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Abstract

Let HM = H +MU be a Schrödinger operator H additionally perturbed by a positive
potential U, where M is a positive coupling parameter. The limit of H M in the
nonn resolvent sense is a Dirichlet operator on the complement of the support of U. A
quantitative estimate is given for the rate of this convergence as M is large.
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1. Introduction

The main objective of this artide is to estimate quantitatively the rate of convergence for
Schrödinger operators if the positive part of the potential tends to infinity.
We consider Schrödinger operators of the form HM = Ho + V +MU in L2(JRd), Ho is
the selfadjoint realization of -t.6, V a potential in Kato's dass, U a positive potential

with support r. r is a closed subset of lRd
, called singularity region. H M tends to an

operator (Ho +V)E in strong resolvent sense as M tends to infinity. (Ho +V)E is
the Dirichlet operator corresponding to Ho + V defined in L2(E), where E = ßld \ r
is the complement of r.
For many estimates in spectral theory it is useful to have not merely the bare convergence
but also the rate of convergence. Among others this is of interest for semiclassicallimits
where 112 Ho + V + U is compared with (112 Ho + V)E for slnall 112 (see e.g. [His/Sig]
who studied also large coupling linlits in relation to semiclassical cOllsiderations).
Therefore we estimate operator nonns of resolvent differences, i.e.

(1.1 )

Dur main technical tool is to estimate the corresponding operator norm of semigroup
differences heavily using properties of Brownian motion.
Gf course, the value for r depends strongly on the properties of the boundary ar. We
tried to find very general conditions' for ar. Therefore we allow Lipschitz continuous ar.
In this general case we will prove

(1.2)
1

reM) ~ const . (log M)i'
1

o< '"'( < 2"'

This rate can be ilnproved if ar becolnes more regular. If for instance E is concave then

(1.3) r(M) ::; const . M- t .

In the special case of a halfspace one has

(1.4) reM) ~ const· M-~.

In order to qualify the upper bounds we also estimate the resolvent and semigroup differ
ences from be1ow. One rough lower bound is

(1.5)

The paper is organized as follows:
In Section 2, we collect SOlne results conceming (1.1) which are preliIninary to our discus
sion. Here, we point out that trace dass properties and convergence of e-tHM - e-tHr;

were treated in [Dei/Sim] for bounded r. In [Bau/Dem], HE was identified as a suitable
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Friedrichs extension. Furthennore, problems of the above kind are considered in [Dem/vCa
1] for a larger dass of free operators Ho.
At the end of Section 2, we extend some results of the preceeding paper [Dem] and explain,
where and why there are limitations for these methods with respect to dimension of the
underlying Euclidean space and boundedness of the singularity regions. We recall that
[Dem] treated the convergence of (HM - z)-l - ((Ho + V)E - Z)-l with respect to trace
dass, Hilbert-Sclunidt and unifonn operator nonn, but did not obtain convergence rates.

Dur main result (1.2) is contained in Theorem 3.1. The corresponding Section 3, which is
independent of Section 2, begins with the method basic to (1.2). In particular, we explain
how the estimation of the semigroup difference leads to two expressions (see (3.2)).
The first of these tenns,

(1.6) supPx{"\-c < Ar < "\},
xEE

where Ar is the tilne the Brownian path started at x E E hits r for the first time,
is probabilistically of interest in its own right (see e.g. [LeG], [Kar/Shr]). We estimate
(1.6) in Section 4, where we see in particular that it leads quite naturally to the Lipschitz
regularity asstunption inlposed on ar in Theorenl 3.1.
The second tenn, the Laplace transform of (the distribution of) the time spent up to time
c in a cone by the Brownian trajectory started at the vertex of the cone, is estimated in
Section 5 using strongly results and methods of T. Meyre [Mey].

Having thus finished the proof of our main result, we then shed sorne additional light
on Theorem 3.1 in Section 6 by exhibiting the special case of the halfspace (Lelnma 6.1),
where the upper bound is itnproved considerably, and stating lower bounds on the operator
norm of resolvent (Lenunas 6.2,3) and semigroup difference (Lenuna 6.4).
The final section deals with applications of the above results to the semiclassicallimit. Af
ter presenting a situation where semidassical and large coupling lilnit are different (Theo
rem 7.1), we find asymptotic expressions as 1i -+ 0 (Theorem 7.2) and show lower bounds
in 1i2 on the semiclassical approximations of resolvents in the ordinary (Theorem 7.3)
as weH as in the lilnit absorption case (Theorem 7.4). See [Nak],[Rob/Tam] for further
eXaInples of such results.
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2. Assumptions and preliminary results

Throughout this text, we denote the following eonditioIlS on two potentials V, U and a
singularity region r by

Assumption A: Let Ho be the selfadjoint realization of -tß In L2(IRd
). Let V

be a I(ato dass potential, Le. V = V+ - V_, where

lim sup [Ci ds [ dy p(x,Yls)V_(y) = 0
Ci-O x Jo JR!l

and

lim sup [Ci ds [ dy p(x,Vls)V+(Y)XB(Y) = 0
Ci-O x Jo JRd

for any eompaet subset B of IRd
•

Moreover, we assume r to be a closed subset of IRd with positive Lebesgue measure and
a pieeewise Cl boundary.
Finally, let U be nonnegative and such that supp U = r, U(x) = 0 only for x E ar.

Assumption B: Ho, V, r as in Assulnption A, U = Xr.

Here and in the sequel X{...} denotes the indieator funetion of the set . {... }, and p IS

the transition probability kernel for Brownian motion

x, y E IRd
, t > O.

Under Assumption A it is known that the linlit of

HM := Ho + V + MU

exists in the strong resolvent sense as M -t 00. Under mild eonditioIlS on ar this limit
coincides with the Friedriehs extension HE of

Ho +V~L2(~) n D(Ho+V),

where ~ = IRd
\ r is the complement of r (see [Bau/Dem]).

Since HE is an operator on L2(E) while Ho +V aets on L2(JRd), we ean only COlnpare
functions of H M and HE via the restriction operator

whose adjoint operator J* is the natural embedding L2(~) ~ L2(IRd ).
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2.1. Convergence in Hilbert-Schmidt sense

The possibility of using the Hilbert-Sehmidt nono to measure the approximation of (fWle
tions of) HE by HM is restrieted to very few situations. In partieular, one should
eonsider dimension d::; 3.
We reeall

Theorem 2.1: Let Assumption A be satisfied, r bounded. Then

(2.1)

where p indieates the usual operator nonn for d ~ 4, the Hilbert-Sehmidt nonn for
d :::; 3 and the traee dass nonn for d = 1.

This result ean be extended to the limit absorption ease z = A± iO for eertain real A (see
[Dem]).
We will not repeat the proof of Theorem 2.1 (given in [Dem]) here but rather emphasize
that it is strongly based upon the Hilbert-Sehmidt estimate for differenees of powers of
resolvents

(with C > 0,0 < Q < 1) and the estimate

(2.3)

for some eonstant A > O.

Thc proof ean be used to study a first very restrietive dass of unbounded singularity
regions r:

Theorem 2.2: Let r be the Wlion of balls Bi of radius Ri around points ai E lRd•

Then we have the following estimate on the Hilbert-Sehmidt norm of semigroup differenees:

(2.4)

where Q > 0, C(A) eould be given explicitly.

Remark: We know that the 1.h.s. of (2.4) tends to zero a.s M -+ 00 (see (2.5) below).
Note that we eau estimate the semigroup differenee unifonnly in M in dependenee of Ri.

Proof (of Theorem 2.2): If (Oz, P x) denotes the probability spaee eorresponding to
Browniall motion started at x, and (O~'~, P~,~) represents Brownian motion eonditioned, ,
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to start in x at time 0 ancl stop in y at time A, we can evaluate the respective integral
kerneis and obtain

IIJe->.HM - e->'HDJI1~s =
(2.5)

1cl 1 cl 1 P Y'>'(d) - J/' V(w(6))ds -M};>' U(W( .. ))d6 ( )= x y x,O w e 0 e 0 X{T>.,r>O} W
E m..d n~'>'

~,o

2

since Jo>' U(w (s))ds vanishes Hf the time T>.,f (w) = meas {s ::; A Iw(s) Er} of the path
w sperrt up to A in r does.
Since V is Kato dass,

(2.6)

Hence

(2.7)

r.h.s. of (2.5) ::; CA-f eA .\ rdx r dy P~'~{T>.,r > O}1E 1JRd '

=cA-teA
'\ hdx Px{T,\,r > O}

::::; cr~eA'\ L h. dx Px{T,\,B, > O},
I I

where we used r = Ui Bi and E C Ei := lRd
\ Bi in the last step. In order to estimate

the summands above, let B denote aball {x E lRd I Ix - al < R}. Then

r dx Px{T>.,B > O}JJRd\B

::; 1 dx Px{W Iw(s) E B für some s ::; A}
Ix-al2:: R

= r du Po{w Ilw(s) +ul < R for some s ::; A}
11ul2::R

= [ du r Po(dw)X {w J Iw(,,)+ul<R ror some 6:::;>'} (w) X
11ul2::R 100

X X{w I IW(6)+ul<R ror some s}(w)

::; [ du [po{w [ Iw(s)1 > lu[- R for some s ::; A}]t X
11ul2::R

x [po{w I Iw(s) + ul < R for some s}]~

with arbitrary 1 < p, q < 00 S.t. ! + ! = 1. Sincep q

(2.8)
Rd- 2

Po{w Ilw{s) +ul < R far same s} ::::; cluld-2
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(see [Sim], p. 70) and

(2.9) Po{W Ilw(s)] > r for sorne s ::; A} ::; 2Po{w Ilw(A)1 > r}

(see e.g. [Por/StoD we obtain

Note that here and in the following we use the slight abuse of notation that the value of
the constant c rnay (and in fact usually does) change from step to step.

PIugging this into (2.7) yields the desired bound with a = t:\d;t:2 ) , if we let q = 1+E. 0

2.2. Estimates on the operator norm

The proof employed in Section 2.1 using the Hilbert-Schmidt properties of semigroup
differences fails if r has unbounded volume. But for applications in solid state physics or
conceming N -body problems, one should also strive for results on potential harriers over
unbounded r.
The approach we will use in the sequel is based once again on the Laplace transform

(2.10)

Since the nonn on the r.h.s. is not bounded by the Hilbert-Schmiclt nonn, we make use
of the fact that J e->..HM - e->..HI:. J is an integral operator. Using [Kat, eq. (111.2.8)] and
noting that the kernel is symnletric, we have

II Je->..HM - e->..HI:.JII ~

< 1 cl 1 PY'>"(cl) -1>" V(w( ..»d" -M 1>" U(w(s»d" ( )

(2.11)
- sup y x,O W e 0 e 0 X{T>.,r>O} W

xEE JRd nr ,>.
z,o

< 1 P (d ) -1>' V(w( ..»ds -M 1>' U(w( ..»d.. ( )_ sup x W e 0 e 0 X{T>.,r>O} W •
xEE Oz
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The expression supx flR d dy K(x, y) is an upper bound for the operator norm of the
integral operator K.
By Dini's theorem, the estimate (2.11) provides a result dealing first with bounded r.
But then it can be extended to unbounded r.

Theorem 2.3: Let Ho, V, U satisfy Assumption A, r compact.
Then

tend to zero as M --t co.

Proof: Since 11 J e->..HM - e->..HE JII :s; BeA >", it suffices to prove

[IJe- AHM - e->..HEJII ,0
M-oo

in view of (2.10).
If R is sufficiently large, then

:S;c'x-~eAA (sup px{wEnx
Ixl2: R

d AA di.t(:r>r)2
:S;c,X-l"e supe- 8X

Ixl2:R

1

I Iw(,\) - xl ~ dist(x, r)}) .,

becomes arbitrarily small independently of M.
Hence it remains to show that for R fixed sUPlxl~R fM(X) tends to zero as M --t 00,

where

f ( ) '-1 P (d ) -Ir>' V(W(.!l))d6 -M J/' U(w(6))d6 ( )MX. - x w e 0 e 0 X{T>. >r >o} w .
0",

Indeed, we have

and T>..,r(w) > 0 implies e-M Jo>' U(W(.!l))d6 --t 0, so that fM(X) tends to zero nonincreas
ingly for all x and an application of Dini's theorem yields the result. 0

In contrast to (2.5), there is no integration over x in (2.11). This enables us to deal with
unbounded raswen. The simplest case is a sheet in JRd:

9



(2.12)

Corollary 2.4: The conclusion of Theorem 2.3 remains valid, if

r = {x E JRd I a ~ Xl :::; b},

where - 00 :::; a < b < 00.

Proof: For the sake of notational convenience, we assume V =O.
Due to the special form of r, we have

sup r Px(dw)e -M Jo>' xr(w(6»d6X {T>.,r>O} (w)
xEE 1n~

= sup1P (dw)e -M Jo>' X[II,60](Wd 6»d6X{ }(w)x w 1 T>. [11 b](wd>axEE n~ , ,

sup { PXI (dwl)e -M Jo>' X[a,60)(WI ( ...»d ... X{w I T (w »a} (Wl)'
rl[ b] 10 I >',[a,60] I

XI~ a, U~I

where we used

The final expression in (2.3) tends to zero because of Theorem 2.1.

Having in mind lnany-body situations, the following property is of interest:

Lemma 2.5: Let V _ 0 and U denote the indicator function of r.
Then the class of sets r S.t.

IIJe-.\HM - e-AHEJII---410
M-oo

is closed with respect to finite unions.

Proof: If r = r 1 U r2 , we have

sup1P (dw)e -M Jo>' xr(w( ... »d ...x (w)
X {T>.,r>O}

xEE n~

~ sup ( Px(dw)e-~ Jo>' xrl(w("»dse-~ Jo>' Xr2(w(,,»d ... X

xEE 1n~

X [X{T>.,rl>o}(W) +X{T>.,r2>O}(W)]

:::; sup r Px(dw)e-~T>.,rl(W)X{T >o}(w)+
xERd\r l Jn~ >.,r l

+ sup (px(dw )e- ~ T>.,r2(W) X{T >o}(w). 0
xElRd\r2 1n~ >.,r2

10
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Using Lemma 2.5 and Jacobi coordinates, the following result on an N-body Hamiltonian

(2.13) H = Ho + L: l/ij(Xi - Xj)
15: i <j5: N

with Ho the free operator in L2(JR3N) can be reduced to Theorem 2.3.

Corollary 2.6: Consider an N-body Hamiltonian H from eq. (2.13) and

where rij = {x E 1R3Nlxi-xj E Bij} with bounded Bij. Set r = Ui<j rij, E = JR3N\r,
Jj = j~E, then

We refrain from giving the details of the proof, because Corollary 2.6 is actually included
in Theorem 3.1.
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3. General unbounded singularity regions

This section contains our lnain result Theorem 3.1, where the most general situation is
treated S.t. resolvent or semigroup corresponding to HM tends to the Olle corresponding
to HE. In particular, there is no restrictions on the dimension of the underlying Euclidean
space nor do we asswne boundedness of the singularity region.
We begin this section by explaining the overall strategy how to estimate the semigroup
difference in the case of more general r. Here we specialize to operators of the form
HM=Ho+Mxr.
As in section 2

We recall that T)..,r denotes the occupation time of the path in r up to tüne A,

T>.,r(w) := meas {s ~ A I w(s) Er}.

Furthernlore, let Ar be the tilne the path hits r for the first time,

Ar(w) = inf{s > 0 Iw(s) Er}.

We consider singularity regions r where the set of regular points for r coincides with the
regular point set of the interior of r, that is rr = (rint)r. In this case, Ar(w) is equal
to the penetration time (see [Dem/vCa 2]), i.e.

Ar(w) = inf {s > 0 IT",r(w) > O}.

Clearly T,.\,r(w) > 0 iInplies Ar(w) < A. Therefore

1I Je->.HM - e-).HE Jll ~
S; sup P x {A - e < Ar < A} +

(3.2) xEE

where e can be chosen at our convenience (0 < e = e(M, A) < A).

Thus, the estimation of the semigroup difference is reduced to the consideration of two
expreSSIons.
The first term on the r.h.s. of (3.2), which is of interest in its own right, is the subject
of Section 4. The analysis there allows r to have a boundary which is Lipschitz in a
certain sense. We will call a set r with the properties (Ll)-(L4) in Theorem 4.2 a uniform
Lipschitz set (cf. the remarks on these conditions at the end of Section 4) and obtain

sUPP x {.'\ - e < Ar < A} ~ c (1 + ~) Vi,
xEE VA
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Using the Markov property, we estimate the second term as follows:

We are able to get rid of the dependence on x of the latter expression, if we assume that
r satisfies the following unifonn cone condition:

(3.3)

There is a eone K of finite height in IRd with the origin as vertex

S.t. for any y E ar there is a motion T of JRd with

(i) y is the vertex of T(l(),

(ii) T(K) \ {y} c r.

Actually, each uniform Lipschitz set fulfils (3.3) (see e.g. [Wlo}, Section 2.2). We emphasize
that unbounded singularity regions are included in these considerations.

Under this assumption, the invariance properties of the Wiener measure imply for each
y = w(Ar) E ar

which is independent of w(O).

Thus the seeond term on the r.h.s. of (3.2) is bounded in terms of the Laplace transform
of (the dist ribution of) Tt;, K, whieh is dealt with in Section 5.
In fact, if C is a eone of infinite height, we can show (see Theorem 5.4)

for any 0 < 1 <! and small 6.

Since we are interested in K rather than C, we will let e(M, A) -+ 0 as M -+ 00 1n
order to obtain a useful bound on Ea (e-MT.,K):

Theorem 3.1: Let r be a unifonn Lipschitz set and suppose Assumption A.
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Then we have for any 0 < , < t:

(3.4)

(3.5)

for large M.

ProoC: Let K be a standard cone of finite height for r as in (3.3),
C = {rxlr 2:: 0, x E K} the cone extending K to infinity.
Using the above calculations and the tuain results of Sections 4,5 mentioned above, we
have for arbitrary 0 < , < ~

IIJe-AHM - e-AHEJII ~ SUpPx{A - e < Ar < A} + Eo (e-MT",K)
xEE

::; suP P x {A - c < Ar < A}+
xEE

+ Eo (e-MT",c) + Po{w Ilw(s)1 > diam !( for some s :::; c}

S [(m+ l)vi+ ( : +e_(di"~.K)']

with constants m, in as in Theorem 4.2.
Now (3.4) follows by letting e = Mn with a < 0, hence the second assertion using (2.10).

o

Remarks 3.2: All the results of Section 2 are contained in Theorem 3.1. In particular,
N-body situations are treated to a satisfactory degree, because the singularity region may
be unbounded and the smoothness condition on its boundary is relaxed.
Furthermore, we have a convergence rate for any such unifonn Lipschitz singularity region.
For a better convergence rate in a special case see Lemma 6.1 however.
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4. Probability of late arrival

In this section, we provide the estimates needed in Section 3 on the probability of "late
arrival" in r of Brownian motion starting in E, i.e. on

(4.1)

where

(4.2)

sup P x {t - e < Ar < t},
xEE

Ar(w) := inf{s > 0 I wes) Er}.

We start with the situation where the boundary of r is given globally by a Lipschitz
continuous function.

Propositi~n 4.1: Let d 2:: 2, f: JRd-1 ----+ IR Lipschitz continuous, i.e. there is an
L > 0 S.t. I/(a) - f~b)1 ~ Lla - bl for every a, b Emd-I. If E denotes the set below
the graph of J in IR ,

E = {(x',J(x') +u) E lRd I x' E lRd-1,u < O},

then there is a constant c

(4.3)

for 0 < c < t.

s.t.

supPx{t-c< Ar< t} ~ c~
xEE v t

Proof: In the following, let Xo = (x~, J(x~) +uo) E E be fixed, and x = (x', J(x')+u) E
E, y = (y', J(y') + v) E r arbitrary, Le. x~, x', y' E JRd

-
1

, UD, U < 0, v 2:: O.
If a Brownian trajectory w starting at Xo hits r for the first time in the time interval
(t - c, t), then we know that w(t - e) E E and wes) E r for some 8 E (t - c, t). Thus

(4.4)

p xo {t - c < Ar < t} ~

~hdx p(xo,xlt - c:)Px{w 1 w(s) E r for some 0 < s < c:}

~ chdx p(xo, xlt - c:)Po{ w 1Iw(c:)1 ::::: dist(x, r)}

:'0 chdx p( Xo, xlt - c: )e- ,', (disl(x,r»'.

Conceming the distance between x and r, we now prove the existence of a constant
CL > 0 s.t.

(4.5) Iy - xJ2 = Iy' - x'1 2 + IJ(y') +v - fex') - uI2 2:: CLlv - uI2 Vy E f, x E E.

15



In fact, if Iv - ul < Lly' - x' I, then ]y - xI 2 > i2lv - u12
. If, on the other hand,

Iv - ul ~ LIY' - x' I, then

Iy - xJ2 ~ IY' - x'j2 + [Iv - ul-]f(y') - f(x')1]2

~ Iy' - x'1 2+ [Iv - ul- Lly' - x'I]

__ 2 [( _ IY'-x'I)2 (IY'-X I1 )2]
- Jv ul 1 L Iv _ ul + Iv - ul

~ ~Iv - ul 2

for some K- > 0, because Q' ~ (1 - La? + 0'2 takes its global minimum.
Having completed the proof of (4.5), we now observe that (dist(x,r))2 = inf{ly - xl 2

1

y' E JRd
-

1
, v ~ O} ~ CLlu12. After a change of coordinates, we obtain

(4.6)

j o 1 2
d _Iz -zl ~ 2

Lh.s. of (4.4) ~ c(t - e)-]" du dx' e 2r~-,) e- 4' lul
-00 lRd - 1

~
,_~,2

d-l 0~ c(t - e)--2- r dx' e- 4 (-, x
JlR:~-l

j o c1. ~ 2 _ U -u 2X (t - 6)-' -00 du e- 4, lul e ~I 0 I.

Denoting the v- dimensional transition probability kernel by p{1I) (-,. I .) and remarking

that there is no norming factor corresponding to e-~luI2 1 we end up with

by Chapman-I(olnl0gorov's equation. o

Judging frOln the above pfoof, one should asswne r to have a uniform locally Lipschitz
boundary. To this end, we consider tubular neighborhoods of radius I around 8 = 8r =
8E

81 = {x E IRd I dist(x,ß) ~ I},

in which we assume locally a similar Lipschitz condition as in Proposition 4.1.

Definition L: We call r a unifonn Lipschitz set if there is an 1> 0 and subsets Ck ,

k = 1, ... ,N (N finite or infinite), of JRd whose union covers 81 s.t. the following
conditians hold:

16



(LI) (uniform Lipschitz condition)
Up to congruence of JRd, each Ck is of the form

Ck = {(X',!k(X')+U) I x' E Uk,-l < u < I}

with an open set Uk C JRd- 1 and a Lipschitz continuous function !k: Uk ---. JR
(with a Lipschitz constant Lindependent of k), and

Ck na = {(x', /k(X'» I x' E Uk},

Ckn~ = {(X',!k(X')+U) I x' E Uk,-l < u < O},

Ck nr = {(X',!k(X')+U) I x' E Uk,O < u < I}.

(L2) (the Ck roust neither be arbitrarily small nor large)
If B r ( x) denotes the open ball of radius r around x, then there are constants
l± > 0 (independent of k) and "centers" mk E JRd S.t. BL(mk) C CI: C Bl+(mk)'

(L3) (the Ck must not have arbitrarily thin interseetions)
For each x E 81 there is a k S.t. B L (x) eCk.

(L4) (unifornl loeal finiteness)
There is a finite constant m S.t. each x E 81 lies in at most m of the sets Ck •

Theorem 4.2: Suppose r to be a uniform Lipschitz set in lRd
, and let m be as in

Definition L.
Then there are constants c, m s.t.

(4.7)

for 0 < c < t.

supPx{t -€ < Ar < t} ~ c..fi (m+ :)
xEE Vt

Before giving the proof of Theorem 4.2, we want to discuss assUlnptions and result therein:

Example 4.3: Surely, neither of the estimates (4.3) and (4.7) is optimal. For example,
if d = 1 and r = [0, 00), the distribution of Ar is known (see e.g. [KarjShr]). We
obtain

sup Px{t - € < A[o,co) < t}
x<o

j t lxI z2
=sup e-""fi"ds

x<o t-~ V27rs3
€< C-.

- t

As usual, this result extends to the case of a halfspace in JRd.

Since the conditions (L1)-(L4) in Definition L are SOlnewhat lengthy and technical, it is
worthwhile to note that they are not nearly so restrictive as they look at a first glance:

17



(4.8)

Remarks 4.4:
a) Let r be R-smooth in the sense of (vdB], i.e. for any Xo E B there are open balls

Bl, B 2 with radius R s.t. BI C E, B 2 C r, BBI n BB2 = {xo}.
Then r fulfils (L1)-(L4).

b) In view of (L1), a need not be "Slllooth" in the usual sense but may very weIl
have peaks as long as the corresponding angles don't become arbitrarily small. In
particular, any parallelepiped or cone satisfies the asStu11ptions of Theorem 4.2.

c) The class of sets r s. t. (4.7) holds for some constant c is closed with respect to
finite unions.
In particular, the union r of two closed balls or cubes having exactly one point in
eommon satisfies (4.7) although r is not an example for the eonditions (Ll)-(L4) in
the first plaee.

Here, parts b) and e) are trivial, and we will supply the proof of Renlark 4.4.a) after giving
the proof of the main result of this section:

Proof (of Theorem 4.2): Let Xo E:E be fixed. Then

p Xc {t - c < Ar < t} ::;

::::: i dx p(xo,xlt - c)Px{w I w(s) E r für süme 0 < s < c}

::; r dx . .. + r dx ...
JEna, JE\(En8,)

Using (2.9) onee again

r dx
JE\(En8d

and

i ~ ~
... ~ 2 dx p(xo, xlt - c)e-'h ::; 2e-~,

E\p:::n8, )

r dx
JEna,

... ::; r dx p(xo,xlt - c)Px{w 1 wes) Ern BL (x) for some s < c}+
JEn8,

+ r dx p(xo,xlt - c;)Px{w I wes) Er \ BL(x) for some s < c}
JEna,

i
/2

~ dx p(xo, xlt - c;)Px{w I wes) Ern BL (x) for some s < c;} + 2e- 4: .
En8,

Thus, we only have to prove the desired estimate for

I := r dx p(x 0, x It - c)P X {w Iw(s) Ern B L ( x) for some s < c}.
J En8,

To this end, for x E :E n B, let k be as in (L3). Then

I::; L r dx p(xo, xlt - c;)Px{w Iwes) Ern Ck for some s ::; c;}.
k JEne!

18



Using the transformations (LI), we see that

(4.9)

(4.10)

just as in the global case (see (4.6)). Here, (LI) ensures uniformity in k.

If x ECk, we have Ixo - xl 2: Ixo - mkl- Imk - xl 2: Ixo - mkl - 1+ by (L2). On the
other hand, if A k is the congruence map assumed in (LI), and xo = (x~, u~), x = (x', u')
in the sense of Ak-coordinates, then Ixo - xl 2: Ix~ - x'l·
Thus

I ~ C L J dx' (t - c;)- d;l e-~[max(lxo-m~I-I+,I:I:~-xll)]2x

k U"

j oo 1 -~(u _u)2 ~ 2
X -00 du (t - c;)-~ e 4(t-l:) 0 e- 41: u •

As in the global case, the one-dimensional integral is

~ c.ji fHl du P{l} (uo, u12(~c)) P{l} (u,o I~:)
= C.jiP(I) (uo,o I~:) = c1·

In the sum (4.10), we now consider two different cases with respect to k.
In the first place, if IXQ - t7!k I 2: 61+ (i.e. Xo is far away fronl Ck), it is easily seen that
(Ixo - mk 1-1+)2 2: ! Ixo - X 1

2 for all x ECk, allowing us to return to the fuH-dimensional
transition probability kernel in (4.10). By inserting unity, we obtain for such akthat
the double integral in (4.10)

l(k):= [ dx' (t - C;)_d;l e- 4(t~l:dmax(lxo-mkl-l+,I:I:~-x'I)]2X

lu"
j oo _ 1 --2....L.......(u _u)2 ~:I

X _ 00 clu (t - C; ) ~ e 4 (, - I: ) 0 e- 41: U

~ CVEJ dx' (t - e)-! (~jO dU) e-l;f,-:.:):l
Uk 1 -I

::; cve [ dx p(xo,xI4(t - e)).
lEne.

If, on the other hand, ]xo - mk I < 61+ (i.e. Xo is near Gk ), we use the alternative for
the maximum in (4.10). Then

~ ~'_z,:lvel d-l 0lek) ::; c- dx' (t - e)-"- e- 4 t-I:

ji Rd-l

Vi
=C ji'

19



In total, we obtain

I ~ c..fi [ L 1 dx p(xo,xI4(t - e)) + ~#{k Ilxo - mkl < 61+}J
k;lxo-m.. I~61+ EnC.. t

~ c..fi [m r dx p(xo, xl4(t - e)) + :]
JEn8/+ v t

~ cy'i [m+ ~]

with m as in (L4) and a constant m independent of XQ. Indeed, we have
sUPxo #{k I Ixo - mkl < 61+} < +00 because of (L2) and (L4). In order to prove this,
we assume without loss of generality that balls are defined with respect to the supremum
nonn and that VI_ = 1+ for SOllle natural number V.
Consider a point x E IRd and (pairwise distinct) integers k l , ... , kn s. t. Ix - mki I < 61+
for i = 1, ... ,n. Obviously, one can distribute at most k(6V)d "balls" of radius 1_ onto
B 6 1+(x) in such a way that each point of B 61+(x) is in at most k of the smaller "balls" .

Hence (6~)d ~ sUPYEBl'i+(x) #{kIY E Ck } ~ m. 0

Proof (of Remark 4.4.a»: One can construct the necessary quantities appearing
in (LI)-(L4), if r is R-snlooth: let 1 = I~O and choose elements Yk E a with

IYk - Yk' I 2: {lo for k f. kJ and Uk B ~ (Yk) ~ a.
For k fixed, assume w.l.o.g. that the defining balls BI, B 2 meeting at Yk are of the
form BR((Q, ±R)), where Q in the origin in IRd

-
l

. Obviously,

is given as the graph of a function fk: {y E .IRd-11 lyl < R/3} ---+ .IR. H we let

then (LI) is an easy consequence of the Inean value theorein and (L2)-(L4) are trivial. 0
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5. Occupation time in a cone

The aim of this section is to demonstrate how the method of [Mey] to study the asynlptotic
behavior can also be used to estimate the Laplace transform of (the distribution of) the
occupation time

Tt,c(w) := lneas {s ~ t Iw(s) E C}

of d-dimensional Brownian motion starting at 0 in a cone C given by

C = {rx Ir ~ 0, x E F},

where F is a closed subset of the umt sphere Sd-l in JRd having a nonempty interior.
In view of our applicatiolls in Section 3, it is sufficient to think F to be of the form
{x E Sd-111 x - xol ~ r}.
It is hard to determine the distribution of Tt,c preciselyj for example, to our best knowl
edge this problem is still open in the easy-Iooking case where t = 1 and C = {(x,y)]x,y ~

O} a quadrant in IR? (see e.g. p. 108 in [Mey]).

At the end of this section, we will prove the following quantitative version of Proposition
4.3 in [Mey]:

Proposition 5.1: Let t n = 2- n for 11 E IN. If q is large enough, then there is a
const8JIt C S.t.

for large n.

By interpolation, we obtain

Proposition 5.2: If q is sufficiently large, there are positive constants C,1] s.t.

{ e} log llogel
(5.2) Po T~,c < 1] ]logel Q ::; C Ilogel

for small e > O.

Proof: If e E (0,1), let n be the natural number with t n < e < tn-I. From
Tt;,c(w) < 7] 110;~Iq, we infer

for 17 sufficiently small. Hence, (5.1) implies the result.

21
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Since any polynomial is increasing faster than the logarithm at infinity, we immediately
obtain

Corollary 5.3:

(5.3)

for small c > o.

Let Q' > 0 be arbitrary. Then there are c, t] > 0 S.t.

The above assertion on how large T~,c tlsually is for small times enables us to show how
small the Laplace transform of T~,c is in certain parameter regions.

Theorem 5.4: Let 0 < I < t. Then there are positive constants c, co, /(0 S.t.

(5.4)

as soon as

E (e-MTor,c) < C

o - (log(Mc~+"Y))"Y

c < co and Mc~+"Y > K o.

Proof: Let c > 0 be sufficiently small in the sense of Corollary 5.3. Setting Ck := ce- k2

for kEIN, we will use the fact that by (5.3) Po-a.e. w E 0 0 satisfies Tk(W) 2:: 7]El+o for
large k, where Q' > 0 may be chosen arbitrarily small and Tk is a shorthand notation
for T~IJ'c:

co

:::; e-M'1~l+l> + L e-M'1~~+Qpo {Tk-l < 1Jcl~~} .
k=l

On the r.h.s., every single summand is fine with respect to (5.4). Thus we still have to
prove that

00 1
( ) "'"" -M '1~l+QRK c,M := L...J 1-0 e IJ

k=K+l IlogCk-d

satisfies the desired bound for sOHle K. Letting N = Mt]c1+0
, we have

(5.5)
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via the substition y = e->.x
2

•

Thus we have for arbitrary f'i- < 1

Hence the result by resubstituting N = 1]Mc;1+a. o

p == 1,2, ,

p == 1,2, ,

Problem: For the halfspace lH = {x E lRdlxd 2: O}, we know by the arcsine law (see
e.g. Section 4.4 of [Kar/ShrJ) that

(5.6) E (e ~ J:M.
We believe that for the case of Theorem 5.4 the Laplace transform decays much faster
than logarithmically and might be similar to (5.6).

Proof (of Proposition 5.1): In the rest of this sectioll, we will work our way through
[Mey] in order to prove Proposition 5.1. For ease of reference, we employ Meyre's notation
as introduced in Sections (3.1),(3.2) of [Mey]. We recall that the underlying idea is to
construct for a givell t n weIl-chosen random variables T n, t7 n 2:: t n s. t.

i) wes) E C for all s E [Tn(W), t7n(w)],
ii) t7n(w) - Tn(W) is large.

To this end, chaose 8 > 0 slllall enough s.t.

has a nOllempty interior and consider the following chain of real nUlnbers, where ql, q are
arbitrary:

EI (Fe) < EI (:Fg) < q2 := 2E] (Fg) < ql < q,

where E] (Fe) denotes the smallest eigenvalue of - kß (ß being the Laplaciall on
Sd-I) on Sd-l \ F with Dirichlet boundary conditions.
Letting Co be the cone in JRd determined by F o, the line of the proof is to show that
the following sequence of stopping times

T~(w) := t n == 2- n
,

U~(w) := inf{t 2:: T~-I(w) Ilw(t)l2:: ~},
T~(w) := inf{t 2:: U~(w) I w(t) E Co},

"soon" becomes stationary, i.e. soon after time t n the path w will be fauod "far away"
from the origin and "safely within" the cone C. Therefore we consider

Nn(w) = inf{p E IN I w(T~) 2:: ~}.
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The following estimate inunediately follows from Po { N n > k} ~ pk, k E J!V, for some
p ~ !' which is shown on p. 120 of {Mey]:

(5.7) { For any ]( < 1 there is a constant c > 0 s.t.

PO{Nk ~ clog k for some k > n} ~ cnl
-

K
.

Thus, the stopping time

(where (A] denotes the largest integer smaller than A) usually has the following properties
for large n:

(5.8)

Furthennore it is bounded from above in the following way:

Lemma 5.5:

(5.9)

For large n

Proof: In the proof of Lemme 3.3 in {Mey] it is shown that PO(An,p,d ~ lIog~1112 for
i = 1,2, pEIN and large n, where

An1P,l = {Uh - T::- 1 ~ tn (1og Ilog tn I?} 1

An,P 12 = {T:: - Uh ~ tnllogtnl
q2

}

(note that we - in contrast to Meyre - have chosen q2).

For w E B n = n~c~~g n](A~'Pll n A~lP12) we obtain as usual Tn(W) ~ tnllogtn jQl.

S· P (BC) < 2G[c1og n] (5 9) ~ 11Inee 0 n _ Ilog t
n

12, . 10 ows.

Due to (5.8), the stoppillg time

an(w) := inf {t > Tn(W) Iw(t) ft C}

o

usually should be mueh larger than T n· In fact Po { (7n - T n ~ (log II~~ t n 1)2 } ~ '::2 (see

the proof of Lemme 3.4 in [Mey]) implies

(5.10)
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for large n.

In order to utilize (5.10) for a lower bound on the occupation time up to time t n (recall
T n 2: tn), one introduces for n E llV the unique number m(n) S.t.

Now Tn(W) ~ tn]logtnlq1,n 2: no(w), implies Tm(n)(W) ~ ~tn for large n. From Lemma
5.5 we deduce

(5.11 )

for large n.
Obviously

{
2} lognPo Tm(n) > 3tn ~ c-

n
-

Ttn1c(w) 2: min(um (n)1tn ) - Tm(n)'

Thus, if Um(n)(w) > t n , one usually has Ttn1c(w) 2: kt n for large n due to (5.11).

On the other hand, if Um(n) ~ tn , (5.10) usually implies Tt c(w) 2: (l /m n )2' if n
n, og og tm(n)

is sufficiently large.
In each of these cases, we conclude Ilog t n IqT tn t:(w) 2:: 1. Hence, the estimates (5.7), (5.10)
and (5.11) now prove Proposition 5.1. 0
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6. Estimates from below

Before stating our results concerning lower bouncls on senügroup and resolvent differences,
we present aversion of Theorem 3.1 in the special case of the halfspace, which can easily
be treated probabilistically:

Lemma 6.1: Let r = JH = {x E lRdlxd 2:: O}. Then

IIJe->..HM - e->.Hr:.Jll < C if MA 2:: 1,
- (MA)~

IIJ(HM -z)-l-(HE _Z)-l Jll ~ ~i if M is large.

Proof: Proceeding as in the general case in Section 3 and using Example 4.3 and (5.6),
we have

Letting c = MCX Aß, we obtain the best result for Q' = -t, ß = +~. This proves the first
assertion. The resolvent estimate follows by integration. 0

This example clearly measures the quality of the lower bounds in the rest of this section.
For the lower bounds, we return to the situation of Assumption B, i.e. V Kato class and
U =xr.
We recall that 11 'lIHS 2:: 11·11, i.e. it is sufficient to bound the operator nonn from below.
Moreover, let P denote multiplication by xr in L2(lRd

). Employing the obvious
notations for the resolvent of HM and HE respectively and suppressing the dependence
on the point in the resolvent set for amoment, we have

(6.1)

Hence

RM - J* REJ = PRM + J*(JRM - REJ).

IIRM - J* RE JI1 2 = IIPRM 11 2 + IIJ*( J RM - REJ)lli2(Rd)_L2(Rd)

= IIPRM I1 2 + IIJRM - REJlli2(Rd)_L2(E)'

In particular

(6.2) II RM - J*REJI[2:: max (lIPRM lI, IIJRM - REJIIL2(Rd)_L2(E))

and

(6.3) IIJRM - REJI1
2

= IIRM - J"'REJ1I
2 -IIPRMI1 2

•
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Lemma 6.2: In addition to Assumption B assume supx V(x) ::; b.
If -a E p(Ho + V) is sufficiently small, we have as M -t 00

Proof: For any B C JRd with finite Lebesgue measure and any ball r o c r we may
estimate

IIp(HM + a)-111
2

2: cllp(HM + a)-1 xB lI 2

:::: c lr dxll'" d>. e-aAe-MAe-bA l dy P(X,YI>.)r

Choosing B:= {y E lRd Idist( y, r 0) ::; I} we note that ~ I{y E BI jy - x I ::; y'~\} I =

~ I{y E lRd I Iy - x I~ J~) I= const and 0 btain for sufficiently large M

IIp{HM + a)-1112 2: c [ dxl [1 d"\ e-(a+b+M),\1
2

:::: elfoll.
Jr o Ja 2 (a + b+M)2

Recalling (6.2), this completes the proof of (6.4). o

Lemma 6.3: In addition to Ass\.unption B assmne supx V(x) ~ b and there is a
Xo E ar S.t. for some cones K 1 , K 2 of finite height and with vertex Xo one has
!{1 C r, !(2 \ {xo} c E.
If -a E p(Ho + V) is sufficiently small, then

Proof: In the course of the calculations, we will choose subsets B c lRd , Eo C E and
r o c r of finite Lebesgue measure.
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For any such candidate we have similax to the proof of Lemma 6.2

Now we choose B = {y E lRdldist(y, r o) ::; 1} and obtain as in the proof of Lemma 6.2

IIJRM - Rl:;J1I
2 ~ ci. dx![ dA e-(a+b+M).\ Ir. du P (x,u I~)r
~ c (io dx [ dA e-(a+b+M).\ Ir. du P (x,u I~)) 2

= C ([ dA e-(a+b+M).\ io dx l. du P (x,u I~)) 2

In principle, we let :Eo,ro be the cones in the assumption on ar. In order to estimate
p(x, u I~) appropriately from below, we rather integrate over the A-dependent sets

Eo(A) = {x E Eo

rO(A) = { u E r o

VX}Ix - Xo I ::; 2 '

-IX}lu - Xo I ::; 2 .

Then for any such u,x, we have p(x,ul~);::: CA-t e- 1 . Hence for large M

11 JRM - Rl:;J11 ~ C [ dA e-(a+b+M)'\ . A1

l
a+b+Mc ~= ------:-- cis e-"s:l

(a+b+M)t+ 1 0

> c
- (a+b+M)~+l

c
~ Mi+ 1 ' 0
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Lemma 6.4: In addition to Assumption B assume sUPx V(x) :::; b aJld there is a cone
K of finite height h with vertex Xo E ar s.t. K C r. Then

ce-2M).,
c -2M).

-d e ,
A2

Proof: Since the proofs of these estimates are similar to one another and to the preceding
Lemmas, we only give some details concerning the first semigroup difference:

2

2

2: ce-)'be-MA 1. dx 1 Px(dw)XK(w('\»
Rd w().)er

:::: ce-(M+b).\ fIRd dxlfK dy p(x, yIA) 1

2

= ce-(M+b).\Ldy fK du p(u, YI2A).

Thus

c
4

e-(M+b))' r dy rdue-l.l#,
A:l lK lK
ce-(M+b))' r dy r du p(u, YI2A),

JK JueK;lu-yl~V>:

completing the proof of the first assertion (cf. proof of Lemma 6.2).
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7. Applications to the semiclassical limit

The large coupling limit is strongly related to the semiclassicallimit. However, these two
limits are not equivalent.
We set M --Jo 00 and n -+ 0 for

(7.1)

where Ho, U are given as in Assumption A.
We will frequently use the following projection P in L 2 (JRd):

(7.2)

Theorem 7.1:
Irl < 00. Then

(7.3)

but

(7.4)

In addition to Assumption A, let V =0, supz U(x) = C, supp U = r,

Proof: In order to prove (7.3), it is convenient to use the Hilbert Schmidt nonn:

Now we choose sets r n C r n +1 C r with a boundary as regular as ar, dist(x, E) > 0 for

any x E arn and Irn \ rj -+ 0 as n --Jo 00. Then x E r n inlplies JO
th2

U(w(s ))ds > 0
for any t > 0, w E nz.
By dominated convergence we infer

Hence (7.3) by letting n -t 00 and using that the integrand is bounded.
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On the other hand, (7.4) is an immediate consequence of

Ilpe-tH"M 1/111 2 = lrdxll. PzCdw)e-* J:,2 U(W(6»d61/CwCtn2))112

<:: e-2MtCllpe-tA2HOl/llr .Kasten

On the other hand, the large coupling asymptotics may improve estimates on the semi
classicallimit, as the following result shows:

Theorem 7.2: Let 0 ~ U(x) ::; c, supp U = r.
Assurne that there is a , > 0 S.t. as M -+ 00

(7.5)

and

(7.6)

(7.9)

Then we obtain for the semiclassicallimit

(7.7) IIJ (1i 2 Ho + U - z) -1 - (n?(Hoh~ - z) -1 JII = 0 (n -2+2'Y)

for any z E p ((HO)IJ = C \ [0,00).

Proof: Writing

(7.8) J(1i2Ho+U-Zr~(1i2(HO)E-Z)-IJ=;2[J(Ho+ ;2 U- ;2) -~(CHo)c ;2) -;],
we can separate the high energy limit:

[J (HO + ;2 U- ;2) -~ (CHolE - ;2) -~] = J [1+ (;2 -Z)(Ho+U- ;2) -I]x

X[CHo+U -Zl-I_J*(CHolE-z)-IJ]X[1+ (;2 -Z) J* (CHo)E- ;2) -~].

Since I~ - zlll (Ho + U - ~) -111 :s const· Izj, the asymptotics for (7.9) are given by the
asymptotics of

( Ho + ;2 U- Z) -I -J*((Hol E- z)-I J <

:::: P(Ho+;2U-Z)-1 + J(Ho+;2 U- Z)-I_CCHo)E- Z)-IJ

= 0 (n2 'Y) ,
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where we used 1 - P = J* J. Now (7.8) completes the proof. o

In order to apply Theorelu 7.2 it is indispensable to determine not only the convergence

rate of the resolvent difference but also of IIp(Ho + MU - z)-lll in M.
We will not go into detail here, because this term is not as interesting in its own right as
the resolvent or semigroup difference. Furthermore, it leads to very similar considerations.
For example,

IIp(Ho + MU - z)-I fl1 2
= !r dxll'" dA e-ZA

(e-A(Ho+MU) f) (x)1
2

::; c!r dx100

dA e-Re z'AI (e -A(Ho+MU)f) (x) 1

2

= c100

dA e-Re z'Allpe-A(Ho+MU) 11

2
11f1l 2

•

Hence the rate of IIp(Ho + MU - z)-lll with respect to M is detennined by the one of

Ilpe-,\(Ho+MU) 11.

Due to
11 Pe-A(Ho+MU) 11 ::; sup r Pz(dw)e -M Jo' U(w(.))d.,

xEr lO:tl
we end up in the si tuation of Section 3 (see e.g. (3.1), where the restrietion
be negleeted).

Theorem 7.3: In addition to ASSUulption B, assume V - O. Then

(7.10) II (n2 Ho + U + a)-l - J·(n2 (Ho)E + a)-l JII ~ c1i4

for any a < O.

T,\ r > 0 can,

Proof: Writing HE instead of (HO)E for convenience, Hilbert's identity yields

(Ho+;2 U + a)-I- r (HE+a)-I J

= 11,2 [(n 2Ho + U + 1i2a)-1 - J*(11, 2HE + 1i2a)-1 J]

= 1i.2 [1 + (a -1i.2a)(n2Ho + U + 1i2a)-1] X

X [(n2Ho+U+a)-1-J*(n2HE +a)-lJ] X

X [1 +(a - ;,,2 a)J*("h2HE + 1i,2 a )-1 J].
Since for small n e.g.

111 + (a -/i
2
a)W Ho + U + /i2 a) -111::; 1+ lal·ll-/i21· ;2 . I~I ::; ;2'

32



this implies

(Ho+;2u+a)-1 -r(H;:,+a)-I J <

:::;ch2. ;2· ;211(h2Ho+U+a)-I-r(h2HE +a)-IJII·

Now the 1.h.s. is bounded below via (6.2). The first alternative for the maximum in (6.2),
i.e. an application of Lemma 6.2 rather than Lemma 6.3, yields the better result, namely
(7.10). 0

Theorem 7.4: In addition to Assumption B, assume V = O. H E E IR, ,> 0, then

II(x) -"Y [(1i2 Ho + U - E ± iO) -1 - J* (h2 HE - E ± iO) -1 J] (x) -"YII2: c1i4

for small n, whenever the expression in 11·11 makes sense, and where (x) = )1 + [xI 2
,

HE = (HO)E.

Proof: Since

(Ho + ;2 U+ a) -I - r(HE + a)-I J =

= n,2 [(1i2 Ho + U+ n,2 a)-1 - J*(n.2 HE + 1i2 a) -1 J]

= h2 [1 + (-h2a - E ± ie) (Ti 2Ho + U + 11,2a) -1] X

X [(h2Ho + U - E ± ie) -1 - J * (1i2HE - E ± ie) -1 J] x

x [1 + (-1i2a - E ± ie)(t1,2HE + 1i2a) -1] ,
we have

(x) --y [ (Ho + ;2 U+ a) -I - r(HE + a)-I J] (x) --y :::;

~ 1i2 [1 + [t1,2 a + E!·II(x)-'(h2 Ho + U + 1i2a) -1 (x)"YII] X

X :~ II(x)-' {(1i2 Ho + U - E ± ie) -1 - J*(h2 HE - E ± ie) -1 J} (X)-"Yllx
x [1 + 11i2 a+EI·II (x)' (1i2 HE + 1i2a) -I (x) -"YII]

:::; h2 [1 + Ih
2
a
h
; EI (x) --y (Ho + r~2 U+ arl

(x) -y ] x

X II(x)-"Y {(n 2 Ho + U - E±iO)-l - J*(n2 HE -E± iO)-1 J} (x)-'llx

x [1 + Ih
2

a
h
; EIII (x) -y(HE +a)-I (x) --yll] .
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Now

and the corresponding calculation for II(x) l'(HE + a)-I (x) -1'11 (replace" e-itr J: U(w(.»d."

by "X{T>.,r=O}(w)") show that

are bounded uniformly in n. Thus we have

(x)-1' [(HO + ~2u+arl -r(HE+a)-I J ] (x)-1' <

::; c~~) 11 (x) -1' { (1i 2 Ho +U - E ± iOr1 - r (1i 2 HE - E ± iO) -I J} (x) -1'11.

An imitation of the proof of Lemma 6.2 finally shows that

(x)-1' [(Ho + :2 U + a) -I - r(HE + a)-I J] (x)-1' ~ c1i2

(note that ro, B in the proof of Lemma 6.2 are bounded). 0
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