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ABSTRACT. The moduli space of parabolic bundles with fixed determinant over a smooth
curve of positive genus is proved to be rational whenever one of the multiplicities associ-
ated to the quasi-parabolic structure is equal to one. It follows that the moduli space of

nonparabolic bundles is in general stably rational, and rational in many cases.

1. INTRODUCTION

Let X be a smooth complex curve of genus ¢ > 1, L a line bundle of degree d over X,

and M, 1, the moduli space of semistable bundles F of rank r with determinant L.
Conjecture 1.1. M, ; is rational, t.e. it is birational to a projeclive space.

Despite many positive results [12], this is still an open problem, even for (r,d) = 1.
In this paper, we study a closely related problem, namely the birational classification of

moduli spaces of parabolic bundles over X. These moduli spaces occur naturally

(i) as unitary representation spaces of Fuchsian groups [10],
(i) as moduli spaces of Yang-Mills connections on X with an orbifold metric [5], and

(iii) as moduli spaces of certain semistable bundles over an elliptic surface [3].

The theory developed in [7] and extended here shows that their birational type depends
only on the quasi-parabolic structure. The methods of [12] then prove, in many cases, that
these moduli spaces are rational. The weaker result, Theorem 6.1, uses only Newstead’s
theorem, while the stronger one, Theorem 6.2, requires an adaptation of his inductive
argument.

A direct consequence is that M, j, is stably rational, which had been proved by Ballico
in the case (r,d) = 1 [2]. We then show why this and our bound on the level implies
Conjecture 1.1 under the assumptions that (r,d) = 1 and either (g,d) =1 or (¢,r—d) = 1.

A number of useful facts are established along the way. One key point is Proposition 3.2,
which gives a simple criterion for the existence of a universal bundle of stable parabolic

bundles. We also extend the theory developed in [7} in several important ways (Theorems
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4.1, 4.2, and 5.3); the first two are standard but necessary for our purposes and the third
is completely new. Its proof requires the idea of shifting a parabolic sheaf [17], which also
provides a framework for the Hecke correspondence. All of these results play a crucial role
in the proofs of Theorems 6.1 and 6.2.

A brief word about the organization of this paper: §2 introduces the notation used
in the following sections, §3 discusses the existence of universal families, §4 summarizes
and extends the theory of [7], §5 describes shifting and the Hecke correspondence, and §6
contains the proofs of the main results and their corollaries.

Before we begin, we would like to acknowledge a certain debt to the work of Newstead,
upon which a number of our arguments depend, and without which this paper would be

inconceivable.

2. NOTATION

Let X be a smooth curve of genus ¢ > 1 and D a reduced divisor in X. If £ isa €
bundle over X, then a parabolic structure on E with respect to D is just a collection of

weighted flags in the fibers of £ over each p € D of the form

(1) E, = Fi(p) D Fa(p) D+ D F,,(p) D0,
) 0< on(p) < as(p) < - < (p) < 1.

Holomorphic bundles E with parabolic structures are called parabolic bundles, and we use
the notation F., to indicate the bundle (or, equivalently, locally-free sheaf) E together with
a choice of parabolic structure. A morphism ¢ : £, — E. of parabolic bundles is a bundle
map satisfying ¢(F5(p)) C Fi, (p) whenever ci(p) > o;(p) for all p € D. We use the tensor
product notation H°(EY ® ) for these morphisms, where £ denotes the dual parabolic
bundle (cf. [17]).

A quasi-parabolic structure on [ is what is left after the weights are forgotten, it is
determined topologically by the multiplicities m(p) = (m1(p), ... ,m,,(p)), defined for each
p € D by m(p) = dim Fi(p) — dim Fi41(p).

A subbundle £’ inherits a parabolic structure from one on E in a canonical way: The
fiag in E} is gotten by intersecting with the flag in E, and the weights are determined
by choosing maximal weights with the property that the inclusion map from £’ to E is
parabolic (p. 213, [10]). Parabolic structures on quotients £” of I have a similar description
(loc. cit.).

A parabolic bundle F, is called stable if every proper holomorphic subbundle £’ satisfies
p(EL) < p(E,), where

p(E) = pardeg B, /r = deg Efr + > > mi(p)ai(p)/r.

pED 1=1



The parabolic bundle £, is called semistable if p(E.) < p(E.) for each subbundle E..
The construction of the moduli space M, of semistable parabolic bundles, as a normal,
projective variety, is given in [10]. The subspace M2 of stable bundles is smooth, in
particular, if every semistable bundle is stable, then M, is smooth.

Let A" ={(ar,...,a,)|0<a; £--- <a, <1} and define W = {&: D — A"}, Points
in W determine both the weights and the multiplicities. Conversely, given a weight a in
the sense of (2), the associated point in W is gotten by repeating each «;{p) according to
it multiplicity m;(p). We abuse notation slightly by referring to points in W as weights.
This gives an obvious notion of when a weight is compatible with a choice of multiplicities,

and for a given m, we define the open face of weights compatible with m to be

j i1
Vo ={a € Wlai.i(p) = ailp) & ; mi(p) <1 < Z: m(p)}.

A weight in the interior of W specifies full flags at each p € D. For every other choice of
m, Vi, is contained in the boundary of W. Now W is a simplicial set, and the face relations
give a natural ordering on {V,,} and we write V,, > Vs if Vv is a proper face contained
in the closure of V;,. This agrees with the natural ordering on m gotten by successive
refinement.

Weights for which M, is not necessarily smooth satisfy p(£.) = u(E.) for some proper
subbundle £’. Letting E” be the quotient, then the short exact sequence of parabolic bun-
dles £/ = E. 5 E! determines a partition of (d,7,m) in the obvious way: (d',d"), (v',7")
and (m’,m”) are the degrees, ranks, and multiplicities of (£', E”). (We define m' and m"

here slightly unconventionally, namely
mi(p) = dim(Fi(p) No(E)) — dim(Fipa(p) N (7)),
mi(p) = dim(r(F(p)) N BL) = dim(n(Fina(p)) 0 EL),
for p € D and 1 <7 < 5,.) Notice that »',7” > 0 and mi(p),m!(p) > 0. Write { =

(d',7',m'). For fixed ¢, the set of weights compatible with m for which p(FE.) = p(£.) is
the hyperplane H¢ in V;, given by the equation

(3) > Szp(m,-(p) —mi(p)eai(p) = rd —7'd.

pED i=1
There are only finitely many hyperplanes; the above equation puts a bound on d’ and all
other quantities are already bounded. The hyperplanes induce a chamber structure on Vi,
a chamber being a connected component of V,, \ U¢ He. Weights contained in a chamber are

called generic.

3. FPAMILIES OF PARABOLIC BUNDLES

In this section, we establish the existence of a universal family of stable parabolic bundles

parametrized by M? whenever V,, contains a generic weight. This condition is shown fo
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be equivalent to requiring that the multiplicities {m;(p)} and the degree d form a set which
is relatively prime. The conclusion, Proposition 3.2, is that M, is fine in this case. This is
consistent with the known results:

(i) M, is fine if (r,d) = 1 (Theorem 5.12, [13}]),
(i1) Mg is fine if D = p and m(p) = (r — 1,1) (Théoréme 32, [14]).

Definition 3.1. Given a bundle U — § x X, we adopt the notation U, = Ulyxx. We
also use wg for the projection map S x X — S.

(1) A family of stable parabolic bundles parametrized by a variety S is a bundle U over
S x X so that U, is a stable parabolic bundle of a fized type (i.e. fired d,m and &)
forall s e S.

(i1) Two families U and U’ parametrized by S are equivalent, written U' ~ U, if there
exists a line bundle L over S so that U' 2 U @ wgl.

It follows from the construction of Mehta and Seshadri that M, is a coarse moduli space
(see Remark 4.6 of [10}, or [9]). This means that for any family of stable parabolic bundles
U parametrized by S, there is a unique morphism ¢y : § = M? so that ¢¥y(s) = [U,]. A
untersal family U is one parametrized by M? so that for any family U parametrized by
S, we have U ~ (v x 1x)*U°. If there exists a universal family, then M? is a fine moduli
space. (See [13] for a more thorough explanation of these matters.) Such a universal family,
if 1t exists, is clearly only determined up to equivalence.

It suffices to find a family U over M? such that U2 = E, for e = [E.} € M,, for then
it follows that any two families U and U’ parametrized by S are equivalent if and only if
Yy = Yy For if U ~ U’, then U, = U, for all s € S, which shows that ¥y (s) = Yu(s).
Conversely, if Yy = Yy, then U, = U] for all s € S. Since U, and U’ are both stable,
HYUY @ U!) =2 C and (Rng)(UY ® U') is a locally free sheaf of rank 1 over S whose
corresponding line bundle gives U ~ U’.

To describe the universal family 4, we need to review the construction of M, (see [10]
and [9]). Let @ be the Hilbert scheme of coherent sheaves over X which are quotients of
O with fixed Hilbert polynomial (that of E(k) for k> g), where N = h°(E). Let U be
the universal family on ¢ x X. Define R to be the subscheme of @ of points » € @ so that
U, is a locally free sheaf which is generated by its global sections and k() = 0. Let & be
the total space of the universal flag bundle over 12 with flag type that of the quasi-parabolic
structure. Then R has the local universal property for parabolic bundles (p. 16, [9]).

The subsets R (R**) corresponding to the stable (semistable) parabolic bundles are
invariant under the natural action of GL(N) = Aut(O%"), and M, is a good quotient of
R** (with linearization induced by the weights «), and M2, is the geometric quotient of R’.

The center of GL(/N) acts trivially on R and fi, but nontrivially on the locally universal
bundles. In fact, A(id) acts on U by scalar multiplication by X in the fibers (this follows
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from p. 138, [13]). Given a line bundle L over R** with a natural lift of the GL(N) action
such that A(id) acts by multiplication by ), then using /** to denote U|§"xx’ the quotient
of U** @ 7 L~! gives a universal family.

Proposition 3.2. Such a line bundle L exists if eilher of the two equivalent conditions
hold:

(i) The set {d,mi(p) | s € D,1 <1< s,} is relatively prime.
(i1) The face V,, containing o contains a generic weight.

If either of these conditions are satisfied, then the moduli space M, is fine.

The idea of the proof is to find line bundles L; for each k € {d,m;(p)} over R*® with
natural actions of GL(N) such that A(id) acts by scalar multiplication by A*. Then (i) gives
the existence of ky,... ,k € {d,m;(p)} and integers a;,... ,a; so that a1k; + -+ - a;k; = 1.
The required line bundle is then the tensor product L = Li! ® -+ @ Ly!. At the end of the
proof, we will show that (i) and (ii) are equivalent.

We start with a lemma.

Lemma 3.3. [f E, is parabolic semistable and H. is a parabolic line bundle of degree h,
then

(4) RYHYQ@E)#0 = d<r(2¢g—2+h)+rn.
Proof. Serre duality for parabolic bundles (Proposition 3.7 of [17]) implies that
RYHY ® E.) < R°(EY ® H. ® K(D)).
(If we had used h°(EY @ H. @ K (D)), the circumflex over H. indicating strongly parabolic

morphisms, we would get the usual statement of Serre duality with equality, see [17, 8].)
Suppose that ¢ : E — H® K(D) is a non-zero map and let £’ be the subbundle generated
by Ker ¢. Then

deg B’ >deg E —deg HQ K(D)=d—h — (29 — 2+ n).

Considering £’ with its canonical parabolic structure as a subbundle of rank r — 1, the
inequality (4) follows easily from this, semistability of £., and the inequalities pardeg I, >
deg E' and pardeg . > deg E +rn. O

Proof of Proposition. Write the weights o without repetition. Choose £ : D — Z with
1 <€, <s,+1 and set B(p) = ag,(p). (Take B(p) > a,, if {, = s, + 1.) For h € Z, define

tp=1

xGhR)y=d+r(l—g—h)— Z Z m;(p).

peD i=1
Let H. be the parabolic line bundle with deg H = h < d/r —rn—(2¢g —2) and with weights
B(p) at p € D. It follows from the lemma that if £, is semistable, then h'(HY @ E.) = 0.

Thus R°(HY ® E.) = x(¢,h) by Riemann-Roch. Hence (ROTI'ﬁ")(U” ® mx H.) is a locally
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free sheaf of rank x(£,h) over R*. Let L{¢,h) be the determinant of the corresponding
bundle. By construction, the GL(N) action on U induces one on this bundle (and hence
on L(¢,k)); A(id) acts by scalar multiplication by A on the bundle and by AX(*%) on L(¢, k).
It is now a simple exercise in high school algebra to see that we can choose h,h’ and ¢, ¢
so that A(id) acts on L(£,h) @ L(&, k') by M for any k € {d,mi(p)}.

This proves the conclusion of the proposition assuming (i), and now we show that con-
ditions (i) and (ii) are equivalent. Suppose first that (i) does not hold. Consider E, as a
quasi-parabolic bundle without holomorphic structure, which will be specified later. Since
the set {d,m;(p)} is not relatively prime, there exists a prime number ¢ so that ¢ divides
d and each m;(p). Note that ¢ also divides r = 3272, my(p). Set &' = d/q,r" = r/q and
mi(p) = mi(p)/q. Consider now the quasi-parabolic bundle £, with degree d’, rank 7', and
multiplicities m’. Any choice of weights & on E, induces (the same!) weights on E!, and it
follows that since g > 1, there is some holomorphic structure for which E. is semistable.

Define the holomorphic structure on £, by
E.=E® " ®F.

It follows that FE. is semistable but not stable for any choice of compatible weights. This
implies that V;, does not contain a generic weight.
Suppose conversely that V,, does not contain a generic weight. Since V;, is affine, V,,, C
He for some ¢ = (v/,d’,m’) Using (3), we conclude that for all o € V;,,
S S (rmi(p) = rmi(p)elp) = rd —r'd
peD i=1

(Here, we are still thinking of « without repetition.) We can vary each ¢;(p) continuously

by some small amount, and it follows that
rmi(p) ~r'mi(p) =0 =rd —r'd

for all i and p. Since 7' < r, there exists a prime g such that ¢* divides r but not . Hence

q divides d and each m;(p). Thus the set {d, m;(p)} is not relatively prime. O

4. THE VARIATION AND DEGENERATION THEQOREMS

In this section, we describe and extend the theory of [7]. This allows us to compare the
moduli spaces of parabolic bundles M, and Mg when

(1) «, B € V,, are generic weights in adjacent chambers,

(ii) o € V; and B € V,, are generic weights with V; > V...
Cases (i) and (ii) correspond to Theorem 3.1 and Proposition 3.4 of [7]. We present slightly
stronger versions of those results tailored for our purposes here.

Starting with (i), suppose that a,8 € V,, are generic weights separated by a single
hyperplane H¢. Choose v € He on the straight line connecting « to 5. Then M., is stratified
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by the Jordan-Holder type of the underlying bundle, and since v lies on only one hyperplane,
there are exactly two strata: the stable bundles M? and the strictly semistable bundles £,,.
Writing £ = (r',d’,m’) for the partition, then it is not hard to see that £, & M. x M,

with the obvious definitions for 4’ and 4" coming from the partition £.

Theorem 4.1. There are natural algebraic maps ¢, and ¢g

Ma M‘B
¢a\t x./ﬁb»@
M,
which are generized blow-downs along projectivizations of vector bundles over L., where the

projective fiber dimensions e, and eg satisfy e, + ez + 1 = codim I,

The proof is the same as in [7], the only difference being the actual computation of
the numbers e, and eg, which we discuss now. We assume that E, ~5 E, @ E?, where
[E.] € £, and ~g denotes Sesahdri equivalence (i.e. isomorphic Jordan-Hélder form). The
topological type of the parabolic bundles E! and E” does not change as [E.] varies within
.. We use (v',r"), (d',d") and (m',m”) to denote the ranks, degrees, and multiplicities of
(E., EY), written as in §2. The moduli spaces Mg, Mg, and M., have dimension

1 or
(g—Dr*+1+ 2> 1 =3 mi(p)*.
2 =
pED =1
Using a similar formula for £, = MY x M, we find that
3p
codimE, = r'r"(2g = 1) =1+ > D mi(p)m!(p).
PED =1
Now we claim that
RO(E™ @ EL)=0=h(EY ® E").
This is true for any o’ € V,,, as one of these equations is true for «, the other for 3, but H°
is constant as the weights are varied within V,,. Let U’ and U" be the families parametrized

by X, gotten by pulling back the universal families U and U, whose existence follows

from Proposition 3.2. Then the vector bundles referred to in the theorem are
(R'ag U™ @U') and (R'ms )(U" @U").

The projectivizations of these bundles have dimensions

(5) ea = W(EYQE)-1=2"d —+'d" + " (g-1)+ x(Q) — 1,
(6) eg = RUEY @EN—1=r'd" —"d +r'r"(g—1) + x(Q") -1,

where Q and Q' are skyscraper sheaves supported on D obtained as the quotients
PacHom(EY, E) — Hom(E", E') — Q,
BarHom(EL, EY) — Hom(E E") — Q.
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It is a nice exercise to see

X(Q)+x(Q) =3 (r’r” - mi(ﬂ)m}'(p)) ,

peD (1,7)€Se(p)

where S¢(p) = {(i,7) | 7(p) = 7; (»)}. This shows e, + €5+ 1 = codim Z,.

Now suppose that o € V| and 8 € V,,, that V} > V,,, and that « and 3 lie in incident

chambers.

Theorem 4.2. There exists « map ¥ : M, — Mg whose restriction to P~ (M3) is a

morphism with fiber « flug variety in case o is generic.

The existence of a map ¥ was proved in [5], where it was also shown that the fibers
over Mj are flag varieties. What remains is to explain why the restriction is a morphism
when o is generic. This however follows quite easily from the existence of the universal
family over M,. If [E.] € ¥~!(M3}), then, by definition, E, is stable and remains stable
when viewed as parabolic bundle with weights §. Applying this to the restriction of the
universal family U to 9~ (Mj) x X, we obtain a family of stable bundles (with weights
£ and multiplicities m) parameterized by ¥~!'(M3). Because My is a coarse moduli space,

we get a morphisin from ¢~ (M}) to My, which obviously coincides with .

Remark. In the special case where both a and § are generic, this implies that ¥ is a
fibration in the Zariski topology with fiber a flag variety.

5. SHIFTING AND THE HECKE CORRESPONDENCE

In this section, we introduce the notion of a shifted parabolic bundle, which is the result of
changing the weights, multiplicities, and degree of E. in a prescribed way. In some sense,
shifting 1s a symmetry of a larger weight space, one which includes bundles of different
degrees. Two applications of shifting are discussed at the end.

Shifting is most naturally described in terms of parabolic sheaves. If £ is a locally free

sheaf on X, then a parabolic structure on & consists of a weighted filtration of the form

(7) E=E8 D&y D D&y 38&1“ = &(-D),
(8) D<a << - <a<ay =1.

We can define &; for z € [0,1] by setting &, = &, if &~y < = < ay, and then extend to
z € R by setting ;41 = E.(— D). We call the resulting filtered sheaf &, a parabolic sheaf
and £ = & the underlying sheaf.

We can define parabolic subsheaves, degree, and stability for these objects, and there is
a categorical equivalence between locally free parabolic sheaves and parabolic bundles. We

describe this in case D = p, the general case being quite similar ([15], [6]).
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Suppose that E. is a parabolic bundle given by flags and weights in the fibers as in (1)

and (2). Define &, by setting
& = ker(E = E,[/Fy),

for a1 < £ < a;. Thus &, is a parabolic sheaf. Conversely, given a parabolic sheaf £,,
the quotient £/& = £/E(—p) is a skyscraper sheaf with support p and fiber that of £.
Defining a flag in this fiber by setting F; = (£,,/&1), and associating the weight «;, we
obtain a parabolic bundle in the sense of (1) and (2).

The category of parabolic sheaves is developed in [15], where one finds for example the
definitions of tensor products & ® £ and duals £Y. We use this notation freely in the
calculations of §6 involving sheaf cohomology and point out that H'(E,) = H'(£).

Definition 5.1. Given a parabolic sheaf £, and n € R, define the shifted parabolic sheaf
Eu[n]. by setting E.[n]: = Evuy.

Remark. The above operation can be refined incase D =py 4+ -+ 4+ p.. lf n.= (n,... ,7n),
then one can shift & by »; at each p; € D ([15], [5]).

It is not difficult to verify that £.[n]. is (semi)stable if and only if &, is (semi)stable, and it
follows that this defines an isomorphism between the associated moduli spaces of parabolic
bundles.

We can easily describe the parabolic structure on the shifted bundle £, = £.[n]. in case
0 <n<1land D = p. Let E. denote the parabolic bundle associated to £!. If i is the
integer with a; < 1 < @j4,, then the weights of E. are given by

9) alz{a”,-—n forg=1,...,r —x1,

l4+aj,4i—n forg=r—1+1,...,r
The quasi-parabolic structure of E. has multiplicities m’ given by a cyclic permutation
of m, i.e. m' = (mi4y,... ,my,my,...,m;). Although &' is a subsheaf of £, £’ is not a
subbundle of E, so one must appeal to sheaf theory in order to define the flag in E]. This
is a simple exercise in tracing through the equivalence between locally free parabolic sheafs

and parabolic bundles given above.

E=8
— L
L oy
o—
& i -
; T : E(-p)
L e
R 0 [24] (e 4] an 1 [+01
Ea,
i Eam

Elnl. L&,
v E(_P)
' 3 Lal=p)

R ay—n 0 az=n ay~n l4a-5 |

FIGURE 1. The parabolic sheaf £, shifted by np with &y < n < ag.
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There are two interesting applications of shifting we discuss now. The first is the Hecke
correspondence. Using M, 4 to denote the moduli space of semistable bundles of rank r and
degree d, the Hecke correspondence gives a means of comparing M, 4 and M, 4 through

the use of parabolic bundles. For » = 2, this was observed in a remark at the end of [8].

To start, define e (d,r),e_(d,r), and €(d,r) for d,r € Z with > 0 by

ex(d,r) = inf{£(¢- f—:) | €Z,1 <1 <r, and £ (¢~ ‘:—:) > 0}
e(d,r) = min{ex(d,k)|k=1,...,r}

It is easy to see that e4(d, k) > 0 for all &, thus e(d,r) > 0 as well.

Suppose that F is a bundle over X of degree d and rank r and suppose further that
E' is a proper subbundle. If p(E') < p(E), then pu(E) — p(E') > e4(d,r). Similarly, if
p(E') > p(E), then pu(E') — j(E) > e_(d, 7).

3p
Proposition 5.2. Suppose that E, satisfies Y > mi(p)ai(p) < e(d,r)/2.
peD i=1

(i) If E is stable as a reqular bundle, then E, is parabolic stable.

(ii) If E. is parabolic stable, then E is semistable as a regular bundle.

Proof. (i) If . is a proper parabolic subbundle of E,, then
#(E) S u(E') + €(d, 1) /2 < p(E') + e4(d, ) < p(E) < p(E.),

thus F, is parabolic stable.

(ii) If £’ is a subbundle of E, then
(B S (B < (B < j(EY + e(d, 1) /2 < p(E) + e_(d, 1),

hence p(E') < p(F) and E is semistable. O

We thus get a map M, — M, 4 which is actually a special case of the map of Theorem
4.2, By choosing the weights and quasi-parabolic structure correctly, we can fit M, 4 and
M, 4.1 into a chain diagram of maps as follows. Let D = p and m = (1,7 — 1). Choose
weights a = (a;, az) with a; + (r — 1)ag < €(r,d)/2. Choose  with a; < 1 < a, and let
E! denote the parabolic bundle E, shifted by 7. Notice that E. has degree d — 1, weights
a = (az — 1,1 — 4+ o), and multiplicities m’ = (r — 1,1). Choose ' € V... generic with
(r—1)81+ 8, < e{r,d)/2. Connect o to #’ in V,,» by a line passing through a finite number
of hyperplanes Hgt, ... , Hen. Choose weights o in the intermediate chambers and v* € Hy:
fort=1,... ,n with a® = §'. Theorem 4.1 applies each time we cross a hyperplane, while

the above proposition gives us maps from M, to M,y and from Mg to M, 4_;, which,
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when restricted to the preimages of M2, and M? , .. are P ! bundies by Theorem 4.2.
1 g rod rd—1) Y

This is summarized in the following diagram.

M, =M, M Mg
! hY e hN '
Mf‘.d M.Tl T Mr,d—l

The second application of shifting is to extend the results of [5] to a case which is
natural from the point of view of representations of Fuchsian groups but less natural from
the point of view of parabolic bundles. Assume for simplicity that ;(£,) = 0 and D = p.

Thus, deg £ = —k for some 0 < k < r, and the relevant weight space is

Wi = {(0’1,... ,CY,.-) EArlal + -+ a, =k}
r—1
Consider the union W = U Wy, where we identify
k=0

auwk={’)’€I’Vk|71=0}

with its companion set
Wi ={7€ Wi |7, =1}

via the identification

(10) QWi 3 v=(0,7..., %)~ (Y2- -, ¥> 1) =T € HWiyr.

Then W is the Weyl chamber for SU(r), and from this point of view dyWj is an inte-
rior hyperplane of W. (Notice that d,Wj really does satisfy the condition (3) for being a
hyperplane.)

Theorem 4.1 does not carry over to this case immediately because points in Wy and Wi
are weights on parabolic bundles of different degrees. Given a quasi-parabolic bundle of
degree —k, what is needed is a canonical procedure to construct a quasi-parabolic bundle
of degree —(k + 1). This is precisely what is provided by the shifting operation. Thought
of in terms of W, the following theorem extends Theorem 4.1 to the case where Hg = d,W.

We use the notation M, (k, m) for the moduli space when E. has degree —k, multiplicities

m, and weights a.

Theorem 5.3. Suppose that v € Wi NV, and that o« € Wy NV, 1s « generic weight
near to y. Choose n € R with 0 < n < ,,,41. Define 7 € Wiy as in (10). Let E. be
E. shifted by 1, and denote the multiplicities of E, by m’. Set k' = —deg ' = k 4+ m,. Let
B € Wi NV, be generic near 3. Then there are projective alyebraic maps ¢, and ¢g

M (m, k) Mg(m' k"

Pa™N P8
M (m, k)
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satisfying the conclusion of Theoremn 4.1.

Proof. By the choice of «, 8 and 5, we see that a,,, < 7 < @pm 41, 71 < B1 and < v, 41.

Consequently, the shifting operation defines the following isomorphisms:

M (m, k) =& Mo(m' k),
Mg(m' k) =2 Mg(m' k'),
M, (m, k) = M,(m',K),

where o, 3',v' € V,,» are defined from a, ,v as in (9). Now Theorem 4.1 applies to the
shifted moduli spaces to prove the theorem. One can calculate e, and ez by applying
formulas (5) and (6) to o/, 8" and v'. O

Remark. Theorem 5.3 solves a problem mentioned at the end of [5] and has a nice appli-

cation to the knot invariants introduced in [4]

6. RATIONALITY OF MODULI SPACES OF PARABOLIC BUNDLES

Let L be a holomorphic line bundle over a curve X of genus ¢ > 1. Denote by

(i) M, the moduli space of semistable bundles E of rank r with det £ = L, and by

(ii) Mq,r the moduli space of parabolic bundles E, with weights o and det £ = L.

Theorem 4.1 holds for the moduli spaces with fixed determinant with no essential difference,
and one concludes that if V;, contains a generic weight, then the birational type of M, 1
is independent of a € V,,.

Theorem 4.2 also holds for the fixed determinant moduli spaces, and if a and 8 are

generic, then the fibration

Mo — Mgy

has fiber a flag variety (which is rational). Hence M, is rational whenever Mg is.
The goal is then to prove rationality with the coarsest choice of multiplicities m. At one
extreme, we have the trivial flag, whose moduli space is exactly M, . Proposition 2 of [10]
implies that M, 1 is rational if deg L = 1 mod (r), and so then Proposition 4.2 implies
that M, 1 is also rational for any o € V,, if deg L = +1 mod (r).

Theorem 6.1. If m(p) = (1,...,1) for some p € D, then the moduli space M, is

rational.

Proof. First, use Theorem 4.2 to reduce to the case D = p by forgetting all the other flag
structures. If £! denotes the bundle obtained by shifting E. by some n with «; < n < ay,
then det E' = L' = L(—p). It follows that shifting by i defines an isomorphism from M, ;
to Mg 1. Repeated application of shifting puts us in the case deg L = 1 mod (r), and

then Newstead’s theorem and Theorem 4.2 imply that M, is rational.
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The above argument works in slightly more generality. We can always shift our bundle to
be any of the &, appearing in the filtration (7) and illustrated in Figure 1. Thus, whenever
one of these terms in the filtration is of a degree to which Newstead’s theorem applies, the
corresponding moduli space of parabolic bundles is rational.

The next theorem is a considerable strengthening of the previous one.
Theorem 6.2. If m;(p) =1 for some p € D and some 1 <1 < s, then M, 1, ts rational.

Before delving into the proof of this theorem, we mention some interesting consequences.
Recall that a variety V is called stably rational if V x P* is rational for some k. If V is
stably rational, then the level of V is the smallest integer £ with this property.

Corollary 6.3. For any r and L, M, is stably rational with level k < r —1.
Proof. Theorems 4.2 and 6.2 imply M?; x P"~! is rational. O

Ballico proved stable rationality of M, 1, for (r,d) = 1 using a different approach [2].
We now apply this last result to Conjecture 1.1.

Corollary 6.4. Suppose g > 1 and (r,d) = 1. By tensoring with a line bundle, we can
assume that 0 < d < r. If either (g,d) =1 or{(g,r — d) = 1, then M, 1 is rational.

Proof. Suppose first that (g,r —d) = 1. Let L be a line bundle of degree r(g — 1) + d. Then
Newstead’s construction applies and proves that M, 1, is birational to M,_g4 1 x PX, where
x = (g — 1)(r* - (r — d)*). But the above corollary implies that M,_yr, is stably rational
with level K <r —d —1 < x, hence M, is rational.

The case (g,d) = 1 follows by the same argument after applying duality, which inter-
changes (r,d) and (r,r — d). O

Remark. Conjecture 1.1 was previously known [12] in the following three cases:

(1) d=+£1 mod (),
(ii) (r,d) =1 and g a prime power, and
(1) (r,d) = 1 and the two smallest distinct primes factors of g have sum greater than r.
Conjecture 6.4 applies in each case. More importantly, it applies in many cases not covered
by (i), (i1) or (iii). In fact, for a given r and d with (r,d) = 1, one can easily list those ¢
for which the conjecture remains open. For example, if » = 110 and d = 43, then Corollary
6.4 applies as long as g is not a multiple of d - (r — d) = 43 - 67 = 2881.

Proof of Theorem. Set d = deg L. The theorem is clearly true for r = 1 and follows from
Theorem 6.1 for r = 2, so assume r > 2. Notice that by tensoring with a line bundle, we
can suppose

rlg—1)<d<ryg.
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By Theorem 4.2, we can again assume that D = p, and by shifting and another application
of Theorem 4.2, if necessary, we can arrange it so that m(p) = {(r — 1,1). Write

r—1

a=a(p) = (ay, - ,ar,az).

Proposition 3.2 implies that V},, contains a generic weight and that M, ; parameterizes a
universal family 4“. By Theorem 4.1, the birational type of M, 1, is independent of choice
of compatible weights, so we can assume that the weights are small enough to satisfy the
hypothesis of Proposition 5.2 (this comes up at various technical points in the argument,
e.g. the proof of Claim 6.5).

Consider the following two cases.

Case I: d = rg. Choose n with a; < n < ay, and let E! = E.[n].. Denote the
weights of E. by o' as in (9). If det E = L, then det B = L' = L(—(r — 1)p) has degree
d'=d—(r—1). Sinced =1 mod (r), Proposition 2 of [12] implies that M, 1 is rational,
and Proposition 4.2 then implies that M. is also rational. Rationality of M, ; now
follows from the isomorphism of the moduli spaces M, 1 = M, defined by shifting by

n.

Case II:  r(g—1) < d <rg. The idea is to use induction to construct a nonempty,
Zariski-open subset M of affine space of dimension (12 —1)(g — 1) +r — 1 (= dim M, L)
and a family of stable parabolic bundles U/ parametrized by M with dety = L for all
£ € M. The universal property of U* then gives a map vy : M — M, 1. If, in addition,
we have U, = U, & & = &, then iy is injective and rationality of M, 1, follows from

that of M and the dimension condition.

|
Setr'=rg—d, v =r—r"and o = (a;,-- -, a1, az). Assume that both a and o' are
generic. Let 4°" be the universal family parametrized by M.y and I, = Ox[ey]. be the
trivial parabolic line bundle with weight a,. If ¢’ = [E!] € Mar1, then because E.Y @ I, is

a stable parabolic bundle of negative parabolic degree, h°(E!Y ® I.) = 0 and
(11) nEREYQLY=(2r +")(g-1) + 1" +1
is independent of ¢'. Since U3 = E!, it follows that

' ® (1))

is locally free. The associated vector bundle V "> M, has rank n and fiber over €
naturally isomorphic to H'(E." @ L.).
Let U' = (7 x 1x)"U*" and T = 7% L. be pullback bundles over V x X. These are families

of parabolic bundles parametrized by V. There is an extension

4

(RITI‘MG,'L)(UG

(12) 0—I%" U — U —0
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of bundles over V& x X, such that, for £ € V2", U, is the parabolic bundle E¢ described

as the short exact sequence
(13) 0— 19" S B¢ S E' — 0

corresponding to the extension class £ € H'(E!Y ® I9™").
Using stability of E’ and triviality of 78", it follows that

Aut(EL) x Aut([?r”) ~ C x GL(r",C).
This group acts naturally as fiber-preserving maps on the bundle V& since
VI = HY(EY @ I9) = HY(E," ® L)®",

and two extension classes £; and £, in the same orbit have associated bundles E€! and E®
which are isomorphic. We can ignore the C* action here because (z,1) - € = (1,2) - € for
z€C and £ € VO,

Using the inductive hypothesis and local triviality of V, we can choose a nonempty
Zariski-open subset M’ of M, isomorphic to a Zariski-open subset of affine space of
dimension (r'* = 1)(g — 1) + ' — 1 such that V|, = M' x HY(E!Y ® I.) (E! is fixed).
Lemma 2 of [12] applies here and produces a Zariski-open subspace M' x W of V&,
invariant under the group action, and affine subspace A C W so that every orbit in W
intersects A precisely once. In fact, A can be chosen as a Zariski open subset of the
Grassmannian G(r”,n). In any case, it should be clear that A has dimension r"(n — r").
Using equation (11) and the fact that v + r” = r, we see that M’ x A is a Zariski-open
subset of affine space of dimension

dmM' xA = (-1 (g-D+r—-14+"(n—7r"
= (M =Dg-D+r =142+ ") g - 1)+ 1)
= (P*-1g-1)+r-1
Let M be the subset of V& defined by
M={teM xA|H'U) =0},

and consider the bundle ¥ restricted to M, which we continue to denote I. For £ € V&,
let E¢ = U;. Clearly E¢ is a parabolic bundle with weights o and determinant L, thus M
parameterizes a family of parabolic bundles. By the upper semi-continuity theorem, M is
Zariski-open in M’ x A,

We claim that M is nonempty. Fix ¢/ = [E!] € M’ and consider the set

N={¢e H'(E'@I®") | '(Ef) = 0}.
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If NN A # 0, then M is nonempty. Clearly, N is invariant under the action of GL(r",C),
so it is enough to show N NW # (. There is a natural map

§: H\(E!Y @ I®") x HY(E!) — H'(1®")
with & = 6(¢,-) : H°(E!) — H'(I®™") the coboundary map of the long exact sequence
in homology of (13). Now H°(E!) = H°(E'), and since oy + (r' — Da, < €(r,d)/2, by
Proposition 5.2, E’ is semistable as a non-parabolic bundle. Serre duality implies that
RY(E') = h°(E" ® K), and we compute
deg(EV ® K) = —d+1r'(1-g)
< (r+r)(1-g) -1

which is negative since r” > 1 and g > 1. This implies that A!(£’) = 0, and Riemann-Roch
implies that h°(E!) = r"g. Because h!(I®™") = r''g, we see that

£ € N <= H'(EY) = 0 <= § is an isomorphism.
But § is obviously onto and dim(ker 6) = v"n. The set N has complement
Ne={6e HY(E ® I®") | §(€,5) = 0 for some 0 # s € H(I®")}.

But 6(¢,s) = 0 = #(€,2zs) = 0 for all 2 € C, which shows that the map keréd — N°¢
has fibers of dimension > 1. Hence dim N°¢ < dim(keré) — 1 < r"n, and we see that N is
nonempty and Zariski-open. Thus N N W # () and it follows that M is nonempty.

We now prove that M parameterizes a family of stable parabolic bundles, using again
the inequality (r — 1)ay + a; < €(r,d)/2 and Proposition 5.2.

Claim 6.5. (i) E¢ is stable for all £ € M.
(i) B = E& <= GL(r",C) - & = GL(r",C) - & for all &,& € M.

Proof. (i) Suppose to the contrary that Ef is not parabolic stable for some ¢ € M. Let
G. be a rank s parabolic subbundle of E¢ with p(G.) > p(E.). Then u(G) > u(E®), since
otherwise

#(G.) < w(G) + €(d,)/2 < pu(EY) < p(EY).
As in the argument of Lemma 6 of Newstead, the map G — E’ has a factorization as
G = G' = G? = E' and the arguments there give the following inequalities:

(14) deg(G*) > deg(G) > s_:g,

/

(15) rank(G?) < rank(G)-hD(G)g%.

These imply that p(G?) — u(E') > 0. But E! is parabolic stable, so by Proposition 5.2,

E' is semistable and p(G?) = p(E’). Thus, we must have equalities in equations (14) and
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(15), in particular p(G) = p(E%). But since p(G.) > p(EY), we see that G, must inherit

the weight a,, which implies that G2 also inherits a, and it now follows that

(s2 = Day + ay B (r' = Doy + oy

!

W(G?) — u(BL) = >0,

89 T

where s, = rank G? < r’. This contradicts the parabolic stability of E, and completes the

proof of part (i).

(ii) Since <« is true independent of the vanishing of H', we only prove = . Suppose
E& = E& and set nx(E&) = ef = [EY] € Marp. Notice that AY(ES) = 0, and so
h°(E%) = x(E%) = r". It follows that every holomorphic section of E% has its image

contained in /8. Hence any isomorphism ¢ : E¢ — E& defines a commutative diagram

0 — J®" — E& y EY y 0
lwu lv, lv,
0 — 18" y E6 y EY y 0

where both ¢’ and ¢” are isomorphisms, and so & = (¢’ x ¢")- €. O

Part (i) of the claim and the universal property of 4 gives a map M AN M, L, which
is injective by part (ii). Since M is nonempty, dim M = dim M, 1, so rationality of M, 1,
follows from that of M. This concludes the proof in Case II. O

Remark. We had originally hoped to prove rationality of M, , with the weaker hypothesis
that o is generic, but the argument does not hold in this generality. For consider the case

D = p. By tensoring with a line bundle and shifting, we can assume that
rlg—1)<d<r(g—1)+m,.

Hence, the subbundle split off in the induction is again a sum of parabolic line bundles with
the same weights. The difficulty is in proving that the quotient E! has generic weights «'.
Proposition 3.2 implies that E; admits a generic weight if and only if the set {d, m{(p)}

is relatively prime. The statement
(d,my,...,my)=1= (d,m],... ,m,) =1,

which is what we would need to prove here, is unfortunately false (notice that m{ =

my —d +r(g — 1) and m! = m; otherwise).
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