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Introduction

Let n be a bounded open set in Rn, n 2: 1, Qr = n x (0, Tl, ST = an x (0, Tl,
rr = Sr U (f2 x {t = O)}) (fr is the parabolic boundary of the cylinder Qr).
Consider in QT the equation

(1.1 ) F[u] ~ : - div a(u, V'u) = J

where \7u (;XUl ' ... , txU

n
), J( x, t) is a given funetion, a = (al, ... , an), a l =

ai ( u, p) are eontinuous on IR x IR n and satisfy for all u E IR, p E IR n the inequalities

(1.3)
a(u, p) . p 2: Vo lul1lplm - 4>0 (u), Va > 0,

la(u,p)1 ::; !l1IuI1Iplm-l + ~du), m> 1,12:: 0, ~i(U) 2:: 0, i = 0,1.

Equations (LI), (1.2) are known as doubly nonlinear parabolic equations
(DNPE). The prototype of DNPE is

(1.3)

In this paper we consider a special case of DNPE. In particular we limit ourselves
by consideration equations (1.1), (1.2) only for m > 1, 1 2:: 0 (instead of more general
conditions m > 1, 1 > 1 - nt).

Equations (1.1), (1.2) and in particular (1.3) arise in the study of turbulent
filtration of a gas or of a fluid through porous media and non-Newtonian flows (see
[I}). .

Existence of generalized solutions of Cauchy-Dirichlet problem for DNPE were
established first by Raviart [2] and J.-L. Lions [3] and then by many authors. In
particular Bamberger stated in [4] his results on existence and uniqueness of some
nonnegative generalized solution of Cauchy-Dirichlet problem for a nonhomoge­
neous equation Fo['ll] = f (see (1.3»).

Up to recent time there were no regularity results for DNPE. The simple modifi­
eation of the Barenblatt explicit solutions lets to show that at least in the case 1> 1
hölderness is the best possible smoothness of generalized solutions of equation (1.3).
Hence the key question of the regularity theory for DNPE is establishing Hölder
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estimates for their generalized solutions. At first such estimates were established in
[5] for the case of, so-called, doubly degenerate paxabolic equations, i.c. for (1.1),
(1.2) in the case m > 2, 1> O.

This paper is devoted to the proof of existence and uniqueness of some Hölder
continuous generalized solution of Cauchy-Dirichlet problem for equations of the
type (1.1), (1.2). The crucial role is played by the Hölder estimates established by
the author in [6]-[8].

Acknowledgement. This paper was written during the stay of thc author at
Bonn in 1994. We would like to thank the Max-Planck-Institut für Mathematik
and Professor Hirzebruch for support and hospitality.

2. The statenlent of the main result

Assurne that for any u, v E IR and auy p, q ERn we have

(G) la(u,p)1 :::; Jl(luI/Iplm-l +JI(lul)), Jl = const ~ 0, m > 1, 1~ 0,

71(s) ~ 0 is nondecreasing.

Definition 2.1. Any nonnegative bounded in QT function u is a weak solution of
equation (1.1), (G) with f E L 1(QT) if

(a) u E C([O, T]; L2 (n)), "9UO"+l E Lm(QT),a = m~l j

(b) for any <P E C1(QT),q; = 0 on ST, and any t 1 , t2 E [O,T]

(2.1) Ju,pdxl:; +['1 [-u,p, + a(u, U x ) • \7,p - j,p]dxdt = 0

o

where U x = (U X1 " •• ,U Xn ) and U Xi are defined by

(2.2)
in [QT : U > 0],

in [QT : U = 0], i = 1, ... ,n.

Consider Cauchy-Dirichlet problem

(2.3) F[u] = : - div a(u, \7u) = f in Qr, u = llJ on fr

where

(2.4)

Definition ~.E. Function u is a weak solution of Cauchy-Dirichlet problem (2.3),
(2.4) if u is a weak solution of equation (1.1), (G) and u = \I1onrT.

Remark 2.1. Every weak solution of (1.1), (G) and every \11 E Wl(QT) have traces
on rr.
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Definition 2.9. Let inf (w, fr) > O. 'Ve say that function tl is a strong solution of
Cauchy-Dirichlet problem (2.3) if u is a weak solution of (2.3) and moreover

inf(u,Qr) > O(and hence u E vV~,O(QT»'

o
Definition 2..{ Let 'lJ E WH Qr). We say that function u is a quasistrong solution
of Cauchy-Dirichlet problem (2.3) if u is a weak solution of (2.3) and moreover
there exists a sequence of strong solutions of problems

F{Unl = In in Qr, 'U n = 'I' non fr

such that

U n ~ u in C( [0 l Tl; LI (n)); f n E LI (QT ), f n ~ f in LI (QT );

(2.5)
1 -.

'l'n = 'I' + cn(x, t), Cn E I'VI (Qr) n C(QT)' lnf(cn, fT) > 0, sup(cn, rT) ~ O.

o
Definition 2.5. Let 'I' E IV} (QT ). \Ve say that function U is a regular solution of
Cauchy-Dirichlet problem (2.3) if u is Hölder continuous in QT and u is a qua­
sistrong solution of (2.3).

Introduce the following assumptions:

(BI)

(RHS)

o
'I' ~ 0, 'I' E vV~(Qr) n Cß,ß/m(fT), ß E (0,1);

I ~ 0, f E LCX)(QT).

Moreover assurne t hat the following conditions are fulfilled for equation (1.1):
0) functions u-oai(u, u-Op), Q' = ~1' are continuous on JR+ x IRn;
1) ( the growth condition) for any u E lR+,p E IR n

a(u,p) . p ~ volul1jpl m
- llo(lul 6 + 1), Vo > 0,

2 < 8 < m + 1ifm + 1> 2,8 = 2 if m + 1 ::; 2;

la(u,p)l ::; Jlljul1lplm-l + J-L(lul)luIO,

Q' = i, Jl( s) ~ 1 is a nondecreasing on lR+;
m

2) (the strict lllonotonicity condition) there exists VI > 0 and continuous
vector-function b(u) E ~ n such that for any u E IR. and any p, q E lR
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where K, = m if m 2 2 and K, = 2 if rn E (1,2);
3) ( the loeal Lipschitz condition) for any u, v E [e, AtI], e > 0, M > e, and any

pE IRn

la(u,p) - a(v,p)1 ~ Alu - vl(l + Iplm-l),A = A(e,M) 2 o.

4)
(m,/) E D\w,D ~ {m > 1,/2 O},

{
a+1 1 1 I}

w~ (m,/)ED:--~---,a= .a+2 m n rn-I

Theorem 2.1. (existence and uniqueness of regular solution). Let conditions
(r!), (BI), (RHS) and 0)-4) hold. Then Cauchy-Dirichlet problem (2.3) has exactly
one regular 30lution.

Remark 2.2. Conditions 0) - 3) are fulfilled for equation (1.3).

Remark 2.3. It is easy to see that w C F ~ {(rn,1) E D : m + 1 < 2}. vVe
constructed a counter-example (see [9]) showing that for every (m, I) E w the loeal
boundedness of generalized solutions of equation (1.3) fails to be true.

Remark 2.4. Existence of Hölder continuous weak solution of Cauchy-Dirichlet
problem for same dass of equations of the type (1.1), (1.2) in the case m 2 2, I 2
o was proved in [10]. Existence and uniqueness of regular solution of Cauchy­
Dirichlet problem (2.3) under conditions (f2), (BI), (RHS), 0) -3) and for 1 ~ 0,
max( 1, n

2
';2) < m < 2, m + 1 > 2 can be derived from results of [11]. The proofs

of the results of [10] and [11] are based on using Hölder estimates established in [5]
and [6]-[8] respectively.

3. U niqueness of quasistrong solution

In this section we state the uniqueness results of paper [11]. Assume at first that
for any u, v E IR and any p, q E IRn functions ai(u,p) satisfy conditions

......
(G) la(u,p)1 ~ f-l(lplm-l +1),f-l 2: 0;
(M) [a(u,p) - a(u,q)] . (p - q) 2 0;
(L) la(u,p) - a(v,p)1 ~ Alu - vl(lplm-l + 1), A = const 2 0, m > 1.

Definition 3.1. Function u is a generalized solution (subsolution, supersolution) of
_ 0

equation (1.1), (G) if u E l'V~'O(QT) n C ([0, T]; LI (0)) and for all <P E vV~ (QT) n
L oo ( Qr)( 1J 2: 0) and any t h t2 E [0, T]

(3.1) l u</>dxl::i [-u</>t +a(u, '\7,,) . '\7 </> - N ]dxdt = O(:S:; 0, :::: 0) •

......
Proposition 3.1. (Comparison Principle, (ll}). Assume that condition3 (G),
(M), and (L) hold. Let Ul and U2 are generalized sub"olution and supersolution
such that
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Ul :::; U2 0n ST = an x (O,T]

then for any T E (0, T] we have
(3.2)

1("I - "2)+ dxl'=' ::; 1("I - "2)+ dxl'=O +l'1(!I - 12)sign ("I - "2)+dxdt.

o
Proof. Let TJ E W~O(QT)nLoo(QT),TJ ~ 0,0 < h < tl < t2 < T-h,Qt1,t"J ~

n x [tl, t2]. Then from conditions of Proposition 3.1 it follows (see also (12]) that

(3.3) 11 {("I - "2 }h,1) + [(a("I, 'V"tllh - (a( "2, 'V"2))';-] . 'VI)} dxdt ::;

Qtl,t"J

11 (!I - 12l7;l)dxdt
Qt),t"J

where ~ : (1/ h) J/-h g(x, T)dT. Denote

{

I, S > 0

H6(S) = 8/0, °< 8 < 0 ,

0,8 :::; °
so that G~(s) = H6(S) on IR. Set in (3.3)

(3.4) 1] = H6(UI - U2)'

Obviously that test function (3.4) is admissible. In view of concavity of function
G6(W) we have

( U I - U 2 >xt H 6 ( U I - U 2) ~ (G 6 ( U 1 - 1l2))Xt .

Then from (3.3) it follows that

(3.5) 11 (G6( '" - U2 )};;,dxdt + 11 [( a(UI, 'VUI )),;- - (a( "2, 'VU2)};;]'

Qtl.t"J Qtl,t"J

. 'V(U, - U2 )H~( '" - "2 )dxdt::; 11 (!I - 12 ),;-H6(UI - "2 )dxdt.

Qtl,t"J

Integrating in t the first term in (3.5) and then letting h ~ °we obtain for any
T E (0, Tl

(3.6) 1G6( UI - "2 )dxl~+

+ (1/8) 11 [a(", , 'V"tl- a("2, 'V"2)] . 'V(UI - "2)dxdt ::;

::; 11(JI - 12)H6("I - "2)dxdt.
QO,T
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Taking into account that G8( UI - U2) ~ (Ul - U2)+, B8(UI - U2) ~ sign(Ul - U2)+
as fJ ~ 0 we derive from (3.6) and conditions (M) and (L) that inequality (3.2)
holds. Proposition 3.1 is proved.

......
Consider now Cauchy-Dirichlet problem (2.3) assuming that condition (G) holds

and fE LI, l[I E vVl(Qr).

Definition 3.2. Function u is a generalized solution of Cauehy-Dirichlet problem
(2.3) if u is a generalized solution of equation (1.1) and u = t[F on r r .

From Proposition 3.1 we can derive direetly the following
......

Proposition 3.2. Let condition3 (G), (M), and (L) are fulfilled. Then there is at
most one generalized solution 0/ Cauchy-Dirichlet problem (2.9).

......
Replaee now eondition (G) by eondition (G) (see seet. 2) and eonsider instead

of assumption (L) the loeal Lipschitz eondition

for any U,v E [e, 1\1], 6 > 0,]1/1 > 6, and any pE IR n

......
(L) la(u,p) - a(v,p)1 :::; A(lu - vl(l + Iplm-l),A = A(e,M) ~ o.

From Proposition 3.2 we ean derive the following
......

Proposition 3.3. Let inf (1ft, rT) > 0 and let conditions (G), (lv!), and (L) hold.
Then there i3 at most one strong (in sense of Definition 12.:J) solution of Cauchy­
Dirichlet problem (2.9).

The main uniqueness result for DNPE is

o
Theorem 3.1. (uniquene"s of qua"i"trong solution, /11}). Let 1ft E VV~(QT) and

......

let conditions (G), (M), and (L) are fulfilled. Then there is at most one quasi"trong
(in sense 0/ Definition 2.4) ~.. olution 0/ Cauchy-Dirichlet problem (2.9).

Proof. Let u and uare two quasistrong solutions of (2.3). Let (u n,fn,IJFn) ~
............

(u, f, 1ft) and (';;, n, f n, lJ! n) ~ (;;, f, 1ft) in sense of (2.5) Obviously we ean choose
...... -

subsequenees {IJFn } and {1ft n} such that supe Iftn,Sr) :::; inf (l[I n, Sr), n = 1,2, ....
Then we ean apply Proposition 3.1, i.e., for any T E (0, Tl

Letting n ~ 00 and using (2.5) we obtain that (u - ~')+ = 0 a.e.in Qr. Theorem
3.1 is proved.

Remark 9.1. In same sense Definition 2.4 of quasistrong solution and Theorem 3.1
are similar to definition of "the limit of strang salutions" and the correspanding
uniqueness theorem given by Bamberger in[4] for equation (1.3). However instead
of our eondition inf (u, Qr) > 0 in thc definition of strong solution Bamberger used
condition "u has 8u/EJt E L 1(QT)".
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4. Hölder estimates for DNPE.

Establishing Hölder estimates is the key question of the regularity problem for
DNPE not only in view of the fact that hölderness is the best possible smoothness
far a large dass of such equations. In fact Hölder estimates for bounded generalized
solutions are crucial and the best diffieult step in proving of existence of regular
solution of Cauchy-Dirichlet problem for DNPE.

Directly from our results [6]-[8] far DNPE of the fuH type

(4.1) : - div a(x, t, u, 'Vu) + ao(x, t, u, 'Vu) = 0

with the limit growth eonditions we ean derive the following estimates for equations
of the type (1.1), (1.2). Introduce condition

ai(u,p) are continuous on IR x IR n
, i = 1, ... ,nj

a(u,p) . p ~ lJolul1lpim - <Po, va > 0;

(H) la(u,p)j::; ILllul1lplm-I + lul°<pt,a =~;
m

If(x, t)1 ::; <P2, <Pi = const 2: 0, l = 0, 1,2;

m>1,l2:0.

For the sake of brevity we stated here only global Hölder estimates (i.e. Hölder
estimates up to the boundary) for equations (1.1), (1.2).

Theorem 4.1. ([6}, [7}). Assume that m + l 2: 2 and let conditions (H) and (0)
hold. Let u be a weak solution of equation (1.1) (in sense of Definition 2.1) such
that it~ trace on the parabolic boundary rr i" Hölder continuou3. Then function u

belongs to the dass c>..,A/m( QT) for some .\ E (0, 1). M oreover

(4.2) ( )
. lu(x, t) - u(x' , t') I ::; l\..~

U - = sup
>",Qr . (x,t),(x',t')EQr (Ix - x'lm + It - t'I)"\/m

where .\ E (0,1) and ]{ > 0 depend only on sup( u, QT), n, 7n, l, Vo, Po, <Po, <PI,
'{)2, Inl, T, ao, po and the Hölder con"tant and exponent 0/ the trace 0/ function u

on rT .

Theorem 4.2. ([B}). A3sume that m + l < 2 and let condition3 (H), (M), (L),
and (Q) hold. Let u E W~,O(QT) be a weak solution of equaiion (1.1) (in sense 0/
Definition 2.1) 3uch thai ii3 irace on the parabolic boundary rT is HöldercontinuoUfJ.
Then /unction u belong3 to c>..,>../m(QT) for some .\ E (0,1). Moreover estimate
(4-2) holds with .some constant3 .\ E (0,1) and !{ > 0 depending on the same data
a~ in the ca.se of Theorem 4.1 (in particular.\ and]( are independent o/lI\7IIL rn (Qr)

and constant A /rom condition (L).

Remark 4-1. Theorems 4.1 and 4.2 remain valid if the inequalities in conditiün (H)
are fulfilled only für values u from the range of weak solution under consideration.

Remark 4.2. The prüofs of Theorems 4.1 and 4.2 (as weH as Hölder estimates für
general equations (4.1) in [6] - [8]) are coneerned with some development of the
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methods of papers by De Giorgi, Ladyzhenskaya-Ural'tseva (see [12]), DiBenedetto
{13], Chen-DiBenedetto [14], and [5].

Remark 4.S. Other results on Hölder estimates for some classes of DNPE are ob­
tained in [15], [16].

5. The auxiliary Cauchy-Dirichlet problem

This section has an auxiliary character. At first we prove some generalization of
well-known Friedrieks inequality (cf. [12]], p. 529 -530) which will be used not only
in this section.

Lemma 5.1. Let {W'K(X)} i" an orthonormal ba3~ in L 2(n). Let ß ~ 0 is jixed.
Then for any e: > 0 there ex~t" number N~ such that for function u(x) sati"fying
condition

(5.1 )

we have

(5.2)

o l+ßlulßu E lV~(n),m > 1, l/m < l/n+~,

where (u, W'K) ~ In uW'Kdx and jV~ does not depend on u.

Proof. It is sufficient to prove that for any 8 > 0 and e: > 0

Really for function v ..;.. lulßu we have well-known Sobolev inequality

(5.4)

because from condition I/rn< I/n + Itß it follows that l/r > l/m - l/n. Rewrite
(5.4) as

(5.5)

Then from (5.3) and (5.5) it follows that

(5.6)
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(5.7)

i.e., result of Lemma 5.1 is t rue. So prove that (5.3) holds. If (5.3) is violated then
there exist co > 0 and sequence of functions {U.,(K)} satisfying condition (5.1) such
that for some fixed 8 > 0 and any v = 1,2, ...

(
V) 1/2

II U uIlL,(Il) > (1 +.5) {;(uu,.pd + co IIV(luulPuullEIl)'

(

., ) 1/2

(5.8) 1 = II UuIIL,(!1) > (1+8) {;(uu,.pd +coIlV(luuIßuu)II~!1)'

Denote v., = IU., Iß u.,. In view of (5.8) the norms II\7vv ll L m (11) are uniformly bounded
and hence (taking into account that l/r > l/m -l/n for r = 2/(1 + ß)) there exists
some subsequence {vv,} convergjng strongly in Lr(f!). It is easy to see that then
subsequence {U.,,} converges strongly in L2(f!) to some function uE L 2(f!). Really
in view of astriet monotonicity of funetion x ---+ Ixlßx, ß > 0, we have

c-1lu v - uj'J12+ß::; [Ju.,Ißu v -luj'JIßuj'J](u v - uj'J) ::; !vv - vj'Jllu y - uj'J1
with same constant c > 0 and hence

?
luv -uj'J12::; clvv -vJ.tlr,T = 1 :ß'

Moreover it is obvious that liitt L2(11) = 1. Functions Pv, uv, : ~~::1 (1.l v, , 1Jtk )!Pk also
converge strongly in L 2 (f!) to u because

Ilu - Pv, 1.l v, 11 L 2 (11) = IIPv, (u - uv,) + (E - Pv, )i't I1 L 2 (11) ::;

:s; Ilu - -u v, IIL 2 (11) + II(E - Pv, )uIIL2 (11) ---+ 0 as S ---+ 00.

Then

(5.9) (~(uu. ,.pd) 1/2 = IIPu. uu.IIL,(Il) --> lIuIlL,(Il) = 1 as s --> 00.

In view of (5.8), (5.9) we obtain then impossible inequality 1 2: 1 + 8. Lemma 5.1
is proved.

Now we consider the Cauchy-Dirichlet problem

F[u] = f in QT, u = 1Jt on rr,
assuIIllng

0') functions ai(l.l~p) are continuous on IR x IR n;
1') for any u E lR,p E IRn

a(u,p) .p 2:: votplm - J-lo, Vo > 0; la(u,p)1 ::; J-Ll(lpjm-l + 1);

2') for any u E IR. and any p, q E IR. n

(a(u,p) - a(u,q)]' (p - q) 2:: vdp - qlm,vl > 0;

3') for auy u, v E IR. and any p, q E IR n

la(u,p).- a(v,p)1 ::; Alu - vl(lplm-l + l),A 2: 0;

4') m > max(l, 2n/(n + 2)).
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o
Proposition 5.1. Let f ü measurable and bounded in Qr and let !/J E W~(Qr).
Assume that conditions 0 ') -4 ') hold. Then Cauchy-Dirichlet problem (5.10) hew
exactly one generalized (in sense 01 Definition 9.1) generalized solution u such that
u E C([O, TJ; L2 (O».

Prool. Uniqueness of generalized solution of (5.10) follows from Proposition 2.2.
So we have to prove only existence of solution cited. The forthcoming proof is a
suitable adaptation of the proof of theorem 6.7 of Chapter 5 in [12].

o
Let {!/Jk(x)} is a basis in W~(O) such that In !/Jk'P,dx = <Si, where <Si is the

Kronecker delta, and

Set

(5.11 )
..v

u N = L Cf(t)!lik(X)
k=1

where {cf (t)}k= 1, ... ,N is solution of the system of ordinary differential equations

(5.12)

wi th initial conditions

(5.13) cf(0) = (!/J(x, O),!lik), k = 1, ... ,lV.

From conditions of Proposition 5.1 it follows that the second and third terms in
(5.12) are bounded and measurable functions of variables t, cf on any set [0, T] x
{1et' I::; eonst ,k = 1, . .. ,lV} j moreover these fune tions are eontinuous in cf, k =
1, ... ,lV. Therefore existenee at least of one solution of (5.12), (5.13) will be
established if we eould show that aH possible solutions of this problem are uniformly
bounded on [0, T]. Exactly in the same way as in [12], p. 533 - 535, we ean prove
that apriori estimate

(5.14)

holds with some eonstant c independent of lV. Then from (5.14) it follows that

(5.15)
N

sup L let' (t)12 = sup Ilu N II1. 2 (o) ~ c
tE[D,T) k=l . tE[D,T)

and henee existenee at least of oue solution (5.12), (5.13) is established. From
(5.14) it follows (see [12],p.534) that

(5.16)
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where constant c is independent of JV. Moreover for any fixed k functions

(5.17)

are equicontinuous (with respect to JV) in t on [0, T]. Together with (5.14) it gives
possibility (see [12J, p. 535) to chaose some subsequence {u N } that converges
weakly in Lz(fl) uniformly with respect to t on [0, Tl to some function u such that

(5.18)

Moreover using again (5.14) we can count that

(5.19)
8uN ßu .
8xj -+ 8Xi weakly In Lm(QT) as JV -+ 00

o
and hence u E lV~O(QT) and

(5.20)

with same constant c depending only on the data (see [12], p. 535).
Obviously from (5.12) it follows that the integral identity

(5.21)

holds for any T E (0, T] and <p = L:~=l dk(t)lJik(X) where dk(t) are arbitrary contin­
uous in ton. [0, T] functions having bounded on [0, T] generalized derivatives d~(t).
Denote the class of such functions <.p ftS PN. 0 bviously u N belong to PN. Denote
A~ : ai(u N , \7u N ), i = 1, ... ,N. In view of the second inequality in condition I')
and estimate (5.14) we have uniform (with respect to lV) estimate

(5.22) IIA~IILml(QT):S; c,i = 1, ... ,N,N = 1,2, ....

Therefore we can count that there exist functions Ai E LmJ (QT) such that

(5.23)

Using estimate (5.14) and taking into account that u N -+ U weakly in L z(,0)
(uniformly with respect to t on [0, Tl) we derive from inequality (5.2) in the case
ß = 0 fo! differenee u N - u Nt that

(5.24)

and hence we ean eount that

(5.25) uN
-+ U strongly in Lz(fl) for a.e.t E [0, T]
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and

(5.26) N . Qu ~ u a.e. In T;

moreover in view of (5.16) and condi tion 4')

(5.27)

Then from (5.21) and (5.23)-(5.27) we can conclude that for a.e. T E (0, T] and
<pEU~IPk

(5.28) 1u<pdxl~ +J1 (-U'Pt + A;'P" )dxdt = J1 fepdxdt.
n Qr Qr

In the same way as in {12], p. 538 we can derive from (5.28), (5.18) that

(5.29)

and to prove that identity (5.28) holds for any T E (0, T]; moreover we establish
that for every T E (0, T]

(5.30)

To prove that u is a generalized solution of (5.10) it is sufficient to establish that

(5.31)

o
for any <p E U~I Pk because U~l Pk is dense in YV~(QT). To prove (5.31) it is
sufficient to establish that

(5.32)

because in view of (5.32), (5.26), the continuity functions ai(u,p), condition 1'),
es timate (5.14) and the Vi tali theorelll we obtain that for any <p E U~ I Pk

On the other hand in view of (5.23)

Hence (5.32) implies (5.31). The rcmainder of this section is devoted to proving of
(5.32).

12



Choosing 'P = 1l N in (5.21) we obtain

(5.33)

Using (5.25), (5.27) we derive from (5.33) and (5.30) that for any T E (0, T]

(5.34)

Using now condition 2') we have
(5.35)VIl1 lV'u N

- V'ulmdxdt::; 11 [a(u N
, V'u N

) - a(uN
, V'u)]· (V'u N

- V'u)dxdt.
QT QT

Using (5.19), (5.23), (5.34) and taking into account (in view of 1'), (5.14) and
(5.26)) that

(5.36)

we derive from (5.35)

(5.37)

Eut from (5.37) it follows that (5.32) holds for some subsequence {u N }. Proposition
5.1 is proved.

6. Apriori estimates for solutions of
regularized Cauchy-Dirichlet problems

In view of Theorem 3.1 to prove theorem 1.1 it is sufficient to establish the
following

Theorem 6.1. Let conditions (0,), (BI), (RH5) and 0) - 4) hold. Then Cauchy­
Dirichlet problem

F[ll] = f in QT,1.l = 1[/ on rT (CD)

has at lea~t one regular (in sense 0/ Definition 2.5) solution.

The result of Theorem 6.1 correspondent to the case

(6.1 ) 1n 2: 2, I 2: 0

can be derived from the proof of the main theorem of paper [10] if to use Theorem
4.1 of given paper. Therefore we shall prove Theorem 6.1 only in thc case when

(6.2) m E (1,2), I 2: o.

13



It is easy to see that
w C (1 < m < 2) x (12:: 0).

The proof of theorem 6.1 correspondent to the case (6.2) can be easily transformed
in one applicable in the case (6.1).

In the remainder of this paper we assurne that aH conditions (0.), (BI), (RHS),
0) -4) of Theorem 6.1 and also condition (6.2) are fulfilled. Consider the following
regularized Cauchy-Dirichlet problems

8u
F6,f,N{U] : 8t - 8"V11. - div a(x(u), "V11.) = 1 in Qr,11. = IJ! + € on rr, (RCD)o,f,N

where

(6.3) 8 > 0, x(u) = min{max(u, f), N}, € > 0, N > €.

vVithout lass of generality we can and shall count that 8 :::; 1, € :::; 1. It is easy to
see that in view of conditions 0) - 4) and (6.2) and structure of the left-hand side
of equation in (RCD)6.f,N assumptions 0') - 3') of Proposition 5.1 are fulfilled in
the case m = 2 because € ~ X(u)::; N and Iplm-1 + 1 ~ Ipl + 1 for any m E (1,2).
Denote v = u - € and consider Cauchy-Dirichlet problem

(6.4) 8v/8t - fJ"Vv - div a(x(v + E), "Vv) = 1 in Qr,v = IJ! on rr,

°where IJ! E W ~ (Qr ). In view of previous conclusions it follows 0 bviously that for
the problem (6.4) all conditions of Proposi tion 5.1 are fulfilled in the case m = 2.
Hence there exists exactly one generalized solution v of this problem (such that

°v E C([O, TJ; L 2 (11» n vV~(Qr) ... Eut then Cauchy-Dirichlet problem (RCD)6,f,N
has exactly one generalized solution 1l such that u E C([O, T]; L 2(r2) n vVi'o(Qr),
i.e., we prove the following

Lemma 6.1. For any 8 > 0, € > O,lV > € Cauchy·Dirichlet problem (RCD)6,f,N
haB exactly one generalized solution u E C([0,T]jL2 (r2) n Wd,o(Qr).

In the remainder of this section we consider problem (RCD)o,f,N for 8 2:: 0, E >
0, N > E. Now the term" generalized solution u" means in particular that u E

C([0,T];L2 (r2))nl'vi,o(Qr) in the case 8> 0 and u E C([O,TJ;L2(r2»nW~O(Qr)
in the case 8 = 0.

Lemma 6.2. Let u be a generalized solution of (ReD)6,c.N for any fixed 5 2:: 0, f >
O,N > €. Then

(6.5)

Proof. Obviotlsly that conditions of Theorem 6.1 imply validity of assumptions
(G), (i\;J), and (L) of Proposition 3.1 for the operator F6,f,N[U] (with m = 2 if
8 > 0). Then taking into account that FO,f,N[U] = f, F 6,f,N{E] = 0, and U = € on
Sr, we can apply Proposition 3.1 for Ut = E, U2 = u and 11 = 0,12 = I. Using that
Ul = € ~ 1[/ + € = '112 on n x {t = O} (because IJ! 2:: 0 ) we derive from (3.2) that
(€ - u)+ ~ 0 a.e. in Qr, i.e., u 2:: € a.e. in Qr. Lemma 6.1 is proved.
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Lemma 6.3. There exist constants Cl and C2 depending on n, m, I, the parameter3
/rom conditions 1} - 3}J and sup(~,QT) such that for any generalized .!olution U of
(RG D)O,E,N with any fixed 0 2:: 0, f > 0, N 2:: Cl we have

(6.6)

and

(6.7)

supeu, QT) ::; Cl

Proof. The proof of validity of estimates (6.6) and (6.7) in the case m + I ~ 2 is
given in [10]. The case m + I < 2 required to find new (a more difficult) version of
the NIoser method of establishing L oo- estimates. It was made in paper [9]. Lemma
6.3 in the case m + 1< 2 follows from theorems 1.1 and 1.2 of [9].

Remark 6.1. In the remainder of this paper we consider (RGD)s,l,N with lV = Cl

where constant Cl is defined by Lemma 6.2. Then in view of estimates (6.5) and
(6.6) we can rewrite (RCD)o,E,N as

FO,E(U] : 8u/&t - o\1u - div a(u, \1u) = f in QT, u = ~ + f on rT, (RGD)6,E

where 0 > 0, f > O.

Lemma 6.4. Let u be a generalized solution of Cauchy-Dirichlet problem (RG D)o,E
for 0 = 0, f > O. There exist constant ,\ E (0,1) and ]( > 0 independent 01 f such
that {3ee {4.21}

(6.8) (u)A n ::;]{.
''"'IT

Proof. In view of conditions 1)-3), Remark 6.1, estimates (6.5)-(6.7) and Remark
4.1 we can apply either Theorem 4.1 of Theorem 4.2 and hence establish (6.8) with
some..\ E (0,1) and ]( > 0 independent of c. Lemma 6.3 is proved.

7. The passing to the limit as 0 -+ 0

In this section we show that generalized solutions U6 of Cauchy-Dirichlet prob­
lems (RGD)o,l (for any fixed f > 0 ) tend to generalized solution of Cauchy-Dirichlet
problem

as 0 -+ O. For proving this we use estimates (6.5) - (6.7) and Lemma 5.1 with
appropriate ß > O.

o
ohviously functions u 0 satisfy for any T E (0, T] and every 1> E vV ~ (QT) the

integral identity
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Set in (7.1) <P = lJi(x) E CJ(O). Then from (7.1), condition 1) and estimates (6.6),
(6.7) it follows that for any tl, tz E [0, Tl we have

I r u6IJidxl:~ I ::; c1t2 r [I~u61 + lV7u:5+ l lm -
1 + l]dxdt ~10 I t 10

(7.2) ~ c[(ltz - t l ll!1I)I/2 + (ltz - t l llS1I)I/m + Itz - t l ll!1l].

From (7.2) it follows that integrals In uoIJidx , 8 E (0,1), are equicontinuous (with
respect to 8) in t on [0, T] for any fixed !li(x) E CJ(S1). Using density of CJ(fi) in
L z(!1) and uniform boundedness of {uo} in QT (see (6.6») we can derive from here
that there exists a sequence {U6} which converges weakly in L z(!1) uniformly with
respect to t on [0, TJ to some function u satisfying inequality (5.18) with a constant
c independent of 8. Moreover in view of (6.5) - (6.7) we can count that

(7.4) V'U6 -+ V7u weakly in Lm(QT) as 8 -+ 0;

(7.6) sup(U6, QT) +supeu, QT) ~ Cl;

E'JkT IV'U 61
m

dxdt + EIJkT IV'ulmdxdt +JkT IV'u~+llmdxdt+

(7.7) + JkT IV'u"+limdxdt ~ C2

where Q' = I/rn. Denote A~ ~ a i ( Ho, V7U6), i = 1, ... ,n. In view of condition 1)
and (7.6), (7.7) we have the uniform with respect to 8 estimate

(7.8) IIA~IILm,(QT) :::; c, i = 1, ... ,n, 8 > O.

Then we can count that there exist functions Ai E Lm,(QT), i = 1, ... ,n, such that

(7.9) A~ -+ Ai weakly in Lm/(QT) as 8 -+ O,i = 1, ... ,no

On the other hand from (7.6), (7.7) it follows that for any 8,8' > 0

(7.10)

with some constant c independent of 8. Really in view of definition ß we have
(ß + 1)/2 = ~t~ and hence conditions m > 1,I/m < ~ + I!ß of Lemma 5.3 are
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fulfilled for ß = (T~2 in view of eondition 4). It is easy to see that from (7.7) it
follows that eonstant c in (7.10) is independent of S. Using (7.10) and taking into
aceount that U6 ---+ 1.L weakly in L 2 (0) uniformly with respect to t on [0, T] we derive
from inequality (5.2) in the ease ß = (T~2 for differenee U6 - U6' that

(7.11)

(7.12)

(7.13)

(7.14)

U6 ---+ U strongly in L 2 ,m(QT),

U6 ---+ 1l a.e. in QT,

1.l6 ---+ 1.l strongly in L 2(fl) for a.e. t E [0, T].

(7.15)

Then from (7.2), (7.5), and (7.12) - (7.14) we ean derive that for a.e. T E (0, T]
o

and any 4> E VV~(QT)

in 1L1>dx I~ +Jk,(-1L1>, + Ai1>x; - 11>)dxdt = O.

The following proposition is well-known (see, for example, [101).

Proposition 7.1. Let function g(u) 8ati~fieJ a Lip~r-hitz condition uniformlyon
IR and itJ derivative g' (u) be continU01L8 everywhere on IR with pOJJible exception
of finitely many pointJ at which g'(1.L) haJ a discontinuity of the jirJt order. Let
u E C([O, T]; L2(n))nW~,O(QT), 'P E VV~(QT), fi E Lm/(QT), i = 0,1, ... ,n, l/m+

o
I/m' = l,m > 1. A8JUme that for any t},t 2 E (O,T] and any 4> E W~(QT)

and let u = 'P on Sr. Then fOT any t}, t2 E [0, T] we have

( [G(u) - ug('P)]dxl:~ + jt 2

([ug'(<p)'Pt + li(9'(U)u Xi - g'(<p)<PxJ+
10 tl 10.

(7.16) + /o(g(u) - g(<p))]dxdt = 0

where G(u) = füu
g(~)d~.

Using Proposition 7.1 we ean conclude (in the same way as in [12], p. 538) that
in view of (7.15) and (5.18) or (7.6) eondition (5.29) holds for funetion 1l. Moreover
using Proposition 7.1 we ean derive from (7.15) that for any T E (0, T] we have

(7.17)
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In view of (5.29) integral identity (7.15) holds for any T E (0, Tl.
To prove that u is a generalized solution of (RCD)l it is sufficient to establish

that

(7.18)

, 0
for any 4> E CJ(f!) (because CJ(D) is dense in W~(QT»' To prove (7.18) it is
sufficient to establish that

(7.19) ou'6/8xi ~ 8u/8xi a.e. in QT, i = 1, ... , N,

because in view of (7.19), (7.12), the continuity functions ai(u,p), condition 1'), es­
o

timates (7.6) and (7.7) and the Vitali theorem we obtain that for any 4> E W:n (QT),
and every T E (0, T]

(7.20)

On the other hand in view of (7.9) the left-hand side in (7.20) is equal to the
left-hand side in (7.18). Hence (7.19) implies (7.18).

Choosing 4> = U6 - f in (7.1) we obtain with the aid of Proposition 7.1 that

Using (7.13), (7.14) we derive from (7.21) and (7.17) that for any T E (0, Tl

(7.22)

Using now condition 2) we have

(7.23)

Using (7.3) - (7.5),(7.9),(7.22) and taking into account that in view of (7.12), (7.6),
(7.7), condition 1) and the Vitali theorem '

(7.24)

we derive from (7.23) that

(7.25) limSJ6 = o.
6-0
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Using (7.25) and inequalities 0 ~ J6 ~ vII f)6 we obtain

(7.26) limJ6 = o.
6-0

Show that from (7.26) it follows that (7.19) is true. Denote

(7.27)

From (7.26) it follows that there exist some suhsequence {8} and subset Q c
Qn 101 = IQrl, such that

(7.28) lim hö(x, t) = 0
ö-o

on Q.

Without loss of generality we can count that ~ are finite on Q, l.e., l\lul is

bounded (nonuniformly) at any point (x, t) E Q. In view of (7.27) we have for any
(x, t) E Q

(7.29)

with constant c depending On (x, t) E O. Suppose now that lV'uöl is unbounded in
some point (x, t) E Q. Then l\7u81 -+ 00 for some subsequence {5} and hence in
view of (7.29) we obtain that for this subsequence lim hö(x, t) = 00 i.e., we obtain

ö-oo
contradiction wi th (7.28). Hence

(7.30) 1\71löl are bounded (nonuniformly) at any point of Q.

Then from (7.27), (7.28) and (7.30) it follows that numerators of h6 tend to zero onoas D -+ 0, i.e. (7.19) is true. Therefore function u E C([O, T]; L2(f2» n vV~o(QT)
is a generalized solution of (RCD) l • From lemmas 6.2 and 6.3 it follows that
this function satisfies estimates (6.5) - (6.8). In view of (6.5) and Proposition 3.3
function u is an unique strang solution of (RCD)l' So we proved the following

Lemma 7.1. FOT any fixed € > 0 there exiJt exactly one Jtrong solution (in
sense 0/ Definition 2.3) o/(RCD)ö satisfying e8timate8 (6.5) - {6.8} with conjtanis
Cl, C2, A E (0, 1) and /{ independent 0/ €.

8. The passing to the limit as € -+ o.
Now we are ready to prove Theorem 6.1 and hence Theorem 1.1. In the remainder

of this section we denote solution of (RCD)l as U l . We are going to realize the
passing to the limit as € -+ 0 using apriori estimates (6.5) - (6.8). This passing can
be done in the same way "as one in [11] where existence of regular solution of (CD)

was proved in the case I ~ 0, max (1, n
2';2) < m < 2, m + I 2:: 2.
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In view of estimates (6.5) - (6.8) we can conclude that there exists function u
such that

(8.1)

(8.2)

(8.3)

(8.4)

U E -+- U uniformly in QT j

a (0+1) ° akl· L (Q ) . _ 1 _ 1 .-8 U( -+-u UXjwe y1n m T,Z- , ... ,n,a--,
Xi m

o~ inf(u,QT) ~ sUp(U,QT) ~ Cl;

and (see (4.2»

(8.5) (U) >..,QT ::; !(.

In (8.2) and (8.4) we used the following notation similar to one from Definition 2.3:

(8.6)
on [QT : U > 0] 1

,0' =-.
on[QT:u=O] m

Obviously UOU Xj E L m ( QT), i = 1, ... ,n (in view of (8.4». In view of boundedness
of u and inequality u = m~l > Q' expressions for U Xj in (8.6) and (2.2) coincide;
moreover from condition uQU Xi E Lm(QT) it follows that U

C1
U Xi E Lm(QT),i =

1, ... 1 n. \Ve use below the following auxiliary propositions (see [10] or [11]).

Proposition 8.1. Let function U be bounded and nonnegative in QT and such that
\7uo+ 1 E L m ( QT) for ~ome 0' 2:: O. Let function u i8 defined by

(8.7) TI" = sup (u - EI, 0), EI = const > O.

Then TI ha3 generalized derivative~ auf8Xj· E L m ( QT), i = 1, ... , n, such that

(8.8)
in [QT : u > eI]
in [QT : 0 ::; u ::; eI]

where U Xj are defined by (8.6); moreover

(8.9) 1· 11 ° ou ° - 111m U -8 - U U Xj Lm(QT) = O.
t:1-0 Xi
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Proposition 8.2. Let Ai E Lm,(Qr), i = 1, ... ,n, BE Lm,(Qr), I/rn + I/rn' =
1, m > 1, and let function u i3 bounded and nonnegative in QT and such that
\7u o +1 E L m (QT) for some ° 2:: O. A.5sume that for any t 1 , t2 E [0, T] and any

o
ePEW~(QT)

(8.10)

(8.12)

Let c.p E W~ (Qr) and u = c.p on Sr. Then fOT any t l , t2 E [0, T]

(8.11) in Gu2
- U'P ) dxl:: +[' in [u'Pt +u"Ai

( u x, - 'Px,) + B(u-'P )Jdxdt = 0

where U X ; are defined by (8.8).

Returning to (8.1)-(8.5) we see that function u is nonnegative and bounded in
Qr,u E cA,A/m(Qr), \7u o +1 E Lm(Qr),a = ~ (so that \7UCl'+l E Lm(Qr),G =
m~l ) and u = 'lj; on fT. Hence to prove Theorem 6.1 it is sufficient to show that

o
for any t 1 , t 2 E [0, T] alld eP E W~(QT)

r ueP dxl:2 + jt2 r[-U~t + a(u, u x ) . \7eP - f~] dx dt = 0,Jn 1 tt in

where U x is defined by (8.8) in the case ° = ~. Really in this case from the kind
of (RCD)! it will follow that 1.L is a quasistrong and hence regular solution of (CD).

To prove that (8.12) holds denote

(8.13)
1

a=-, i=l, ... ,n.
m

In view of the second inequality in condition 1) and estimate (8.4) we have uniform
estimate

(8.14)

Thell we can count that there exist functions a i E Lm, (Qr) such that

(8.15)
. .

A~ -+ Al weakly in Lml(Qr) as E -+ 0, i = 1, ... , n.

(8.17)

Letting E -+ 0 in the integral identity

o

we obtain in view of (8.1), (8.15) that for any t I, t2 E [0, T] and <P E l'V~ (Qr)

ru eP dx I:2 + j t 2 [[ - u ~ t + u 0 A i ~ x; - f <p] dx dt = o.in 1 tl in
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Ta prove Theorem 6.1 it is sufficient to show that
(8.18)

J. t

2 r uO' A i4>xi dx dt = J. l

2 r ai(u, 'Vu)4> xj dx dt = 0
l1 in tl in

o

for any 4> E C l
( QT ),

o 0

because Ai, ai(u, 'Vu) E Lm'(Qr) and C1(Qr) is dense in W~(QT). Ta prove
(8.18) it is sufficient to establish that for same subsequence {f}

(8.19) 0' aUE 0' • Q
ur: -a ~ u u X ; a.e. In T,

Xi
i = 1, ... ,n,

because in view of (8.19), (8.1), the continuity functions u-oai(u,u-O'p), Q' = ~,

on i + x IR n, condi tion 1), uniform estimate (6.7) for u = U E and the Vitali theorem
o

we obtain that for any 4> E Cl (QT) the integral

(8.20)

tends to the integral I/
1
2 In ai(u, ux)cPx,.dx dt. On the other hand in view of (8.1),

(8.15) integral (8.20) tends to the integral I/
1
2 In u O' A i 4>x,dx dt. Hence (8.19) implies

(8.18). The remainder of this section is devoted to the proof of (8.19). Applying
Proposition 7.1 with g(e) = e - f we derive from (7.16)

(8.21 )

Applying Proposition 8.2 with g(e) = e and using that u = 0 of ST (in view of (8.1)
because U E = f on Sr) we derive from (8.11)

(8.22)

Using (8.1) we derive from (8.21), (8.22) that

(8.23)

Let ü is defined by (8.7). Obviously that the following proposition holds (see also
[10]).

Proposition 8.3. We have

(8.24)

(8.25)

Ur: -oaiCu fl V7ü) ~ u-oai(u, V7u) strongly in Lm,(QT) as f ~ 0,

Ur: -0' a i ( u, V7ü) ~ u-oa i ( u, u x) strongly in L m,(QT) a3 EI ~ O.
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Using now condition 2) we have

(8.26)

Using (8.1), (8.2), (8.15), (8.23), (8.24) and letting f ---? 0 we obtain

(8.27)

1
t2 1 a- a-i 0 0 u -0 i - 0 0 u . -

= [A(u Ux;-U -a,)-u a(u,\7u)(u UXj-U -a)]dxdt.Jft •

tt n Xl X 1

Using (8.25), (8.9) we derive from (8.27)

(8.28) lim 1fl = o.
f1-0

From (8.27), (8.28) it follows that there exist subsequences {fk} and {fIk} tending
to zero such that Emk_oo Jf/c,f1lc = O. Because 0 ::; 'Hf/c,fllc ::; Jf/c,f1lc we derive from
here that

(8.29)

'1..1 1t
'l 1 IU~1I \7U f l: - U~/c \7ü1

2
d d '

[ Lf k,f1/c = 'l-m X t=
tIn [Iu ~k \7 U f 11 - U ~Ic b( U f k ) Im + IU ~k \7 fi - U ~k b(u (/c ) Im] ----m- .

(8.30) : 112 r hk(X, t) dx dt.
11 in

Is should be recalled that fi = supe U - fIk, 0) in (8.30). From (8.28), (8.29) it
follows that there exist subsequence {k} and subset 0 C Qt l,l'l' Qtl,12~n x [tl, t2],

101 = IQlt ,t'll, such that

(8.31 ) Ern hk(x, t) = 0 on Q.
k-oo

Without loss of generality we can count that a~:;l are finite on Q, i = 1, ... ,n.
Then using (8.1), (8.3), the definition of fi (see (8.7», (8.8), (8.6) and continuity of
vector-function b(u) we ean eonclude that

(8.32) IU~k \7ül, lu~/cb(ufIJI are bounded (nonuniformly) on Q.
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On the other hand in view of definition of functions hA;(X, t) we can estimate

(8.33) at (x, t) E Q

with some constant c depending on (x, t). Assume that IU~t ~Uft I are unbounded at

some point (x, t) E Q. Then for some subsequence {k} IU~t ~uftl -+ 00 as k -+ 00

and hence (using that m E (1,2)) we derive from (8.33) that

(8.34) Em hk(x, t) = 00 on Q.
k-oo '

But (8.34) gives a contradiction with (8.31). Hence

(8.35) IU~t ~Uft I are bounded (nonuniformly) on Q.

Then from (8.31), (8.30) and (8.35) it follows that the numerators of hk tend to
zero on Qas k -+ 00, i.e.,

(8.36) 1· I 0 aUft 0 au I 0 Q-'
1m U f -a - U€ -a = on , Z = 1, ... , n.

k-oo t Xi t xi

Remark now that

(8.37) I, I 0 Du 0 au I 0 Q-.1m u t -8 -u -a = on ,t=I, ... ,n.
k-co t Xi Xi

Really if (x, t) E Q and u(x, t) > 0 than a~:i,t) = Ux;(x, t) for all sufficiently large k

and hence (8.37) follows from (8.1). On the other hand if (x, t) E Q and u(x, t) = 0
then a~:;,t) = 0 for any k and hence (8.37) follows from (8.1) and the definition of

U Xi •

Finally from (8.36) and (8.37) it follows obviously that (8.19) holds. Theorem
6.1 (and hence Theorem 1.1) is proved.
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