Scalar curvature of spheres

Osamu Kobayashi

Max-Planck-Institut
für Mathematik Gottfried-Claren-Str. 26
5300 Bonn 3
Federal Republic of Germany

Department of Mathematics
Keio University
Hiyoshi, Yokohama 223
Japan

Scalar curvature of spheres

Osamu Kobayashi

It is known that, if a compact n-manifold $M, n \geqslant 3$, admits a metric of positive scalar curvature, then any smooth function of M is realized as the scalar curvature function of some metric of M (cf. [1]). This paper is an attempt to show this statement will be true even if we assume the metric has unit total volume. In the previous paper [2], this problem was solved except for positive constant functions. Therefore we have only to find metrics with unit volume and with scalar curvature equal to arbitrarily given positive constant. One difficulty is that we cannot apply the Yamabe problem because it provides only constant scalar curvature less than or equal to that of the standard sphere when the volume is normalized. On the other hand there are obvious cases in which we can easily get any positive constant scalar curvature under the volume constraint. That is, when M is a product manifold $M_{1} \times M_{2}$ either of whose component admits a metric of positive scalar curvature, or when M is the total space of certain fiber bundle such that both fiber and the base admit positive scalar curvature. As for spheres s^{n}, it is the case when $n \equiv 3(\bmod 4)$ and $n \geqq 7$ by means of the Hopf fibering $s^{4 k+3} / s^{3} \cong \mathbb{H P} P^{k}$. In this paper we shall construct metrics of large constant scalar curvature for even dimensional spheres with dimension at least 4. As a result, we get

Theorem. If $n \neq 1(\bmod 4)$ and $n \geq 4$, every smooth function of s^{n} is the scalar curvature of some metric of unit total volume.

The author wishes to acknowledge the support of the Max-Planck-Institut für Mathematik in Bonn.
§1 Preliminaries.
We begin with a formula for the scalar curvature of a metric expressed in some special coordinates.

Lemma 1.1. Let $\left\{h_{s}\right\}_{s \in I}$ be a 1-parameter family of metrics of an ($n-1$)-manifold N. Then the scalar curvature R of the metric $\mathrm{ds} \mathrm{s}^{2}+\mathrm{h}_{\mathrm{s}}$ on $\mathrm{I} \times \mathrm{N}$ is given as
$R=-\left(t r_{h_{s}} \dot{h}_{s}\right)^{\cdot}-\frac{1}{4}\left(\left|\dot{h}_{s}\right|_{h_{s}}^{2}+\left(t r_{h_{s}} \dot{h}_{s}\right)^{2}\right)+R_{s}$,
where R_{s} is the scalar curvature of h_{s} and stands for $7 / \partial s$.

The proof is a straightforward calculation and is omitted. We shall use this lemma in the following form.

Corollary 1.2. Let h_{s} be as above and R be the scalar curvature of the metric $d s^{2}+u^{4 / n^{\prime}} h_{s}$ where u is a positive function of $I \times N$. Assume $\operatorname{tr}_{h_{s}} \dot{h}_{s}=0$, namely the volume elements of h_{s} are the same. Then we have
$\ddot{u}+\frac{n}{4(n-1)}\left(R+\frac{1}{4}\left|\dot{h}_{s}\right|^{2}\right) u=\frac{n}{4(n-1)} u R\left(u^{4 / n_{h_{s}}}\right)$,
where $R\left(u^{4 / n_{n}}\right)$ is the scalar curvature of $u^{4 / n_{s}} h_{s}$.

The following will be the starting point of the proof of our theorem which will be given in the next section.

Lemma 1.3. Suppose $n \geq 4$ is an even integer. Then there is a smooth 1 -parameter family of metrics h_{s} of s^{n-1} with the following properties:
(i) h_{0} is the standard metric with the scalar curvature ($n-1$)($n-2$);
(ii) $\operatorname{tr}_{h_{s}} \frac{\partial}{\partial s} h_{s}=0$;
(iii) $\left|\frac{\partial}{\partial s} h_{s}\right|=1$;
(iv) the scalar curvature $R\left(h_{s}\right)$ is constant for every s and $R\left(h_{s}\right) \leqq R\left(h_{0}\right)$.

Proof. Note that the Hopf fibering $s^{n-1} / S^{1} \cong \mathbb{c p}^{n / 2-1}$ induces a Killing vector field of unit length on $\left(S^{n-1}, h_{0}\right)$. Let w be the 1-form associated to the Killing vector field. Then the family of metrics

$$
h_{s}=\exp (-t / \sqrt{(n-1)(n-2)})\left(h_{0}+((\exp t \sqrt{(n-1)(n-2)})-1) w \geqslant w\right)
$$

satisfies the required conditions.

§2 Proof of Theorem:

Let ϕ be a smooth nonnegative function of \boldsymbol{R} such that

$$
\left\{\begin{array}{cl}
\phi(t)=0 & \text { for } t \in(0, \varepsilon) \tag{1}\\
|\dot{\phi}|<1 & \text { and } \\
\dot{\phi}>0 & \text { on }(0, \varepsilon / 2]
\end{array}\right.
$$

where ε is a sufficiently small positive number. We then put

$$
\phi_{r}(t)= \begin{cases}r \phi(t) & \text { for } 0 \leqq r \leqq 1 \tag{2}\\ \phi(r t) & \text { for } 1 \leqq r\end{cases}
$$

So the support of ϕ_{r} is contained in $\left(0, t_{r}\right)$, where

$$
t_{r}=\left\{\begin{array}{l}
\varepsilon \text { for } 0 \leqq r \leqq 1 \tag{3}\\
\varepsilon / r \text { for } 1 \leqq r .
\end{array}\right.
$$

Let h_{s} be the metrics of s^{n-1} as in Lemma 1.3 and define functions A_{r} and B_{r} as

$$
\left\{\begin{array}{l}
A_{r}(t)=\frac{n}{4(n-1)}\left(n(n-1)+\frac{1}{4}\left|\dot{h}_{\phi_{r}}(t)\right|^{2}\right), \tag{4}\\
B_{r}(t)=\frac{n}{4(n-1)} R\left(h_{\phi_{r}}(t)\right)
\end{array}\right.
$$

where - is $\partial / \partial t$. Here we remark that A_{r} and B_{r} are functions in t because of (ili) and (t) of Lemma 1.3, and that

$$
\left\{\begin{align*}
A_{r}(t) & \geqq A_{0}:=n^{2} / 4 \tag{5}\\
B_{r}(t) & \leqq B_{0}:=n(n-2) / 4
\end{align*}\right.
$$

Moreover the strict inequalities hold for $t \quad\left(0, t_{r} / 2\right)$.
Let $u_{r}(t)$ be the solution of the following equations

$$
\left\{\begin{array}{l}
\ddot{u}_{r}(t)+A_{r}(t) u_{r}(t)=B_{r}(t) u(t)^{1-4 / n} \tag{6}\\
u_{r}(t)=\left(B_{0} / A_{0}\right)^{n / 4}=((n-2) / n)^{n / 4} \text { for } t \leqq 0 \\
u_{r}(t)>0
\end{array}\right.
$$

and $T_{r}>0$ be the maximal time for which (6) is solvable for $t<T_{r}$. Then from (5) we have

$$
\begin{equation*}
\ddot{u}_{r}(t)+A_{0} u_{r}(t) \leqq B_{0} u(t)^{1-4 / n} . \tag{7}
\end{equation*}
$$

Here the strict inequality holds for $t \in\left(0, t_{r} / 2\right)$.

Lemma 2.1. If $A_{0} t_{r}{ }^{2} \leqq \pi^{2} / 4$, then $\dot{u}_{r}<0$ on $\left(0, \min \left\{t_{r}, T_{r}\right\}\right)$.

Proof. Suppose $\dot{u}_{r}(a)=0$ for some $a \in\left(0, \min \left\{t_{r}, T_{r}\right\}\right)$. Then from (7) we can find $a_{1} \in(0, a]$ such that $u_{r}\left(a_{1}\right)<\left(B_{0} / A_{0}\right)^{n / 4}$ and $\dot{u}_{r}\left(a_{1}\right)=0$. Since $0<a_{1}<\pi / 2 \sqrt{A_{0}}$, the graph of u_{r} is tangent from above to the graph of

$$
v(t)=-k \sin \sqrt{A_{0}} t+\left(B_{0} / A_{0}\right)^{n / 4}
$$

at $t=a_{2} \in\left(0, a_{1}\right)$ for some positive k. Therefore

$$
\begin{aligned}
\ddot{u}_{r}\left(a_{2}\right) & \geq \ddot{v}\left(a_{2}\right)=A_{0}\left(\left(B_{0} / A_{0}\right)^{n / 4}-u_{r}\left(a_{2}\right)\right) \\
& >B_{0} u_{r}\left(a_{2}\right)^{1-4 / n}-A_{0} u_{r}\left(a_{2}\right)
\end{aligned}
$$

which is contrary to (7). Hence u_{r} does not change its sign on $\left(0, \min \left\{t_{r^{\prime}} T_{r}\right\}\right)$, which implies, again by (7), that $\dot{u}_{r}<0$ in this interval.

Leman 2.2. If $u_{r} \leq\left(B_{0} / A_{0}\right)^{n / 4}$ on $(0, t)$, then $\left.u_{r}(t) \geqq\left(1-\frac{t^{2}}{2}\left(\max _{[0, t]} A_{r}\right)\right)\left(B_{0} / A_{0}\right)^{n / 4}+\frac{t^{2}}{2}\left(\max _{[0, t]} A_{r}\right) \min [0, t] B_{r} / A_{r}\right)^{n / 4}$.

Proof. It follows immediately from (6) that

$$
\ddot{u}_{r}(t)+\max \left\{A_{r}(t)\left(u_{r}(t)-\left(B_{r}(t) / A_{r}(t)\right)^{n / 4}\right), 0\right\} \geqq 0
$$

Since $u_{r} \leqq\left(B_{0} / A_{0}\right)^{n / 4}$ and $B_{0} / A_{0} \geqq B_{r} / A_{r}$, we have

$$
\ddot{u}_{r}(t)+\left(\max A_{r}\right)\left(\left(B_{0} / A_{0}\right)^{n / 4}-\left(B_{r}(t) / A_{r}(t)\right)^{n / 4}\right) \geqslant 0
$$

which yields the desired inequality simply by integration.

From the above two lemmas we get

Corollary 2.3. If $t_{r}{ }^{2} \max A_{r}<1$, then $t_{r}<T_{r} \cdot$ Moreover for $t \in\left(0, t_{r}\right)$, we have

$$
\begin{equation*}
\dot{u}(t)<0 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2}\left(B_{0} / A_{0}\right)^{n / 4}<u_{r}(t) \tag{9}
\end{equation*}
$$

It is easy to see that there is an $\varepsilon_{0}>0$ such that, if $\varepsilon<\varepsilon_{0}$, then $t_{r}{ }^{2} \max A_{r}<1$ for any r. So from. now on, we assume $\varepsilon<\varepsilon_{0}$ and therefore the hypothesis of the above corollary is automatically satisfied.

Leman 2.4. $\dot{u}_{r}\left(t_{r} / 2\right) \rightarrow-\infty$ as $r \rightarrow \infty$.

Proof. First we observe that

$$
\begin{equation*}
\lim _{r \rightarrow \infty} A_{r}\left(k t_{r}\right)=\infty \text { for } 0<k \leqq 1 / 2 \tag{10}
\end{equation*}
$$

Hence for any sufficiently large r we have

$$
B_{r}(t) / A_{r}(t)<B_{0} / 3 A_{0} \text { for } t \in\left[t_{r} / 3, t_{r} / 2\right]
$$

Then we get from (9)

$$
\ddot{u}_{r} \leqq-\frac{1}{6}\left(B_{0} / A_{0}\right)^{n / 4} A_{r}
$$

Hence

$$
\dot{u}_{r}\left(t_{r} / 2\right) \leqq \dot{u}_{r}\left(t_{r} / 3\right)-\frac{1}{6}\left(B_{0} / A_{0}\right)^{n / 4} \int_{t_{r} / 3}^{t_{r} / 2} A_{r}(t) d t
$$

and the right hand side goes to $-\infty$ on account of (10).

Lemma 2.5. There exists an $R>0$ such that $u_{R}(t)=$ $\sin ^{n / 2}\left(T_{R}-t\right)$ for $t_{r} \leqq t<T_{R}$.

Proof. We put

$$
E_{r}(t)=\frac{1}{2}\left(\dot{u}_{r}(t)^{2}+A_{0} u_{r}(t)^{2}-\frac{n}{n-2} B_{0} u_{r}(t)^{2-4 / n}\right)
$$

Then

$$
\dot{E}_{r}(t)=\dot{u}_{r}(t)\left(\ddot{u}_{r}(t)+A_{0} u_{r}(t)-B_{0} u_{r}(t)^{1-4 / n}\right)
$$

Hence from (7) and (8) we have

$$
\begin{equation*}
\dot{E}_{r}(t) \geqq 0 \quad \text { for } \quad 0 \leqq t \leqq t_{r} \tag{11}
\end{equation*}
$$

From $(8), u_{r}(t) \leq\left(B_{0} / A_{0}\right)^{n / 4}$ for $0 \leqq t \leqq t_{r}$. This together with Lemma 2.4 yields

$$
\lim _{r \rightarrow \infty} E_{r}\left(t_{r} / 2\right)=\infty
$$

Therefore by (11) we get
$\lim _{r \rightarrow \infty} E_{r}\left(t_{r}\right)=\infty$.

Since $E_{0}(0)<0$, we then get an $R>0$ such that $E_{R}\left(t_{R}\right)=0$, which implies

$$
E_{R}(t)=0 \text { for } t_{r} \leqslant t<T_{r}
$$

Then, the conclusion follows immediately.

Now consider the metric defined as
$G=d t^{2}+u_{R}(t)^{4 / n} h_{\phi_{R}}(t)$
on $\left[-L, T_{R}\right) \times s^{n-1}$ with $L \geq 0$. By Corollary 1.2 , this metric has constant scalar curvature $n(n \rightarrow 1)$. By Lemma 1.3 (i) and Lemma 2.5, this space can be smoothly closed up at $t=T_{R}$ by adding one point.

In this way we get a smooth Riemannian manifold M_{L} with boundary. Since u_{R} and ϕ_{R} are constant for $t \leqq 0$, we can take the double of M_{L} to get a family of Riemannian metrics G_{L} of s^{n}. Recall our construction depends on the choice of ε, and the argument here is valid for any sufficiently small $\varepsilon>0$ in (1). Then choosing ε small, we easily see
$\operatorname{Vol}\left(S^{n}, G_{0}\right)<\operatorname{Vol}\left(S^{n}(1)\right)$.
On the other hand

$$
\lim _{L \rightarrow \infty} \operatorname{Vol}\left(S^{n}, G_{L}\right)=\infty
$$

Consequently, for even $n \geq 4$, we obtain, by scaling, a metric of s^{n} with unit total volume whose scalar curvature is constant equal to any given positive number greater than $n(n-1) \operatorname{Vol}\left(S^{n}(1)\right)^{2 / n}$, which together with Theorem 3 of [2] completes the proof of Theorem.

References

[1] J.L. Kazdan and F.W. Warner, A direct approach to the determination of Gaussian and scalar curvature, Inv. Math. 28 (1975), 227-230.
[2] O. Kobayashi, Scalar curvature of a metric with unit volume, Math. Ann. 279(1987), 253-265.

```
Max-Planck-Institut für Mathematik
Gottfried-Claren-Str. 26
D-5300 Bonn 3
Federal Republic of Germany
and
Department of Mathematics
Keio University
Hiyoshi, Yokohama 223
Japan
```

