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ABSTRACT

Far an arbitrary bounded linear operator in a Banach space we

construct a broader locally convex space such that the operator and

possible rational functions of the operator are continuously

extendible to this space and all possible root vectors cf the operator

belang to this space . We study the problems af completeness of the

·system of roat vectors and - in the case of completeness - we obtain

the Jordan decomposition of the operator .
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§ O. Introduction.

The Jordan Theorem on the normal form of a matrix is certainly

one of the central results of Linear Algebra . It asserts that root

vectors of a linear operator in a finite dimensional camplex linear

space V form a complete system (the root vectors are nontrivial

solutions of the equations
k

(A - An) x = 0).

The problem of obtaining an infinite dimensional version of this

result was discussed very much ( see, e.g., ( 2,5,7 1 ), in particular

because of its obvious importance in many problems of Analysis and,

first of all I in the Fourier method. There are several problems

immediately arising here , connected with adequate generalizations of

most important nations

So , the following nations play the principal roles in the finite

dimensional situation:

0) Spec A - the set of all A E C such that the equation

(A - Aß)x = 0 has nontrivial solutions;

(U) Eigenvectors:::::l nontrivial solutions of the above equation;

k '
(iiO Spec A - the set of all i\ e C such that there exists ·x e V.

k 0
(A - i\ a) X :;t: 0 . So, Spec A = Spec A;
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(iv) Root vectors = solutions of the preceding equations.

The notion of spectrum may be very weil generalized to the

infinite dimensional setting , but as for _all other notions - there

are weH known difficulties connected with the· possible non-existence

of eigenvectors and , further on, of root vectors.

In fact the Jordan theorem has two layers . The first one is a

description of the algebra generated by the operator A, and the second

one deals with the phenomenon of multiplicity of spectrum. Here we

shall restriet ourselves only to the first layer and study the

structure of the algebra . generated by . A • leaving aside difficult

problems connected with the multiple spectrum - we hcpe to return to

them in the next publications.

Our approach is connected wi th the theory of generalized

eigenvectors cf a self adjoint operator in a Hilbert space ( [ 3, I ])

The idea of this approach is to extend (in a natural way the action

of the operator in question to a broader space and try to find the

missing eigenvectars and root vectors there . We show that it is

possible to da this - we construct such an extension and really find

all possible root vectors in the constructed space. The following weIl

known example gives the flavor of the approach consider the space

L (IR) and the operator - id/dx there, its spectrurn is the whole realz

line IR , there exist eigenvectors e
lAx

of this operator. but they all

He not in the initial space L (R)
2

but in a broader space, .say. the

space of bounded functions . Nevertheless , we know that there exists

a very nice theory of decomposition of functions in integrals over

these eigenvectors.

The crucial difference between the finite and the infinite

dimensional situations is that there are no natural ways to extend an
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operator in a finite dimensionalspace to a broader space, whereas

every infinite dimensional operator acts simultaneously in many spaces

and 1t is very difficult to say in advance which space is more natural

fer this operator, so we must not restrict ourselves to the initial

space when trying to find such objects as eigenvectars and roat

vectars.

The paper is organized as follows . § 1 contains necessary

preliminaries . § 2 eontains a description of the first step in the

main construction.' § 3 contains a theory of expansion cf vectors

into "integrals", aver generalized eigenvectors with respect to a

generalized measure . § 4 is devoted to a geometrie descriptian of the

space containing all passible roat vectars . In § 5 we describe the

abave canstruetian in analytie terms and intraduce same nations

necessary for a generalized Gelfand Transform . § 6 is devoted to the

generalized Gelfand Transform and problems of completeness af

generalized root vectars . In § 7 we apply the previous cansiderations

ta obtain a Jordan deeompasitian far a general operator .

Preliminary versions af these results were annaunced at variaus

conferences since 1983 - Chernogolovka (983) , Voronezh (l985-199l)

Halle (l988) • Novgarod (1989) I Oberwolfach (1990) • Sappora (1990) •

Jerusalem (1991) , Beer-Sheba (1992).

§ 1. Main Nations

We consider the following situation: V, VI is a pair of ~omplex

Banach spaces such that either VI is the 8anach dual space far V Oi V

is the 8anach dual space for VI. Let ,p(.) and pi (.) denote the norms

in the spaces V and VI, respectively.
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Consider a pair of bounded linear operators

A: V -4 V and A': V I -)0 V I

such that the usual identity holds:

< Ax,x' > = < x,A I x' > v x e V , \I x' e V')

The norms of the operators ar"e" defined as usually and they coincide:

n A : V -) V 11 = sup { I< Ax,x I >I : p(x) :s 1, pi (x') :S 1 } =

::: sup { I< x,A/x' >I : p(x):s 1, p/(X/):S 1} = 11 A' : V' -) V' 11

The spectra of the operators are also defined as usually and they also

coincide

Spec A ={ A E t: ( A - i\ n) has no bounded inverse } =

= { i\ E t: (A' - AU) has no bounded inverse} = Spec A'.

Spec A is a cempact subset cf t .

DEFINITION 1.1. Consider the set C , Spec A. This set is a

disjoint union of its connected components U. i e 1. One of these
1

components contains co , let U "denote this component (so , co e 1).
co

Choose a point A E U for every i e I, let i\ :: co , let 1\ denote the
1 1 co

set of these points .Consider the functions

x (11) = V(1l - i\), i E I, $ co
1 1

x (,..ll = 11
co

Let Rat(A) denote the set cf all polynomials of X (J.l) , i E I, or in
1

other terms, Rat(A) is the set' cf all rational functiens with poles in

the set A .

Certainly, the set Rat(A} depends upon the choice cf A but really

we shall use only some completions of Rat~A) and this dependence will

disappear . Nevertheless for technical reasons we consider such an
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object.

DEFINITION 1. 2. R(A) = < f(A) f( .) e Rat(A) } .

We need an equivalent definition of the set Spec A in terms of the

algebra R(AL

PRoposmON 1.3. A e Spec A ii and onLy LI tor any f e Rat(A)

11 f( A) 11' ~ I fCA) I·

PROOF. First we prove the following assertion, almost equivalent

to the Proposition 1.3:

A e Spec A Lf find onLy i[ 11 0 - (A - AD)B 11 ~ 1 tor every B e R(A).

If for some B e R(A) we have 11 n - ,(A - An)8 11 = c < 1, then we

construct the operator [(A - AO)8

series:

-1
] as an obviously converging

0:1

[(A - AalB r 1 = [n - (0 - (A - An)8 )fl = L [0 - (A - i\ n)B lk
k=O

Now one can easily show thC!:t the operator (A - An) is invertible, so

i\ ~ Spec A. Conversely, if A ~ Spec Athen there exists i e I such

that i\. e U. Take A e AI i\ e U. It follows from the Runge Theorem
1· 1 1 1

(see, e.g., [ 6 ]). that the function Z H 1 /(z - A) can be

approximated by polynomials cf 1 I(z - i\) uniformly 'on any simple
1

closed curve r lying in U, such that i\ and i\. are situated inside r.
1 1

Really, introduce a new variable w = = 1 f(z - i\.). The question is
1

reduced to the problem cf a uniform approximation of the function
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rp(w}:= w /0 + C\ - i\}w} by polynomials of w on a contour r- such that

the function Is analytlc in a neighborhood of the domain bounded by the

contour and the classical Runge Theorem guarantees the possibillty of

such an approximation.

!ben the formulae

1
~-

2TCi

1=-
2rci

1 "-1i -- (A - zB) dzz - 1\r

§ P( _1_ } (A - zD )-lciz
r z - 1\1

show that
-1

(A - A0) may be approximated in the operator norm

by polynomials of

Then. taking B = P «A - 7tD fl) - they obviously belang to R(A) - we
n n

obtain that 11 0 - (A -1\ D)B 11 ~ O. So, our assertion is proved.
n

In order to prove the Proposition 1.3 itself we first must note that

if 1\ ~ Spec Athen there exists g E Rat(A) such that

11 a - (A - AB )g(A) 11 < 1

and the inequality 11 f(A) 11 ~ I f(1\.) I faUs for

fez) = 1 - (z - 7t)g(z) E Rat"(A).

If A e 5pec A then define <PA(Jl) as follows:

= 1f(~) - f(A) / ~ - A , Il ~ 7t

<PA (Il)
fJ (A) Jl = A

One can easily see that if f E Rat(A) then <PI\ is also in Rat(A) and

f(1l) = f(Al + (Il-A}tPi\ (JL). Far "every function

f(1\) ;tI 0 we obtain that

f e Rat(A) such that

11 [(A) 11 ::z 11 [(i\) n + (A - A0) <PA(A) 11 :::
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1
= I f("A) I 11 D + (A - Aß) rm '"A(A) 11 z: 1((A) I·

Let J(O) denote the completion of R(A) in the operator norm

topology. One can easily prove that J(O) does not depend upon the

choice of A in the definition of Rat(A) . 1(0) is always supposed to

be equipped with the operator norm. l(O) is a commutative Banach

algebra.

As it was said before, we ccnsider here on1y the situation cf the

"simple spectrum" , so we assume that the following condition holds:

Bicyclicity Condition ( BC ) . There exist A e V V e V' such

that { BA : B e R(A) } is rr(V, V') - dense in V and {B' V : B e R(A) >

is rr{V', V)-dense in V' .

§ 2. Main construction - the first step .

Rigging . Consider the following linear mappings

T'iJ : 1(0) ~ V' , 'V
T (B) = B' 'V

Both mappings are continuous provided all spaces are equipped with the

natural normed t~pologi~s, but it is more important for us that the

mappings are continuous if we equip V and V' with the weak topologies

rr(V, V' ) and a-(V' ,V) , re"spectively, because we are interested in the

dual mappings

(T )' : V' ~ 1(0)'
!:J.

V
(-r )' : V ~ J(O)'

where l(O)' Is the Banach dual space fcr 1(0). It fellows from the
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Bicyclicity Condition that and are injections with weakly

dense ranges and this means that ("[ )'
11

and are also

injections with ",( ](0)' ,J(O) )-dense ranges to prove the

injectivity of, say, 7:b. ' one may go as follows : suppose that

o ~ C e J (0) and T 6(C) =. a = 0,

then the ",(V, V' )-closed set Ker C does not coincide 'with {O}, V and

for any B e J(O)

B Ker C c Ker C

As fJ. e Ker ethen the set { B~ : B e 1(0) } is not ",(V. V' )-dense in

V, and this contradicts the Bicyclicity Condition ).

So we have obtained the following injections with weakly dense

ranges

J(O)

1(0)'
(T )'a

(---

V

V'

V
T

(--

1(0)'

J(O)

Let V+ (resp.. v+) denote the lineal Im T t:.. (resp., Im "['iJ), equipped

'iJwith the norm transferred from J(O) by the operator T t:.. (resp., T ).

Let V_(resp.. V-) denote the completion cf V (resp.. V') with respect

to the norm. transferred from the lineal
'iJIm (T )' c 1(0)' by the

operator (resp. • from the lineal Im (TfJ. ) , c 1(0)' by the
-1

operator (-cfJ.) , ), So we 0 btain the f ollowing weakly dense inclusions:

'iJ
(-c )' : V_ ~ 1(0)' ,and 7:6 : J (0 ) -+ V+

(-c )' : V- -+ 1(0)
b.

are isometries . The space V

11

is the



Banach dual space for y+ ( resp., Y ) and the duality between them 1s
+

an extension cf the initial duality between V and V' .

(i)

(U)

PROPosmON ~l.For any B, C e J(O) the foUowing statements hold

+ + . V V
SV+ C V+ ' B' V c V , T t:/BC) • B T 6.(C) , T (BC) = B' T (Ch

. + +
11 B: V ~ VII· = 11 B: V ~ V 11 c U B': V' ~ V' 11 = U B': V ~ V 11

+ +

(iiL)
+ .

the action of the operator B on V is G'(V_,V )-continuously

extendible to V and 11 B : V ~ V lI=IIB:V~VII ;-

the action of the operator B' on V' is a{V-,V+)-continuously

- -
extendible to V and 11 B': V ~ V n = 11 B' : V' ~ V' 11

PROOF - an easy checking.

. COROLLARY 2.2. For any B e J(O)

Spec B = Spec{B: V ~ V } = Spec{ B: V ~ V } = Spec{ B: V_ ~ V_ } =
. + +

+ + - -
::: Spec { B': V' ~ V' } = Spec { B': V ~ V } = Spec ( B': V ~ V )

So we have continuously extended all the operators 8 from J(O) to a

broader space V_ without changing norms of the operators and therefore

withcut changing the spectra. This new space is more natural fcr these

operators - it is shown, in particular, by the following simple and

weIl known theorem ( in slightly different terms - see , e.g.

( 4 1 ).

TIiEOREM 2.3. i\. e Spec A if and only il there exists e
A

e V_such

that el\. :;C 0 and Ael\. ::: i\ei\.'

PROOF. i\. e Spec A ct { (A - i\.D)S 8 e J(G) } is not dense in J(O)
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($ 3 91
A

e 1(0)' : 91
A

(0) $ 0 I 91
A

«A. - AB )8) = 0 for every B e 1(0) •

isometry ,take any

+x' e V J

f.

X' r: 't'V(B) for some B e 1(0) . Then

-1

< (A - AO)e
A

J X' > = < (A - Aal [{-r'i1)/] (<pi\) , x' > ::

\J -1 'i1
= < [(-r )' 1 (IpA) • (A' - AI)-r (B) ) :2

-1

:2 < {{-r'i1)/] (IpA) -rV«A - AO)B) >=

so (A - A0)e
A

:::I o. •

Note that < e.x I \J >
'i1 -1

= < [(-r )'] ((JA I 'i1 ) =

-1

= IpA( (T'i1) (-r 'i] 0) ). = <PA(0) :;= 0 , so we normalize e
A

by the condition

< e
A

I V > = 1 I 'r/ A e Spec A

Similarly , A e Spec A if and on1y if there exists e
A e V such that

A A A
A' e = Ae • < A. ,e > = 1 I \I A e Spec A.

REMARK 2.4. The core of Theorem 2.3 is that the functionals

'PA e 1(0)' J normalized by the condition ((JA (0) = 1 , are multiplicative

and they are eigenvectors for the coregu1ar action of J(O) on J(O)'

( the coregular action is the action conjugate to the regular action

of J(O) on itself ).
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§ 3. Eigenveetor expansions.

Completeness of the system of generalized eigenvectors. We have

obtained generallzed eigenvectors < e;\ , ;\ E Spec A } , belonging to

V ,so now we can pose and study the problem of completeness of this

system of vectors. We consider the cempleteness in the weakest

possible topology - the weak topology +
0"( V_' V ). This is naturally

equivalent to the problem of the a-( J(O)' ,J(O)) - completeness cf the

system of elements < 9>A : A E Spec A } in ](0)'.

Ccnsider the mapping

R(A) 3 f(A) ~ f I E C{Spec A)
Spec A

The inequality from the Proposition 1.3

sup I f(f.L) I ~ 11 f(A) 11
J.LESpccA

shows that the mapping is correctly defined and is continuously

extendible to the Gelfand Homemerphism

" : ](0) -1 C{Spec A)

( lt is weIl known that Spec A in this situation may be identified

with the space m (J(O)) cf maximal ideals ( = the space of

multiplicative functionals

A: m(J(O)) ~ Spec A

cf the algebra J(O), the function

delivers the necessary identification, aversion

cf this identification was already used in this paper: A ~ fP
A

is a

ene-to-one correspondence between Spec A and the set cf

multiplicative functionals on J(O) ).

The Gelfand Homomorphism may be also described as follows: for every

8 e J(O) and every ;\ e Spec A B(;\) = f{J'A (8).

THEOREM 3.2. The system {~'A: 'A e Spec A } is a-( J(O)' ,J(Q) )-

14



• .... r ...... ~ ~. .,. t - ..... _ 4 _"""-4 ........... _ ••-. t _ I. _ ........

-complete in J(O)' Lf and only if the algebra J(O) is semi.simpLe

(i.e., Ker A := { 0 } ).

PROOF. The system {tI''A: A. E Spec A} is lT( 1(0)' ,1(0) ) -

complete if and only if there does not exist B e 1(0) ,such that

B $ 0 and tI''A (B) = 0 , \I 'A e Spec A , and this is equivalent to the

condition Ker A = {O}. •

A refinement of the completeness condition . Let aSpec Adenote

the boundary of Spec A .

PROPOSITION 3.3. The systems cf generaLized ei.genvectors

{ rfJ
X

: ~ e Spec A} and {rfJl\.: I\. e aSpec A} are a1 J(O)' ,J(O) )

complete or noncomplete si.multaneously .

PROOF. For any B E 1(0) the function 1\ H lfJ"A (8) is analytic in

the interior of Spec A . as a uniform limit cf analytic functions

( Really • there exist f (A) e R(A) such that 11 f (A) - B 11 ~ 0 • so
n n

o ~ 11 r (A) - 8 11 ==
n

therefore

sup Il(J1\. (fn (A) - B) I =
I\.ESpecA

sup Ir ("A) - cpl\.(B)! ),
I\.ESpecA n

sup I lfJl\.(8) I = sup I 'PI\. (B) I·
I\ESpccA' "Ae8SpecA

So ,if the system {'PA.: 'A E aSpec A is noncomplete then there

exists 8 E J(O) such that 8 *' 0 and tI' ... (8) Ia e 0 then
I\. SpecA

tI' .... (B) I :;l 0 and the system { 11'.... : I\. E Spec A } 15 also
I'\. SpecA I'\.

noncemplete.

15
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Generalized eigenvector decomposition. Let us suppose that the

system cf generalized eigenvectors {rpA : A E 8Spec A} is v(J(O)' ,J(O»

- complete. This is equivalent to the semisimplicity of the algebra

J(O) I Le. to the injectivity of the Gelfand Homomorphism

" : J(O) -i' CC8Spec Al.

Consider the cenjugate mapping

,,' : Meas(8Spec A) ~ J(O)'

where Meas(8SpecA) is the space of Borel measures on 8Spec A - the

Banach dual space ror C(8Spec Al. This mapping ,,' has a O"(J(O)' ,J(O})-

- dense range (because of the injectivity of ,,). therefore each

element of J(O)' may be approximated by a net of elements of the type

AI (I-! ) • where {Jl } is a net of measures . Therefore we consider
0: 0:

elements of J(O)'- as ... , -images cf " generalized measures lt on aSpec A

( functionals on Im ... • equipped with the norm transferred from J(O)

by the mapping ... ).

THEOREM 3.4. Suppose the set (rpA : A E 8Spec Al i.s O"(J(O)',J(O»­

complete (= the algebra J(O) i.s semisimple). Then for every rp e J(O)'

there exists a generaLi.zed measure dp. of 8Spec A (= a bounded
rp

functi.onal on the ·subalgebra Im"') such that tor every B e J(O)

rp(B)::: I qJ ... (B)dl-! (A) ::: l im J rp ..J B) dJl (A)
f\, t.p a f\, a.,rp

8spec A a. SpeeA .

«(dp. } i.s a net of measures on aSpec A ) .
a..rp
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. PROOF. tp(B)::: J S(i\) dlJ (i\)::: J tpi\ (8) dlJ (i\)
8SpecA tp aSpecA ~

+

Now we return to the spaces V , V • Y-. As previously, we let e"l. ,
. + ~

•

A e Spec A • denote the generalized eigenvectors of A , el\ e V_ ' and

we let
i\

e • i\ e Spec A , denete the generalized eigenvecters cf A'.

eA e Y- . The normalization conditions are :

i\< 6.,e )::J 1

'V i\ e Spec A

'V A e Spec A

We assurne again that the algebra J(O) is semisimple this is

+
equivalent to the (T(V_' V )-completeness of the system {ei\' 1\ e Spec A}

er. equivalently. to the

A
{ e ; A e aSpec. A }.

(T(V-, V }-completeness of the system
+

We want to decampase elements of V inta "integrals" af e
A

over

aSpec A . Generally speaking , this is impossible far all elements of

v , but this is possible far elements cf the dense lineal V+'

THEOREM 3.5. There exists a generali.zed measure on aSpec A

( = a bounded functionaL on the subalgebra Im A C C( aSpec A) ) such

+that tor every x e V and every x' e V
+

< x,x' > = ;\
I < x,e ;> < eA,x' > d~Ci\.)

8SpecA

( or x =
;\S < x,e >ex dlJ(i\) )

BSpecA

17



PROOF. As

that x::: Bö.

x e V
+

x' = G'V

x' E V+ then there exist B, C e 1(0) such

Consider the following functional on

J(O): 0 H' < D~.V > . This 1s certainly a bounded linear functional.

therefore there exists a generalized measure dll on aSpec A such that

< DV,.ll ) c J De\) dJ,L("") :c Um
8SpccA ~

I D(i\) dll (i\).
cx

8SpccA

Then. recalling that

obtain

1\
= < ~,e ) = 1 for all A e Spec A, we

< x,x' > = < Ba.c' 'V ) = < CB6,V > = J A(CBHi\) dp.(/\) =
8SpecA

= J C(A) B(I\) d1J.(i\)
8SpccA

=
A-I C(A) < el\'V > 8(7\) < li.e > dll(/\) =

8SpccA

:= I < Ceit.''V.> < li,B'e
A

) dJ,L(i\) =
asp ccA

i\S <B6,e > < eA,C'Q >dp.(i\) =
8SpecA

= J < x,eA > < e"",x' > dll("") .
8SpecA

•

§ 4. Jordan decomposition - main constructions .

Roat vectors. What can we do in the case of a nonsemisimple

algebra J(O)? Here it is definitely nonsufficient to use on1y

eigenvectors.

The finite dimensional situation shows that it is very useful to

consider also root vectors nontrivial solutions of equations

k(A - AO) x = 0 . But they may not exist. The most important idea of

the preceding sections was to continuously extend the action of all

18



related operators to a broader space and' try to find the missing

vectors there. We show how to construct the needed broader spaces.

First we deseribe the situation in geometrie terms.

We started from the space V and the operator A yielding the

Bieyclieity Condition. We managed to construct a broader spaee V_. and

extend the action of A to the space V_ by continuity. Then far every

;\ E Spee A we found an eigenvector e;\ E V_ ' Ae;\ = ;\e;\ . Let E;\

denote the related eigensubspace - it is I-dimensiona~ due to the BC .

Consider the quotient space V / EI\.' The operator A may be naturally

lifted to V_ / E;\ . Let AO,;\) denote the related operator

AU,A): V_ / EI\. ~ V / Eil. .

There may be two possibilities :

(i) A e Spec AU,A),

(ii) I\. E Spec AU,I\.).

As far the case Ui) , we cannot even expect that there exists

an eigenvector of the operator AU,;\) with the eigenvalue 11. - so the

related associate vector of the initial operator A cannot exist. And

a.S for the case 0) we do can expect the existence af the related

eigenvector. but it is not difficult to give examples when there is 00

such eigenvectars in V_ / Eh' so there is no associate vectars in V .

What to da? As it was already shown in the Theorem 2.3, it is possible

to extend the operator AU,A) by continuity to a broader space

(V_ / S)_ and to find the needed eigeovector there,. we must oo1y find

a cyclic vector in E~ - apredual space cf V_ / E;\ (ane can easily see

that (E~)I = V / EI\. ) . Note that if we have ooly one cyclic vector

19



V e Y I ( { B' V: B E R(A) } is (J'(Y / ,Y)-dense in V') then we already

have a possibility to eonstruet the inelusions y. c V' and V c V such

that V is tr(V_' V·)-dense in V . So, in order to be able to eonstruet

the spaee (V_ / E;\)_ we need only a eyelie vector in the space

E
.!. +
;\ c V .

Let us first da everything in terms of the algebra J(O) and then

use onee again the rigging eonstructed above. So, V_ is isometrie to

J(O)/, E;\ eorresponds to the one-dimensional subspace { v<p;\ : v e t },

V_ I E
A

is therefore isometrie to

The .operator A(l.;\) corresponds to the operator conjugate to the

1-
multiplication by A in the subspace { vrpA : v E a::} = Ker <PA C J(O).

Really , for any rp e J(O)' and any B e Ker rpA

Let AU,A) denote also the operator of multiplication by A in the .

subspace Ker rpA .

So we have a pair of Banach spaces (Ker rpA )' , Ker rpA and

a bounded.linear operator A(l.A) : Ker rpA ~ Ker C{J'i\. •

LEMMA 4.1. Spec A ;2 Spec A(l,'i\.) ;2 Spec A \ {'i\.}.

PROOF. Ir Il te 5pec Athen (A - Ilß )-1 e J(O) and the subspaee

Ker fiJ
A

is invariant under the multiplication by

20
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Jl tl:, Spec AU,i\) . If 11 ~ i\ and JJ. E Spec AU,A) then we construct

bounded operators in J(O)

multiplication by (A - IJ.O.

which are left and right inverses to the

Take any B e J{O) and decompose 1t

B :s fJ (B>' 0 + (B - f/J (B)· Q)A A

Obviously , the second term belangs to' Ker 'P>... • We obtain a

decomposition into a direct sum

J(0 ) ::: { V 9 : v e a: ) e Ker f(J I\.

We want to salve the equation - to find B

(A - ~ n)B = C

·Decomposing the entries as above we abtain

=

The first and the third terms in the left hand side belong to Ker 'PI\. •

therefore

and

CPi\.(BHA - An) + ( A(l,A) - IJ.O )( B - tpi\.(B) D ) = C - f(Ji\. (eH

So ,

1
'Pi\. (B) = A _ ~ 'PA (C)

. The operator (AU,>...) - 1J.9 fl : Ker /{JA 4 Ker tpi\ exists and 1s bounded
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be~use Jl ~ Spec AU,A). So

1 -1 ({JA. ( C)
:: A - IJ. 9'A(C) + (AU,A) - J,LU) {C - ~A(eH - r-.::-IJ. (A - AD) l.

/

So we have constructed a left inverse operator for the multiplication

by (A - J,La) in J(OL this operator is obviously bounded. The right

inverse operator may be constructed in the same way. So, I.l ~ Spec A

and the Lenuna is proved. •

REMARK 4.2. Now we may assume that Rat(A) = Rat(A(l,;\'» because

the connected components of C \ Spec A and of C \ Spec .AU,A) are

in an obvious one-to-one correspondence.

COROLLARY 4.3. 11 A i.s a non-isolated point of Spec Athen

i\. E Spec A(1,A).

There is a natural eyclie vector in Ker 'Pi\. far the action of the

algebra R( A(l.A) ) - it is the element (A - AU) e Ker 'PA . Really one

can easily show that R( AU,A) ). (A - A0) (= R(A)' (A - Aß» is dense

in Ker 'PA . Let R( AU,;\) ) denote the closure of R( AU,A)

operator norm topology on Ker 'PA

in the

11 f{J (AU,i\.» 11 = sup
R(AU,A» BER ( A)

11 cp(A)'(A - AD)·B II}(O)

11 (A - "A0)8 11
. ) (0)

We imbed R(A(l.i\» into Ker <Pi\. with the help of the' cyclic

veetor (A-AD) -c(l,A)B :: B (A - A0) , this is certainly a eontinuous
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imbedding with a dense range (it contains R(A)(A - Aa) ). Equip

Im "t'(l,A) with the norm indueed by this imbedding : fcr C e Im -r(l,A)

11 C 11 "\ =
1,/\

D C B 11
sup 11 (A - A0) 8 11 •

BER(A)

Let J(1,;\) denote the range of 'r(l,;\) (= the completion of (A-An )R(A)

with respect to the norm 11·11 ... ). Then A E Spec AU,A) if and only if
1,/\

there exists rp ... E J(1,A)' , such that
1,/\

r.p ...:;t 0 and A(l.A)rp... = A' 'P ... .
1 • 1\ 1./\. I./\.

Unfortunately, this element (j01.;\ belongs to an extension of the space

, ( J(O)/{v'P
A

: v e C} )'. we would prefer to have it in an extension of

the space J(O)'. In order to improve the situation note that Ker !PA is

naturally complemented in 1(0):

J(0) = { v 0 : v E C } e Ker rp A ( A e Spec A )

therefore 1(0)' is naturally split into a direct sum

l.
J(O)' = 0 e {v!PA v E C }

('PA is normalized by the condition 'Pi\.(0) = 1

naturally isometrie to 0J. . Extend the norm

the whole R(A) in the following way

n· 11 to a seminorm on
1.;\

sup
BER(A)

n ( rp(A) - q>(A)O )8 11
11 {A - AO)8 11
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Note that D rp(A) 11 A = 0 for rp(A) e { vB
_ I, .

v e C }

JO,A) is continuously imbedded into Ker f/J
A

and therefore into

J(O) . So, (Ker rpAV is continuously and weak-densely imbedded into

JU,A)', therefore

J(o)r :: (Ker 'PA)' m { v'P
A

: v e a: }

is continuously and weak densely imbedded into

J(I,A)' e { v'P
A

: v e C },

so the vector may be considered to belong to an

extension of the space J(O)' • and moreover, we may consider

rp i\.( 0) = 0 , r.p ~ (A - i\. 0) = 1.
I, 1,1\

We may naturally iterate this construction and consequently

extend our operators to broader and broader spaces and find all

possible root vectors in such spaces.

So, the construction is the f oLlowing

we start with the space V and the operator A : V -t V. We consider

the algebra R(A) and using the cyclic vector fj, e V we construct the

dense injection cf the B(V)-closure of R(A) ( B(V) is the algebra of

all bounded operators in V Hnto the space V

-- BIV)
"tJ:l : R (A) .-t V , "tLi(B) = BJ:l

J(O) denctes the space and let A( 0) denote the

operator cf multiplicaticn by A in the space J(O)

A(O) : J(O) -t J(O)

It is obvious that Spec A = Spec AC 0) and we may take

. Rat(A) = Rat A(O)
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Take A e Spec A = Spec A(O) and find f{JA E 1(0)' tpA (n) :::I 1 ,

f{JA ( (A - AO)' B ) :::I 0 for any B e R( A(O) ). Consider the subspace

Ker tpA C 1(0). lt is invariant under the operators from R( A(O) ).

Let AU,i\) denote the restriction cf the operator A(O) to Ker f/J
A

• We

have shown ( Lemma 4.1 ) that

Spec A = Spec A(O) :l Spec AU,A) :l Spec A(O)'{A},

and therefore, in particular, we may take Rat AO,A) = Rat A(O} :::I Rat A

So we have

and we may construct a dense injection 'r(1,i\) with the help of the

R( A(1, i\) )-cyclic vector (A - An) e Ker 'P?..

'r(1,A) R( A(l,A)
B(Kcrf{JA)

~ Ker 'PA ' "((1,A)(8) = B(A -A 0)

We can also restriet the operator to Im -rO,A},

Let l(1,A) denote the lineal Im -r (I,A) equipped with the norm

----BOCeNP )
transferred from R(A(l,i\}} i\ by the mapping -r(1,A) . We get the

operator

A(1,A) : l(I,A) ~ l(1,i\)

Obviously, Spec { A(l,A) : ]U,i\) ~ lU,i\) } = Spec AO,A) and if

A e 5pec AU,i\) we find a vector 'P i\ E l(1,A)'
I,

such that

'P i\(A - i\ D) = I, 'P i\( (A -7\ n)Zg ) = 0,
1, I,

for any 8 E R( A(!.A) ) = R(AL

Consider the subspace Ker 'PI). C 10,i\). lt is invariant under

the operators from R( AU,A) ) . Let A(Z,A) dencte the restricton cf

AO,A) to Ker tp "\' and so on . In general, 5uppcse that we have
1,/\'
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already obtained
,

( ({J "\ e J(P.i\) "V p }
P.'"

fJ i\ ( (A - i\ a)k } :: 1 I rp i\ ( (A - i\ 0)k +18 :: 0 I "V 8 e R( A(k, A) )
k. k,

We have the operator

A(k,A} : J(k,A) ~ J(k.A}

and let A(k+l,A) denote its restriction to Ker '(J ...
k,/\

A(k+l,A) : Ker Cf> ... ~ Ker rp ...
k,/\ k,/\

We construct a dense injection -c(k,A) with the help of the

k
R( A(k,A) }-cyclic vector (A - i\ D) E Ker rp ...

k,/\

-r(k,A}
Btter rp A)'

R( A(k,A) ) k, -+ Ker rp' ...
k,/\

We also may restrict the operator A(k,A) to Im -r(k,A), equipped

with the norm transferred from the space
B(Kerrp .... )

R( A(k,i\}) k,/\ by

the operator -r(k,AL we let j(k+l,A} denote this 8anach space. So, we

get the operator

A(k+l,i\) : j(k+l,i\) -+ j(k+l,A)

Obviously, 5pec < A(k+l.A) : j(k+l,A) -+ j(k+l,A) = Spec A(k+l.A} ,

and if i\ E Spec A(k+I,A) we "find a vector

that

rp ... e ,j(k+l,A)' such
k+1,/\
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ror any B E R(A) , and so on .

Let us note that the ideals

{ (A - i\O)k· S : B E R(A) } : = Hk,i\l c R(Al

are dense in J(k,i\) (with respect to the norm transrerred from

B(KerfP i\)
R( A(k-l,i\.» k-l, ). The ideals

compLemented in R(A)

Hk,i\.) are naturally

k-l k-l
r(A) = ( L: ·h f(l)(i\.)(A - i\. 0)1) + ( [(A) - L: T! r(l)(i\.)(A - i\. 0)1 )

1;:10 1=0

So,

R(A) = T(k,i\.) @ Hk,i\.),

where T(k,i\.) =
k-l
L c {A - hol c e C }.

1 1
leO

The first summand is k-dimensionaL , so we consider the following

spaces

( J(k,A) is equipped with the natural norm ),

J(O) = R(O,A) ::> R(l,A) ::> R(2,A) ::> •••

all inclusions are dense and continuous.

So, the intersection n R(k,;\)
k,A

- we shall denote it s: - contains
(I)

R(Al

and it carries a natural locally cenvex topology ef the prejective

limit. We can find all possible root vectcrs in the dualspace cf 8 ­ec

we denote it gec. In the next paragraph we describe tbe whcle

construction in analytic terms, permitting further study cf the Jordan

deccmposition.
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§ S. Algebra g .
• CI)

Consider the algebra R(A) and introduce the following seminorffis

on R(A)

11 [(A) 11 A :::::I 11 [(A) 11 ( A E C )
o.

11 ( [(A) - f(I\.)O )B 11
0.1\.

11 f(A) 11 I\. = sup
11 ( A 1\.0 ) B 11 A

( A E C\A )
1.

BER(Al O.

n-l fO)(A)
11 ( f(A) - E " (A - 1\.0) 1 ]B 11

n-l.A1.

11 f(A) 11
1::>0= SUp

n.A.
BER(A) 11 (A-;\O)n B 11

n- 1 • A.

( A. E C\A ).

The origin of these seminorms was explained previously.

Let s: denote the completion of R(A) with respect to this family
CI)

of seminorms - this definition obviously coincides with the one given

above.

We again consider the following ideals in the algebra R(A):

I(n.A.) = { (A - AO}n 8 : B e R(A) }

The seminorm 11· 11"\ is a norm if restricted to Hn.A). moreover for
n.1\.

[(A) e 1(n.A)

11 [(A) Bll
n

_
1

.1\.
11 f(A) 11 A :s sup -------

n. B 11 ( A- I\. 0 ) n B 11 n-l.A
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LEMMA 5.1. If B E I(n,l\.) , C E R(A) then

PROOF.

11 BCD II
n

_
1

.1\.
11 BC 11 '\ = sup -------- :S

n.1\ D 11 (A-I\n)n D n
"-1.1\.

11 BCO II
n

_
1

,1\ 11 (A-AO)" CD II
n

_
1

.1\
:Ssup------------------s~p :S

D n (A-I\.O)" CD n 11 (A-Aß)" D 11
n-l,1\. n-l.1\.

::s 11 B II
n

•
A

n (A-AB)n C I1
n

•
A •

Really many of these seminof'ms are equivalent . In order to see

this we must introduce some notions.

DEFINITION 5.2. We say that A e Speck A if A e Spec A(k./\.).

k
PROPOSITION 5.3. 11. e Spec A if and onLy il tor every I e Rat(A) -

PROOF.

k
A e Spec A ~ A e Spec A(k.A) ~

~ \I qJ e Rat(A)

k

11 fP(A)(A - An) 8 11 .
sup ---------k k-l.i\ ~

8 11 (A - AO) B 11
k-l.1\.

29
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.. V f e I(k,A)

et V f e R(A) J f {k)(,\) L
11 f(A) 11 '\ ~ -....,......-/\.--.

k,/\. k! •

PROPosmON 5.4. 11 e Spec A(k,A) if and only if for any f e Rat(A)

k
(11 - A)

n [(A) 11 '\ ~
k./\.

,I-!=A

PROOF. Let Il :;: A or else see the previous Proposition 5.3).

11 e Spec A(k) ..

~ V cp e Rat (A) = Rat A(k,A) llcp (A(k,;\)): J(k,A) -) J(k,A) 11 ::: I cp(,..d I ~

~ V cp e Rat (A)
11 cp.(A) (A - AO)k B lI

k
_

1
,A

sMP i:!: I cp(/-l) I ~
11 (A - AQ)k B 11 ,

It- 1 ,/\.

~ V f e I(k,A)
11 f(A) B II

k
_

I
,A

sup-------
B 11 (A-AO)k Sll

k-I.A

$) V f e Rat (A) 11 f(A) 11 , ~
k,/\. k

(Il - A)
•

PROPOSITION 5.5. Let A E Speck A . Then the norms 11·\1 '\ and
k./\.

11·11 '\ are equivalent on !(k,A).
k-l./\
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PROOF. Let f E Hk,A) . Then

U f(A) B II
k

_
1,A

11 [(A) 11 '\ = sup -------- ~
!c,l\ B 11 (A_ Aß) k B 11

k-1.A

1
~--------

11 (A - AO le
11
k-1.A

withaut any assumptians on A ),

kNaw let A E Spec A. Then A E Spec A(k,Al, Le.

11 ( A(k,A) - AB ) C 11 '\ i?: elle 11 '\ far C e" Hk-l,A)
k-1.1\ k-1.1\

ar

11 (A - A. g) (A - AD)k-1 D 11 '\ i!: C 11 (A - AOk-1 0 11
k-1./\ k-1,A.

far D e R(A) . So

II f( A) 0 11
I( -l,A 1

11 f (A) D 11
k-l,An [(A) 11 = sup :S - sup :S

k.A. D
11 (A-Aß)k 0 11 A

c D
11 (A-An )k-l D 11

k-l, k-l,A

1 11 f(A) 11 1(-1 ,i\ 11 (A-A n)k~l D lI
k

_
l
,A

s - sup ------------------
C D 11 (A_AO)k-l D II '\

k-l , /\

= .!. 11 [(A) 11
c k-l,A •

So • really we need only the seminorms 11·11 '\
k./\

I(
, A e Spec A I

because other seminorms do not contribute anything new to the topology

Space J {M }. Consider {M}ca - a sequence of compact subsets of C.
ca k k kmO

M :2M2M 2 ...
012

such that M ,( n M ) c Isol M - the set of isolated points cf M
k 1 k k

l:aO
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DEFINITION 5.6. Let J {M } denote the following locally convex
!Xl k

space of sequences of functions

J {M } :a { (f )co I f : M ~ C I V A E M
k

I

ClO k k k=O k k

< CD }

The above supremums define a fundamental family of seminorms on

J {M }.
CD k

Let us list several simple properties of this space:

(i) f i.s continuous on M .
o 0

Really, oue must only check the continuity at nonisolated points
co

of M . but all such points belong to n M , so for every
0 k

k=O

A e M \(Isol M) c M and for every J,L e M
0 0 1 0

and the assertion is proved.

(ii) tor every A E n M the tunctLon
p=O p

k-l

lo(J,L) - L 1
1
(A)(Jl-A)l tU

1=0

f (A)
k

i.s continuous on Mo ' and its Limit at A equals ~

The continuity at all points besides A is obvious (see (i) ).
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As for I.l ~ A
k (_ A)1
L f (i\) IJ. • I

1 l.
1=0

= sup·-I
lleMo
J.L~h

So the limit of the numerator is zero .

o

I ==

o

(iiU [0 is anaLytic in M - the interior of M - and for every A E M

[(A) = [(1)(A) (for aU i = 0,1•... ).
I 0

A proof may be easily obtained from U,iiL

(iv) The [unctions f I are arbitrary (k = 1.2.... ).
k 1501 M

k

(v) The space J (M ) f.s naturaUy isomorphie to the space
CI:l k

A
o

x ( ; cl IaolMk I )
k=l

were A is a LoeaLly convex aLgebra.o

consisting of aH functions eJ(M })
co k

and I IsoL M
k

I = the number of points in IsoL M
k

• S c A(M )
o 0

the space of [unctions • continuous on Mo and anaLytic inside Mo'

the imbedding is continuous and the range is dense in A(M ).
o

(vi) The duaL space ( J ( M ) )' is naturaLLy isomorphie to
CI:l k

CI:l IIsolM I
( A )' $ ( Lek ) l.e. [ar every continuous Linear

0
m=1
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[unctional cp

dp. e (A. )'
o

J {M } ~ C there exist a "generaHzed measure"
co k

and ·complex numbers C(k,A) , k = 1,2, ...,

i\ e Isol M, such that
k

tp ({f
k
}) ::% f f/).) dp.().) +

Mo

f ().) c(k,i\)
k

k:: 1,2•...

i\elaolM
k

(only [i.nLtely many o[ the numbers e(k.).) are nonzero).

§ 6 Generalized Gelfand Transform.

Let B e a: . Consider the space J { SpeckA } and define the mapping
co . co

R(A) 3 f H ( f(k) I Ic} E J { Spec k A }
Spec A co

The Proposition .5.3 shows that this mapping is continuous and

therefore it may be extended by continuity to the following mapping -

we shall call it the generalized Gelfand Transform:

k
t\: g ~ J {Spec A}

0) CD

It may be also described as follows :
...

(B) (A) = cp "\ (B) for k = 0,1,
k k./\

k
• A e Spec A.

DEFINITION 6.1. We call Ker 1\ the small radical of g and we call
co

the operator A semicomplicated if Ker 1\ = { 0 }.

Ker 1\ may be described as follows:

Ker 1\ = { B: V ~ V I there exists a net ( gß }ße5 c Rat (A)

such that 11 gß(A) - B ni\,k ~ 0, TI k = 0,1, ... , TI i\ e C

(kl k
and gß (i\) ~ 0 , TI k : 0,1, ... , V i\ e Spec A).
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THEOREM 6.2. The system of generali.zed root vectors

k
( fP

A
.
k

: k = 0,1, ... , i\ e Spec A)

is (j (aa:J,g ) - complete lf and only if the operator' A i.s
CD

semicomplicated , L.e. for any net ( gß }ßef3 c Rat(A) , such !hat the

net { gß }ße.5 15 fundamental in every seminonn n· lI
k

•
A

(k = 0,1, .•.,

(k) k
i\ e t) and gß (i\) ~ 0, "V k = 0,1, ... , "V A e 5 pec A, the

following equali.ty hoLds :

The proof is obvious.

THEOREM 6.3. The system of generaLi.zed root vectors

k
( fP... : k = 0,1, ... , i\ e 5pec A)

fI.,k

is fT ( gOO,8 ) - compLete if and onLy il the [ollowing subsystem i.s
CI:I

~( ar
OO

C'J ) l t.., g".;;I,co - camp e e

k
k = 1,2, .•. , A e IsoL Spec A).

PROOF. Suppose the first system is complete , but the second is

not . Then there exists Beg ,orthogonal to all vectors of the
Q)

second system, Le. rpk,i\ (8) = 0 for all A e aSpec A , k ::: 0 , and

for all k = 1,2, ... , i\
ke Isol Spec A . 8 ;c 0 , therefore there

k
o

exist ko and A
O

e Spec A such that rpk A (8) ;c 0
o· 0

First. let k = 0 . Then i\ belongs to the interior cf Spec A. Theo 0
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~, .:. ~ •••' *' t: ~ ' .. ' .~ ... '~."~ .. ~. ',... .

function

.• +..". '. ... .' ... ~ ~ ,

P. H rp (8)
c,p.

is analytic in the interior" of Spec A and it

vanishes on aSpec A, therefore it vanishes identically I and rp A (8) =
0, 0

:::I 0 . Then take the minim~l possible k 2: 1 and
o

k k
. 0 0

;\ E Spec A' Isol(Spec A) c Spec A , Isol(Spec AL
o

A e aSpec A (or else the previous argument is valid ). Take

Z E aSpec A , Z -4 ;\ • Then
I I 0

k +1
(z - I\, ) 0

1 0

co > sup
I

k
o

2:
k=O

'P I\, (8)
k, 0

k
(z -I\, )

1 0

k!

=

'P
k

i\ (8)
0' 0

= sup
1

o -

Z
i

k !
o

k
o(z -;\ )

1 0

k +1
;\ ) 0

o

= sup
1

lfJ
k

A (8)
0, 0

(z - i\ ) k !
I 0 0

so IfJ
k

"\ (8) = 0 what contradicts the choice of k ,A .
0,1\0 0 0

§ 7. Jordan decomposition

Jordan decompasition in a:co
• Suppose the system

k
{ <PA,O : A e a(Spec Al. 'Pi\,k : k = 1,2, ... I A e 1501 Spec A}

•

cois (T( g ,8
CD

injective. Then

)-complete ) Le. the generalized Gelfand Transform is

k
A(8 ) may be viewed as a subalgebra of J {Spec A >,

co co

. therefore the conjugate mapping A' maps JCO{Speck A} anto a 0'( gCO,g )­
CD

co
dense subspace cf g .
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So for any
CI:I k

there exists a net {!/1ß}ßES C J {5pec A}

0''(211)>,21 )
CI:I

such thatAl !/1ß ) 'P.

Every l/J
ß

is defined by a generalized measure dll
ß

e (A
o

and a

k
set of numbers' cß(k,i\.), k = 1.2, ... , i\. e 1501 5pec A only a

finite number cf them are nonzero ).

So,

!/1
ß

{fk } = S fo(i\.} dJ.Lß(i\.} +
SpecA

L f k(i\.) cß(k,i\.}'
kaI, 2, ...

k
i\.EIsol Spec A

'P(S} = lim ( A
/ !/1

ß
) (S)

ß

lim S 'Po,i\.(B) dJ.Lß(i\.} + L 'Po,i\.(B} cß(O,i\} +
ß SpccA'lsol SpecA i\.EI 11 0 1 SpecA

One can prove that there exists lim cß(k,i\.) for every possible k,i\.
ß

Really, for any k = 1,2,... , i\. e 1501 SpeckA, choose a function f

analytic in a neighborhood of Spec A such that f vanishes outside

of a small disk centered at i\. (and not containing other points of

(J.L - i\.)k
Spec A ) and f(lI) = in a smaller disk centered at '\.. Thenr- k! I\.

f(A) is correctly

Then

defined and one can easily show that f(A) E s:
CI:I

cp (f(A)} = 0 far alt J.L ~ i\. and all p
p,ll

'Pp,i\.( f(A) ) = 0 far all p ~ k, 'Pk,i\.( f(A} ) = 1.
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tp ( f(A) ) = lim Cß(k,A)
, ß "

and so the limit in the right hand part exists for any k,A

Jordan decomposition in the initial spaces. Now we return to the

initial spaces V ,V' and the inclusions
V

to T ,T

R(A)
T/1
~V

V
"C'

V' (- R(A)

One easily that the mappings
ry.

continuous ifcan see T/1" • T are we

equip R(A) with the system cf seminorms {"11 • 11 '\
n.1\

supposed to "be equipped with the weak topologies

obtain a rigging

Tf1
(T'7 )'

s: ~ V ----+ g!Xl
I»

(1: )'
'7

T
SaJ~ V' r- a:

!Xl

and V ,V' are

So we again

Let" V. denote the range cf T ß ' equipped with the topolagy

"transferred from a:aJ by "(ß ' let V_ denote the completion of V with

respect to the tapo logy transferred from So:l by [(T'7 )' r 1 , let V·

denote the rarige of -r'7 ( with the topology transferred by -r'7 fram a: )I

00

denote the completion cf V' with respect cf the topology

transferred fram 8
00

by [(1:'A)' r i
. "

We obtain the following scheme

v c V c V
•

v (resp., V-) is the dual space for V· (resp.• V). the duality being
•
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extended from the initial duality between V and V'. 7:ß (resp., 7:V') is

an isomorp~ism between Sco and V + (resp., V+). (7:V') I (resp., (7:~)/) 1s

co - 0an isomorphism between S and V (resp.. V ).

Put

V' -1 lOk ?; 1= rp (-c) (V') ) = rp"\ (0) = ·
A.k I\..k 1 , k = 0

Similarly , < ß , eA,k > = 10
1

• k ?: 1
,k=O

Let us compute

< ( A - AO )p e"\
I\..k

iJ
,-c (B) > =

= rp"\ (B)
I\.,k-p

iJ= < e , -c (8) >
A.k-p ( if k < P , then put el\.k_p = 0 ).

So , ( A - i\0 )p e"\ = e"\ . Similarly
f\.k f\,k-p

Therefore

< C !J.

< ß, [ L ~ (~) (A - AD )1 +
a - sI

a<k

ei\,1e > = < V' , C' eA.k > =

A k
c (1\) (A - Ag) +" (A _ AD)k+1 D ] eA•k > =

k k!
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1\

C (A)'
k

= --=-k~!-

Now we want to obtain aversion of the Jordan decomposition fcr

vectors from V . This is not possible for all vectors from V but

this turns to be possible for vectors from v - a dense
+

lineal in V.

DEFINITION 7.1. Let Lim Spec Adenote the set

8(Spec A \ Isol Spec AL

Consider the linear functional on S
co

: B ~ <B.6 , 'iJ >.

It is obvious that I{J.6,'iJ e SlXl
co

and therefore f{J.6.'V may be <T( s: ,Sco )-

kapproximated by 1\ I -images of a oet of functionals on J {Spec A}
co

CT(V ,V+)

1\ I ( dJ.1
ß

,cß(k,i\) ) ) qJ.6,'iJ

Take any X E V • Y E V'" . Then there exist
'"

8 • CES • such
co

that x = B .6 Y -. - C/V . Then

< X, Y > :: <8 .6 I C I V > = < (CE).6 • fJ ) = tp.6,fJ (CB) =

= lim [ 1\1 C dl-l
ß

cßCk,i\) I (CB) =
f3 ,

c tim
ß

J ~i\ (CB) d~ß(A) +
L 1mSpecA k::aQ, 1,2, •••

k
Ae Iso I Spec A

=

= !im
ß

J tpA (C) 'PA (B) <a.eA,o ><ei\,o'V > dIJ,ß(i\) +
llmSpecA

+ L
k=O, 1.2, •••

Ir::
AEr aol Spec A

I +1 =k
1 2

(C) (A)
I
1

1 !
1

...
(B) (A)

1
2

1 !
2
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= lim
ß

I
L.lmSpecA

+ r
k=O. 1, ...

k
/\'EIsolSpec A

I + 1 = k
1 2

1\
(C) (/\,)

1
1

1 !
1

1\
(B) (/\,)

1
2

1 !
2

::1 lim
ß

f < X • e/\"O > < e/\,.o • y > dJlß
{/\') +

L ImSpecA

+ L
k:=O.l ••••

1 + 1 = k
1 2

k
/\'EIsolSpcc A

< e
/\'.1

1

=

J < X •

LlmSpecA

+ L
1 • I = 0.1 ••••

1 2
1 + I

1 2
I\.EIsol Spec A

So we have obtained the following

THEOREM 7.2. Suppose the operator A i.s semicompUcated . There

exists a net of measures {IJ.ß)ßEB on Lim Spec A and of complex

k
numbers ( cß(k,l\.) : k = 0,1, ... , A e IsoL Spec A)ße.23 such that

tor every x e V , y e V'" the [oUowing Jordan decompos~tion hoLds:
+

<x,y~ = lim
ß

s < x •
LI mSp e cA

e
A•O > < e

A
I > d ('\)Y IJ.

ß
I\. +

,0

+ 2:
1 • I Q 0.1 •..•

1 2

i\.!
<. x . e 2 >< ei\ • Y > C

ß
( 1 + 1

2
,1\,

• 1 1 I
(l +1 )! ).

I 2

I + 1
1 2

hEI.ol Spcc . A

and tor every [ e Rat(A)
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<!(A)x,y> =olim
ß

J !CA)( X ,

LlmSpecA

f<S) (1\.)

+ L s!
1 • I = 0, 1 •...

1 2
+ 11

I\.EIsal
1 2

Spec A

These f ormulae are exact analogues of the usual f ormulae appearing in

the finite dimensional Jordan decompositions and they give an infinite

dimensional analogue of such a decomposition.
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