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Abstract

It is shown that the pseudodifferential operators with the (uniform two-sided) transmis-
sion property can be characterized by the behavior of their iterated commutators with
multipliers and vector fields tangential to the boundary on ordinary and wedge Sobolev
spaces. This extends previous work by Grubb and Hérmander.

Together with a corresponding characterization of the singular Green operators the above
result will be used to prove that the algebra of elements of order and type zero in Boutet
de Monvel’s calculus is a submultiplicative Fréchet algebra.

Key Words: Boundary value problems, Boutet de Monvel’s calculus, transmission prop-
erty, wedge Sobolev spaces.
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Introduction

Boutet de Monvel’s calculus makes boundary value problems accessible to pseudodiffer-
ential methods. It is a highly efficient tool for studying Fredholm criteria and index
theory (Boutet de Monvel [2], Grubb [11], Schrohe [24], Rempel, Schulze [22], {30]), but
also topics like functional calculus for boundary problems, Navier Stokes equations, and
elasto-dynamics (Grubb [11], [12], Schrohe {24], Ebin and Simanca [6]).

On the other hand, this calculus is technically highly refined. In its usual presentation,
[22], [11], the various operators are described by rather delicate estimates on their symbols
or symbol kernels.

In the predecessor of this paper it could be shown that the singular Green operators,
usually one of the more difficult parts in the theory, had a fairly simple and natural
description in terms of the boundedness of their commutators with multipliers and vector
fields tangential to the boundary on the wedge Sobolev spaces introduced by Schulze; in
fact, the result was motivated by a theorem of Schulze in [29].

In theorem 3.1 | am proving that also the pseudodifferential operators with the transmis-
sion property fit into the framework of wedge Sobolev spaces. Again, I am considering
commutators with multipliers and vector fields tangential to the boundary.

Extending a result of Grubb and Hérmander [14] on the local transmission property, |
first show in theorem 2.1 that a pseudodifferential operator P has the (uniform two-sided)
transmission property on R} provided its commutators with tangential multipliers and
vector fields are bounded on the usual Sobolev spaces over R7.

This yields the characterization of the pseudodifferential operators with the transmission
property. For one thing, the boundedness of the tangential commutators on the wedge
Sobolev spaces a forteriori implies the transmission property; on the other hand, it turns
out that pseudodifferential operators with the transmission property are indeed bounded
on wedge Sobolev spaces.

The difference to the singular Green operators is that these are smoothing in the normal
direction, while the pseudodifferential operators are order preserving.

Characterizations by commutators have a long standing tradition in the theory of pseu-
dodifferential operators, cf. for instance the work of H.O. Cordes and his associates, see
[4] for references.

For a large class of pseudodifferential operators, R. Beals gave a characterization in terms
of the boundedness of their commutators with multipliers and vector fields on Sobolev
spaces. Adapted to the usual symbol classes his result reads as follows:

Theorem (Beals 1977). Letm e R,0< 6§ < p< 1,6 <1, and let P : S(R*) —
S'(R™) be a continuous operator. Then P is a pseudodifferential operator with a symbol
in S7%(R™ x R") if and only if for all s € R, and all multi-indices o, B € Ng, the iterated
commutators ad®(—iz)ad®(D,)P have bounded extensions

ad®(—iz)ad®(D,;)P : H*(R") — H*~m+elel-818I(R™),

Cordes has obtained a similar characterization of 53, by different methods [3]; a new
proof of Beals’ result was given by Ueberberg [32].

Obviously, theorems 1.13 and 3.1 are as close to Beals’ as one might hope to come in this
more complicated situation.



Beals’ characterization has a number of interesting consequences, among them the spectral
invariance of the algebra of pseudodifferential operators of order zero in £L(L?(R")), [1]
theorem 3.2, or the stability of the spectrum with respect to changes of the space the
operators are acting on, cf. Leopold and Schrohe [19], [20], [23].

In addition, Gramsch, Ueberberg, and Wagner showed in [10] that a characterization
of an algebra via commutators and order shifts on Sobolev spaces allows to introduce
topology on this algebra which makes it topologically an intersection of Banach algebras,
a 'submultiplicative’ Fréchet algebra.

Starting from this result, it will be shown in a subsequent paper, [9], joint work with B.
Gramsch, that these characterizations of the singular Green operators and the pseudodif-
ferential operators with the transmission property, respectively, imply the submultiplica-
tivity of the algebra of elements of order and type zero in Boutet de Monvel’s calculus.
Submultiplicativity is of particular interest in connection with the results of N. C. Philipps
on K-theory for submultiplicative Fréchet algebras, [21], and the results of Gramsch on
non-abelian cohomology and Oka principle in submultiplicative ¥*-algebras, [8], cf. [7]
(the W*-property for the algebra of elements of order and type zero was established in
[24], in the classical case by Schulze in [28]).

Acknowledgment. [t is a pleasure to thank B.-W. Schulze with whom I had several valu-
able discussions on the subject. I am also very grateful to G. Grubb and T. Hirschmann
who gave their advice on various questions related to this paper.

1 Notation. Pseudodifferential Operators and the
Transmission Property. Singular Green Opera-
tors and Wedge Sobolev Spaces

We will start with a short review of the essential notation on symbol classes and the
transmission property.

1.1 Definition.
(a) For m € R, ST = ST(R* x R™) denotes the set of all smooth functions p on R* x
R™ k,n € N, satisfying the estimates

|Dg DEp(z,€)| € Cap (€)™ (1)

for all z € R* € € R™. Here, {€) = (1 + |¢|*)}. The choice of best constants in (1) gives
the Fréchet topology for ST

Occasionally, we shall also write pggg(z,f) instead of ¢ D8p(z, £).

In general, the symbols will take values in matrices over C, but for the purposes here it
will be sufficient to deal with scalar functions.

(b) A symbol p € ST}, defines a pseudodifferential operator Op p or p(z, D) by

[p(z, D)ul(=) = [Oppul(z) = (27)~"? / ep(z, E)(E)de, 2)

where u is a rapidly decreasing function and the hat denotes the Fourier transform.
(c) For s € R, H*(R") denotes the usual Sobolev space on R*, cf. [18], ch. 3, definition
2.1. For s,t € R, let

HY(RY) = {{z)"'u:u e H'(RY)}.
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H**(R", E), E a Hilbert space, denotes the vector-value analog.

1.2 Notation on the half-space. We will write R} = {(z1,...,2n) : 2, > 0} and = =
(2',7,),& = (€,&) with &' = (z1,...,Zp1 ), & = (&1, -, €nm1).

(a) For a function or distribution f on R" let r*f denote its restriction to R} ; for a
function g on R} denote by e*g its extension to R™ by zero. Similarly define r~ and e~.
(b) Let S(R}) = {r*f: f € S(R")}, and H**(R}) = {r*f : f € H*(R")},s,t € R.
Hy'(R7) is the closure of C¢°(R7}) in the topology of H**(R™).

(c) Let H=H* @& Hy @ H', where

HY = {(e*f)": f e SR}, Hy = {(e™f): fe S(R-)},

and H' denotes the space of all polynomials. For d € Ny denote by Hy the subspace of
H consisting of all functions f(t) that are O((£)™").

1.3 Green operators and Singular Green Operators. A Green operator of order
and type zero in Boutet de Monvel’s calculus on R is an operator of the form

Cs°(RY) C>=(R})
A= [ P+,£|: G IS( ] : oD — s ,
Cgo(Rn—l) Coo(Rn—l)

where P is a pseudodifferential operator with the transmission property of order zero, see
1.4, P, = r*Pet, and G is a singular Green operator of order and type zero, i.e. with a
symbol kernel in B=1°, the precise definition being given in 1.5. (For the description of
the singular Green operators | am using symbol kernels rather than the singular Green
symbols, because it makes things slightly easier.)

K is a Poisson operator, T a trace operator, and S is a pseudodifferential operator with
a symbol in S{,(R*™! x R*71).

The most interesting part within this setting, however, is the algebra
A={A: A= P, +G}

of the elements in the upper left corner, and I will from now on focus on it, omitting the

details about Poisson and trace operators. They may be found in [2], [11], or [22].

There are currently several definitions of the transmission property available. The one I
will be using is the following

1.4 Definition. A symbol p € ST(R" x R") has the transmission property if for every
k € N,
8:,.1’(37')357&’6’: (‘5’) fﬂ)lzn=0 € Sff'o(sz'l X R?‘—l)®?fHd.Ena

where d = max{entier(m) + 1,0}, cf. [22].
There will be a detailed discussion of various forms of the transmission property, below.

Before, however, 1 would like to give the definition of the singular Green operators and
their symbol kernels.



1.5 Definition. Let g4 € R. The class B*° consists of all smooth functions ¢ on
R x Rg,'l xR,, xRy, (symbol kernels) satisfying the estimates

=k D¥, y7 D} Dg D292, €', 2oy ya)ll iz, xR,y = O((E)* Tl )

for every fixed choice of &k, k',m,m’,a, 8.
Such a symbol kernel g induces the singular Green operator Op ¢ g by

n—1

[Opeg(f)i(z) = (2x T// e (', &, Tny yn)(Formgr )€ yn)dyndE’,  (2)

f € S(R}); g is called the symbol kernel of Op ¢ g.
For fixed z’, ¢’ let the operator g(z', €', D,,) be defined on S(R;) by

l9(s", €', Do) f1(za) = f " 9@ € Tm )y

then
Opcg = Op'g(z', ¢, Dy),

where Op’ denotes the usual pseudodifferential action with respect to the z’; {'—variables
for operator-valued symbols.

Let us now have a closer look at the transmission property.

1.6 Remark. In [14], Grubb and Hérmander use the following notation.

(a) An operator P has the iransmission property for a manifold with boundary, provided
it maps functions that are smooth up to the boundary to functions that are again smooth
up to the boundary. This obvious]y is a weaker condition than that in 1.4.

(b) A symbol p € ST,(R?™" x Rg,) has the uniform transmission property with respect to
R} provided that for every N € Ny, and all multi-indices v € N7,

Nqu DY F L. p(a' &) is bounded on R}.

Moreover, p € ST(R™ x R") has the uniform transmission property, provided that for all

multi-indices ¢, ﬁ € N*, p{;;(:v ,0,0,&,) has the uniform transmission property (it suffices
to ask this for o, = 0,8’ = 0).

(a) and (b) are one-sided notions of the transmission property: they only check the
behavior of the functions as z, — 0F.

(c) In [12] def. 1.7, Grubb has introduced the H-condition:

A symbol p € STH(R™ x R*),m € Z, satisfies the H-condition, if for all multi-indices a, 3,

Dg DSp(2',0,0,£,) € S(R™™, Honyy).

Adapted to the above definition of H, S(R"!, H,41) is the space of all functions f =
f(z',t) € C®(R™! x R) such that for all #’ the standard H-estimates given for k,7, N €
No by

Dt < Cz") |t N for |t| > 1 (1)

DLf('t)— ) Sj.n(z')t’}

m=Nj<m




are finite with a continuous function C on R,

She shows in [12] theorem 1.9 that this is equivalent to a version of the transmission
property in 1.4 based on the non-uniform symbol classes.

In contrast to (a) and (b), (c), like 1.4, is a two-sided notion: it also takes into account
what happens beyond {z, = 0}.

The following proposition gives a connection between these notions.

1.7 Proposition. Let p € ST(R" x R"),m € Z. Then the following are equivalent
(1) For all multi-indices o, B € N

DgD2p(x',0,0,%6,) € S5 HR™! x R)

in the sense of [14], ¢f. 1.6(b).
(ii) For all j € Ny, all multi-indices o' € N3~', and all fized ¢,

(z',6n) — DE”;Di"p(m',O,G" +£,) € S;','O"l?ﬂ(n_n—l x R).
(iii) For all j € No, all multi-indices o' € Ny~', and all fized ¢,
rtFCL, DY DI p(x,0,6,+6,) € S(Ry,CR(REY), and (1)
r+ff_"l_.r" ?,' Di"p(x',(), E" _&) € S(Rh CEO(R:'—I))' (2)

Here, C{° denotes the smooth functions with bounded derivatives of all orders.
(iv)For all j € Ny, all multi-indices o' € N3™', and all fixed ¢,

Dg/ D3 p(x',0,€,6n) € Ha(Re,, CP(RL™)) = Hu(Re,)8-Ci*(R™)

with d = max{m — |o'| + 1,0}.

(v) p satisfies Grubb’s H-condition uniformly in z', i.e. the C at the right hand side in
1.6(1) is independent of z'.

(vi) p has the transmission properly in the sense of 1.4.

In the language of Grubb and Kokholm [15], p has the uniform two-sided transmission
property. The signs ”+” and ”-” reflect the two directions of approaching {z, = 0}.

Proof. (i) => (ii) is shown in [14], p. 6.

(i) = (i). Since D?, Dgr maps S:JLT,I(R"‘I x R) into S{’Hi‘:,l(R”" x R), we may simply
take £ = 0.

(i1) « (iii). This is a reformulation of the definition in {14]. We have

a(2',6n) € STour(R*™ x R) iff sup,, . [t*a) DI DI(FIL, a)(@,2.)] < oo,

and this is just the semi-norm system defining the topology of (R4, C°(R™"1)).
(iil) = (iv). S(R,) is a nuclear space and therefore

S(R4, C*(R™")) = S(R4)®-C*(R™).
On the other hand,
Hd(R) =F [e+S(R+) @e_S(R_) b Cd[é]] ,

7



where Cy4[8]) denotes linear combinations of derivatives of é of degree < d. The in-
verse Fourier transform furnishes a topological isomorphism from Hi(R) to e*S(R4) &
e"S(R_) @ Cd[{n]

Since all derivatives of p have polynomial growth,
Fol,.Dg D p(z',0,¢,¢,) € S'(Re,)

for fixed z', €.

By assumption, the singular support of this distribution is in {z, = 0}. There, it is a
linear combination of derivatives of Dirac’s é of finite order. Both, the coefficients and
the order may depend on z’ and ¢'.

It is easy to see, however, that the order is < d — 1 and that the coefficients are C¢° in 2,
&' being fixed: The Fourier transform of this linear combination of derivatives of é is the
corresponding polynomial in £,. It can be written as the difference of D?,' Di p(z',0,¢,¢,),
which is O({£&.)™1*1), and the Fourier transforms of the functions in (1) and (2) which
are O((£,)™"). Therefore the maximal order or, equivalently, the maximal degree of this
polynomial is < d — 1, and all coefficients are bounded functions of z’. Derivatives of the
coefficients with respect to z’ correspond to derivatives of p, and to those we may apply
the same argument.

Hence

Dg' DI p(2',0,€,¢6.) € {"S(Ry) @ e S(R_) @ Culén]} @-CP(RET)

and we obtain the assertion.

(iv) = (iii) is immediate.

(iv) & (v) is just a reformulation of Grubb’s definition [12] def. 1.7, uniformly in z’, since
we may always apply derivatives with respect to £, and z’. Notice that Grubb’s space
S(R™, Hy) is Hy(R) @ C®(R"1).

(v) & (vi) This is just the calculation made for the proof of Grubb’s theorem [12] 1.9,
uniformly in =’ : While (vi) seems to be the stronger condition, (v) implies that there

exist $j4.5 € Sf“o"-—k" such that

GDEDER(,0,8) = D siapl(@ €)Y S Cap ()T, (3)

0<j+r<m—|a|+r

and this is another characterization of the uniform transmission property, cf. [11] defini-
tion 2.2.7, [22] section 2.2.2.1, proposition 3.

Finally two more important concepts.

1.8 The ad—notation. For multi-indices a, 8 € Nj and an operator T acting on func-
tions or distributions on R", let

ad®(—iz)ad?(D)T = ad™ (—iz,) - - - ad* (—iz, )ad® (D,,) - - - ad® (D, )T.
Here, ad®(—iz;)T = T, and ad*(—iz;)T = [—iz;,ad*"}(=iz;)T],k = 1,2,...; the iterated

commutators a.dﬁ"(DxJ.)T are defined correspondingly. Of course, we are assuming for the
moment that all compositions involved make sense.
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The following lemma is simple but very useful; it follows easily from 1.1(2):

1.9 Lemma. [f P = Opp s the pseudodifferential operator with the symbol p, then
ad®(—iz)ad®(D,)P is the pseudodifferential operator with the symbol ag DEp.

Wedge Sobolev spaces were introduced by Schulze, cf. [27], section 3.1.
1.10 Definition. (a) For f € L}(Ry),A > 0, let
(ma)(t) = AEf(A2). (1)

This defines a unitary map
kx: L}(Ry) — L*(Ry)

with respect to the sesquilinear form
(ra)= [ oo
Ry

(b) More generally, let E be a Banach space and suppose that {«, : A € Ry} is a strongly
continuous group of operators on E,i.e. A — k) € C(Ry, L,(E)), and kx5, = k2,.

The wedge Sobolev space modelled on F, W?(R?, E),s € R,q € Ny is defined as the
completion of S(RY, E) = S(R?)®, E with respect to the norm

3
lulbwrnezy = ( [ (017 DsgyrsFontln

Here, F,_,u denotes the Fourier transform of the E-valued function or distribution u,

Pyl = (250" [ ety
(c) For s, € R, let
W (R E) = {(y) " u:u € W(R'E)}

In general, the wedge Sobolev space will depend on the choice of the group action on
E. Here, however, we will only deal with the usual weighted Sobolev spaces on R, cf.
1.2(b), and we will always use the group defined by (1).

(d) Let {Ex : k € N} be a sequence of Banach spaces with Exy; < Ey, F = proj-lim E,
and suppose that the group action coincides on all spaces. Then

W*{(RY, E) = proj-lim W**(RY, E},).

Vice versa, if Ex — Ejyyq, £ = ind-lim E;, and the group action is the same for all spaces,
then
W*(RY, E) = ind-lim W*(R", E}).

1.11 Remark.

a S(R?) = proj-lim,,_  H*'(R}).

+ 8,t—00 +
(b) S'R%) = ind-lim, e Hy "' (RY).
(c) W!(R,H'(Ry) = H'(RY),s>0,

(@) WARLH(R,) = HiRE).s<0
For (c) and (d), cf. [27], section 3.1.1, (17) and (18).
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1.12 Definition and Lemma, cf. [27], section 3.1.2, proposition 10. Let £ = H*"(R;)
for some choice of o,7 € R, and let E' = H; """ (R,) denote its dual with respect to the
extension of the sesquilinear form

(u,v)gp = ju(m)ﬁ(z)d:c
defined for u € C*(R4),v € CP(R™).

We obtain a natural duality W**(R?, E), W=*~*(R?, E’) and a non-degenerate sesquilin-
ear form by

(f:g)W'J(RQ,E),W-'--'(RG,E') = _/("(n)—' y—»nfa"(,,)-lfy—-ng)E.E‘dﬂ (1)

/(}-U—*ﬂfa fv—“ﬂg)E,E'dn,

noting that the group {k): A € Ry} of 1.10 (a) is unitary with respect to (-, -)g.z i.e.

(rc).u, ICAU)E.E: = (u,v)glg;l.
1) extends the usual Sobolev space sesquilinear form on R%™.
+

In [26], the following characterization of the singular Green operators in Boutet de Mon-
vel’s calculus in terms of the behavior of their iterated commutators has been proven. It
was motivated by a result of B.-W. Schulze, [29] theorem 3.1.

1.13 Theorem. Let G :S(R}) — S'(R}) be a continuous linear operator. Then the
Jollowing is equivalent:

(i) G = Op gg for some g € B~1°.

(ii) For all multi-indices o, B € N37!, all s, € R, the operator ad®(—iz")ad?(D./)G has
a continuous extension

ad®(—iz")ad?(D.)G : W™ (R*!, 8'(Ry)) — W lly(R™! S(R,)). (1)
(iii) G has the mapping properties in (1) for t = 0.

1.14 Definition. Call an operator with the properties in 1.13 a singular Green operator
of order and type zero.

2 Boundedness of Pseudodifferential Operators on
Sobolev Spaces and the Uniform Transmission Pro-

perty

The uniform (one-sided) transmission property can be characterized by the boundedness
of commutators on Sobolev spaces over R%. This is the contents of the following theorem,
the main result in this section. The proof relies on an argument given by Grubb and
Hormander [14] in order to characterize the weaker form of the transmission property
presented in 1.6.
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2.1 Theorem. Let m € Z,p € STH(R" x R"), P =Opp, P, = r*Pet, and assume that
for all multi-indices o, ' € N§~™! and all s > 0

ad® (—iz")ad” (D) Py : H*(RY) — H ™™ I(RY) )

1s bounded.
Then p has the uniform transmission property with respect to RY, i.e. for all o, € N3

Pl (2',0,0,¢:) € ST (R x R). (2)

2.2 Reduced hypothesis. We may replace 2.1(1) by the following weaker assumption:
For every choice of a € Nj there isa K € N, anm € Z, and an s¢ >> 0 such that

ad®(—iz)Py : H{y(R}) — H*™™(RY) (1)
is continuous for all s > sp.

Here, Hj3 (R} ) denotes all functions in H*(R}) which have a zero of order > K at z, = 0.
Property 2.2(1) is indeed weaker than 2.1(1), although we have @ € N™: For our purposes
we may replace P by the operator MzPM,, where M, denotes multiplication with a
smooth function ¢ = ¢(z,), vanishing outside {|x,| < 1} and = 1 near zero. Therefore
multiplication with z, from the left or right equals multiplication with a bounded smooth
function.

The proof will be given in a series of steps.

2.3 Remark. From [14] we know already that pES;(x', 0,0,£,) € Sf}:,lfl(R"‘l x R),
where tr stands for the transmission property in the sense of 1.6(a).

2.4 Reduction. It suffices to show 2.1(2) for a = § = 0: For K > 8, and u € Hfy,(R%)

[0 p{3)]4u = [ad®(—iz)ad®( D) Plyu = ad?(D,)[ad®(—iz) Plsu. (1)
So [Oppgzg].,. also satisfies 2.2(1) with 7 replaced by m + ||, and the task is the same.
2.5 Reduction. We only have to show that

f—l

En"‘xn

p(z’,0,0,&,) is bounded on RY. (1)
Proof. Basically, we would have to show that for arbitrary N € N, 8’ and ~,

:cﬂNDf: D;'nfgll_‘rnp(x',0,0, €n) is bounded on R7. (2)
Expression (2) however equals fgjl_,xn(-—D{n)N.f: Df:p(x’, 0,0,¢,), and

4(z,€) = (-De,)" I DLp € STg M (R” x R).

Moreover, for u € Hfy, K large, [Opql4u = [ad™ (z,)ad? (D} P, o D} u has property
2.2(1), and we are in the same situation as before. :

11



2.6 Observation. 2.5(1) is easily established when m < —1, for then

1

fg'l_.xnp(:c',o,o,fn) = gfeixnenp(:c”ovo’gn)dgn

is a convergent integral; the integrand is O({£.)™).

2.7 Reduction. Let us therefore assume that we have already shown the boundedness
of fe:f_,an(x',0,0,E,,) on R} for all ¢ € S{((R" x R"), where [Op ¢, has property 2.2(1)
and m > p € Z.

2.8 Definition. Choose 0 # v € C§°(R"*™!). For t € R*! let v,(z') = v(z' — t).
Moreover, let M,, denote the operator of multiplication with v,. By p; denote the symbol
of PM,, =: P,.

2.9 Reduction. It is sufficient to show that
|-7'—5—;,1—-xnpt($’3010’€“)| < C, independent of t. (1)

Proof. P, has the double symbol ¢(z,y,£) = p(z, {)v:(y’). The calculus gives

Pt(:F,E) = vf(z’)p(IaE) + Z: % ?"p(zsf)D::Uf(I’) + rNt(xl': 05 0,£n),

0<|a’|<N

with ra(z, ) € S{’HN(R" x R™), uniformly in t, since v, € 57(R" x R"), uniformly in
t. Therefore,

v,(z')ff;gxnp(m',o,o,g,,) = F..n(z',0,0,¢,)

1 o - [ o’ ' -
= D R FLep(,0,0,6)Du(a’) = FiL rud(z,6),
o<la!|<N

= fi+ fot+ [

By assumption, f; is uniformly bounded in t. Since 8%'p is of order lower than m, and
since [Op d%'pls = [ad® (—iz') Py has property 2.2(1), f, is bounded by reduction 2.7.
Finally, fs is uniformly bounded for m — N < —1 by the argument in 2.6. Together, we
get 2.5(1).

2.10 Definition. For o € S(R), vanishing of order > K in zero, define uy = v; @ 0, b, =
Frnen Pet(ug)q with (ue)y = rtu, as in [14].

2.11 Lemma. b € S5, (R*™! x R), uniformly in t.

Proof. We know that b € ST '(R"™! x R) uniformly, cf. [14],(1.4). So we have to
consider

N DEFSL, b(a,6n) = o DEPet (uy),,
for given N, . It is bounded for the following reasons

12



(i) we may neglect =¥, since p(z,£) = 0 for |z,| > 1, and

(ii) For arbitrary s, (u:)+ € Hjjy(RY), uniformly in ¢, since the H*-norm is transla-
tion invariant. Hence Pe* (), € H*~™(R?%), uniformly in ¢, and this implies the
boundedness of the derivatives of order 3 for sufficiently large s.

From now on follow closely the proof of theorem 1.5 in [14]

2.12 Definition. Fix o = o) € C°(R) equal to zf~te/(k — 1)! for |z,| < 1, and let
btk = .7'-;:"—.5“P6+(Ut ® ak)-i-: k= ]:2) T

2.13 Lemma. For fized k, {by :t € R*'} is a bounded subset of STs.5,. (R*™! x R).

Proof. By the argument in [14], by € ST oaw(R"1 x R) for each t. Why uniformly?
Obviously,

fxn—'fne+(vt @ Jk)+ = ® }-J:n—tﬁne+(0-k)+-

From the argument of [14], specialized to n = 1, we know that F;, _¢.e*(0x)+ € Sy5(Re,).
Since v; € S7(R*™! x R), uniformly in t, we have

Ut ® }-I'n“‘fne (0'k)+ € IS"1 O(Rﬂ ! X Ren)’

uniformly, thus by € ST5 ¥(R*™! x R), uniformly. Already in Lemma 2.11 we saw that
the derivatives of .7'_6'"1__’:“ b are uniformly bounded, so we obtain the assertion.

2.14 Rewriting by. Noting that by = Fy ¢, Pet(v: @ 04)y = Frpnee, Piet (1 @ 04)4,
write for a positive integer M > |m|+ 1

(27)E (i& — 1)*bu(a’, &) =
M

. . 1, . ; }
= (6 = )" Y 5 (=10 D (., )(i6 = 1)) eumngmo + ru(s' £r),

3=0

where i € STo™, uniformly in . Like in [14] rewrite this as

ZZ (6D, ) (= De, Y ™ pu(’, 0,0, &)k - (k + v — 1)(in — 1) /0!(j - )! (1)

=0 =0
+ru(z’,€n).
2.15 Conclusion. Denote the sum 2.14(1) by ¢(z’,{,, k). It is a polynomial in k of

degree < M. Choose M + 1 different large k’s: ky,..., karq1; then for k € C, Lagrange’s
interpolation formula gives

M+l

9 bnyk) = Y gz, Enr ki) Li(x)

j=1
M+1

= L[} = )b 60) = i 6l
€ STowr(R™" xR)+ ST7M (R x R),

13



uniformly in ¢. Here, L; are the Lagrange interpolation polynomials as in [14]. Letting
k£ = 0 we obtain

M
Z( zDarnD&-)JPt(:” 0,0,4)/5! € SlOu!r(Rn—l X R)+Sm_M(Rﬂ_l x R),

7=0

uniformly in ¢. The same argument applies to (=i D, D¢, )'p:(2,0,0,¢,),0=10,... M : by
making K larger, we also have 2.2(1) for [Op (=i D,, D¢,)'pi(z,€)])4,{=0,..., M. So

M
Y (=iD., D, )*'pi(a,0,0,4)/5! € STouer(R™™ x R) + ST M(R™! x R),

3=0

uniformly in t. Multiply by (=1){/!!, and sum for { =0,... M. Then

M M( l)l
22T T (=iD2, De,)*'pi(3',0,0,8n) € ST, (R™™ x R) + ST (R™™! x R), (1)
Jj=0 I=0

uniformly in t. The left hand side of (1), however, equals

pi(2',0,0,&,) + Z g_.—!—:!)(—iDz,,Dgn)ij,(:r',0,0,En) (2)

0LGIEM, j+I>M

The second summand in (2) belongs to ST (R™-! x R), uniformly, hence
pi{a’,0,0,&,) € STy (R7 x R) + ST M(R™™! x R),

uniformly. Remembering that m — M < —1, we conclude that

fj,l—.z"pt(x’s 01 O: 5'1)

is bounded on R}, uniformly in ¢. This is what we had to show by reduction 2.9.

3 Characterization of the Pseudodifferential Oper-
ators with the Transmission Property

In this section, we shall prove the following theorem.

3.1 Theorem. Let P: S(R*) — S'(R") be a continuous operator. Then the following
assertions are equivalent.

(i) P =Opp for some p € S)o(R™ x R™) with the transmission property of 1.4.
(i1) P has the following properties
(@) for all multi-indices a, B € N* and all s € R,ad®(—iz)ad’(D,)P has a bounded

extension

ad®(—iz)ad?(D.)P : H*(R") — H*Hl|(R™).

14



(B) for all multi-indices o/, ' € N*™!, all 3,t,0,7 € R, ad“’(—ia:')adﬂ’(Drf)P+ has
a bounded eztension

ad®'(—iz')ad” (Do) Py : WH(R™Y, High (Ry)) — Wl Rr =1, BT (R)).

(4) The properties in (B) also hold for the formal adjoint P,* = P*, of P.

Here, ch;i(R.,.) denotes the space H*7(Ry) for ¢ > 0 and the space H" (R,.) for
o <0.

(ili) P has the mapping properties in (ii) for the unweighted wedge Sobolev spaces, i.e.
fort =0,

3.2 Remark. We know from Beals’ theorem that condition (ii.c) ensures that P is a
pseudodifferential operator with a symbol in S?4(R" x R").

Of course, we might start with this assumption and omit (ii.c). The present form has
been chosen in view of (9], where I want the complete characterization by commutators.

Proof of theorem 3.1. Let us first check that the conditions in (iii) imply (i): By 3.2 we
only have to make sure that the symbol of P has the transmission property. By 1.7 this is
equivalent to showing that for all e, 8, D¢ DPp(x',0,0,+¢,) has the uniform transmission
property with respect to R}; in other words, p has the uniform two-sided transmission
property.

Using reflection and the pseudodifferential calculus, this in turn requires that both, P
and P* have the uniform transmission property with respect to R}, cf. [14] corollary 1.8.
In theorem 2.1, the uniform transmission property has been characterized in terms of the
boundedness of

ad® (—iz")ad® (D) Py : H'(RY) — H* ™ |(R7)

for all multi-indices o', 8’ € N™~! and all s > 0.
Applying remark 1.11 we know that W?(R™"', H*(R,)) = H*(RZ%); therefore the prop-
erties (iii) are sufficient.

For the proof of the converse direction we only have to show that the commutators have
the mapping properties in (ii.8) and (ii.y). This part will be split up in a series of lemmas.
In the following, I shall write ¢ € ST ,.(R™ x R") to indicate that ¢ has the transmission
property of 1.4. We start with a technical result.

3.3 Reduction of the order. Cf. also [13]. Let x € S(R) with suppF~'x C R_, x(0) =
1, and a >> 0. For p € Z let

o = (x(33)©-e)
e = =

The definition makes sense, since r4(€)/((£') £ i) = 1+ r(£), where |r| = O(a™?).
For sufficiently large a,

[R4)s = [Oprily s W/(R™Y, HY™(Ry)) —» WH(R™, HY ™" (R.,))

15



is a bounded operator for every choice of s,0,7 € R. The operator

[RZ]4 = [OprL]y : W(R™, H7"(Ry)) » WH(R™, H™#"(Ry))

is bounded, provided o > —1. Here, I consider e* a trivial action on H”( +). The first
operator is an isomorphism, ([R 1+)7! = [R}"]4+; if additionally & > p — 1, then also the
second is an isomorphism, and ([R%]4)~! = [R%]4.

Proof. Since r; are z—independent symbols, it is sufficient to show that they are operator-
valued symbols on the wedge spaces, cf. [27] section 3.2.1, lemma 7, i.e.

l|%en-1 D [Op 2, rE ()4 5ieny | e Ry ) bro-mr(Ry)) = o((¢")*™, (1
and ol

||’°(5')—1 D?f[op rnri(g)]i'n(f')”L‘.(H:"(R...).H:‘“"(h)) = O((&)* ™). (2)
First let @ = 0 and notice that

Rien—1 D?"[Oprnrﬂ:( Narien = [Opzara(€, () &l = (€ Y [0pzart(0,&)l4  (3)

Let us show (1). For abbreviation write R = Op.,r%(0,£,). For 7 = 0, the fact that
r£(0,&,) is a symbol with the transmission property implies that

Ry : H°(Ry) — H™*(Ry)

is continuous, provided o > —%. So let 7 be arbitrary. By interpolation, we may assume
that 7 € 2Z. Clearly,
Ry : HP"(Ry) — HTM"(Ry) (4)
is bounded iff
(20)" Ry (20) "+ HO(Ry) — H®(R,)
is. On the other hand, either (z,)" or (z,)”" is a polynomial. Without loss of generality
assume the former is. Using the identity

2o Ry = (2aR)4 = (Rza)4 + [2n, R+ = Ryzn + Op o (— D¢, 72)(0,45)

we may move factors =¥ to the other side. Since z¥ (z,)™" - as a multiplication operator -
is bounded on H*°(R ), the boundedness of (4) follows from the fact that (— D¢, r%)(0,¢,)
also has the transmission property and therefore maps H°°(R,) to H° *°(R,). This
shows the case o = 0 because of the factor (¢’) in (3).

Let 1 <7 <n—1. Then

rt(© = O [t x| )
Therefore
s O edrtlamer = Opey [ (€061 (X(E)E 4 1) _©

= ey é’> [Op:,, #=10,,) ( (=

u—1 §J
w (&) (E’)R

16
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The functions x/(5)% and x(%2) are rapidly decreasing, so have the transmission prop-

erty. The same argument as before then shows that
Ry : H(Ry) - HH7(R,)

is bounded. Together with the factor (¢/)*~', this yields the assertion for |a| = 1.

The computations in (5) and (6) show the behavior of the higher order derivatives. The
argument for r4 is the same.

Now for the statement that these operators define isomorphisms. As a function of &,,rZ
belongs to H~ while ri* is the sum of a polynomial and a function in H*. For u € C3°(R4)
we therefore have r"'Opznrf“u = 0 on R_. For u € S(R) we have r*Op r¥#(f —
etrt f) = 0. Hence

tu

[0P 2, 74)4[OP 2,74+ = Op 2, ri0p 5 7]y = id. (7)

Here, id denotes the identity on H%7(R,) for the sign ” —” and the identity on Hy" (R4)
for the sign ” + 7.

3.4 Corollary. Let s,t,0,7 € R. Then

[R{]+ = [Oprils : WH(R™, HT"(Ry)) —» W (R, HE "7 (R4))
is a topological isomorphism, and so is

(R%)s = [Oprt]y s WoH(R™™, H7(Ry)) — W*H4(R™™, HO™W"(R,,)),
provided o > —%,a —p> —%.

Proof. Consider r2£. By interpolation,it is sufficient to assume ¢ € 2Z and to show the
boundedness of

(') [RE)4 (&)™ : WP (R HOT(Ry)) — WTH(R™, HOT#7(Ry)).

Now either (z')* or (z')™" is a polynomial. For 1 < j < n — 1 we can use the commutator
identity
[z, (R2)+] = ([z5, BZ])+ = (Op (= Dg;72))+,

like in the proof of 3.3.
3.5 Lemma. In order to show thal the iterated commutators in theorem 3.1 have the
mapping properties tn (i1.8) and (ii.y) it is sufficient to establish the following:
(i) For allp€ 59, ,.(R* x R") and M € N,

[Oppls : WR, HMO(R,)) — WIR™, HYO(R,))

is bounded, and
(ii) for all p € S, . (R™ x R™) and M € N,

[0p pl : WO (R, HOM(R,)) — WO(R™!, HOM(R,,))

ts bounded.
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Proof. Step 1. Property 3.1(i) implies property 3.1(ii.cx), since

ad®(—~iz)ad?(D;) P = Op (8¢ DZp).

Step 2. It is now enough to prove 3.1(ii.8), since the symbol of the adjoint also belongs
to S¥4 . (R® x R™).

Step 3. We may assume that o/ = ' =0 in 3.1(ii.8):
ad”(~iz")ad” (D) Py = [0 (05 DE)]

=o'l

and ¢ = é”,‘Df:p € S g4 For 0 2 0, lemma 3.4 shows that
[Op q]+ . w,'t(Rn—l,HU'T(R.’.)) N ws+]a'|,!(Rﬂ—l, Ha+|or'|,‘r(R+))'

is bounded iff [R!*}, [Op q], is bounded on W**(R*"!, H*"(R,)).
The fact that r‘_"'l(f) belongs to H™ as a function of ¢, implies that [RI_‘"I].,.[Op q+ =

[RI_G'IOp q)+- Since RI_C"IOp q is a pseudodifferential operator of order zero with the trans-
mission property we obtain the assertion for o > 0.
If o <0 and o+ |&'| €0, then by 3.4 the boundedness of

[Opgly : WR™™, HI™(Ry)) —» WeHekyrr=t goHlm(r,))

is equivalent to the boundedness of [Rf'l]+[0p q)+ on W (R""' HJ"(R,)). Now [RIJf_"l]Jr
[Opqls = [R!f lop q)++@G, where G is a singular Green operator of order and type zero, f.

definition 1.14. As before, RL:'JIOp q is a pseudodifferential operator with the transmission
property. Since G is bounded on W*'(R"~1, Hy"(R4)) by 1.13, we obtain the assertion
also for this case.

Finally let o € Z with ¢ < 0 < o + |&’| =: . Using that Hy"(Ry) & H®"(R.) it follows
from 3.4 that the composition

[Ry°)+ IRy WHRIHR™ HP(R4)) —» WH(R™', HY T (Ry))

is an isomorphism. But [R7°)+[R%")+[Opgly = [R;°RZ"Opgqly + G’ with a singular
Green operator (&’ of order and type zero. This completes the proof of step 3.

Step 4. We may assume that s = ¢ = 0: Let E be one of the weighted Sobolev spaces
on R,. By the interpolation results for wedge Sobolev spaces established by Hirschmann
[16], theorem 6.4, we may assume that s,t € 2Z. The operator

[Op ol : WH(R™, E) — W (R™, E) (1)

is bounded iff
[Op (€)1 (=) [Oppl+ (')~ [Op (€)™ s] : WO(R™, E) — WOR™,E)  (2)
is bounded. Now, (z')[Oppls(z’)™" = [(z')'Opp(z’) ]+, and the operator inside the

brackets belongs to S7, ,,, since we may use commutator identities like in the proof of 3.4
to move factors :r:_‘,F from one side to the other.
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Since s € 2Z, either Op (£')* or Op (¢')™° is a differential operator with constant coeffi-
cients. For 1 <3< n -1,
3,J.P+ = P+a;j - [P, 331.]4..

The commutator is a pseudodifferential operator with a symbol in 57, .. So we can move
the differential operator to the other side. On the left hand side we obtain a finite sum
of operators with symbols of order zero with the transmission property.

Step 5. For s = 0 it is sufficent to prove the boundedness of [Op p]; on W(R""!, E) for
the spaces

E=HMMYR,)or E=H"™(R,) (3)
with M > 0. The reason is the following.
(i) H " O(Ry) = [HMO(R,)] and
(i) HO-M(R,) = [HOM(R,)],
where the duality is with respect to the standard L?(R.) sesquilinear form.

(iii) Once we have established the boundedness for the spaces of the type (3), we may
switch to the z,-adjoint and obtain boundedness of [Op p]; for the spaces

E=H{"(R,) or E = HO-M(R,) (4)
noting that the z,-adjoint also belongs to S7,,..

(iv) Each space
E = H{ " (R,) or E = HO(Ry)

o 2 0,7 € R, can be obtained by interpolation from the spaces of the four types in

(3) and (4).

3.6 Two computations. Let k € No. Then (z,)* = ):;;0 (’;)xfj, and
(a)

l|f||\2/v°(R"-',H(°v*)(R+)} = /||-7:y—-nf('7»(77>-lyn)('l>_% (yn)k”iz(m)d’?

= //Omlfy-nf(n,(n)'lyn)lz(n)”li(?)yﬁjd?}nd’i

3=0
kK /k o 24.\27 25
= Z J //0 | Fymn £, 2a) " ()™ 27/ dzrdn
j=0
k k i 2
= Z ; =3 f |75 (rnmr 2Ry )
j=0

1 gmqenms oty = / 1F e 1 1) ™ ) ()™ 1y
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- [ 2 / 188 (Fae) [0, ) ) ) dadiy

k

= Y [ [ 0 @ Fen S, e

1=0
k

= Y 18 S5t 22y
=0
3.7 Lemma. Let p € S7,,,. Then for every M € Ny,
[Oppls : WOR™, HOM(R,)) — WO(R™, HOM(R,))

s bounded.

Proof. We shall use the description of the norms of 3.6(a). First note that for [,; €
No, ! < 7, DJ pE S,Om and hence

[Op (D'p)]+ : H'(R™™', L*(R4)) — HI(R™', L*(Ry4))

is bounded by an extension of the usual boundedness result of Calderén and Vaillancourt
to the case of symbols with values in L(F, F'), E, F Hilbert spaces. Therefore we conclude

||[OPP]+f||?/W(R"—1 JHOK (R4 ))
k

E\
= Z (J) 22 [0p pl+ Fll s o1, 02(R )
7=0
k J 3 X z
- ) Z(I)[Op(—D)‘E:'Ph(xf,f)
=0 =0 Hi(R~=1,L3(R.))

J
k F) ]
y—1
Z: z ( ) (1) ”[Op DJn p]+”ﬁ(Hl(R“—l_LQ(m))'Hj(Rn—l‘Lz(m)))

=0 I=0

A

N N a1 22(ry4))
<

C Iy oy,
3.8 Lemma. Let f € S(R}). Then for k=0,1,2,...
[ 85 f(2',0)
defines a bounded map from WO(R™!, H:+1O(R,)) to H-4-k(R"-1).

Proof. This is essentially a consequence of the estimate

9(0)]? = — / B, lg(2n)Pdzn < 2010 gll2 9l o),
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valid for g € S(R4). It implies that
A2y
= [ F kD, O

< / (M N (Fyman®® N0 2)ll0 | (Fymen®@ 1), )2l

3 )
< ([ 1t Dz isdn) ([ )2 U0 Dl 2l
< ”aa:,.f"H-“(R"-',L’(R..q.))“aﬁjlfHH—*—l(R"-l,L7(R+))
<

”f“ffvo(R“‘-l HE+10)(Ry )"
3.9 Lemma. Letp € S7,,,, M € No. Then

Py = [Opply : WOR™, HMO(R,)) — WOR™™, HMO(R,))
15 bounded.

Proof. By 3.6 we have to estimate

105, Py fllsr-x(ro-1, 03R4 )y : 0 S b < M
in terms of
||3£,.f||ﬂ—*(nn-l,L?(R+)) 0<k< M.
By induction, the equation

Oz Py f = ([0z,, P4 + P10z, f + 17 P (70f ® 6))

on R’j_ shows that for suitable constants c[ ] gtH

1 Jlm’

3§“P+f=zcgk][0p(3i..p]+(3" N+ Y dH Lt op (3, p)(m® ™)

=0 jHm=k=1

The terms of the first sum are easy to handle, for 9577 f € H=*(R""!, L*(R,)), and there
[Op Binp]+ is bounded, again by an operator-valued version of Calderon and Vaillancourt’s
theorem.

Now for the second sum. The operator ; yields a bounded map from WO(R"*~!, HMO)(R )
to H=%~/(R™!) by lemma 3.8. For v € S(R""!), the operator

Kim:v—1rtOp (3ﬁnp)(v ® 6("‘))

is a Poisson operator of order m, cf. [22] section 2.3.2.3, or [11] 2.7.5 (of order m + 1 in
Grubb’s notation). The space A/~*(R"!, L?(R,)) on the other hand is just the space
Grubb calls H*=*(R7), [11], (A.41).

So by [11] theorem 2.5.1 (or rather a uniform version of it) the fact that j+m+1=k—1
implies that

"I(jmv||H"‘(R"".L2(R..|.)) S C”v”H}+M-k(Rn_1) S C"U”H—%—I(R,,_l)
Hence ”8_,{:" P+fl|H-k(R_n-1_L2(R+)) is bounded in terms of ||f||wo(Rn_1‘H(M.0)(R+)).

3.10 Conclusion. Together, 3.5, 3.7 and 3.9 complete the proof of theorem 3.1.
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