
Scalar curvature of spheres

Osamu Kobayashi

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
5300 Bonn 3
Federal Republic of Germany

MPI/88- 3

Department of Mathematics
Keio University
Hiyoshi, Yokohama 223
Japan



Scalar curvature of spheres

Osamu Kobayashi

It is known that, if a compact n-manifold M, n ~ 3, admits

ametrie of positive scalar curvature, then any smooth function of

M 1s realized as the scalar curvature funct10n of some metric of M

(cf. [lJ). Th1s paper 1s an attempt to show th1s statement will be true'

even 1f we assume the metric has unit total volume. In the previous

paper [2], this problem was solved except for positive constant

funct1ons. Therefore we have only to find metrics with unit velume

and with scalar curvature equal to arbitrarily given positive constant.

One difficulty is that we cannot apply the Yamabe problem because it

provides only constant scalar curvature less than or equal te that

of the standard sphere ~hen the volume 1s normalized. On the other

hand there are obvious cases in wh1ch we can easily get any positive

constant scalar curvature under the volume constraint. That is, when

M is a produet manifold MtX M2 either of whose component admits ametrie

of positive scalar curvature, or when M is the total space of certain

fiber bundle such that both fiber and the base admit positive scalar

t AB f h Sn. i h h 3 ( d 4) dcurva ure. or sp eres , l.t s t e case w en n a mo an

n ~ 7 by means of the Bopf fibe~ing s4k+3/s 3 ~mPk. In this paper we

shall construct metries of large constant scalar curvature for even

dimensional spheres with dimension at least 4. As a result, we get

Theorem. If n ~ 1 (mod 4) and n ? 4, every smooth function of sn is

the scalar curvature of same metric of unit total volume.
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§1 Preliminaries.

We begin with a formula for the scalar curvature of a metric

expressed in some special coordinates.

Lemma 1.1. Let, fhs} s ~ I be ~ i-parameter family of metries

of an (n - 1) -manifold N.-- Then the scalar curvature R of the metric

ds
2

+ h
8

on· I X N i8 given as

R = - (tr h)· - 1.(fh I2
h s 4 s h

s s

where. R is the 8calar curvature of h and
s --- s

stands for ~/a s.

The proof is a 5traightforward calculation and i5 omitted.

We shall use this lemma in the following form.

Corollary 1.2. Let h
s

be ~ above and R ~ the scalar

curvature of the metr ;c ds2 + u4/~ h . iti.. n
s

w ere u ~ ~ pos ve----- -- -- ---
function of I X N.

•Assume tr
h

hs = 0, namely the volume elements
s

of h are the same.s·------ Then we have

where R(U
4/"h ) is the scalar curvature of U

4/ nh .
s --- s

The following will be the starting point of the proof of

our theorem which will be given in the next section.
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Lemma 1.3. Suppose n ~ 4 ·is ~~ integer. Then there

i9 a smooth l-parameter family of metries h
s

of sn-l with~

following properties:

( i)·

(ü)

(iii)

h
O

isthe standard

a
trh äähs =: 0;

s
a

I~hs 1= 1;

metrie with the sealar eurvature (n-1)(n-2);

(iv) the sealar eurvature R (hg) ~ constant for every sand

R (h ) < R (hO) .s =:

Proof. Note that the ~opf fibering sn-l/s 1 ~ ~n/2-1 induces

n-la Killing vector field of unit length on (S ,hO).' Let w be the

1-form associated to the Killing vector field. Then the family of

metries

h
s

= exp (-t/l(n-1 Hn-2)) (hO + «exp t l(n-1)(n-2» - 1)w0w)

satisfies the required conditions.

§2 Proof of Theorem~

Let q, be a SID.C>Oth nonnegativa function of :R such that

'q>(t) = 0

I ~ I < 1

<P > 0

for t e (O,E:),

and

on (O,E/2],

(1)

where E: is a' sufficiently small positive number. We then put__ Ir q,(t)
tP

r
(t)

$ (rt)

for 0 < r < 1
=:

for 1 < r.
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So the support of q, i9 contained in (O,t ), where
r r

r for 0 < r < 1
=

t =. (3 )

r E/r for 1 < r.
=

Leth
s

n-l
be the metries of S as ·in Lemma 1.3 and define

functions A and B as
r r

n 1 J • 1
2

4(n-1) (n(n-1) + 4' h<p (t) ),
r

n
4(n-l) R(hq, (t»'

r

(4)

where is a/at. Bere we remark that A and B are functions in t
r r

because of (iii) and (il) of Lemma 1.3, and that

Ar(t) ~ A
O

:= n
2/4

Br(t)· < B
O

:= n(n-2)/4.
(5 )

Moreover the strict inequalities hold for t (O,t /2)."
r

Let u (t) be the solution of the following equations
r

~ ~ -(tl + A (t)u (t) = B (t)u(t)1-4/n
r r r r

u" (t) :: (S /A )n/4 ::1 «n_2)/n}n/4
r 0 0

u (t) > 0,
r

for t < 0 (G)

and T > 0 be the maximal time for which (6) is solvable for t < T •
r r

Then from (5) we have

Here the strict inequality holds for t E (O,t /2).
r
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Lemma 2.1. If AOt 2 < n2
/4, then ~ < 0 on (O,min{t ,T }).

- r:::;l -- r - r r

• (a) :; 0 for same a E (O,min{t ,T }). ThenProof. Suppose u
r r r

(O,a] such that ur(a
l

) <
n/4

andfrom. (7) we can find a
l

e (Bo/Aa )

~r(al ) = O. Since 0 < a l < TT/2~ , the graph ofu is tangent fromr

above to the graph of

v(t) = - k Sin~. t + (B /A )n/4
o 0

at t = a
2

E (O,a
l

) for some positive k. Therefore

;;r (a
2

) >;; (a
2

) = A « B IA )n/4 - u (a
2

»
:a 0 0 0 r.

which is contrary to (7). Hence u daes not change its sign on
r

(O,min{t ,T }), which implies, again by (7), that u < 0 in this
r r r

interval.

Lemma 2.2. If u
r

u (t)
r

2 t2
> (1 - t

2
~ max A » (BOlA )n/4 + -2 ( max A ) min (B /A )n/4.
(0, cl r 0 [0, t] r [0, t] r r

Proof. It follows immediately· fram (6) that

u (t) + max{A (t) (u (t,) - (B (t)/A (t) )n/4) ,O} > O.
r r r r r

(B (t)/A (t»n/4) > 0,
r r

which yields the desired inequality simply by integration.

-5-



From the above two lemmas we get

Corollary 2.3.
2

If t max A < 1, then t < T
r r r r

Moreover

for t E (0, t ), we have
-- r ---.

u (t) < 0

and

l(B /A )n/4 < u (t).
2 0 0 r

(8)

(9)

It is easy to see that there i8 an So > 0 such that, if E < E
O

'

2
the~ t max A < 1 for any r. So from.now on, we assume E < So and

r r

therefore the hypothesis of the above corallary is automatical~y

satisfied.

•Lemma 2.4. u (t /2) ~ ~ as r ~ ~
r r

Proof. First we observe that

lim . A (kt ) =~ for 0"< k < 1/2.
r.~~ r r =

Hence for any sufficiently large r we have

(10)

Then we get fram (9)

u < - 1:. (B /A ) n/4 A
r 6 0 0 r

for t E [t /3, t /2 J.
r r

t /2

Jt

r

/ 3
r

account

Hence

• 1 n/4
u (t /2) < u (t /3) - -6 (Bo/Aa )

r r = r r

and the right hand side goes to -~ on

A (t)dt,
r

of (10).

Lemma 2.5. There exists an R > 0 such~ UR (t) =

Sin
n

/
2

(T
R

- t) for t
r

< t < T
R

.
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Proof. We put

(t)
1. 2 (t) 2 ____n_ (t)2-4/n)

E = 2'(ur (t) + AOUr 2 BaU •r n- r

Then

• • .. 1-4/n
E (t) = u (t) (u (t) + AOUr

(t) - BOU
r

(t) ) .
r r r

Hence from (7) and (a) we have

E (t) > a
r = for o < t < t= r

(11 )

Prom (8), ur(t) ~ (Bo/Ao)n/4 for 0 ~ t < t
r

with Lemma 2.4 yields

lim E (t /2) = ~
r r

r+GO

Therefore by (11) we get

lim E (t ) = ca
r r

~

This together

Since Ea (0) < 0, we: "then get an R > 0 such that ER (t
R

) = 0,

which implies

ER(t) = 0 for t <. t < T
r = r

":Then," the: conclusion follows immediately.

Now consider the metric defined as

G = dt
2 + ~(t)4/n h~ (t)

R

[
n-l

on -L,T
R

) x S with L ~ O. By Carollary 1.2, this metric has

constant scalar curvature n (n - 1). By Lemma 1.3 (i) and Lemma 2.5,

this space can be smoothly closed up at t = T
R

by adding ane point.
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In this way we get a smooth' Riemannian manifold M
L

with boundary.

Since ~ and ~R are constant for t ; 0, we can take the double of

M
L

to get a- family of Riemannian metries G
L

of Sn. Recall our

construction depends on the choice of E, and the argument here

is valid for any sufficiently small E > 0 in (1). Then"choosing

E small, we easily see

n nVol(S ,GO) < Vol(S (1)).

On the ether hand

lim
L

-+. ~ Val (Sn, G
L

) = ~

consequently, for even n ; 4, we obtain, by scaling, a metric of Sn

with unit total velume whesescalar curvature i9 constant equal te

any given positive number greater than n (n - 1) Vel (Sn (1) ) 2/n, which

tegether with Theorem 3 bf [2] cempletes the proof" of Theorem.

References

[1] J.L. Kazdan and F.W. Warner, A direct approach to the

"determination of Gaussian and scalar curvature, Inv. Math. 28

(1975), 227-230.

[2] o. Kobayashi, Scalar curvature of ametrie with unit volume,

Math. Ann. 279 (1987)," 253-265.

Max-Planck-Institut für Mathematik
Gottfried-Claren-Str. 26
0-5300 Bann 3
Federal Republic of Germany

and

Oepartment of Mathematics
Keio university
Hiyoshi, Yokohama 223
Japan

-8-


