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ANALYTIC CYCLES, BOTT-CHERN FORMS, AND SINGULAR SETS FOR

THE YANG-MILLS FLOW ON KÄHLER MANIFOLDS

BENJAMIN SIBLEY AND RICHARD A. WENTWORTH

Abstract. It is shown that the singular set for the Yang-Mills flow on unstable holomorphic
vector bundles over compact Kähler manifolds is completely determined by the Harder-Narasimhan-
Seshadri filtration of the initial holomorphic bundle. We assign a multiplicity to irreducible top
dimensional components of the singular set of a holomorphic bundle with a filtration by saturated
subsheaves. We derive a singular Bott-Chern formula relating the second Chern form of a smooth
metric on the bundle to the Chern current of an admissible metric on the associated graded sheaf.
This is used to show that the multiplicities of the top dimensional bubbling locus defined via the
Yang-Mills density agree with the corresponding multiplicities for the Harder-Narasimhan-Seshadri
filtration. The set theoretic equality of singular sets is a consequence.

1. Introduction

The purpose of this paper is the exact determination of the bubbling locus for the limit of unstable

integrable connections on a hermitian vector bundle over a compact Kähler manifold (X,ω) along

the Yang-Mills flow. Roughly speaking, our theorem states that the set of points where curvature

concentration occurs coincides with a subvariety canonically determined by a certain filtration of

the initial holomorphic bundle by saturated subsheaves. This result builds on work of several

authors on both the analytic and algebraic sides of this picture, and so below we present a brief

description of some of this background.

From the analytic point of view, the original compactness result that informs all subsequent

discussion is that of Uhlenbeck [38] which, combined with the result of the unpublished preprint

[40] implies that a sequence Ai of integrable unitary connections on a hermitian vector bundle

E → X with uniformly bounded Hermitian-Einstein tensors
√
−1ΛωFAi has a subsequence that

weakly converges locally, modulo gauge transformations and in a certain Sobolev norm outside a

set Zan of Hausdorff (real) codimension at least 4, to a unitary connection A∞ (see Theorem 2.5

below). This played an important role in the fundamental work of Uhlenbeck and Yau [41]. We

call Zan the analytic singular set (or bubbling set). If A∞ is Yang-Mills, then by the removable

singularities theorem it extends to a unitary connection on a hermitian vector bundle E∞ defined

off a set of (real) codimension at least 6. We call this extension an Uhlenbeck limit and note that

E∞ may be topologically distinct from E on its set of definition. The corresponding holomorphic

bundle also extends as a reflexive coherent analytic sheaf E∞ → X.
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The long time existence of the Yang-Mills flow on integrable connections over Kähler manifolds

was proved by Donaldson [13]. Hong and Tian have shown, using a combination of blow-up analysis

of the sequence near the singular set and geometric measure theory techniques, that in fact the

convergence can be taken to be C∞ away from the bubbling set and that the bubbling set itself

is a holomorphic subvariety. This second fact relies on a structure theorem of King [25] or a

generalized version [20] due to Harvey and Shiffman, for closed, positive, rectifiable currents on

complex manifolds. More precisely, in [36] Tian gives a decomposition Zan = Zanb ∪ singA∞ into

a rectifiable piece Zanb and a set singA∞ over which the connection A∞ cannot be extended, and

having zero (2n− 4)-dimensional Hausdorff measure, where n is the complex dimension of X. The

results in [36] together with the main result of [25] or [20] imply that Zanb is a subvariety of pure

complex codimension 2. Then a result contained in [37] shows that singA∞ is also an analytic

subvariety of codimension at least 3. Moreover, weak convergence of the measures defined by the

Yang-Mills densities |FAi |
2 dvolω leads to the definition of a natural density function Θ supported

on Zan. In [36] Tian shows that Θ assigns an integer weight to each irreducible codimension 2

component Z of Zanb . We call this weight the analytic multiplicity man
Z of the component Z.

On the algebraic side, associated to a holomorphic vector bundle E → X we have the Harder-

Narasimhan-Seshadri (HNS) filtration and its associated graded sheaf Gr(E), which is locally free

away from a complex analytic subvariety Zalg of codimension ≥ 2. The sheaf Gr(E) is uniquely

determined up to isomorphism by E and the Kähler class [ω], and therefore so is Zalg, which

we call the algebraic singular set (the terminology, which has taken hold, is a bit inaccurate in

the sense that we do not assume that X be a projective algebraic manifold). The reflexive sheaf

Gr(E)∗∗ is locally free outside a subvariety of codimension ≥ 3. The restriction of the torsion sheaf

Gr(E)∗∗/Gr(E) has a generic rank on each irreducible codimension 2 component Z of Zalg, and we

call this rank the algebraic multiplicity malg
Z of the component Z.

A hermitian metric on the locally free part of a torsion-free sheaf on X is called admissible

if its Chern connection has square integrable curvature and bounded Hermitian-Einstein tensor

(see Section 2.1). By the main result of Bando-Siu [3], the sheaf Gr(E)∗∗ carries an admissible

Hermitian-Einstein metric whose Chern connection is the direct sum of the Hermitian-Yang-Mills

connections on its stable summands, and this is unique up to gauge. The main result linking the

two pictures described above is the fact that in the case of Uhlenbeck limits along the Yang-Mills

flow, E∞ is actually isomorphic to Gr(E)∗∗. In particular, the limiting connection A∞ is gauge

equivalent to the Bando-Siu connection and is independent of the choice of subsequence. This

result is due to Daskalopoulos [9] and R̊ade [30] for dimCX = 1 (where there are no singularities),

Daskalopoulos-Wentworth [10] for dimCX = 2, and Jacob [22, 23, 24] and Sibley [32] in higher

dimensions. A priori, Zan also depends on a choice of subsequence along the Yang-Mills flow,

whereas Zalg is uniquely determined as previously mentioned. In dimCX ≥ 3, the identification

of the limiting structure A∞ just mentioned does not address the relationship between these two

singular sets; to do so is the aim of this paper. We now formulate our main theorem as follows.
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Theorem 1.1. Let E → X be a hermitian holomorphic vector bundle over a compact Kähler

manifold with Chern connection A0, and let Zalg denote the algebraic singular set associated to the

Harder-Narasimhan-Seshadri filtration of E. Let At, 0 ≤ t < +∞, denote the Yang-Mills flow with

initial condition A0. Then:

(1) For any sequence ti → ∞ defining an Uhlenbeck limit Ati → A∞ with bubbling set Zan, then

Zan = Zalg as sets.

(2) Modulo unitary gauge transformations, At → A∞ smoothly away from Zalg as t → ∞ to the

admissible Yang-Mills connection A∞ on a reflexive sheaf isomorphic to Gr(E)∗∗.

(3) For any irreducible component Z ⊂ Zalg of complex codimension 2, then Z ⊂ Zanb and the

analytic and algebraic multiplicities of Z are equal.

Remark 1.2. (i) Theorem 1.1 generalizes to higher dimensions the result of [11] in the case

dimCX = 2.

(ii) Item (2) follows from (1) by combining the work of Hong-Tian (for the smooth convergence)

and Jacob, Sibley (for the identification of the limit).

(iii) Under certain technical assumptions on the growth of norms of the second fundamental

forms associated to the HNS filtration near Zan, Collins and Jacob [8] show that (1) holds.

The proof of (1) in this paper relies on the structure theorems of Tian and King/Harvey-

Shiffman, and the equality of multiplicities from item (3).

A key step in the proof of Theorem 1.1 is a singular version of the usual Bott-Chern formula

which is of independent interest. Suppose E → X is a holomorphic bundle with a filtration by

saturated subsheaves and associated graded sheaf Gr(E). Given hermitian structures, then since

E and Gr(E) are topologically isomorphic away from the singular set Zalg the Bott-Chern formula

relates representatives of the second Chern characters ch2 in terms of Chern connections as an

equation of smooth forms outside this set. If the hermitian metric on Gr(E) is admissible, we can

extend this equality over the singular set as an equation of currents, at the cost of introducing

on one side of the equation the current defined by the analytic cycle associated to the irreducible

codimension 2 components {Zalgj } of Zalg with the multiplicities malg
j defined above. The result is

the following

Theorem 1.3. Let E→ X be a holomorphic vector bundle with a filtration by saturated subsheaves

and hermitian metric h0. If h is an admissible metric on Gr(E), then the following equation of

closed currents holds:

(1.1) ch2(Gr(E), h)− ch2(E, h0) =
∑
j

malg
j Zalgj + ddcΨ

where Ψ = Ψ(h, h0) is a (1, 1)-current on X, smooth away from Zalg. Here, Zalgj is regarded as a

(2, 2)-current by integration over its set of smooth points, and ch2(Gr(E), h) denotes the extension

of the Chern form (3.1) as a current on X.
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The organization of this paper is as follows. In Section 2 we recall the definition of the Yang-

Mills functional and its negative gradient flow, along with the statement of the main result of [3].

We review the HNS filtration and give a precise definition of the associated algebraic multiplicity.

We also recall the version of Uhlenbeck compactness that applies to integrable connections with

bounded Hermitian-Einstein tensors. We describe the work of [36] and [21] in a bit more detail and

elaborate the notion of analytic multiplicity.

Section 3 is devoted to the proof of Theorem 1.3. It will be shown that (1.1) is essentially a

consequence of the cohomological statement that the second Chern character of the torsion sheaf

Gr(E)∗∗/Gr(E) is equal to the analytic cycle appearing on the right hand side of (1.1). This latter

fact is probably well-known to algebraic geometers, and in the projective case it can be obtained

from the Grothendieck-Riemann-Roch theorem of Baum-Fulton-MacPherson [4, 5]. In the setting

of arbitrary compact complex manifolds the desired identity, Proposition 3.1, follows from the gen-

eralization of BFM due to Levy [27] . The statement in that reference is written in terms of analytic

and topological K-theory, and much of Section 3.2 is therefore devoted to recalling this formalism

and using it to obtain the statement about the second Chern character mentioned above. In order

to go further, we also need to prove that the second Chern current ch2(Gr(E), h) for an admissible

metric h is closed and represents ch2(Gr(E)∗∗) in cohomology (Proposition 3.3). The proof relies on

the monotonicity formula and Lp-estimates derived by Uhlenbeck in the aforementioned paper [40],

as well as an argument of Tian [36] which was used in the case of admissible Yang-Mills connections.

We should point out that other versions of singular Bott-Chern currents exist in the literature (e.g.

the work of Bismut-Gillet-Soulé [6]).

In Section 4 we prove a slicing lemma showing that the analytic multiplicity may be computed

by restricting to a (real) 4-dimensional slice through a generic smooth point of an irreducible

component of the analytic singular set (Lemma 4.1). Since a parallel result holds for the currents

of integration appearing in the Bott-Chern formula, we can use this and Theorem 1.3 to compare

algebraic and analytic multiplicities. Combined with an argument similar to that used in [11], this

leads to a proof of the main theorem.

2. Preliminaries

2.1. Stability, Hermitian-Einstein metrics, and the Yang-Mills flow. Unless otherwise

stated, X will be a compact Kähler manifold of complex dimension n with Kähler form ω. Let Λω

denote the formal adjoint of the Lefschetz operator given by wedging with ω. Let E → X be a

hermitian holomorphic vector bundle with metric h, Chern connection A = (E, h), and curvature

FA. Then
√
−1ΛωFA is a hermitian endomorphism of the underlying hermitian bundle (E, h), and

it is called the Hermitian-Einstein tensor. The equality

(2.1)
√
−1ΛωFA = µ IE
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where µ is constant may be viewed as an equation for the metric h. A solution to (2.1) is called

a Hermitian-Einstein metric, and the corresponding Chern connection is called Hermitian-Yang-

Mills.

If E→ X is a torsion-free sheaf, then its ω-slope is defined

µω(E) =
1

rankE

∫
X
c1(E) ∧ ωn−1.

Then E is called stable (resp. semistable), if µω(F) < µω(E) (resp. ≤) for all coherent subsheaves

F ⊂ E with 0 < rankF < rankE. The term polystable refers to a sheaf which splits holomorphically

into a direct sum of stable sheaves, all of the same slope. The Donaldson-Uhlenbeck-Yau theorem

[13, 14, 41] states that a holomorphic bundle E admits a Hermitian-Einstein metric if and only if

the bundle is polystable. If the volume of X is normalized to be 2π/(n− 1)!, then the constant in

(2.1) is µ = µω(E).

A hermitian metric h on the locally free part of a torsion-free sheaf E is called ω-admissible if

|ΛωFA|h ∈ L∞(X) and |FA|h ∈ L2(X,ω), where A is the Chern connection (E, h). The Hermitian-

Einstein condition (2.1) has the same meaning in this context. We will sometimes refer to A as

an admissible connection. The notion of admissibility was introduced by Bando and Siu who also

proved the Hitchin-Kobayashi correspondence in this context.

Theorem 2.1 (Bando-Siu [3]). Let E→ X be a torsion-free coherent sheaf with reflexivization E∗∗.

Then:

(i) there exists an admissible metric on E;

(ii) any admissible metric on E extends to a metric on the locally free part of E∗∗ which is in

Lp2,loc. for all p;

(iii) there exists an admissible Hermitian-Einstein metric on E∗∗ if and only E∗∗ is polystable.

The Yang-Mills flow of unitary connections on a hermitian bundle (E, h) is given by the equa-

tions:

(2.2)
∂At
∂t

= −d∗AtFAt , A(0) = A0

Donaldson [13] shows that if X is Kähler and A0 is integrable, then a solution to (2.2) exists

(modulo gauge transformations) for all 0 ≤ t < +∞. Eq. (2.2) is formally the negative gradient

flow for the Yang-Mills functional :

YM(A) =

∫
X
|FA|2 dvolω.

Critical points of this functional are called Yang-Mills connections and satisfy d∗AFA = 0. By the

Kähler identities, if E admits an integrable Yang-Mills connection A, then it decomposes holomor-

phically and isometrically into a direct sum of the (constant rank) eigenbundles of
√
−1ΛωFA, and

the induced connections are Hermitian-Yang-Mills. Similarly, an admissible Yang-Mills connection

on a reflexive sheaf gives a direct sum decomposition into reflexive sheaves admitting admissible

Hermitian-Yang-Mills connections.
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2.2. The HNS filtration and the algebraic singular set. Let E→ X be a holomorphic bundle.

We say that E is filtered by saturated subsheaves if there are coherent subsheaves

(2.3) 0 = E0 ⊂ E1 ⊂ · · · ⊂ E` = E

with torsion-free quotients Qi = Ei/Ei−1. The associated graded sheaf is

Gr(E) =
⊕̀
i=1

Qi

We define the algebraic singular set of a filtration to be Zalg = sing Gr(E), i.e. the complement of

the open set where Gr(E) is locally free. Since the Qi are torsion-free, the singular set is an analytic

subvariety of codimension at least 2. Note that we have

(2.4) Zalg = supp (Gr(E)∗∗/Gr(E)) ∪ sing Gr(E)∗∗

since if x /∈ supp(Gr(E)∗∗/Gr(E)), and x /∈ sing Gr(E)∗∗, then Gr(E) must be locally free at x. We

also record the simple

Lemma 2.2. Each Ei is reflexive. Moreover, Ei is locally free on X − Zalg.

Proof. Consider the last quotient

0 −→ E`−1 −→ E −→ Q` −→ 0,

Since E is reflexive and Q` torsion-free, E`−1 is reflexive (cf. [26, Prop. V.5.22]). The result for

Ei follows by repeatedly applying this argument. For the second statement, start with the first

quotient Q1 = E1. Then there is an exact sequence:

0 −→ E1 −→ E2 −→ Q2 −→ 0,

If both E1 and Q2 are locally free, then this sequence splits at the level of stalks, and so E2 is also

locally free. Iterating this argument proves the claim. �

The following a priori structure of Zalg will also be important.

Proposition 2.3. On the complement of sing Gr(E)∗∗, Zalg has pure codimension 2.

Proof. Choose a coordinate ball Bσ(x) ⊂ X−sing Gr(E)∗∗, and assume that codim(Bσ(x)∩Zalg) ≥
3. Set U = Bσ(x)− Zalg. The first step in the filtration is:

(2.5) 0 −→ E1 −→ E2
q2−→ Q2 −→ 0

By Lemma 2.2, E1 and E2 are reflexive. Furthermore, since Bσ(x) misses sing Gr(E)∗∗, E1 = E∗∗1
and Q∗∗2 are locally free. Since Q∗2 = (Q∗∗2 )∗ is also locally free, tensoring (2.5) by Q∗2 leaves the

sequence exact. Consider the resulting exact sequence in cohomology:

(2.6) H0(U,E2 ⊗ Q∗2) −→ H0(U,Q2 ⊗ Q∗2) −→ H1(U,E1 ⊗ Q∗2)

Since E1⊗Q∗2 is locally free on Bσ(x) and codim(Bσ(x)∩Zalg) ≥ 3, it follows from Scheja’s theorem

[31, Sec. 3, Satz 3] that H1(U,E1 ⊗ Q∗2) ' H1(Bσ(x),E1 ⊗ Q∗2) = {0}. In particular, the image of
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the identity IQ2 ∈ H0(U,Hom(Q2,Q2)) = H0(U,Q2 ⊗ Q∗2) by the coboundary map, is trivial. By

exactness of (2.6) this means there is ϕ : Q2 → E2 on U satisfying q2 ◦ ϕ = IQ2 . By normality, ϕ

extends to a map ϕ̃ : Q∗∗2 → E2 on Bσ(x). If q̃2 : E2 → Q∗∗2 is the map obtained by composing q2

with the inclusion Q2 ↪→ Q∗∗2 , then clearly q̃2 ◦ ϕ̃ = IQ∗∗2 . In particular, q̃2 is surjective, and hence

Q2 = Q∗∗2 . So there is no contribution to Zalg from this term in the filtration. Moreover, since E1

and Q2 are locally free, eq. (2.5) implies as in the previous lemma that E2 is locally free on Bσ(x).

Now consider the next step in the filtration: 0 → E2 → E3
q3−→ Q3 → 0. Again, E2 and Q∗∗3 are

locally free on Bσ(x), and the argument proceeds as above. Continuing in this way, we conclude

that Bσ(x) ∩ Zalg = ∅. The statement in the proposition follows. �

The main example of interest in this paper is the following. Recall that for any reflexive sheaf

E on a Kähler manifold X there is a canonical filtration of E by saturated subsheaves Ei whose

successive quotients are torsion-free, semistable. The slopes µi = µ(Qi) satisfy µ1 > µ2 > · · · >
µ`. This filtration is called the Harder-Narasimhan filtration of E. Moreover, there is a further

filtration of the quotients by subsheaves so that the successive quotients are stable. We call this

the Harder-Narasimhan-Seshadri (HNS) filtration. The associated graded sheaf Gr(E) is a direct

sum of stable torsion-free sheaves. It depends on the choice of Kähler class [ω] but is otherwise

canonically associated to E up to permutation of isomorphic factors. The (rankE)-vector ~µ obtained

by repeating each µ1, . . . , µ`, rankQi times, is called the Harder-Narasimhan type of E.

Two more remarks:

• Strictly speaking, the HNS construction gives rise to a double filtration; however, this fact

presents no difficulties, and for simplicity we shall treat the HNS filtration like the general

case. For more details the reader may consult [10], [32], or the book [26].

• We sometimes use the same notation Gr(E) for the associated graded of a general filtration

as well as for the HNS filtration of E. The context will hopefully make clear which is

meant.

2.3. Multiplicities associated to the support of a sheaf. If F is a coherent sheaf on a complex

manifold X, then the support Z = suppF is a closed, complex analytic subvariety of X. Moreover,

suppF is the vanishing set V (IF), where IF ⊂ OX is the annihilator ideal sheaf whose presheaf on

an open set U is the subset of functions OX(U) that annihilate all local sections in F(U). This

ideal gives suppF the structure of a complex analytic subspace with structure sheaf OZ = OX/IF.

Now Z has a decomposition Z = ∪jZj into irreducible components Zj , with structure sheaves OZj .

If necessary, we take the reduced structures, so that each Zj is a reduced and irreducible complex

subspace of X with ideal Ij (i.e. suppOX/Ij = Zj). The fact that Zj is irreducible means that the

complex manifold Zj − singZj is connected.

Note that for the inclusion ı : Zj ↪→ X, the restriction ı∗F of F to Zj is a coherent sheaf of

OZj modules. In this way we may regard F as a sheaf on Zj . The fibres of F on Z are the finite
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dimensional C-vector spaces

F(z) = Fz/mzFz = Fz ⊗OZj,z
C,

where mz is the maximal ideal in the local ring OZj ,z, and the rank, rankz F at a point is the

dimension of this vector space.

It is not difficult to see (cf. [17, p. 91]) that ı∗F is locally free at a point z0 ∈ Zj if and only if the

function z 7→ rankz F is constant for z ∈ Zj near z0. Therefore away from the set singZj ∪ sing ı∗F

of points where ı∗F fails to be locally free and Zj is singular, this function is constant (since the

set of smooth points of Zj is connected). The set singZj ∪ sing ı∗F is a proper subvariety of Zj ,

and nowhere dense in Zj (since Zj is reduced). In particular, this subvariety has dimension less

than Zj , and therefore the generic rank of ı∗F on Zj is well-defined. Another way of saying this

is that if Zj has codimension k, z ∈ Zj is a generic smooth point, and Σ is a (locally defined)

complex submanifold of X of dimension k intersecting Zj transversely at z, then the C-vector

space (OΣ)z/(Ij
∣∣
Σ

)z is finite dimensional, and its dimension is generically constant and equal to

the rank of ı∗F.

Definition 2.4. Given a coherent sheaf F on X and an irreducible component ı : Z ↪→ suppF,

define the multiplicity mZ of F along Z to be the rank of ı∗F.

For any k we can define an (n− k)-cycle associated to F by:

(2.7) [F]k =
∑

irred. Z⊂suppF

codimZ=k

mZ [Z]

Of particular interest in this paper is the associated graded sheaf F = Gr(E) of a locally free sheaf

E with a filtration by saturated subsheaves. The quotient by the inclusion Gr(E) ↪→ Gr(E)∗∗ yields

a torsion sheaf which has support in codimension 2. The irreducible components {Zalgj } of Zalg

with codimension = 2 have associated algebraic multiplicities from Definition 2.4. We will denote

these by malg
j and refer to them as the algebraic multiplicities of the filtration.

Note that in the case dimCX = 2, Gr(E)∗∗ is locally free and Gr(E)∗∗/Gr(E) is supported at

points. The structure sheaf of singular point z is OX,z/mz = C, so the fibre at this point is just the

stalk, and the multiplicity is the C-dimension of the stalk. This was the definition of malg
z used in

[11].

2.4. Uhlenbeck limits and the analytic singular set. We briefly recall the Uhlenbeck com-

pactness theorem. It is a combination of the results of [38] and [40] (see also Theorem 5.2 of

[41]).

Theorem 2.5 (Uhlenbeck). Let X be a compact Kähler manifold of complex dimension n and

(E, h) a hermitian vector bundle on X. Let Ai be a sequence of integrable unitary connections on

E with |ΛωFAi | uniformly bounded and ‖d∗AiFAi‖L2 → 0 . Fix p > 2n. Then there is:

• a subsequence (still denoted Ai)
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• a closed subset Zan ⊂ X of finite (2n− 4)-Hausdorff measure;

• a hermitian vector bundle (E∞, h∞) defined on X − Zan and Lp2,loc.-isometric to (E, h);

• an admissible Yang-Mills connection A∞ on E∞;

such that up to unitary gauge equivalence Ai converges weakly in Lp1,loc(X − Z
an) to A∞.

We call the resulting connection A∞ an Uhlenbeck limit and the set Zan the analytic singular

set. A priori both depend on the choice of subsequence in the statement of the theorem.

Remark 2.6. By [3], the holomorphic structure ∂̄A∞ on E∞ extends as a reflexive sheaf E∞ → X,

and the metrics extend smoothly to X− singE∞. As mentioned at the end of Section 2.1, since the

limiting connection is Yang-Mills, E∞ decomposes holomorphically and isometrically as a direct

sum of stable reflexive sheaves with admissible Hermitian-Einstein metrics.

The following result identifies Uhlenbeck limits of certain sequences of isomorphic bundles.

Theorem 2.7 ([10, 32]). Let Ai be a sequence of connections in a complex gauge orbit of a holo-

morphic bundle E with Harder-Narasimhan type ~µ and satisfying the hypotheses of Theorem 2.5.

Assume further that functionals HYMα(Ai)→ HYMα(~µ) for α ∈ [1,∞) in a set that includes 2 and

has a limit point. Then any Uhlenbeck limit of Ai defines a reflexive sheaf E∞ which is isomorphic

to Gr(E)∗∗.

Here, the functionals HYMα are generalizations of the Yang-Mills energy that were introduced in

[1]. All the hypotheses of Theorem 2.7 are in particular satisfied if Ai is a sequence Ati , ti → ∞,

along the Yang-Mills flow. In this case, Hong and Tian [21] prove that the convergence is in fact

C∞ away from Zan.

We now give a more precise definition of the analytic singular set. For a sequence of connections

Ai satisfying the hypotheses of Theorem 2.5 and with Uhlenbeck limit A∞, define (cf. [36, eq.

(3.1.4)]),

Zan =
⋂

σ0≥σ>0

{
x ∈ X : lim inf

i→∞
σ4−2n

∫
Bσ(x)

|FAi |
2 dvolω ≥ ε0

}
.

The numbers ε0, σ0, are those that appear in the ε-regularity theorem [38, 40] and depend only on

the geometry of X (see also Section 3.3 below). The density function is defined by taking a weak

limit of the Yang-Mills measure:

|FAi |2(x) dvolω −→ |FA∞ |2(x) dvolω + Θ(x)H2n−4
⌊
Zanb

For almost all x ∈ Zan with respect to (2n− 4)-Hausdorff measure H2n−4,

Θ(x) = lim
σ→0

lim
i→∞

σ4−2n

∫
Bσ(x)

|FAi |
2 dvolω

The closed subset of Zan defined by

Zanb = {x ∈ X | Θ(x) > 0, lim
σ→0

σ4−2n

∫
Bσ(x)

|FA∞ |
2 dvolω = 0}
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is called the blow-up locus of the sequence Ai.

By the removable singularities theorem of Tao and Tian [34] (see also Theorem 5.1 of [37]), there

is a gauge tranformation g on X −Zan, such that g(A∞) extends smoothly over the blow-up locus.

Moreover, it can be shown that H2n−4(Zan − Zanb ) = 0. Therefore, we can express

(2.8) Zan = Zanb ∪ singA∞

and singA∞ is the H2n−4-measure zero set where A∞ is singular.

If the sequence {Ai} happens to be a sequence of Hermitian-Yang-Mills connections, or if it is a

sequence along the Yang-Mills flow, then one can say much more about the blow-up locus. Namely,

we have the following theorem, proven in the two different cases in [36] and [21] respectively.

Theorem 2.8 (Tian, Hong-Tian). If Ai is either a sequence of Hermitian-Yang-Mills connections,

or a sequence Ai = Ati of connections along the Yang-Mills flow with ti →∞, and Ai has Uhlenbeck

limit A∞, then its blow-up locus Zanb is a holomorphic subvariety of pure codimension 2. Further-

more, the density Θ is constant along each of the irreducible codimension 2 components Zanj ⊂ Zan

and there exist positive integers man
j such that for any smooth (2n− 4)-form Ω, we have

1

8π2
lim
i→∞

∫
X

Ω ∧ Tr(FAi ∧ FAi) =
1

8π2

∫
X

Ω ∧ Tr(FA∞ ∧ FA∞) +
∑
j

man
j

∫
Zanj

Ω.

It follows that Zan is an analytic subvariety. We will call the numbers man
j , the analytic multiplic-

ities. For more details see [36], [37], and [21].

3. A Singular Bott-Chern Formula

3.1. Statement of results. Throughout this section we consider holomorphic vector bundles E on

a compact Kähler manifold (X,ω) with a general filtration (2.3) by saturated subsheaves. As above,

let Gr(E) denote the graded sheaf associated to the filtration, and Gr(E)∗∗ its sheaf theoretic double

dual. Then Zalg will refer to the algebraic singular set defined in Section 2.2. The codimension 2

components Zalgj ⊂ Zalg have multiplicities malg
j as in Definition 2.4.

There are two key steps in the proof of Theorem 1.3. The first is the cohomological statement

of the following result which will be proved in Section 3.2.

Proposition 3.1. Let X be a compact, complex manifold, and T → X a torsion sheaf. Assume

that suppT has codimension p. Denote by Zj ⊂ suppT the irreducible components of codimension

exactly p and by [Zj ] their corresponding homology classes. Then for all k < p, chk(T) = 0, and

chp(T) = PD(
∑

jmZj [Zj ]) in H2p(X,Q).

In other words, the p-th component of the Chern character of a torsion sheaf with support in

codimension p is the the cohomology class of the cycle [suppT]p, and all lower components vanish.

This result is probably well known, but we have not been able to find a proof in the literature. We

therefore give a proof here which will use the subsequent discussion of the Grothendieck-Riemann-

Roch theorem for complex spaces.
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Note that on a non-projective compact, complex manifold, a coherent sheaf does not in general

have a global resolution by locally free coherent analytic sheaves. See the appendix of [42] for an

explicit counter-example. Therefore, we cannot define Chern classes directly in this way. However,

after tensoring with the sheaf AX of germs of real analytic functions on X there is a resolution by

real analytic vector bundles (cf. [16]).

Definition 3.2. Let X be a compact, complex manifold and F → X a coherent sheaf. Choose a

global resolution: 0 → Er → Er−1 → · · · → E0 → F ⊗OX AX → 0, where the Ei are real analytic

complex vector bundles on X. Then define

chp(F) =

r∑
i=0

(−1)ichp(Ei)

One can show that this definition does not depend on the choice of global resolution (cf. [7]). The

Chern characters appearing in Proposition 3.1 are defined in this way. For other approaches to

Chern classes of coherent sheaves, see [18, 19].

For a smooth hermitian metric h0 on E, let A0 = (E, h0) denote the Chern connection. Then by

Chern-Weil theory the smooth, closed (2, 2)-form: ch2(E, h0) = −(1/8π2) Tr(FA0 ∧FA0), represents

the Chern character ch2(E) in cohomology. For an admissible metric h on Gr(E), let

(3.1) ch2(Gr(E), h) = − 1

8π2
Tr(FA ∧ FA)

where A is the Chern connection of (Gr(E), h) on its locally free locus X − Zalg. Note that since

FA ∈ L2, eq. (3.1) defines a (2, 2)-current on X by setting

(3.2) ch2(Gr(E), h)(Ω) = − 1

8π2

∫
X

Ω ∧ Tr(FA ∧ FA)

for any smooth (2n−4)-form Ω. The second step in the proof of Theorem 1.3 is the following result

which will be proved in Section 3.3 below.

Proposition 3.3. Let E and Gr(E) be as in the statement of Theorem 1.3. Then for any admissible

metric h on Gr(E), the smooth form ch2(Gr(E), h) on X−Zalg defined by (3.1), extends as a closed

(2, 2)-current on X. Moreover, this current represents ch2(Gr(E)∗∗) in rational cohomology.

Assuming the two results above, we have the

Proof of Theorem 1.3. Consider the exact sequence

0 −→ Gr(E) −→ Gr(E)∗∗ −→ Gr(E)∗∗/Gr(E) −→ 0.

Then by the additivity of ch2 over exact sequences we have

ch2(Gr(E)∗∗/Gr(E)) = ch2(Gr(E)∗∗)− ch2(Gr(E)) = ch2(Gr(E)∗∗)− ch2(E) ,

where we have used that ch2(Gr(E)) = ch2(E), by the definition of ch2 and additivity. Applying

Proposition 3.3 to the right hand side, and Proposition 3.1 to the left hand side of the equation
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above we obtain
1

8π2
(Tr(FA0 ∧ FA0)− Tr(FA ∧ FA)) =

∑
j

malg
j Zalgj + ddcΨ

for some (1, 1)-current Ψ by the ddc-lemma for currents. By elliptic regularity, Ψ may be taken to

be smooth away from sing Gr(E) = Zalg. �

We also note that Theorems 1.3 and 2.8 combine to give the following

Corollary 3.4. The currents
∑

jm
an
j Z

an
j and

∑
km

alg
k Zalgk are cohomologous.

3.2. Levy’s Grothendieck-Riemann-Roch Theorem and the cycle chp(T). To prove Propo-

sition 3.1 we recall a very general version of the Riemann-Roch theorem for complex spaces. One

may think of this theorem as translating algebraic (holomorphic) data into topological data. It is

expressed in terms of K-theory, so we recall some basic definitions. For the subsequent discussion X

will denote a compact, complex space. Note that for such a space there is a topological embedding

X ↪→ CN .

Let Khol
0 (X) denote the Grothendieck group of the category of coherent analytic sheaves on

X, that is, the free abelian group generated by isomorphism classes of coherent sheaves modulo

the relation given by exact sequences. We will write Ktop
0 (X) for the homology K-theory of the

topological space underlying X. This is the homology theory corresponding to the better known

topological K-theory K0
top(X) given by the Grothendieck group of the category of topological vector

bundles. The group Ktop
0 (X) may be defined in this case by choosing an embedding X ↪→ CN and

declaring Ktop
0 (X) = K0

top(CN ,CN−X), where the group on the right hand side is the usual relative

K-theory (see for example [5]). For a proper map f : X −→ Y , we can also define a pushforward

map f∗ : Ktop
0 (X)→ Ktop

0 (Y ) (see [5]), by factoring f as an inclusion composed with a projection.

With all of this understood, the version of the Grothendieck-Riemann-Roch theorem proven by

Levy [27] states that there is a natural transformation of functors α from Khol
0 to Ktop

0 . Explicitly,

this means that for any two compact complex spaces X and Y , there are maps

αX : Khol
0 (X) −→ Ktop

0 (X) , αY : Khol
0 (Y ) −→ Ktop

0 (Y )

such that for any proper morphism f : X → Y the following diagram commutes:

Khol
0 (X)

αX //

f!
��

Ktop
0 (X)

f∗
��

Khol
0 (Y )

αY // Ktop
0 (Y )

Here f! is Grothendieck’s direct image homomorphism given by

f!([F]) =
∑
i

(−1)i
[
Rif∗F

]
,

and f∗ is the pushforward map in K-theory. We also have the usual Chern character

ch∗ : K0
top(CN ,CN −X) −→ H2∗(CN ,CN −X,Q).
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We may furthermore define an homology Chern character:

ch∗ : Ktop
0 (X) −→ H2∗(X,Q),

by taking a topological embedding X ↪→ CN and then composing the maps:

Ktop
0 (X) = K0

top(CN ,CN −X)
ch∗

−−−→ H2∗(CN ,CN −X,Q) ∼= H2∗(X,Q),

where the last isomorphism is Lefschetz duality.

If X is nonsingular, so that Poincaré duality gives an isomorphism Ktop
0 (X) ∼= K0

top(X), then

the relationship between the homology Chern character and the ordinary Chern character ch∗ :

K0
top(X) −→ H2∗(X,Q) is given by:

ch∗(PD η) = PD[ch∗(η) · Td(X)].

The homology Chern character is also a natural transformation with respect to the pushforward

maps. By composition there is a natural transformation of functors

τ = ch∗ ◦ α : Khol
0 (X)→ H2∗(X,Q)

that satisfies the corresponding naturality property, i.e. for any proper map of complex spaces

f : X → Y : τ ◦ f! = f∗ ◦ τ . Here f! is as before, and f∗ is the usual induced map in homology.

For a coherent sheaf F, τ(F) is called the homology Todd class of F and satisfies a number of

important properties.

(1) If F is locally free and X is smooth, then τ(F) is the Poincaré dual to

ch(F) · Td(X) ∈ H2∗(X,Q),

and in particular τ(OX) = PD(Td(X)).

(2) For an embedding ı : X ↪→ Y , we have τ(ı∗F) = ı∗(τ(F)).

(3) If the support suppF has dimension k, then the components of τ(F) in (real) dimensions

r > 2k vanish.

(4) For any exact sequence of sheaves: 0→ G→ F → H→ 0, we have τ(F) = τ(G) + τ(H).

Property (4) follows from [27, Lemma 3.4(b)] together with the additivity of the homology Chern

character. For F locally free, property (1) is a restatement of of [27, Lemma 3.4(c)] as follows. The

statement there is that for F locally free, α(F) is Poincaré dual to the topological vector bundle

corresponding to F in K0
top(X), then (1) follows by applying ch∗. Property (2) follows from the

naturality of τ and the fact that the higher direct images of an embedding vanish. Property 3

follows from dimensional considerations. Indeed, since suppF is an analytic subvariety, it can be

triangulated, and if it has (real) dimension 2k the homology in higher dimensions will be zero.

Hence, τ evaluated on the restriction of F to suppF has zero components in dimension > 2k. This

combined with property (2) applied to the embedding ı : suppF ↪→ X proves (3).

Now we have the following important consequence of these properties.
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Proposition 3.5. For a coherent sheaf F on a complex manifold, the component of τ(F) in degree

2 dim suppF is the homology class of the cycle∑
j

(
rankOZj

F
∣∣
Zj

)
[Zj ] =

∑
j

mZj [Zj ]

where the Zj are the irreducible components of suppF of top dimension.

Proof. First, we prove that for a reduced and irreducible, closed complex subspace Z of X, and a

coherent sheaf F on Z, τ(F)2 dimZ = (rankF)[Z], where [Z] denotes the generator of H2 dimZ(Z,Q).

Note that if Z is smooth and F is locally free, the statement follows directly from property (1). By

Hironaka’s theorem we may resolve the singularities of Z by a sequence of blow-ups along smooth

centers. By Hironaka’s flattening theorem, we can perform a further sequence of blow-ups along

smooth centers to obtain a complex manifold Ẑ, and a map π : Ẑ → Z such that

π : Ẑ − π−1(singZ ∪ singF)→ Z − (singZ ∪ singF)

is a biholomorphism, and F̂ = π∗F/tor(π∗F) is locally free. Then τ(F̂)
2 dim Ẑ

= (rank F̂)[Ẑ] =

(rankF)[Ẑ]. The fundamental class of an analytic subvariety is always equal to the pushforward

of the fundamental class of a resolution of singularities (see [42, Ch. 11.1.4]), so we have that

π∗(τ(F̂)2 dimZ) = (rankF)[Z]. By naturality, this is also τ(π!F̂)2 dimZ . Since π is, in particular, a

proper map, the stalks of the higher direct image sheaves are given by (Riπ∗F̂)z = H i(π−1(z), F̂),

and so Riπ∗F̂ is supported on a proper subvariety for i > 0. Therefore, τ(Riπ∗F̂)2 dimZ = 0 for i > 0

by property (3). It follows that τ(π∗F̂)2 dimZ=(rankF)[Z]. In fact, since tor(π∗F) is supported on a

divisor, by properties (1), (3), and (4), and the above argument applied to the higher direct images

of π∗F, we have

(3.3) (rankF)[Z] = π∗(τ(F̂)2 dimZ)= π∗(τ(π∗F)2 dimZ) = τ(π∗π
∗F)2 dimZ .

On the other hand the natural map F
α−→ π∗π

∗F is an isomorphism away from the proper subvariety

singZ ∪ singF. Therefore, the sheaves ker(α) and the quotient Q of π∗π
∗F by F/ ker(α) are

supported on singZ ∪ singF. Considering the exact sequence:

0 −→ F/ ker(α) −→ π∗π
∗F −→ Q −→ 0,

we see by (4) that

(3.4) τ(π∗π
∗F) = τ(F/ ker(α)) + τ(Q) = τ(F)− τ(ker(α)) + τ(Q)

Since ker(α) and Q are supported on Zsing, (3) implies τ(ker(α))2 dimZ = τ(Q)2 dimZ = 0. Therefore,

taking the top dimensional component in (3.4) we obtain:

τ(F)2 dimZ = τ(π∗π
∗F)2 dimZ ,

so by (3.3), τ(F)2 dimZ = (rankF)[Z].

Now we prove the proposition. If suppF = Z
ı
↪→ X is irreducible so that ı∗F has constant rank

on Z, then by what we have just proven τ(F
∣∣
Z

)2 dimZ = (rankF
∣∣
Z

)[Z]. By naturality, and the

fact that ı∗ı
∗F = F, we have τ(F)2 dimZ = (rankF

∣∣
Z

)[Z]. If Z has several irreducible components
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Z1, · · · , Zl, of dimension dimZ then we may similarly consider the embeddings ıj : Zj ↪→ X. Then

rankF
∣∣
Zj

= rank((ıj)∗F
∣∣
Zj

), and this latter sheaf is supported on Zj , so that τ((ıj)∗F
∣∣
Zj

)2 dimZ =

(rankF
∣∣
Zj

)[Zj ]. Moreover, the natural map F →
⊕
j

(ıj)∗F
∣∣
Zj

is an injection, and the quotient

is supported on the pairwise intersections of the Zj (and the irreducible components of lower

dimension), and so has zero τ in dimension 2 dimZ. Therefore by properties (3) and (4) we have

τ(F)2 dimZ = τ

(⊕
j

(ıj)∗F
∣∣
Zj

)
2 dimZ

=
∑
j

(rankF
∣∣
Zj

)[Zj ].

�

Remark 3.6. If X and Y are compact, complex manifolds, Atiyah and Hirzebruch [2] prove the

topological Grothendieck-Riemann-Roch theorem. That is, for any continuous map f : X → Y , the

diagram:

K0
top(X)

ch∗ //

f∗
��

H2∗(X,Q)

f∗
��

K0
top(Y )

ch∗ // H2∗(Y,Q)

commutes up to multiplication by Todd classes on both sides, where f∗ on both sides of the diagram

is the Gysin map given by the induced map in homology and Poincaré duality. Combining this

with Levy’s theorem, it follows that for a proper holomorphic map f : X → Y and any class

η ∈ Khol
0 (X),

f∗(ch(η) · Td(X)) = ch(f!(η)) · Td(Y )

in H2∗(Y,Q). This is the exact analogue of the formula proven in [29], where the identity is in the

Hodge ring rather than rational cohomology.

Remark 3.7. Define K0
hol(X) to be the Grothendieck group of holomorphic vector bundles on a

complex manifold X. Let F be a coherent analytic sheaf on X defining a class η ∈ Khol
0 (X). By

the lemma in Fulton [15], there is a complex manifold X̂ with a proper morphism π : X̂ −→ X an

element ζ ∈ K0
hol(X̂) such that π!(PD ζ) = η, (where PD ζ is given by the class ζ ⊗ [O

X̂
], the cap

product with the fundamental class in Khol
0 (X̂)). Then by property (1), naturality of τ , and the

previous remark:

τ(F) = τ(η) = π∗(τ(PD ζ) = π∗[(ch
∗PD ζ · Td(X̂)] ∩ [X̂])

= [ch(π!(PD ζ)) · Td(X)] ∩ [X] = ch(F) · Td(X) ∩ [X].

Therefore, in fact property (1) holds for arbitrary coherent sheaves.

Finally, we have the

Proof of Proposition 3.1. If T is a torsion sheaf on a complex manifold X, then Z = suppT is a

complex analytic subvariety of X (via the annihilator ideal sheaf). Suppose codimZ = p. Then
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for any k < p, by property (3) we have τ(T)dim 2n−2k = 0. Applying Remark 3.7 we have:

τ(T)dim 2n−2 = PD

[
c1(T) +

rankT

2
c1(X)

]
= PD[c1(T)]

since T is torsion and therefore has generic rank 0. If p ≥ 2, the left hand side vanishes. By

induction we therefore see that for any k < p, we have:

0 = τ(T)dim 2n−2k = PD

∑
i≤k

chi(T) · Tdk−i(X)

 = PD[chk(T)].

By Proposition 3.5, τ(T)dim 2n−2p =
∑

jmZj [Zj ], and by Remark 3.7 it is also [ch(T) · Td(X)]p ∩
[X]. Since all components of the Chern character of degree less than p are zero, this is equal to

PD[chp(T)], so we have: chp(T) = PD
(∑

jmZj [Zj ]
)
. �

3.3. Proof of Proposition 3.3. In this section we show that the second Chern character form of

an admissible connection on a reflexive sheaf actually represents the cohomology class of the second

Chern character, at least when the sheaf satisfies a certain technical, topological assumption. The

proof of this result follows the general argument in [36]. However, instead of an admissible Yang-

Mills connection and the corresponding monotonicity formula of Price which are the context of [36],

we have the Chern connection of an admissible metric in the sense of Section 2.1. The uniform

bound on the Hermitian-Einstein tensor means we may instead use the monotonicity formula and

Lp-estimates derived for integrable connections on Kähler manifolds in [40]. For completeness, we

provide details of the proof below.

First let us review the two key results of [40] that we will need. Let E → X be a hermitian

bundle with an integrable connection A, and let supX |ΛωFA| ≤ H0. For constants C1, C2, and

x ∈ X, σ > 0, define

(3.5) eA(x, σ) = C1σ
4H2

0 + (1 + C2σ
2)2n−2σ4−2n

∫
Bσ(x)

|FA|2dvolω

Then for appropriately chosen C1, C2, σ0 > 0 (depending only on the geometry of X), it follows

from [40, Thm. 3.5] that eA(x, σ) is monotone increasing, i.e. for all 0 < σ ≤ ρ ≤ σ0,

(3.6) eA(x, σ) ≤ eA(x, ρ)

Next, fix p > 2n. Then there are constants ε0 > 0, C > 0 (depending only on p and the geometry

of X) such that if 4σ ≤ σ0 and eA(x, 4σ) < ε0, then:

(3.7)

(
σ2p−2n

∫
Bσ(x)

|FA|pdvolω
)1/p

≤ C

{(
σ4−2n

∫
B4σ(x)

|FA|2dvolω
)1/2

+ σ2H0

}
(see [40, Thm. 2.6]). Under these assumptions, it follows from [38, Sec. 2] that one can find a gauge

transformation g so that

(3.8) sup
Bσ/2(x)

|g(A)| ≤ C

σ

(
σ2p−2n

∫
Bσ(x)

|FA|pdvolω
)1/p

With these preliminaries we give the



SINGULAR SETS FOR THE YANG-MILLS FLOW 17

Proof of Proposition 3.3. Let A denote the Chern connection of (Gr(E), h). We wish to show the

current defined in (3.2) is closed, i.e. ch2(Gr(E), h)(Ω) = 0 for any Ω = dφ. The argument closely

follows the proof in [36, Prop. 2.3.1]. By using a partition of unity we may assume φ is compactly

supported in a coordinate ball U . Note that Gr(E) is smoothly isomorphic to the underlying vector

bundle E of E on X − Zalg. Hence, we may assume that A is an integrable connection on a trivial

bundle on U , smooth away from Z, with FA ∈ L2 and |ΛωFA| uniformly bounded by H0. For

0 < σ < σ0, 0 < ε < ε0, let

Eσ,ε = {x ∈ U : eA(x, 4σ) ≥ ε}

where eA(x, σ) is defined in (3.5). Denote σ-neighborhoods of subsets of U by Nσ.

Choose a covering {B2σ(xk), B2σ(yk)} of Z ∪ Eσ,ε, with xk ∈ Z, yk ∈ Eσ,ε, and such that the

balls Bσ(xk), Bσ(yk), are all disjoint. If x 6∈
⋃
k B6σ(xk) ∪ B2σ(yk), then B4σ(x) ⊂ X − Z, and

eA(x, 4σ) < ε. In particular, for any x 6∈ N8σ(Z) ∪ N4σ(Eσ,ε), there is a gauge transformation g

such that (3.8) holds. As in [36, pp. 217-218], we can piece together the gauge transformations to

obtain a global Chern-Simons form away from N8σ(Z) ∪N4σ(Eσ,ε):

CS(A) = tr
(
A ∧ FA + (1/3)A ∧A ∧A

)
for A in this gauge, with dCS(A) = tr(FA ∧FA). Now for x ∈ B16σ(xk)−B8σ(xk), and using (3.7)

and (3.8),

|CS(A)(x)| ≤ |A(x)||FA(x)|+ (1/3)|A(x)|3

≤ 1

2σ
|A(x)|2 +

σ

2
|FA(x)|2 +

1

3
|A(x)|3

≤ C

σ3

(
σ2p−2n

∫
Bσ(x)

|FA|pdvolω
)2/p

+
σ

2
|FA(x)|2

≤ Cσ1−2n

∫
B4σ(x)

|FA|2dvolω + CσH2
0 +

σ

2
|FA(x)|2

≤ Cσ1−2n

∫
B20σ(xk)

|FA|2dvolω + CσH2
0 +

σ

2
|FA(x)|2(3.9)

Similarly, for y ∈ B8σ(yk)−B4σ(yk),

(3.10) |CS(A)(y)| ≤ Cσ1−2n

∫
B12σ(yk)

|FA|2dvolω + CσH2
0 +

σ

2
|FA(y)|2
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(we have assumed ε ≤ 1). Now choose a smooth cut-off function η, η(t) ≡ 0 for t ≤ 1, η(t) ≡ 1 for

t ≥ 2. It follows that∣∣∣∣∫
X
dφ ∧ Tr(FA ∧ FA)

∣∣∣∣ = lim
σ→0

∣∣∣∣∫
X
η (dist(x, Z)/8σ) η (dist(x,Eσ,ε)/4σ) dφ ∧ dCS(A)

∣∣∣∣
≤ lim

σ→0

{∫
8σ≤dist(x,Z)≤16σ

1

8σ
|dφ||CS(A)|dvolω(x)

+

∫
4σ≤dist(x,Eσ,ε)≤8σ

1

4σ
|dφ||CS(A)|dvolω(x)

}
≤ C sup |dφ| lim

σ→0

∑
k

{∫
B20σ(xk)

(|FA|2 + CH2
0 )dvolω

+

∫
B12σ(yk)

(|FA|2 + CH2
0 )dvolω

}
≤ C sup |dφ| lim

σ→0

∫
N20σ(Z)∪N12σ(Eσ,ε)

(|FA|2 + CH2
0 )dvolω(3.11)

since the number of i, j, k, l such that the balls B20σ(xi), B20σ(xj), B12σ(yk), B12σ(yl), intersect is

bounded independently of σ.

Claim . For 0 < σ′ ≤ σ, we have the following inclusions:

N20σ′(Z) ∪N12σ′(Eσ′,ε) ⊂ N20σ(Z) ∪N12σ(Eσ,ε)⋂
σ>0

{N20σ(Z) ∪N12σ(Eσ,ε)} ⊂ Z

Indeed, if y ∈ N12σ′(Eσ′,ε) and y 6∈ N20σ(Z), then there is x ∈ Eσ′,ε such that d(x, y) < 12σ′ ≤ 12σ,

and if z ∈ Z, then 20σ ≤ d(y, z) ≤ d(x, y) + d(x, z) < d(x, z) + 12σ, so B4σ(x) ⊂ X −Z. Now (3.6)

applies, and so ε ≤ eA(x, 4σ′) ≤ eA(x, 4σ). It follows that x ∈ Eσ,ε and y ∈ N12σ(Eσ,ε). This proves

the first statement in the claim. The second statement follows from the fact that A is smooth away

from Zalg; hence, lim
σ→0

eA(x, σ) = 0 for x 6∈ Zalg. Now by the claim and the dominated convergence

theorem, the limit on the right hand side of (3.11) vanishes, and closedness of ch2(Gr(E), h) follows.

Since ch2(Gr(E), h) is a closed current it defines a cohomology class. By Poincaré duality, to

check that indeed [ch2(Gr(E), h)] = ch2(Gr(E)∗∗), it suffices to show that for any smooth, closed

(2n− 4)-form Ω whose cohomology class is dual to a 4-dimensional rational homology class [Σ],

(3.12) ch2(Gr(E)∗∗)[Σ] = ch2(Gr(E), h)(Ω)

Since a multiple of a rational homology class is represented by an embedded manifold, and since

Gr(E)∗∗ is locally free away from a set of (real) codimension ≥ 6, by a transversality argument we

may assume (after passing to an integer multiple) that the homology class [Σ] is represented by a

smoothly embedded submanifold Σ ⊂ X − sing Gr(E)∗∗. By the Thom isomorphism we may then

choose the form Ω to be compactly supported in X − sing Gr(E)∗∗. Find a global resolution

(3.13) 0 −→ Er −→ Er−1 −→ · · · −→ E0 −→ Gr(E)∗∗ ⊗OX AX −→ 0
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where the Ei are real analytic complex vector bundles on X, and fix smooth connections ∇i on Ei.

Then by Definition 3.2,

(3.14) ch2(Gr(E)∗∗) =

[
− 1

8π2

r∑
i=0

(−1)i tr(F∇i ∧ F∇i)

]
If we choose a sequence of smooth hermitian metrics h∗∗j on the locally free part of Gr(E)∗∗ with

Chern connections A∗∗j , then since (3.13) is an exact sequence of analytic vector bundles away from

sing Gr(E)∗∗, there are smooth forms Ψj such that

(3.15) − 1

8π2
tr(FA∗∗j ∧ FA∗∗j ) +

1

8π2

r∑
i=0

(−1)i tr(F∇i ∧ F∇i) = dΨj

on X − sing Gr(E)∗∗. Finally, by Theorem 2.1 (ii), we may arrange that h∗∗j → h in Lp2,loc. for some

p > 2n. Then h∗∗j and (h∗∗j )−1 are uniformly bounded on compact subsets of X − sing Gr(E)∗∗, and

it follows that FA∗∗j → FA in L2
loc.. Then for Ω as above, we obtain from (3.14) and (3.15) that

ch2(Gr(E)∗∗)[Σ] = − 1

8π2

∫
X

Ω ∧
r∑
i=0

(−1)i tr(F∇i ∧ F∇i)

= −
∫
X

Ω ∧
(

1

8π2
tr(FA∗∗j ∧ FA∗∗j ) + dΨj

)
= − 1

8π2

∫
X

Ω ∧ tr(FA∗∗j ∧ FA∗∗j ) for all j

= − 1

8π2
lim
j→∞

∫
X

Ω ∧ tr(FA∗∗j ∧ FA∗∗j )

= − 1

8π2

∫
X

Ω ∧ tr(FA ∧ FA)

Hence, from the definition (3.2), eq. (3.12) holds, and this completes the proof of the proposition.

�

4. Comparison of singular sets

4.1. A slicing lemma. Let z be a smooth point of a codimension 2 subvariety Z ⊂ X. We say

that Σ is a transverse slice to Z at z if Σ ∩ Z = {z} and Σ is the intersection of a linear subspace

C2 ↪→ Cn in some coordinate ball centered at z that is transverse to TzZ at the origin. Suppose

that T is a smooth, closed (2, 2) form and that we have an equation

T = mZ + ddcΨ

where Ψ is a (1, 1)-current, mZ is the current of integration over the nonsingular points of Z with

multiplicity m, and the equation is taken in the sense of distributions. Then for a transverse slice,

(4.1) m =

∫
Σ
T −

∫
∂Σ
dcΨ
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Indeed, if we choose local coordinates so that a neighborhood of z is biholomorphic to a polydisk

∆ ∈ Cn, and Z ∩∆ is given by the coordinate plane z1 = z2 = 0, then by King’s formula (cf. [12,

Ch. III, 8.18]) we have an equation of currents on ∆:

T = ddc [Ψ +muddcu]

where u(z) = (1/2) log(|z1|2 + |z2|2) (here, −πiddc = ∂∂̄). Write T = ddcα for a smooth form α on

∆. By the regularity theorem and the Poincaré lemma, we can find a smooth form β such that

dc [Ψ− α+muddcu] = dβ

on ∆. Let ∆ε = {z ∈ ∆ : |z| ≤ ε}. It follows that:∫
Σ
T = lim

ε→0

∫
Σ∩∆c

ε

T = lim
ε→0

∫
Σ∩∆c

ε

ddcΨ =

∫
∂Σ
dcΨ− lim

ε→0

∫
Σ∩∂∆ε

dcΨ

=

∫
∂Σ
dcΨ− lim

ε→0

∫
Σ∩∂∆ε

dcα+m lim
ε→0

∫
Σ∩∂∆ε

dc(uddcu)

=

∫
∂Σ
dcΨ +m

by direct computation. The next result shows that the analytic multiplicities may also be calculated

by restricting to transverse slices.

Lemma 4.1. Let Ai be as in Theorem 2.8 and Z ⊂ Zanb an irreducible component of the blow-up

set. For a transverse slice Σ at a smooth point z ∈ Z, we have:

man
Z = lim

i→∞

1

8π2

∫
Σ
{Tr(FAi ∧ FAi)− Tr(FA∞ ∧ FA∞)} .

Proof. Assume without loss of generality that Σ ⊂ Bσ(z), where the ball is chosen so that Ai → A∞

smoothly and uniformly on compact subsets of B2σ(z)−Z. We furthermore assume the exponential

map expz at z defines a diffeomorphism onto B2σ(z), and that Z ∩ B2σ(z) is a submanifold. For

λ > 0, let Ai,λ be the connection on TzX obtained by pulling back Ai by the exponential map,

followed by the rescaling v 7→ λv (cf. [36, Sec. 3]). Then by definition of the blow-up connection

and the uniqueness of tangent cones, there is a sequence λi ↓ 0 such that

man
Z = lim

i→∞

1

8π2

∫
V ⊥∩B1(0)

{
tr(FAi,λi ∧ FAi,λi )− tr(FA∞,λi ∧ FA∞,λi )

}
(see [36, eq. (4.2.7)] and [21, eq. (5.5)]). The notation V ⊥ denotes the orthogonal complement of

V = TzZ ⊂ TzX, and B1(0) is the unit ball about the origin. Let Sλi = expz(λi(V
⊥ ∩ B1(0))).

For sufficiently large i (i.e. 0 < λi small), we may assume Sλi ⊂ Bσ(z). At this point we choose

smooth maps ui : V ⊥ ∩ B1(0)× [0, 1] −→ B2σ(z), such that

• ui(V ⊥ ∩ B1(0), 0) = Σ;

• ui(V ⊥ ∩ B1(0), 1) = Sλi ;

• ui(v, t) ∈ B2σ(z)− Z for all |v| = 1 and all t ∈ [0, 1].

To be precise, the ui can be constructed as follows. Without loss of generality assume:
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(i) Z ∩B2σ(0) = {expz(g(w), w) : w ∈ V ∩ B1(0)}. Here, g(0) = 0, so we have |g(w)| ≤ C1|w|
for some constant C1 and all w ∈ V ∩ B1(0).

(ii) Σ = {expz(v, f(v)) : v ∈ V ⊥ ∩ B1(0)}. We may assume this form for any transverse slice

by the implicit function theorem. Since f(0) = 0, we may assume, after possibly shrinking

the slice, that |f(v)| ≤ C2 for all v ∈ V ⊥ ∩ B1(0), where C1C2 ≤ 1/2.

(iii) Sλi = {expz(λiv, 0) : v ∈ V ⊥ ∩ B1(0)}.

Now for v ∈ V ⊥ ∩ B1(0), t ∈ [0, 1], set

ui(v, t) = expz (((1− t) + tλi)v, (1− t)f(v))

Then by (ii) and (iii), the image of ui(·, 0) is Σ, and the image of ui(·, 1) is Sλi . Moreover, we

may assume that u(v, t) ∈ B2σ(x) by changing the radius of B1(0). Finally, note that by (ii),

|(1− t)f(v)| ≤ (1− t)C2, whereas |((1− t) + tλi)v| = (1− t) + tλi for |v| = 1. If ui(v, t) ∈ Z, then

by (i) we would have (1− t) + tλi ≤ C1C2(1− t) ≤ (1/2)(1− t), which is impossible since λi > 0.

Hence, ui(v, t) 6∈ Z for |v| = 1. With this understood, we obtain

0 =
1

8π2

∫
V ⊥∩B1(0)×[0,1]

d {u∗i tr(FAi ∧ FAi)− u∗i tr(FA∞ ∧ FA∞)}

=
1

8π2

∫
V ⊥∩B1(0)

{
tr(FAi,λi ∧ FAi,λi )− tr(FA∞,λi ∧ FA∞,λi )

}
− 1

8π2

∫
Σ
{tr(FAi ∧ FAi)− tr(FA∞ ∧ FA∞)}(4.2)

+
1

8π2

∫
V ⊥∩ ∂B1(0)×[0,1]

u∗i {tr(FAi ∧ FAi)− tr(FA∞ ∧ FA∞)}

Since Ai and A∞ are connections on the same bundle away from Z, we may write dAi = dA∞ + ai,

and define the Chern-Simons transgression,

(4.3) CS(Ai, A∞) = tr
(
ai ∧ dA∞(ai) + (2/3)ai ∧ ai ∧ ai + 2ai ∧ FA∞

)
Then

1

8π2

∫
V ⊥∩ ∂B1(0)×[0,1]

u∗i
{

tr(FAi ∧ FAi)− tr(FA∞ ∧ FA∞)
}

=
1

8π2

∫
V ⊥∩ ∂B1(0)×[0,1]

u∗i (dCS(Ai, A∞))

=
1

8π2

∫
V ⊥∩ ∂B1(0)

CS(Ai,λi , A∞,λi)−
1

8π2

∫
∂Σ
CS(Ai, A∞)

Since Ai → A∞ uniformly away from Z and Ai,λi , A∞,λi → 0 on compact subsets of V ⊥ − {0} (cf.

[21, p. 469]), this term vanishes as i→∞. We conclude from (4.2) that

lim
i→∞

1

8π2

∫
V ⊥∩B1(0)

{
tr(FAi,λi ∧ FAi,λi )− tr(FA∞,λi ∧ FA∞,λi )

}
= lim

i→∞

1

8π2

∫
Σ
{tr(FAi ∧ FAi)− tr(FA∞ ∧ FA∞)}
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and the proof is complete. �

4.2. Proof of Theorem 1.1. Throughout this section we let Ai = Ati , ti → ∞ be a sequence

along the Yang-Mills flow, and suppose Ai → A∞ is an Uhlenbeck limit with analytic singular set

Zan. Let Zalg denote the algebraic singular set of the HNS filtration of the initial holomorphic

bundle E. Then we have the following

Proposition 4.2. Let Z be an irreducible codimension 2 component of Zalg. Then Z ⊂ Zanb and

malg
Z = man

Z . Moreover, Zanb ⊂ Zalg.

To isolate contributions from individual components, we will first need an argument similar to

the one used in [11, Lemma 6].

Lemma 4.3. Let Z ⊂ Zalg be an irreducible codimension 2 component. Then there exists a

modification π : X̂ → X with center C and exceptional set E = π−1(C), and a filtration of π∗E

with associated graded sheaf Gr(π∗E) → X̂ and singular set sing Gr(π∗E), all with the following

properties:

(i) Gr(π∗E) ' Gr(E) on X̂ −E = X −C.

(ii) codim(Z ∩C) ≥ 3.

(iii) codim (π(sing Gr(π∗E))− Z) ≥ 3.

Proof. By Hironaka’s theorem, we may find a resolution X̂1 → X of the singularities of Zalg. Note

that the center of this modification has codimension ≥ 3 in X. Let W ⊂ Zalg be a codimension

2 irreducible component other than Z, and let Ŵ1 denote the strict transform of W in X̂1. By

assumption, Ŵ1 is smooth. We are going to define a sequence of monoidal transformations

X̂n −→ X̂n−1 −→ · · · −→ X̂1 −→ X

First, let π2 : X̂2 → X be the blow-up of X̂1 along Ŵ1, and consider the induced filtration of π∗2E

by saturated subsheaves with associated graded Gr(π∗2E). After a possible further desingularization

in codimension 3, we may assume without loss of generality that sing Gr(π∗2E) is smooth in X̂2.

Moreover, any codimension 2 component of sing Gr(π∗2E) that contains the generic P1-fiber of

the exceptional divisor of X̂2 → X̂1 projects in X to a proper subvariety of W ; hence, up to a

codimension 3 set in X, we may ignore these components. Let Ŵ2 denote the union of the (other)

codimension 2 components of sing Gr(π∗2E) in the exceptional set of X̂2 → X̂1. Again, Ŵ2 is smooth

by assumption. Define X̂3 to be the blow-up of X̂2 along Ŵ2. Repeat this process in the same

manner to obtain recursively X̂k, for k greater than 3. We now claim that after a finite number

of steps n, this process stabilizes: Ŵn is empty and X̂n+1 = X̂n. In other words, the part of

sing Gr(π∗nE) in the exceptional set of X̂n → X̂1 projects in X to a proper subvariety of W . Note

that this then implies codim (πn(sing Gr(π∗nE))− Z) ≥ 3. To prove the claim it clearly suffices to

consider the case of a single step filtration:

0 −→ S −→ E −→ Q∗∗ −→ T −→ 0
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where S and E are locally free at generic points of W . Let I be the sheaf of ideals generated by

the determinants of rank S × rank S minors of the map S → E with respect to local trivializations

of both bundles near a point p ∈W . The vanishing set of I is W by definition. If Σ is a transverse

slice to W at the point p, let IΣ denote the ideal sheaf in OΣ generated by the restriction of the

generators of I to Σ. Note that OΣ/IΣ is supported precisely at p. By [28, Thm. 14.14, Thm.

14.13, and Thm. 14.10], and the fact that the stalk OΣ,p is a Cohen-Macauley local ring, there are

germs f1, f2 ∈ IΣ,p so that dimC(OΣ,p/ < f1, f2 >) = e(IΣ,p), the Hilbert-Samuel multiplicity of the

ideal IΣ,p, and this latter number is constant for slices through generic smooth points of W . Let

D1, D2 be the divisors associated to f1 and f2, and let D̂1, D̂2 be the strict transforms of D1, D2

in the blow-up of Σ at p. Then the intersection multiplicity 〈D̂1, D̂2〉 is strictly less than 〈D1, D2〉
(cf. [33, p. 210, Corollary 3]), the difference depending on the order of vanishing of f1 and f2 at

p. This means that after a fixed number of blow-ups, depending only on 〈D1, D2〉, D̂1 and D̂2 are

disjoint. But since D1 and D2 intersect only at p, the intersection multiplicity 〈D1, D2〉 is equal to

dimC(OΣ,p/ < f1, f2 >) by definition. It follows that after a finite number of blow-ups πn : X̂n → X

as described above, the number depending only upon the Hilbert-Samuel multiplicity e(IΣ,p) of a

generic slice, the strict transforms of the divisors corresponding to (the extensions of) f1 and f2 in

I intersect at most in a set ẐW that projects to a proper subvariety of W . If Ŝ is the saturation

of π∗nS in π∗nE, then Λrank SŜ is the saturation of π∗nΛrank SS, and so Ŝ is a subbundle away from

ẐW . This proves the claim. The lemma now follows by carrying out the procedure above on all

codimension 2 components of Zalg other than Z. �

Proof of Proposition 4.2. Choose an irreducible codimension 2 component Z ⊂ Zalg. We wish to

show that malg
Z = man

Z . Since malg
Z 6= 0, it will follow that Z ⊂ Zan. In fact, since singA∞ in

the decomposition (2.8) has codimension at least 3, Z ⊂ Zanb . We therefore proceed to prove the

equality of multiplicities.

First, since X is Kähler the rational homology class of [Z] is nonzero. Therefore, there is a class

in H4(X,Q) whose intersection product with [Z] is non-trivial. Since an integral multiple of any

class (not in top dimension) can be represented by an embedded submanifold (see [35]), we may in

particular choose a closed, oriented 4-real dimensional submanifold Σ ⊂ X representing a class [Σ]

in H4(X,Q), so that the intersection product [Σ] · [Z] 6= 0. Furthermore, since dimZalg + dim Σ =

dimX we may choose Σ so that it meets Zalg only in the smooth points of the codimension

2 components, and this transversely. Since the intersection multiplicity [Σ] · [Z] 6= 0, we have

Σ ∩ Z = {z1, . . . , zp} for some finite (non-empty) set of points. Clearly, we can assume Σ is a

(positive or negatively oriented) transverse slice at each point of intersection with Zalg. Let X̂ and

Gr(π∗E) be as in Lemma 4.3. By transversality and part (iii) of the lemma, we may arrange so that

the strict transform Σ̂ of Σ is embedded and Σ̂ intersects sing Gr(π∗E) only along π−1(Z). Choose

σ > 0 so that for each k = 1, . . . , p,

• B2σ(zk) ⊂ X −C (by Lemma 4.3 (ii))

• B2σ(zk) ∩ Zalg ⊂ Z − sing Gr(E)∗∗
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Let A∞ be a smooth connection on Gr(E)∗∗ over ∪pk=1B2σ(zk), and fix a Kähler metric on X̂.

By the construction in [3] (see Theorem 2.1 (i)), and noting Lemma 4.3 (i), we can extend A∞ to

a ω̂-admissible connection Â∞ on Gr(π∗E)∗∗. Given a smooth connection A on E, let π∗A denote

the pull-back connection on π∗E. Then by Theorem 1.3 we have

(4.4)
1

8π2
tr(Fπ∗A ∧ Fπ∗A)− 1

8π2
tr
(
F
Â∞
∧ F

Â∞

)
=
∑

m̂alg
j Ŵj + ddcΨ̂

where the Ŵj are the codimension 2 components of supp (Gr(π∗E)∗∗/Gr(π∗E)). Notice that by

Lemma 4.3 (i) and the choice of Σ, Gr(π∗E) is locally free in a neighborhood of Σ̂∩
(
∪pk=1B2σ(zk)

)c
,

and there is one component, Ŵ1 say, such that π(Ŵ1) = Z, while all other components Ŵj miss Σ̂.

Moreover, m̂alg
1 = malg

Z . Now the difference of the Chern forms for Â∞ and π∗A are related by a

Chern-Simons class dCS(π∗A, Â∞) = ddcΨ̂ in a neighborhood of Σ̂ away from π−1(Z) (cf. (4.3)).

We can then use this fact to obtain, by (4.1) and (4.4),

([Σ] · [Z])malg
Z =

1

8π2

∫
Σ∩(∪pk=1Bσ(zk))

{tr(FA ∧ FA)− tr(FA∞ ∧ FA∞)} −
∫

Σ∩∂(∪pk=1Bσ(zk))
dcΨ̂

=
1

8π2

∫
Σ∩(∪pk=1Bσ(zk))

{tr(FA ∧ FA)− tr(FA∞ ∧ FA∞)}+

∫
Σ̂∩(∪pk=1Bσ(zk))

c
ddcΨ̂

=
1

8π2

∫
Σ∩(∪pk=1Bσ(zk))

{tr(FA ∧ FA)− tr(FA∞ ∧ FA∞)}+

∫
Σ∩(∪pk=1Bσ(zk))

c
dCS(π∗A, Â∞)

=
1

8π2

∫
Σ∩(∪pk=1Bσ(zk))

{tr(FA ∧ FA)− tr(FA∞ ∧ FA∞)} −
∫

Σ∩∂(∪pk=1Bσ(zk))
CS(A,A∞)(4.5)

Finally, apply the above to a sequence Ai of connections converging to A∞ away from Zan as in

Theorem 2.8. Then CS(Ai, A∞) → 0 on Σ ∩ ∂Bσ(zk) for each k; hence the second term in (4.5)

vanishes in the limit. By Lemma 4.1,

lim
i→∞

1

8π2

∫
Σ∩(∪pk=1Bσ(zk))

{tr(FAi ∧ FAi)− tr(FA∞ ∧ FA∞)} = ([Σ] · [Z])man
Z

By (4.5) we therefore obtain ([Σ] · [Z])malg
Z = ([Σ] · [Z])man

Z , and since [Σ] · [Z] 6= 0 we conclude

that malg
Z = man

Z . This is the first assertion in the statement of Proposition 4.2. It implies that the

cycle ∑
j

man
j Z

an
j −

∑
j

malg
k Zalgk

has nonnegative coefficients. But by Corollary 3.4, the corresponding current is also cohomologous

to zero. Hence, all codimension 2 components of Zanb must in fact be contained in Zalg with the

same multiplicities. As mentioned previously, by the theorem of Tian and Harvey-Shiffman, Zanb
has pure codimension 2, and so this proves the second statement. �

Proposition 4.2 proves part (3) of Theorem 1.1. For part (1), note that by Proposition 4.2,

the irreducible codimension 2 components of Zalg and Zan coincide. We claim that singA∞ =

sing Gr(E)∗∗. Indeed, if p 6∈ sing Gr(E)∗∗, then by definition Gr(E)∗∗ is locally free in a neighborhood

of p. It follows from [3, Theorem 2 (c)] that the direct sum of the admissible Hermitian-Einstein
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metrics on the stable summands of Gr(E)∗∗ is smooth at p, and hence, p 6∈ singA∞. Conversely, if

p 6∈ singA∞ then the direct sum of the admissible Hermitian-Einstein metrics extends to a smooth

bundle over p. But since Gr(E)∗∗ is reflexive and hence normal, this implies p 6∈ sing Gr(E)∗∗. Given

these equalities, part (1) now follows from the decompositions (2.8) and (2.4) and Proposition 2.3.

By Remark 1.2 (ii), part (2) of Theorem 1.1 also follows. The proof of Theorem 1.1 is complete.
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