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For an arbitrary bounded linear operator in a Banach space we
construct a broader locally convex space such that the operator and
possible rational functions of the operator are continuously
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‘system of root vectors and - in the case of completeness - we obtain
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§ 0. Introduction.

The Jordan Theorem on the normal form of a matrix is certainly
one of the central results of Linear Algebra . It asserts that root
vectors of a linear operator in a finite dimensiocnal complex linear
space V form a complete system ( the root vectors are nontrivial
solutions of the équations (A - aD* x = 0).

The problem of obtaining an infinite dimensional version of this
result was discussed very much ( see, e.g., [ 2,57 1 ), in particular
because of its obvious importance in many problems of Analysis and,
first of all , in the Fourier method . There are several problems
immediately arising here , connected with adequate generalizations of
most important notions .

So , the following notions play the principal roles in the finite
dimensional situation:
{i) Spec A - the set of all A?L € € such that the eguation

(A - A0)x = O has nontrivial solutions;

(ii) Eigenvectors = nontrivial solutions of the above equation;
(iii) Speck A - thelset of all A € C such that there exists x € V,

k+1

(A-aD"%x =0, (A-aD*x =0.So, Spec’ A = Spec A;



(iv) Root vectors = solutions of the preceding equations.

The notion of spectrum may be very well generalized to the
infinite &ﬁensional setting , but as for ,ali other notions - there
are well known difficulties connected with the possible non-existence
of eigénvectors and , further on, of root vectors.

In fact the Jordan theorem has two layers . The first one is a
description of the algebra generated by the operator A, and the second
one deals with the phenomenon of multiplicity of spectrum . Here we
shall restrict ourselves only to the first Ilayer and study the
structure of the algebra , generated by - A , leaving aside difficult
problern.s connected with the multiple spectrum - .we hope to return to
them ir; the next pl.;blications.

Our approach 1is connected with the theory of generalized
eigenvectors of a self adjoint operator in a Hilbert space ( [ 3, 1 ]}
The idea of this approach is to extend (in a .natural way ) the action
of the operator in question to a broader space and try to find the
missing eigenvectors and root vectors there . We show that it |is
possible to do this - we construct such an extension and really find
all possible root vectors in the constructed space. The following well
known example gives the flavor of the approach =~ consider the space
LZ(IR) and the opere;tor - id/dx there, its spectrum is the whole real
line R , there exist eigenvectors e"\x of this operator, but they all
lie not in the initial space Lz(IR) but in a broader space, say, the
space of bounded functions . Nevertheless , we know that there exists
a very nice theory of decomposition of functions in int;.cgrals over
these eigenvectors.

The crucial difference between the finite and the infinite

dimensional situations is that there are no natural ways to extend an



operator in a finite dimensional space to a broader space, whereas
every infinite dimensional oper.ator acts simultaneously in many spaces
and it is very difficult to say in. advance which space is more natural
for this operator , so we must not restrict ourselves to the initial
space when trying to find such objects as ei'genvector‘s and root
vectors.

The paper is organized as follows . § 1 contains necessary
preliminaries . § 2 contains a description of the first step in the
main construction . ‘§ 3 contains a theory of expansion of vectors
into "iﬁtegrals"_ over generalized eigenvectors with respect to a
generalized measure . § 4 is devoted to a geolmetr'ic deécr‘iption of the
space containing all possible root vectors . In § 5 we describe the
above construction in' analytic terms and introduce some notions
necessary for a generalized Gelfand Transform . § 6 is devoted to the
generalized Gelfand Transform and problems of completeness of
generalized root vectors . In § 7 we apply the previous considerations
to obtain a Jordan decomposition for a general operator .

Preliminary versions of these results were announced at various
conferences since 1983 - Chernogolovka {1983) , Veronezh (1985-1991) ,
Halle (1988) , Novgorod (1989) , Oberwolfach (1990) , Sappore (1990) ,

Jerusalem (1991) , Beer-Sheba (1992).
§ 1. Main Notions

We consider the following situation : V, V' is a pair of complex
Banach spaces such that either V’ is the Banach dual space for V or V
is the Banach dual space. for V/. Let p(-) and p’(:) denote the norms

in the spaces V and V', respectively.



_ Consider a pair of bounded linear operators
A: VaV and AV >V
such that the usual identity holds:
< Ax,x’ )=<x,A’i’ > , (VxéV,Vx’ e V')
The norms of the operators are defined as usually and they coincide:
hA:VaVIHl=su{|CAxx' > :plx)s] p'(x')s1l}=
=sup { [<xA'% > :px)sL p/x)s1)r=0A":V 5V I
The spectra of the operators are also defined as usually and they also
coincide
Spec A={ A eC: ( A-Al) has no bounded inverse } =
={ X e C: (A’ - Al) has no bounded inverse } = Spec A’.

Spec A is a compact subset of C .

DEFINITION 1.1. Consider the set € \ Spec A. This set is a
disjeint union of its connected components U1'.i € I. One of these
components contains = , let Um‘denote this component (so , = € I).
Choose a point A‘ € Ul for every i € I, let Aw = o , let A denote the

set of these points .Consider the functions

xl(u) = /(g - Al). iel, i#wm

X (1) = p
Let Rat(A) denote the set of all polynomials of xl(u) , I €I or in
other terms, Rat(A) is the set of all rational functions with poles in

the set A .

Certainly, the set Rat(A) depends upon the choice of A but really
we shall use only some completions of Rat(A) and this dependence will

disappear . Nevertheless for technical reasons we consider such an



ob_iecft.
DEFINITION 1.2. R(A) = { f(A) : f(-) € Rat(A) } .

We need an equivalent definition of the set Spec A in terms of the

algebra R(A).

PROPOSITION 1.3. A € Spec A if and only if for any f € Rat(A)

IFa = | £ |.

PROOF. First we prove the following assertion, almost equivalent

to the Proposition 1.3:

A e Spec Aif and only if ' I - (4 - ADB | = 1 for every B e R(A).

If for some B € R(A) we have | I - (A - Al)B I} = ¢ < 1, then we
construct the operator [(A - Al)B 1" as an obviously converging
series:

. o
A -aDB I =0 -(t-(A-anB)N =711 - (A -2anB ¥
k=0

Now one can easily show that the operator (A - Al) is invertible, so
A ¢ Spec A Converéely, if A ¢ Spec A then there exists i e I such
that A € Ul.. Take Al € A, )«1 € Ul. It follows from the Runge Theorem
(see, e.g., [ 6 1 ), that the function z =1 /z - A) can 5e
approximated by polynomials of 1 /(z - 7\1) uniformly on any simple
closed curve I lying in Ux' such that A a.ncl.k1 are situated insideAl'.
Really, introduce a new variable w = = 1 /(z - Al). The questiog is

reduced to the problem of a uniform approximation of the function



plw)= w /(1 + (Rl - A)w) by polynomials of w on a contour '~ such that
the function is analytic in a neighborhood of the domain bounded by the
contour and the ‘classical Runge Theorem guarantees the possibility of
such an approﬁmation.

Then the formulae

-1 1 1 P
'(A-A[I) zz—niiz—h(}\—z“ dz
-1 i 1 -1
P((A - AIU) ) = m ﬁ P( z - Al ) (A - ZUJ dz

show that (A - AD)™ may be approximated in the operator norm

by polynomials of (A - Alﬂ)-l

P ((A - xlu)") Bl -an™

Then, taking Bn.= Pn((A -an™ - they obviously belong to R(A) - we
obtain that I ] - (A —MI)Bn i » 0. So, our assertion is proved.
In order to prove the Proposition 1.3 itself we first must note that
if A ¢ Spec A then there exists g e Rat(A) such that
WD - (A= Ab)gl(a) 11 <1
and the inequality Il f(A) W = | f(X) | fails for
f(z) =1 - (z - Alg(z) € Rat(A).

If A e Spec A then define ¢A(p) as follows:

flu) = fAY /7 p=-2A , p=a

¢, (u) = .
A f’(A) , p,:A

One can easily see that if f{ € Rat(A) then ¢'A is also in Rat{A) and
flp) = f(A) + (u-h)¢h(p). For 'every function f € Rat{(A) such that
f(A) # O we obtain that

IEA) W o= I fOUT + (A - AD) ¢, (A) I =



=P [ B 0w (A=A gy 4 1= | ).

Let J(O) denote the completion of R(A) in the operator norm
topology. One can easily prove that J(0) does not depend upon the
choice of A in the definition of Rat(A) . J(0O) is always supposed to
be gquipped with the operator norm . J(0) is a commutative Banach
algebra.

As it Qas said before, we consider here. only the situation of the

"simple spectrum” , so we assume that the following condition holds:

Bicyclicity Condition ( BC ) . There exist A e V , V e V' such
that { BA : B € R(A) } is o(V,V’) - dense in V and { B’V : B & R(A) }

is (V’,V)-dense in V’.
§ 2. Main construction - the first step .

Rigging . Consider the following linear mappings

TA : J(0) > vV, tA{B) = BA

‘rv : JO) s V', 'cv(B) = B'V

Both mappings are continuous p-rovidcd all spaces are equipped with the
natural normed topologies, but it is more important for us that the
mappings are continuous if we equip V and V’ with the weak topologies
c(V,V') and o(V’,V) , respectively, because we are interested in the
dual mappings

(tA)’ Vo J(0)

') : V > J0)

where J(0)’ Is the Banach dual space for J(0). It follows from the

10



Bicyclicity Condition that Ta and ‘l.'v are injections with weakly
den'se ranges and this means that (‘rA)" and ('r:v)' are also
injections with o{ J{0) ,J(0) )-dense ranges ( to prove the
injectivity of, say, T, » One may go as follows : suppose that
0= CelJO) andT,(C)=Ch=0,
then the o(V,V’)-closed set Ker C does not coincide with {(0},V and
for any B e I(0)
B Ker C ¢ Ker C
As A & Ker C then the set { BA : B € }O) } is not «(V,V’)-dense in

V, and this contradicts the Bicyclicity Condition ).

So we have obtained the following injections with weakly dense

ranges
T, ()
0 —24 v 5 50
, v
('CA) T

Y e~ V' e— JO)

Let V+ (resp., V+) denote the lineal Im <, (resp., Im 'r:v), equipped

A

with the norm transferred from J(0) by ‘the operator T, (resp., Tv).

A
Let V_(resp., V) denote the completion of V (resp., V') with respect

to the norm, transferred from the lineal Im (-cv)’ < J{(0)’ by the
L -1
operator (‘rv)' (resp., from the lineal Im (TA)' < J0) by the
-1
operator ('rA)’ ). So we obtain the following weakly dense inclusions:

V ¢ V ¢ V
+ -
vis v s v
v

and T, :J0) 2V, , T :HOsV" [ () Vs 0,

(TA)' : Vs NO) are isometries . The space V_ ( resp: V™ ) is the

11



Banach dual space for v resp.,V*_ ) and the duality between them is

an extension of the initial duality between V and V’ .

PROPOSITION 2.1.For any B, C € J(0) the following statements hold
' + + : v v
() BV _cV, ,BYV cV , 'EA(BC) = B TA(C) , T (BC) = B't (C);

() WB:V, >V, I'=0BV>VU=UB:V >V Il =1B:V v
(iil) the action of the operator B on V is of V_,V+)-éontinuoﬁsly
extendible to V_ and W B:V_o-V_I=018B:V>VIi;

the action of the operator B’ on V' is a‘(V—,V+)-conttnuousLy

extendible to V and Il B’:V >V = 0B :V' >V .
PROOF - an easy checking.

COROLLARY 2.2. For any B e J(0)

n

Spec B = Spec{B: V » V } = Spec{ B: V,»>V_}=Specl B:V_>»V_1} =

= Spec { B': V' 5> V' }=Spec{B’:V+->V+) Spec { B':V >V )

So we have continuously extended all the operators B from J(0} to a
broader space V_ without changing norms of the operators and therefore
without changing the spectra. 'T'his new space i{s more natural for these
operators - it is shown, in particular, by the following simple and
well known theorem ( in slightly different terms - see , e.g.

(41

THEOREM 2.3. A € Spec A if and only if there exists e, € V_ such

A

that eh =- 0 and Ae;\ = )\ea.

PROOF. A € Spec A o { (A - Al)B : B € J{0) } is not dense in J{O)

12



o 3 ¢, € J(0) (Ph(ﬂ) =0, Py {(A - A0)B) = 0 for every B e J(O) .

-1

= ('rv)‘ (<pA) , e, =0 as ('rv)’ is 'an isometry , take any

Take e 2\

A

x’ e V+, X' = tv(B) for some B € J(Q0) . Then

-1
(A= ADe, , X' > = <A =AD) (=) (p,) , X' > =

-1
= <[z ] (p,) . (A" - AT (B) > =

-1
= < {(xN)] (0, . (A - AL)B) > =

0-

1

= qoa((A - af)B)

so (A - M)é>L = 0. .

-1 -1

Note that < Vo= < (2] Py . V0 =gl (<) (W) ) =

e}\,

-1
= qo‘x( ('rv) (rvﬂ) ) = qox([l) # 0 , so we normalize e\ by the condition

<eA,V>=1 , ¥ A € Spec A

Similarly , A € Spec A if and only if there exists e € V™ such that

A’eA=AeA, <A,ea>=1 , ¥ A & Spec A.

REMARK 2.4, The core of Theorem 2.3 is that the functionals
¢y € J(0)’, normalized by the condition qo;\(ﬂ) = 1, are multiplicative
and they are eigenvectors for the coregular action of J(0) on J(Q)’

{ the coregular action is the actibn corijugate to the regular action

of J(Q) on itself ).

13



& 3. Eigenvector expansions .

Completeness of the system of generalized eigenvectors . We have
obtained generalized eigenvectors ({ & A € Spec A}, belohging to
V_, so now we can pose and study the problem of completeness of thi§
system of vectors . We consider the completeness in the weakest
possible topology - the weak topology of V_,V+ ). This is naturally
equivalent to the problem of the o J(0)’,J(0)) - completeness of the
system of elements { LN A € Spec A} in J(O).

Consider the mapping

R(A) 3 f(A) > f | spoc A € C(Spec A)

The inequality from the Proposition 1.3

sup | flu) | = U f(A) 0
HESpecA

shows that the mapping is correctly defined and is continuously
extendible to the Gelfand Homomorphism
A @ J(0) » C(Spec A)

( It is well known that Spec A in this situation may be identified

with the space T (J(0)) of maximal ideals ( = the space of
multiplicative functionals ) of the algebra J(0), the function
A: MIQ)) » Spec A delivers the necessary identification, a version

of this identification was already used in this paper: A 2% is a
one—to—one correspondence between Spec A and the set of
multiplicative  functionals on J'(O) ).

The Geifand Homomorphism may be also described as follows: for every

B ¢ J(0) and every A € Spec A B(A) = q:A(B).

THEOREM 3.2. The system { N A € Spec A} is o( J(0),J(0) )-

14



-complete in J(0)’ if and only if the algebra J(0) is semisimple

( te., Ker n={01} )

PROCF. The system { N Spec A} is o( J(O),J(0) ) -
complete if and only if there does not .exist B e J(O) , such that
B = 0 and ‘PA(B] = 0, Y A & Spec A, and this is equivalent to the

condition Ker A = {(0O}. n

A refinement of the completeness condition . Let 38Spec A denote

the boundary of Spec A .

PROPOSITION 3.3. The systems of generalized eigenvectors
{ N A € Spec A} and ('PA : A€ 8Spec A} are o J(0),J(O) ) -

complete or nonéomplete éimultaneously .

PROOF. For any B € J(0} the function A cpA(B) is analytic in

the interior of Spec A , as a uniform limit of analytic functions

( Really , there exist f'n(A) € R{A) such that 1 f‘n(A} -Bl=>0, so

O¢l f(A)-BlUl = sup |[g,(f(A)-B} = sup |f(A)- o (B} )
n A''n n A
A€SpecA A€Speca
therefore
sup | ¢, (B) | = sup | ¢, (B) .
A€SpecA: Acdspecah

So , if the system ({ ey A € 8Spec A } is noncomplete then there

exists B e J(0) such that B=*0 and ¢, (B)| 2 0 then
. dSpecA

: QA(BHSP“A = 0 and the system { 9, : A € Spec A } is also

noncomplete. ]

15



Generalized eigenvector decomposition . Let us suppose that the
system of generalized eigenvectors (w)‘ : A € @Spec A} is o(J(0)’,J(0})
- complete. This is equivalent to the semisimplicity of the algebra
J(0) , i.e. to the injectivity of the Gelfand Homomorphism

A J(O} » C(8Spec A).
Consider the conjugate mapping
A’ : Meas(3Spec A) » J(0)’
where Meas(8SpecA) is the space of Borel measux;cs on J&Spec A - the
Banach dual space for C(8Spec A). This mapping A’ has a (J(0)’,J(0})-
- dense range ( because of the injectivity of A } , therefore each
element of J(Q)’ may be approximated by a net of elemcnt; of the type
~ (pa) , where { H, } is a net of measures . Therefore we consider
elements of J(0)” as ~‘-images of " generalized measures"” on @8Spec A

-~

{ functionals on Im * , equipped with the norm transferred from I(0)

by the mapping ~ ).

THEOREM 3.4. Suppose the set {(P)\ : A € 8Spec A} is o(J(0),J(0))-
complete (= the algebra J(0) is semisimple). Then for every ¢ € J(0)’
t}iere exists a generalized measure dp.(p of 8Spec A ( = a bounded

functional on the subalgebra Im ) such that for every B e J(0)

o(B) = [ qu(B)dp.w(A) =lim J cpx(B) dum’w(h)
dspec A @ dSpeca

( {d“a gp} ls a net of measures on 8Spec A ) .

16



"PROOF. @(B) = [ BA) dg (A) = 0,(B) du_(A) .
dspech ¥ dspecaA e

-+
Now we return to the spaces V , V+, V. As previously, we let e

A L}

A e Spec A , denote the gcneralizgd eigenvectors of A , e, € V and

A -
we let eA. A € Spec A , denote the generalized eigenvectors of A’,
e* € V° . The normalization conditions are :

<eA'V>=1 , Y A € Spec A

<A,e>‘>=1 », ¥ A € Spec A

We assume again that the algebra J{0) is semisimple - this is
equivalent to the 0(V_,V+)—comp1eteness of the system {EA‘ A & Spec A}
or , equivalently , to the o-(V-,V+)-completeness of the system
{ eR: A € 3Spec A }.

We want to decompose elements of V into “integrals” of e, over

A

8Spec A . Generally speaking , this is impossible for all elements of

V , but this is possible for elements of the dense lineal V+.

THEOREM 3.5. There exists a generalized measure on 38Spec A

( = a bounded functional on the subalgebra Im A < C(8Spec A) ) such

\

that for every x € V+ and every x’' € vt

< x,x' > = I < x:,e)L > < ex,x' > dulA)
dSpecA
A
(or x = J < xe >ey du(d) )
8SpecaA

17



_PROOF. As x € V+ , X' e V" then there exist B, C € J(0O) such
that x = BA

!

, X' =C'V . Consider the following functional on

J(0): D = < DAYV > . This i{s certainly a bounded linear functional,

therefore there exists a generalized measure duy on 38Spec A such that

<DVA>= [ D) dud) =lim J D) dg ().

8speca a JSpaca

Then, recalling that < eA,V > =X A.e;\ >=1 for all A € Spec A, we
obtain

<x,x" >=<BAC'VY>=CCBAY Y= [ MNCBA) due(a) =

dspeca

= F COUBO) du) = G < e, > B < Aet > dula) =

dSpech dspecA

P A A ,

= J < CeA,V. > CAB e du(d) = I < Bie»( eA,C V >du(d) =

dspeca dSpeca

= J <xe. > <Ce x> du(A) . n
A A
dSpech

§ 4. Jordan decomposition - main constructions

Root vectors . What can we do in the

case of a nonsemisimple
algebra J(0) ? Here it is definitely nonsufficient to use only

eigenvectors.

The finite dimensional situation shows that it is very useful to
consider also root vectors - nontrivial solutions of equations

(A-2a0)*x=0. But they may not exist. The most important idea of

the preceding sections was to

continuously extend the action of all

18



related operators to a broader space and try-to find - the missing
vectors there . We show how to construct the needed broader spaées. -
First we describe the situation in geometric terms. .

We started from thé space V and the operator A yieiding the
Bicyclicity Condition. We managed to construct a broader space V_"and

extend the action of A to the space V_ by continuity. Then for every

A € Spec A we found an eigenvector e, ¢ v_, AeA = ?\e)L . Let EA

denote the related eigensubspace - it is l-dimensional due to the BC .

Consider the quotient space V_ / E‘A' The operator A may be naturally
lifted to V_ / EA . Let A(lL,A) denote the related operator :

ALAX V_/ E, — V_/E, .

A
There may be two possibilities :
| (i) A e Spec A(LA),
(ii) A ¢ Spec A{l,A).

As for the case (ii) , we cannot even expect that there exists
an eigenvector of the operator A(l,A) with the eigenvalue A - so the
related associate vector of ;he initial operator A cannot exist. And
as for the case (i) we do can expect‘ the existence of the related
eigenvector, but it is not difficult to give examples when there is no

such eigenvectors in V / EA' so there is no associate vectors in V .

What to do? As it was already shown in the Theorem 2.3, it is possible

to extend the operator A(l,A) by continuity to a broader space
(v_/ E’A)-— and to find the needed eigenvector there, we must only find
a cyclic vector in Ei’ - a predual space of V_ / EA (one can easily see

that {E;)’ =V / EA } . Note that if we have only one cyclic vector

19



VeV ({BYV:BeR(A)} is olV',V)-dense in V') then we already
have a possibility to construct the inclusions VieV and V ¢ V_ such

that V is a'(V_,V+)-dense in V_. So, in order to be able to constx;uct

the space (V_/ EA)- we need only a cyclic vector in the space

Let us first do everything in terms of the algebra J(0) and then
use once again the rigging constructed above. So, V_ is isometric to

j0), E,

V_7s E)\ is therefore isometric to

corresponds to the one-dimensional subspace ({ Ve, v e c}

J(O)’/{vgoA: veC)=(Ker ‘PA)I

The operator A(l,A) corresponds to the operator conjugate to the
multiplication By A in the subspace { Ve, 1V € C }J' = Ker ¢y < J(O).

Really , for any. ¢ € J(0) and any B € Ker N
CALA) (T e, B > = < () T, AT (B) > =

= U Y TMe) , THAB) > = @(AB).

Let A(l,A) denote also the operator of multiplication by A in the .

subspace Ker Py
So we have a pair of Banach spaces (Ker 29 ), Ker N and
a bounded . linear operator A(l,A) : Ker ¢y 2 Ker oy -

LEMMA 4.1. Spec A 2 Spec A(1,A) 2 Spec A \ {A}.

PROOF. If i ¢ Spec A then (A - pl)™' & J(0) and the subspace

Ker ?5 is invariant under the multiplicétion by (A -pﬂ)_l ,. SO

20



p ¢ Spec A(LA) . If p # A and p & Spec A(l,A) then we construct
bounded operators in J(Q) , which are left and right invgrses to the
multiplication by (A - ul).
Take any B e J{0) and decompose it .
B = qu(B)-u + (B - qu(BJ-E) '
Qbviously , the second term belongs to = Ker qu . We obtain a

decomposition intoc a direct sum
JO) = { vl : veC}eKerpr
We want to solve the equation - to find B :
A-pUB=C

-Decomposing the entries as above we obtain
{A - p0)( tpA(B}ll + (B - (pA(B)ﬂ) ) = goA(C)U + (C - tpA(C)ﬂ)

qu(B) (A - Al + (& - p)qu(B)u + (A - ul} B - qah(B)u ) =

= wA(C)IJ +(C- qu(C)ﬂ ).

The first and the third terms in the left hand side belong to Ker ey

therefore
(A - u) “’A{B) = qJA[C)
and
tpA(B)(A - Al) + ( A(LA) - pl B - cpA(B)ﬂ }=C - tp;\(C)B

So ,

1
GPA(B) = .A—_———,.l QJA(C)

B - ¢,(B)1 = (A(LM) - u) c - ¢, (01 - ¢ (B)A = AD) ]

. The operator (A(LA) - ul)™ : Ker ¢y > Ker ?y exists and is bounded
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because p & Spec A(l,A). So

B = goA(B)[I + (B - goA(B)ﬂ) =

wk(C)

—_— - A .
—, (& - a0 ]

= = qo;\(C:J + (ALA) - p0)7 [ C - 9, (O - 5

A

So we have constructed a left inverse operator for the multiplication
by (A - ul) in J(0), this operator is obviously bounded. The right
inverse operator may be constructed in the same way. So, p € Spec A

and the Lemma is proved. "

REMARK 4.2. Now we may assume that Rat(A) = Rat(A(l,A)) because
. the connected components of € \ Spec A and of C \ Spec A(l,A) are

in an obvious ocne-to-one correspondence.

COROLLARY 4.3. If A is a non-isolated point of Spec A then

A e Spec A(LXA).

There is a natural cyclic vcc;tgr in Ker 25 for the action of the
algebra R( A(1,A} ) - it is the element (A - Al) € Ker ¢, - Really one
can easily show that R( A(L,A) ):(A - Al) (= R(A)-(A - M))‘ is dense
in Ker @y - Let R( A(1,A) ) denote the closure of R{ A{l,A) } in the

operator norm topology on Ker 2N

Il @(A)-{A - X0)-B Y
T (A - AD)B |

1 (A(LA)) 1 = sup J@

R(A(LA)Y  BER(A)

J(o)

—

We imbed R(A(L,A)) into Ker with the help of the cyclic

P

vector (A-A0) : =(L,A)B = B (A - Al) , this is certainly a continuous



imbedding with a dense range [ it contains R(AJ(A - Al) ). Equip

Im x{l,A) with the norm induced by this imbedding : for C € Im <(l,A)

T CBI
I (A - a0)B 0 °

hci = sup
LA BER(A)

Let J(1,A) denote the range of t(l,A) (= the completion of (A-AD)R(A)

with respect to the norm ll-ll1 ). Then A € Spec A(l,A) if and only if

WA

there exists ? 5 € J(1,A) , such that

P 0 and A(l,i’t)qol'A = A‘qpx.}\ .

Unfortunately, this element 5 belongs to an extension of the space

A J(O)/(wpl: v € C} ), we would prefer to have it in an extension of
the space J(0)’. In order to improve the situation note that. Ker 2N is
naturally complemented in J(0) :
.I(O)={v|l:we(l)@l(ercpA , (A & Spec A )
B = «pA(B)ﬂ + (B - rpk(B)ﬂ )
therefore J(O)’ -is naturally split into a direct sum

J(O)’mﬂle{v«pl:ve[}}

e={¢ - rp(tl)qa)l ) + qJ(U}qu

( N is normalized by the condition qu(U) =1) . So, {Ker tpx)’ is

naturally isometric to u"’ . Extend the norm “.HxA to a seminorm on

the whole R(A) in the following way

N (plA) = (A)0 )B 1
(A - A0)B |

I p(A) "1,}\ = sup
BER(A)



Note that I ¢(A) II1

A.-=Ot'cu'qp(.A)E{vﬂ : v € C 1}

J(1,A) is continuously imbedded into Ker ?5 and therefore into
J{0) . So, (Ker wk)' is continuously and weak-densely imbedded into

J(1,A)’, therefore
J(0) =(Kerqol) e(wpkzveC)
is continuously and weak densely imbedded into
JILAY e { ve, V€ c},
so the vector ®.5 € JLAy may be considered to belong to an
extension of the space J(0)’ , and moreover, we may consider
e A1) =0, ¢ (A-2D =1

We may naturally iterate this construction and consequently

extend our operators to broader and broader spaces and find all

possible root vectors in such spaces.
So, the construction is the following :

we start with the space V and the operator A : V 5 V. We consider
the algebra R(A) and using the cyclic vector 4 € V we construct the
dense injection of the B(V)-closure of R(A) ( B(V) is the algebra of

all bounded operators in V )into the space V

T, : R(A) BIVY.

A >V, rA(B)=BA

J(O) denotes the space R(A®"  and let A(0) denote the
operator of multiplication by A in the space J(0)
A(0) J(0) » J(O)
It is obvious that Spec A = Spec A(0) and we may take

-Rat(A) = Rat A(0)
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Take A € Spec A = Spec A(0) and find 9, € oy , qok(ﬂ) =1,
N iA - Al):B) =0 for any B e R( A(0) ) . Consider the subspace
Ker NS J(0) . It is invariant under the operators from R( A(0) ).
Let A(i.h) denocte the restriction of the operator A(0) to Ker Py - We
have shown ( Lemma 4.1 ) that

Spec A = Spec A(0) > Spec A(LA) > Spec A(OINA),
and therefore,in particular, we may take Rat A(l,A) = Rat A(0) = Rat A
So we have

A(LA) : Ker ¥y 2 Ker oy

and we may construct a dense injection T{l,A) with the help of the

R( A(1,A) )-cyclic vector (A - Al) € Ker 5 -

——————— BiKerp,)
T(L,A) : R( A(LA) ) = Ker ¢y {1,A)(B) = B(A -Al)

We can also restrict the operator A(LA) to Im (A

Let I(1,A) denote the lineal Im T (1,A) equipped with the norm

B(KcrﬁDA)
transferred from R(A(1,A)) by the mapping t(l,A) . We get the

operator
A(LA) : J(LLA) » J(LA)
Obviously , Spec { A(LA) : XMLA) > J(L,A) } = Spec A(l,A} and if

A € Spec A(l,A) we find a vector ¢ 5 € J(1,AY such that

P A -AD =1, p  ((A A% ) = 0,
for any B € R{ A(LA) ) = R(A).

Consider the subspace Ker P € J(1,A). It is invariant under

the operators from R{ A{1,A) } . Let A(2,A) denote the restricton of

A(1,A) to Ker Y and so on . In general, suppose that we have



" already obtained

I
Pac Pia P B (P € IR V)

k+l

N : .
'Pk'h( (A-2a0)" ) =1, q’k‘?‘( (A—}\[I). B)=0, Vv B e R( Alk,A) )

We have the operator

Alk,A) = J(k,A) » J(k,A)

and let A(k+l,A) denote its restriction to Ker .

A(k+1,A) : Ker ?x Ker P
We construct a dense injection (k,A) with the help of the
R( A(k,A) )-cyclic vector (A - A e Ker 05

BlKer @ .).

TkA) : R( AKA) ) “A 5 Ker 05

<(k,A)(B) = B(A - AD)X.

We also may restrict the operator A(k,A} to Im t(k,A), equipped

B(Ker, )
with the norm transferred from the space R( A(k,A) ) ’ by

the operator t(k,A), we let J{k+l,A) denote this Banach space. So, we
get the operator

Alk+L,A) ¢ J(k+1L,A) > J(k+LA)
Obviously , Spec { A(k+LA) : J(k+LLA) > J(k+L,A) } = Spec A(k+L2) ,

and if A € Spec A(k+l,A} we find a vector ¢ € J(k+1,A)’ such

k+1,A

that

k+l k+2 _
® 'A((A-M) )=1, ¢ A((A-Ml) ‘B)=20

k+1 k+1,
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for any B € R(A) , and so on .
Let us note that the ideals

{(A-2aD%B:BeRMA}: =IkA) c R(A)

are dense in J(k,A) ( with respect to the norm transferred from

B(Kerqok L >‘) : -
R( A(k-1,A) ) o ). The ideals 1(k,2) are naturally
complemented in R(A)
k-1 k-1
() = 4, fPmm - anh + - ¢ g rP0m - ant)
j=0 i=o
So,
R(A) = T(k,A) @ I(k,A),
k-1 \
where T(k,A) ={ % cl(A - Al) c, et ).
1=20 .

The first summand is k~dimensional , so we consider the following

spaces
R{k,A) = T(k,A) @ J(k,A)
( J(k,A) is equipped with the natural norm ),

J(0) = R{0,A) > R(LA) > R(2,A) > ...
all inclusions are dense and continuous.

So, the intersection | R(k,A) - we shall denote it ﬁm - contains R(A)
k,A

and it carries a natural locally convex topology of the projective
limit. We can find all possible root vectors in the dual space of ﬂm-
we denote it #°. In the next paragraph we describe the whole
construction in analytic terms, permitting further study c;f the Jordan

decomposition.
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§ 5. Algebra Hm.

Consider the algebra R{A} and introduce the f ollowing seminorms

on R(A)
I f(A) "o.}\ = Il f(A) 1 (recC)
i (f(A) - f(A)0 )B "o,\
I f(A) Ill'R = sup A= %8B W , (X eC\\)
BER(A) 0,A
n-1 .(1)
(A 1
b f{A) -Eo——.—!—- (A - A0} 1B nn_l.)t
b FAY 0 4 = sup ,
n, n
. BER(A) Il (A-28) B I
n-1,A
(XA eC\A )

The origin of these seminorms was explained previously.
Let Hm denote the compietion of R{A} with respect to this family
of seminorms - this definition obviously coincides with the one given
above.
We again consider the following ideals in the algebra R(A):
In,A) = { (A - A" B : B € R(A) }

The seminorm “.“nh is a norm if restricted to I(n,A)} , moreover for

f(A) € I(n,A)

W f(A) B Iln_1.7l

f (A-A0)" B
n

i f(A) Iln’?t = sup

-1,A



~ LEMMA S.1. If B € I(n,A) , C € R(A) then

1]
WBC I S UWBU U (A-ADCH ..
PROOF.
W BCD B
WBC U, = sup "n : s
(A=A D 0 o
n
W BCD " (A" CD o
= Slﬁlp n Slﬁlp n =
T (A-AD"CD I (A-AD" D W
* n
S B 0 AADTCon n

Really many of these seminorms are equivalent . In order to see

this we must introduce some notions.
DEFINITION 5.2. We say that A & Spec® A if A e Spec A(k,A).

PROPOSITION 5.3. A € Speck A if and only if for every f € Rat(A)

| f“”(A)_l
B F(A) n“ = —r

PROOF.

A € Spec“A o A € Spec A(k,A) o

e ¥ p € Rat(A) = Rat A(k,A) 1 p(A(k,A)): JKA) — JKAI = JoR)| e

K
I p(A)(A - AI) B 0
o ¥ ¢ € Rat(A) sup x —= =z | pd) | e
5 I(A-ADB N,
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(k)
eV felkd) I flA) N, = J_f?ﬁ‘li "

’ (k)
oV f eRA) I fA)I, = L]

A T "

-

PROPOSITION 5.4. u € Spec A(k,A) if and only if for any f € Rat(A)

f
k-1 i
r - ol
t=0 - T A
(g -2a)
T f(A) “k.A = 4
(k)
£ %00
TR P B = A

PROOF. Let p # A ( or else see the previous Proposition 5.3}

i € Spec A(k,A) &

@ ¥ ¢ € Rat (A) = Rat A(k,A) lle (AKA)D:I(kA) - Jk0 = | olp) | »

I @(A) (A-aD B

® ¥ ¢ € Rat (A) sup - LTI | o) | o
(A -2aD*B 1
¥-1,A
b £(A) B I
oV felkd) sup L 1 TN IR SNy
b(A-AD B (u-2)
k-1 1
t -p Vo) B2
oV feRat (A) I fA)l , = 1=0 .

(u %

PROPOSITION 5.5. Let A ¢ Speck A . Then the norms ll°1lkA and

Il~llk_l ) &re equivalent on I(k,A).
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PROOF. Let f € I(k,A) . Then

I f(A)Y B Il
I f(A) I = sup . koA,
N A-ADE B
S — nRA
A=A

{ without any assumptions on A ).

Now let A ¢ Speck A . Then A ¢ Spec A(k,A), i.e.

I ( Atk,A) - A0 ) C "x-l.A zcll C "k-1.}« for C e I{k-1,A)
or
k-1 k-1
(A =-20) (A-20) "D llk_m zc i (A-2AD D "k-l.k
for D € R{A) . So
1 f{A) D Ilk_l';\ 1 i f{(A) D "k-l.).
nf(A) llkA = sup ” s < sup — s
I (A-A0)" D llk_l';\ I (A-AL) D "k-l.A
I F(A) 0 I (A-A0) 7' D o
k-1,A . k-1,A 1
= < sup — =2 I f{A) Ilk_1>~ ]
_ 1 (A=AlD) D “k-1,?\
So , really we need only the seminorms "."k?\ , A€ Spe:t:k A,

because other seminorms do not contribute anything new to the topology .

Space Jm(Mk). Consider (Mk}:_o— a sequence of compact subsets of C,

M 2M2a2M 2 ...
o 1 2
a

such that Mk\( N Ml ) ¢ Isol M - the set of isolated points of Mu .
i=0
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DEFINITION 5.6. Let Jm{Mk} denote the following locally convex

space of sequences of functions :

© .
IMy= () | M >C¥aeM,

k-1 ,
| f,w) - T f Qu-a)it |
sup =9 ” o }
ueuo\(;\) - |u=Ad

The above supremums define a fundamental family of seminorms on

Jm(Mk}.
Let us list several simple properties of this space:
() fo is continuous on Mo .

Really, one must only check the continuity at nonisolated points
[+4]

of M0 , but all such points belong to Mk , so for every
k=0 .

A e MO\[Isol MO) < Ml and for every pu € Mo
| £, -f @A) | sC) | u=-2

and the assertion is proved.

(ii) for every A e n Mp the function

p=0
k-1 ;
Fow) =T £ (=2 /i
i=0
(p - 2k
fk( a)
is continuous on Mo , and its limit at A equals X7

The continuity at all points besides A is obvious ( see (i) ).
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As for g -5 A
: 1

K
(- A)
fo(u) - l):a:ofl(R) —
w > sup | | =
k+1
uem {(p=2)
MEA
k-1 i
(u=-2)
fold - Ly 7,0 =7 _ f Q)
k k!
(u-2A) ’
= sup.-l = - A I
eM H
HEM,
[TEDY
" So the limit of the numerator is zero .
3 .

(i1i) fo is analytic in M - the interior of M - and for ever;y A e M

£ = £%00 ( for all i = 01,0 ),
A proof may be easily obtained from (i,ii).

(iv) The functions f | are arbitrary ( k = 1,2,... ).
k'lsol M

(vl The space Jm( Mk} ts naturally isomorphic to the space

2]
’do x (1 Cll"mkl ), were Ao is a locally convex algebra,

k=1
. ' ]
consisting of all functions f (f{ J"1 }1no € Jm( M, })
and | Isol M, | = the number of points in Isol M. B cAM)

the space of functions , continuous on Mo and analytic inside Mo'

the imbedding is continuous and the range is dense in A(Mo).

(vi) The dual space (Jm( Mk } ) is naturally isomorphic to

® IIsoiMkl
( 40)' e (Y C ) , ie. for every continuous linear
m=1
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functicnal ¢ : Jm{ Mk } 5 C there exist a “generalized measure"”
du € ( 110 ) and complex numbers co(k,A) , k=12, ..
A € Isol Mk, such that

pULN =T FduA) + T £ A clkd)
M k=1,2,...

o]
AE€Is0IM
k

(only finitely many of the numbers c(k.A) are nonzero).
§ 6 Generalized Gelfand Transform.

Let B € & . Consider the space_.lw( SpeckA } and define the mapping

(k}
|

RA) > f » { T
Spec

k
k, } e Jm{ Spec A}

The Proposition 5.3 shows that this mapping is continuous and
therefore it may be extended by continuity to the following mapping -
we shall call it the generalized Gelfand Transform:
A: 4 -)J(SpeckA}
2] <]
It may be also described as follows :

- _ _ k
(B)k(?\) = 901;,,\[8) for k = 0,1, ... , A € Spec "A.

DEFINITION 6.1. We call Ker A the small radical of Hm and we call

the operator A semicomplicated if Ker A = { O }.
Ker A may be described as follows:

KerA={B:V—>V]thereexf.stsanet(gB}BeBcRat(A)
such that “gB(A)_B“Rk_)O’ YVk=01 ..,¥aeC

and gé”(?\) 50,YKk=01 . ,YAeSpe* 4}

34



THEOREM 6.2. The system of generalized root vectors
K
{(pk.n'k_o'l' w. , A € Spec” A )
is o ( ﬂm,ﬂm ) ~ complete if and only if the operator A is
semicomplicated , i.e. for any net { gB }BEB < Rat(A4) , such that the

net { gB }363 is fundamental'in every seminorm ll-llk.?L (k = 0,1, ...,
AeC) and gék)(k)eo,‘dk=0,1,...,v A e Spec® 4 , the
following equality holds :

lim g (A)=10.

8 B

The proof is obvious.

THEOREM 6.3. The system of generalized root vectors

is o ( ﬁm,ﬂm ) - complete if and only if the following subsystem is

o( ﬂ"",sw ) - complete :

(cpok:)te6Spe'er:A;¢phC k=12 .., A€ Isol SpeckA}.

A H

PROOF. Suppose the first system is complete , but the second is
not . Then there exists B € Hw , orthogonal to all vectors of the

second system, i.e. e, '\(B) =0 for all A € 3Spec A, k = 0, and

for all k = 1,2, ... , A € Isol Speck A . B = 0 , therefore there

K .
exist ko and Ao € Spec ® A such that ®, (B) = 0.
. - 0' O

First, let kD = 0 . Then ?‘o belongs to the interior of Spec A. The
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function p = ¢, #(B) is analytic in the interior of Spec A and it
vanishes on 8Spec A, therefore {t vanishes identically , and Poa (B) =
. o
= 0 . Then take the minimal possible ko z 1 and
K K

A, € Spec © A \ Isol(Spec ® A) < Spec A \ Isol(Spec A),

A € dSpec A ( or else the previous argument is valid } . Take

zl € dSpec A , z, > Ao' Then

¥ (zl-Ao}k
Poz (B) - L LY (B) —pr—
1 k=0 o}
© > Slilp | e | =
(z - A )
! 0
P 2 (B)
o k
0 - T (21_'\0) e, 2 (B)
0 o, ©
= sup | — | = sup | ———
- - |
t (z -2a)° i (zl J\O)ko.
i 0
o ¢ 5 (B} = O what contradicts the choice of kO,AU . n
’ 0 "
§ 7. Jordan decomposition
Jordan decomposition in - Suppose the system
_ x
{ ?a0 A & 8(Spec A), 'ph,k : k=12, ..., A € Isol Spec” A}

is of Em,ﬂm }-complete , i.e. the generalized Gelfand Transform is

injective. Then A(H ) may be viewed as a subalgebra of J { Spec® A ),

" therefore the conjugate mapping A’ maps Jm(Speck A} onto a o ﬂm,ﬂm)-

dense subspace of H.
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such that A'wB _— .

. @ k
So for any ¢ € A%  there exists a net { wB }BEB < J7{ Spec” A}

o(g%.4 )
[+-]

i

Every l.bB is defined by a generalized measure d,uB € { .-do } and a

set of numbers cB(k,}\), k =12 .., A e Isol Speck A ( only a

finite number of them are nonzero ).

l,bB (fk y=7r f'o(k) duB(?L) + ¥ fk(?t) cB(k.J\).
SpecA k=l1l,2,... X
A€lsol Spec A
So, _
o(B) = lim ( A“¥, ) (B) = lim y_(B) =
8 B
B B

lim [ I ¢ (B duB(A) + v ¢, 5 (B) cB(O,A) +
B SpecA\isol SpecA o © A€lsol SpecA
+ ¥ ¢k,A(B) cB(k,?\) ]

k=1,2,...

k
A< lsol Spec A

One can prove that there exists lim cB(k,A) for every possible k,A.

B8

Really, for any k = L,2,... , A € Isol SpeckA. choose a function f
analytic in a neighborhood of Spec A such that f vanishes outside
of a small disk centered at A ( and not containing other points of

k
Spec A ) and f(u) = (“—klk—) in a smaller disk centered at A . Then

f(A) is correctly defined and one can easily show that f{A) e E[; .

~Then

«pp“( f(A) ) =0 for all u= A and all p

tpp'l{ f(A) ) =0 forall p=k, qok'k( f(a) ) =1
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So, .
o ( f(A} ) = lim c,(k,A)
Tt s

and so the limit in the right hand part exists for any k,A .

Jordan decomposition in the initial spaces. Now we return to the

initial spaces V ,V’ and to the inclusions t , T

T
R(A) 25 v

v
T

V' « R(A)
One can easily see that the mappings Ty rv'are continuous if we
equip R(A) with the system of seminorms { ‘Il . [N } and V V' are

supposed to -be equipped with the weak topoclogies . So we again

obtain a rigging

v .
Ty () »
ﬂm———>v — "
(z,)’ -r:v

g% e V' e ﬂm

Let .‘V; denote the range of =T, , equipped with the topology

A

.transferred from ﬂm by €, , let V_ denote the completion of V with

A
respect to the topology transferred from &~ by [(-rv)’]'l , let V7
denote the rarige of -cv { with the topology transferred by 'l:'v from ﬂw ),
let ¥V~ depo'te the completion of V' with respect of the topology
transferred from #° by [(TA)’]-I.
We obtain the following scheme
V.cVeV,
vVovov

V_ (resp., ¥7) is the dual space for V' (resp., V*), the duality being
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(resp., "rv) is

extended from the initial duality between V and V’. T,

an isomorphism between Em and V, (resp., V). ('rv)' {resp., ('rA)’) is

an isomorphism between E° and V_ (resp., v).P

Iy, 1 P T |
Put k=[(1.') ] (¢A'k) , e —[('rA)] (¢, )} . Then

X, Ak

_ 7., -1 -
<°A.k'v>‘<[("’) ] (cpm).v>=

o
<
3]

' V-1 _
= goA.k( () (7))

t
)
&
wﬁ
i
—
~
[
o

o
<~
0o
—

Similarly , <A, e

Let us compute

- P v =
<C(A-2AD) ehik,r(B)>—

S CCA=-A0 P T (. ), T0@B) > =

ALk

ST T (o ), T (A-A1PB)>=o ((Aa-2PB) =

Ak A
Vi, -1 v _
= P xep (B = < f(x')] (qoh'k_p) , T (B) =
=<Ce t(B)> (if k< p, then put =0)
N i P, then put e, = .
_ p - e
So, (A-2a1) €\ x eh,k_P . Similarly
(A7- a0 )P M = NP

Therefore

CChA,eMy=¢y, ce™y =

H A
(A - Al + C )
s! Kk

(A -aAD¥

k!

A kel . 1 Ak
<a LEcCr ) "Dle

<k

+ (A - Al > =
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Now we want to obtain a version of the Jordan decomposition for
vectors from V . This is not possible for all vectors from V , but

this turns to be possible for vectors from V+ - a dense lineal in V.

DEFINITION 7.1. Let Lim Spec A denote the set

d{Spec A \ Isol Spec A).

Consider the linear functional on E[w

‘OA,V : B +— (BA, VO

It is obvious that ery € @” and therefore Ppg may be ol ﬁm,ﬁm )-

approximated by A’-images of a net of functionals on Jm( Spcck A}

PYCARTAD

A dp (k,A) ) —— N

,C
B '8

Take any x e V_, y € V' . Then there exist B ., Ced_, such
that x =B A, y= C'V . Then

(x,y)=<BA,C'V>=((CB)A.V>=(,DAV(CB)=

= lém [ A’ ( dp.B , cB(k.A) ] (CB) =
= lim ( J 2% (CB) de(A) + T 'pk,k (CB) cB(k.A) ] =
B LimSpecA k=0,1,2,...
AGIsol Spec A
=lim ([ ¢,(C) ¢,(B) < ae™0 s ¢ & o7 > dugh) +

B l1imSpecA

(E:)l () cé)l (A)

1 2
+ ! =

) T T cﬁ(k.?t] k! )

k=0,1,2,... 1 2
k
AE€Isol Spec A
1 +l_=k
1 2
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A0 V> dp.B(A) +

=1im( f  <A,Be®><¢ce
B LimSpechA :

A A
(C)l () (B)1 (A)
1 2
+ ¥ I 7 cB(k.?«) kt ) =
k=0,1,... 1 2
K
A€lsalSpec A
1 +1 =k
1 2

. A0
= lim ( J (x, e ><eA'o,y>de{A)+

5] LimSpecA

Al
+ T Ce ,C’V)(BA,e2>cB(k,A)k!)=
k=0,1,... A
1 +1 =k
1 2

k
A€IsciSpec A

=lim ( f <x,e><e. ,y>du() +
A0 B
B LimSpecA
A.lz
|
‘+1 };_01 S <x, e ><ek.11'Y>CB( 11+ 12,?\}{114-12). ).

1 2
b +1
1 2
A€lsol Spec A

So we have obtained the following

THEOREM 7.2. Suppose the operator A is semicomplicated . There

exists a net of measures {pB}BeB on Lim Spec A and of complex
_ X

numbers { cB(k,A) : k=01 ..., A € Isol Spec’ 4 }BEB

for every x € V’ ,ye V' the following Jordan decomposition holds:

such that

. A0
xyr=lim ] Cx, e 0 Cey o,y > dug(A) £

B8 LimSpeca

ALl :
+ T <.x,ez><ekl,y>c
1 ,1_a 0,1,... . )
1" 2
1 +1

1 2
A€lsol Spec - A

3( 11+ lz,?t ) (11+12)! ).

and for every f € Rat(A)
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A0

<f(Ax,y> = lim  ( IofaXx, e ><e ¥ dem +

g LimSpecA
Y00 A -
—— ]
+ T = ,< x,e p24 e, 0 ¥ > cB( 11+ IZ,A ) (11+12). )
1,1 = 0,1,... 2 :
12
lx¢12
A€lsol Spec A
saQ,1,...,1

These formulae are exact analogues of the usual formulae appearing in
the finite dimensional Jordan decompositions and they give an infinite

dimensional analogue of such a decomposition.
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