimension of a cycle on $X \times Y$. Each component a_{q} induces a map of motives

$$
\alpha_{q}: \mathrm{M}(X)_{\mathbb{Q}} \rightarrow \mathrm{M}(Y)_{\mathbb{Q}}(q-m)[2(q-m)]
$$

Thus the total cycle a gives a map $\alpha: \mathrm{M}(X)_{\mathbb{Q}} \rightarrow \bigoplus_{i=-m}^{n} \mathrm{M}(Y)_{\mathbb{Q}}(i)[2 i]$. Now consider the object $\mathcal{B} \in \mathbf{D}^{b}(X \times Y)$, which represents the adjoint functor F^{*}, i.e. $F^{*} \cong \Psi_{\mathcal{B}}$, where
 by the same formula (1). The cycle b induces a map $\beta: \bigoplus_{i=-m}^{n} \mathrm{M}(Y)_{\mathbb{Q}}(i)[2 i] \rightarrow \mathrm{M}(X)_{\mathbb{Q}}$.

Since the functor $\Phi_{\mathcal{A}}$ is fully faithful, the composition $\Psi_{\mathcal{B}} \circ \Phi_{\mathcal{A}}$ is isomorphic to the identity functor. Applying the Riemann-Roch-Grothendieck theorem, we obtain that the composition

$$
\mathrm{M}(X)_{\mathbb{Q}} \xrightarrow{\alpha} \bigoplus_{i=-m}^{n} \mathrm{M}(Y)_{\mathbb{Q}}(i)[2 i] \xrightarrow{\beta} \mathrm{M}(X)_{\mathbb{Q}}
$$

is the identity map, i.e. $\mathrm{M}(X)_{\mathbb{Q}}$ is a direct summand of $\bigoplus_{i=-m}^{n} \mathrm{M}(Y)_{\mathbb{Q}}(i)[2 i]$.
Assume now that $\operatorname{dim} X=\operatorname{dim} Y=n$ and, moreover, suppose that the support of the object A also has the dimension n. Therefore, $a_{q}=0$ when $q=0, \ldots, n-1$, i.e. $a=a_{n}+\cdots+a_{2 n}$. It is easily to see that in this case $b=b_{n}+\cdots+b_{2 n}$ as well. This implies that the composition $\beta \cdot \alpha: \mathrm{M}(X)_{\mathbb{Q}} \rightarrow \mathrm{M}(X)_{\mathbb{Q}}$, which is the identity, coincides with $\beta_{n} \cdot \alpha_{n}$. Hence, $\mathrm{M}(X)_{\mathbb{Q}}$ is a direct summand of $\mathrm{M}(Y)_{\mathbb{Q}}$. Furthermore, since the cycles a_{n} and b_{n} are integral in this case we get the same result for integral motives, i.e. the integral motive $\mathrm{M}(X)$ is a direct summand of the motive $\mathrm{M}(Y)$ as well. Thus, we obtain

Theorem 1. Let X and Y be smooth projective varieties of dimension n, and let F : $\mathbf{D}^{b}(X) \rightarrow \mathbf{D}^{b}(Y)$ be a fully faithful functor such that the dimension of the support of an object \mathcal{A} on $X \times Y$, which represents F, is equal to n. Then the motive $\mathrm{M}(X)$ is a direct summand of the motive $\mathrm{M}(Y)$. If, in addition, the functor F is an equivalence, then the motives $\mathrm{M}(X)$ and $\mathrm{M}(Y)$ are isomorphic.

Examples of such functors are known, they come from birational geometry (see e.g. [6]). In these examples one of the connected components of $\operatorname{supp}(\mathcal{A})$ gives a birational map $X \rightarrow Y$. Blow ups and antiflips induce fully faithful functors, and flops induce equivalences. Note that an isomorphism of motives implies an isomomorphism of any realization (singular cohomologies, l-adic cohomologies, Hodge structures and so on).

For arbitrary equivalence $\Phi_{\mathcal{A}}: \mathbf{D}^{b}(X) \rightarrow \mathbf{D}^{b}(Y)$ the map of motives $\alpha_{n}: \mathrm{M}(X)_{\mathbb{Q}} \rightarrow \mathrm{M}(Y)_{\mathbb{Q}}$, induced by the cycle $a_{n} \in A^{n}(X \times Y, \mathbb{Q})$, is not necessary an isomorphism (e.g. Poincare line bundle \mathcal{P} on the product of abelian variety A and its dual \widehat{A}). However, the following conjecture, which specifies Conjecture 1, may be true.

Conjecture 3. Let \mathcal{A} be an object of $\mathbf{D}^{b}(X \times Y)$, for which $\Phi_{\mathcal{A}}: \mathbf{D}^{b}(X) \rightarrow \mathbf{D}^{b}(Y)$ is an equivalence. Then there exist line bundles L and M on X and on Y respectively such that the component a_{n}^{\prime} of the object $\mathcal{A}^{\prime}:=p_{1}^{*} L \otimes \mathcal{A} \otimes p_{2}^{*} M$ gives an isomorphism between motives $\mathrm{M}(X)_{\mathbb{Q}}$ and $\mathrm{M}(Y)_{\mathbb{Q}}$.

I am grateful to Yu. I. Manin for very useful discussions.

References

[1] Bloch, S. Lectures on mixed motives. Algebraic geometry-Santa Cruz 1995, 329-359, Proc. Sympos. Pure Math., 62, Part 1, Amer. Math. Soc., Providence, RI, 1997.
[2] Bondal, A., and Van den Bergh, M. Generators and representability of functors in commutative and noncommutative geometry. Mosc. Math. J. 3, 1 (2003), 1-36.
[3] Manin, Yu. Correspondences, motifs and monoidal transformations. Matem. Sb. 77, 119 (1968), 475-507.
[4] MukaI, S. Duality between $D(X)$ and $D(\widehat{X})$ with its application to Picard sheaves. Nagoya Math. J. 81 (1981), 153-175.
[5] Orlov, D. Equivalences of derived categories and K3 surfaces. Journal of Math. Sciences, Alg. geom.-7 84, 5 (1997), 1361-1381.
[6] Orlov, D. Derived categories of coherent sheaves and equivalences between them. Uspekhi Matem. Nauk 58, 3(351) (2003), 89-172.
[7] Voevodsky, V. Triangulated categories of motives over a field. In Cycles, transfers, and motivic homology theories, vol. 143 of Ann. of Math.Stud, pp. 188-238.

Steklov Mathematical Institute RAN
E-mail address: orlov@mi.ras.ru

[^0]: This work was done with a partial financial support from grant RFFI 05-01-01034, from the President of RF young Russian scientists award MD-2731.2004.1, from grant CRDF Award No RUM1-2661-MO-05, and from the Russian Science Support Foundation.

