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Introduction

Let 2 be a bounded open set in R”, n > 1, Qr = @ x (0,T}, St = 9Q x (0, T},
Fr = StU(Q x {t = 0)}) (I't is the parabolic boundary of the cylinder Qr).
Consider in Q7 the equation

o
(1.1) Flu] = -a—:: —diva(u,Vu) = f
where Vu = g—;‘l,...,g";ln), f(z,t) is a given function, a = (a!,...,a"), @' =

a*(u, p) are continuous on R x R™ and satisfy for all © € R, p € R™ the inequalities

a(u,p) - p 2 volul'|pl™ — dolu), v > 0,
la(u, p)| < mlulipl™ " + d1(w), m>1,120, ¢i(u) >0, i=0,1.

(1.3)

Equations (1.1), (1.2) are known as doubly nonlinear parabolic equations
(DNPE). The prototype of DNPE is

gu _

(1.3) Folu] = 5

div [|u||Vu|™~?Vu] = 0.

In this paper we consider a special case of DNPE. In particular we limit ourselves
by consideration equations (1.1), (1.2) only for m > 1, > 0 (instead of more general
conditions m > 1,1 > 1 — m).

Equations (1.1), (1.2) and in particular (1.3) arise in the study of turbulent
filtration of a gas or of a fluid through porous media and non-Newtonian flows (see
). |

Existence of generalized solutions of Cauchy-Dirichlet problem for DNPE were
established first by Raviart (2] and J.-L. Lions (3] and then by many authors. In
particular Bamberger stated in [4] his results on existence and uniqueness of some
nonnegative generalized solution of Cauchy-Dirichlet problem for a nonhomoge-
neous equation Fylu| = f (see (1.3)).

Up to recent time there were no regularity results for DNPE. The simple modifi-
cation of the Barenblatt explicit solutions lets to show that at least in the case { > 1
holderness is the best possible smoothness of generalized solutions of equation (1.3).
Hence the key question of the regularity theory for DNPE is establishing Hélder
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estimates for their generalized solutions. At first such estimates were established in
[5] for the case of, so-called, doubly degenerate parabolic equations, i.e. for (1.1),
(1.2) in the case m > 2, [ > 0.

This paper is devoted to the proof of existence and uniqueness of some Holder
continuous generalized solution of Cauchy-Dirichlet problem for equations of the
type (1.1), (1.2). The crucial role is played by the Holder estimates established by
the author in [6]-[8].

Acknowledgement. This paper was written during the stay of the author at
Bonn in 1994. We would like to thank the Max-Planck-Institut fiir Mathematik
and Professor Hirzebruch for support and hospitality.

2. The statement of the main result

Assume that for any u,v € R and any p,q € R™ we have
(G)  la(u,p)l < p(lul'lpI™ " +7(lu])), p = const 20, m>1, 120,

7(s) > 0 is nondecreasing.

Definition 2.1. Any nonnegative bounded in @t function u is a weak solution of
equation (1.1), (G) with f € L(Qr) if

(a) u € C([0,T); L2(Q)), Vu°*! € Ln(Q7),0 = F;JZT;

(b) for any ¢ € C'(Q1),¢ = 0 on St, and any t,,t, € [0, 7]

iz
(2.1) /uqﬁd:cﬁf +/ j[muqﬁt + a(u,u;) - V¢ — fo|dzdt =0
0 H JQ
where u, = (uy,,... ,us,) and u,, are defined by
-1, —ocdu’tt . .
(22)  uy =] T inl@riu>0)
0 inf@Qr:u=0,i=1,... ,n.

Consider Cauchy-Dirichlet problem

(2.3) Flu] = % —diva(u,Vu)= fin@Qr,u=9% on TIr
where
(2.4) feLy@r),¥ e WH@r)E20 i Qr.

Definition 2.2. Function u is a weak solution of Cauchy-Dirichlet problem (2.3),
(2.4) if u is a weak solution of equation (1.1), (G) and u = ¥onT'r.

Remark £2.1. Every weak solution of (1.1), (G) and every ¥ € W} (Qr) have traces
on I'r.



Definition 2.9. Let inf(¥,I'r) > 0. We say that function u is a strong solution of
Cauchy-Dirichlet problem (2.3) if u is a weak solution of (2.3) and moreover

inf (¢, @7) > 0(and hence u € W2(Qr)).

0

Definition 2.4. Let ¥ € W(Qr). We say that function u is a quasistrong solution
of Cauchy-Dirichlet problem (2.3) if u is a weak solution of (2.3) and moreover
there exists a sequence of strong solutions of problems

Flup) = fain@Qr,up = ¥yonlr
such that
uy — uwin C((0,T}; L1(R)); fn € Li(QT), fn = fin L (QT);

(2.5) ,
U, =0 4e,(z,t),6, € WHQT)NC(Qp), inf(en,T'1) > 0,5up(en, 1) — 0.

Definition 2.5. Let ¥ € Ig/'%(QT). We say that function u is a regular solution of
Cauchy-Dirichlet problem (2.3) if v is Holder continuous in Qp and u is a qua-
sistrong solution of (2.3).

Introduce the following assumptions:

(Q) 3po > 03ap € (0,1)Vao € IV € (0, p0) : |Bo(z0) N < (1 — a0)|Bo(z0)l;

(BI) U > 0,% € WHQr)N Cpp/m(Tr), 8 € (0,1);
(RHS) f20,f € Leo(Qr).

Moreover assume that the following conditions are fulfilled for equation (1.1):

0) functions u™“a*(u,u™%p),a = -r%, are continuous on R4y x R™;

1) ( the growth condition) for any « € Ry, p € R®
a(u,p) - p > volul 1™ — po(Jul® + 1),v0 > 0,
2<béb<m+ifm+1>26=2i{m+1<2;

la(e, p)| < puaful'[pI™ " + p(ful)lul®,

a = —,u(s) > 1 is a nondecreasing on Ry;
m

2) (the strict monotonicity condition) there exists »; > 0 and continuous
vector-function b(u) € R™ such that for any « € R and any p,¢g € R

(a(u.p) = a(u,q)] - (p = ) 2 vilul'lp - al*(Ip — b|™ + g = ™)' ™=
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where k =mifm >2and k =2if m € (1,2);
3) ( the local Lipschitz condition) for any u,v € [¢, M],e > 0, M > ¢, and any

peR"
la(, p) = a(v, p)| < Alu—=v|(1+[p|™ "), A = A(e, M) 2 0.
4)
(m,l) € D\w,D = {m >1,l >0},
oc+1 1 1 [
= : < —_—— = —
w_{(m,l)ED o+2 7" m n? m—-l}

Theorem 2.1. (existence and uniqueness of regular solution). Let conditions
(Q),(BI),(RHS) and 0)-4) hold. Then Cauchy-Dirichlet problem (2.3) has ezactly

one reqular solution.

Remark 2.2. Conditions 0) - 3) are fulfilled for equation (1.3).

Remark 2.8. It is easy to see that w C F = {(m,l) € D : m+1 < 2}. We
constructed a counter-example (see [9]) showing that for every (m,!) € w the local
boundedness of generalized solutions of equation (1.3) fails to be true.

Remark 2.4. Existence of Holder continuous weak solution of Cauchy-Dirichlet
problem for some class of equations of the type (1.1), (1.2) in the case m > 2,1 >
0 was proved in [10]. Existence and uniqueness of regular solution of Cauchy-
Dirichlet problem (2.3) under conditions (Q),(BI),(RHS), 0) -3) and for I > 0,
max(1,;:2%) < m < 2, m+1 > 2 can be derived from results of [11]. The proofs
of the results of [10] and [11] are based on using Holder estimates established in [5)
and [6]-[8] respectively.

3. Uniqueness of quasistrong solution

In this section we state the uniqueness results of paper [11]. Assume at first that
for any u,v € R and any p,q € R™ functions a*(u, p) satisfy conditions

(G) la(u,p)| < u(lp|™=" + 1), 2 0;
(M) [a(u,p) — a(u,q)]- (p—q) > 0;
(L) |a{u,p) — a(v,p)| < Alu—v|(]p|™" " +1),A = const > 0,m > L.

Definition §.1. Function u is a generalized solution (subsolution, supersolution) of

equation (1.1), (E?) if ue WHo(Qr)n C([0,T]; L1(Q)) and for all ¢ € T«%fin(QT) N
Leo(Qr)(¢ 2 0) and any t,t2 € [0, T

(3.1) / ud)d:z:lif-ir [—ué¢ + a(u, Vu) - Vé — foldzdt = 0(£0,20) ,
Q Q

Proposition 3.1. (Comparison Principle, [11]). Assume that conditions (5),
(M), and (L) hold. Let uy and uqy are generalized subsolution and supersolution
such that

Flu} £ f1,Flu2] 2 fo
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where f1, fo € L1(QT). If
uy Lugon St =00 x (0,7

then for any v € (0,T| we have
(3.2)

L(ul —up)tdz|'=7 < ./s;(ul —ug)tdz|=0 + ./Of L(fl — fa)sign (uy — ug) T dzdt.

0
Proof. Let 1 € WLYNQT)NLoo(QT),n 2 0,0 < h < t) <ty < T —h, Qe 4, =
Q x {ty,t2]. Then from conditions of Proposition 3.1 it follows (see also [12]) that

(3.3) // {(ur — u2)g,m + [(a(ur, Vur))g - (a(uz, Vuz))z] - Vi } dzdt <

Qey,eq
J[ - prndac

Qey e
where gy = (1/h) f:_h g(z,7)dr. Denote
1,526 s—6/2,826
Hi(s) =< s/6,0<s8<§, Gs(s) = ¢ s2/26,0<s<$
0,s<0 0, s>0
so that G%(s) = Hs(s) on R. Set in (3.3)
(3.4) n = Hs(u; — up).

Obviously that test function (3.4) is admissible. In view of concavity of function
Gs(w) we have

(uy —uo)y, Hs(uy —uz) 2 (Gs(ur — u2))y,-
Then from (3.3) it follows that

@3)  [[ (Gatur = wapdade+ [[ ltatur, Tun)g - (atua, un)
Q Q

ti.tg Fuite

- V(uy — ug)Hg(uy — ug)dzdt < // (fi — fo)pHs(uy — ug)dzdt.
Qt].lg
Integrating in ¢ the first term in (3.5) and then letting A — 0 we obtain for any
T €(0,7)
(3.6) / Gs(uy — wg)dz|y +
n

+(1/6) // [a(uy, Vuy) — a(uz, Vug)] - V(uy — ug)dzdt <
{Qo,-:0<u; —u<6}

< /:/(fl — f2)Hs(uy — ug)dzdt.
Qo,r



Taking into account that Gs(u; —ug) — (uy —ug)¥, Hs(uy — ug) — sign(u; —uq)*t
as § — 0 we derive from (3.6) and conditions (M) and (L) that inequality (3.2)
holds. Proposition 3.1 is proved.

Consider now Cauchy-Dirichlet problem (2.3) assuming that condition ((E' ) holds
and f € L, ¥ € WHQr).

Definition 3.2. Function u is a generalized solution of Cauchy-Dirichlet problem
(2.3) if u 1s a generalized solution of equation (1.1) and v = ¥ on I't.
From Proposition 3.1 we can derive directly the following

Proposition 3.2. Let conditions (E;'),(M), and (L) are fulfilled. Then there is at
most one generalized solution of Cauchy-Dirichlet problem (2.3).

Replace now condition ( E}') by condition (G) (see sect. 2) and consider instead
of assumption (L) the local Lipschitz condition

for any u,v € [e, M],e >0,M > ¢, and any p € R"
(L) la(u, p) — a(v,p)] < A(Ju = vi(1+|p|™7"),A = A(e, M) 2 0.
From Proposition 3.2 we can derive the following

Proposition 3.3. Let inf (8,T7) > 0 and let conditions (G),(M), and (L) hold.
Then there is at most one strong (in sense of Definition £2.9) solution of Cauchy-

Dirichlet problem (2.5).

The main uniqueness result for DNPE is

Theorem 3.1. ( uniqueness of quasistrong solution, [11]). Let ¥ € I'%/}n(QT) and
let conditions (G),(M), and (E) are fulfilled. Then there 13 at most one quasisirong
(in sense of Definition 2.4) solution of Cauchy-Dirichlet problem (2.9).

Proof. Let u and @ are two quasistrong solutions of (2.3). Let (un, fn,¥:) —
(u, f,¥) and (En,?n,g’ ) — (u, f,¥) in sense of (2.5) Obv1ously we can choose

subsequences {¥,} and {!I' } such that sup(¥,,Sr) < inf (Wn,ST) n=12....
Then we can apply Proposition 3.1, i.e., for any 7 € (0, 7]

[ =nyraat=r < [ @ -Fudo+ [ [ 1fa = Faldads
2 Q 0 Q

Letting n — co and using (2.5) we obtain that (u —~u)t = 0 a.e.in Q7. Theorem
3.1 is proved.

Remark 8.1. In some sense Definition 2.4 of quasistrong solution and Theorem 3.1
are similar to definition of "the limit of strong solutions” and the corresponding
uniqueness theorem given by Bamberger in[4] for equation (1.3). However instead
of our condition inf {(u, Q7) > 0 in the definition of strong solution Bamberger used

condition "u has Ju/0t € L(QT)".



4. Holder estimates for DNPE.

Establishing Hélder estimates is the key question of the regularity problem for
DNPE not only in view of the fact that holderness is the best possible smoothness
for a large class of such equations. In fact Holder estimates for bounded generalized
solutions are crucial and the best difficult step in proving of existence of regular
solution of Cauchy-Dirichlet problem for DNPE.

Directly from our results [6]-[8] for DNPE of the full type

(4.1) % —div a(z,t,u, Vu) + ap(z,t,u, Vu) = 0

with the limit growth conditions we can derive the following estimates for equations
of the type (1.1), (1.2). Introduce condition

( a'(u,p) are continuouson R x R*,i =1,... ,n;

a(w,p) - p 2 volul'|p|™ = o, vo > 0;

!
(H) { latu, p)| <l [pI™ " + ul®r,0 = —;
|f(z,t)| € @2,9; =const >0,/=0,1,2;

| m>1,120

For the sake of brevity we stated here only global Holder estimates (i.e. Holder
estimates up to the boundary) for equations (1.1), (1.2).

Theorem 4.1. ([6], [7]). Assume that m + 1 > 2 and let conditions (H) and (§2)
hold. Let u be a weak solution of equation (1.1) (in sense of Definition 2.1) such
that its trace on the parabolic boundary I'p is Holder continuous. Then function u
belongs to the class CMA™(Qr) for some A € (0,1). Moreover

£) — u(z' t'
o) e = wp @O0
T (e myeq ([T — ™ [ - )M

where A € (0,1) and K > 0 depend only on sup(u,Qr), n, m, I, vg, po, wo, 1,
we, |, T, ao, po and the Hélder constant and ezponent of the trace of function u
on I'r.

Theorem 4.2. ([8]). Assume that m + 1 < 2 and let conditions (H),(M),(L),
and (Q) hold. Let u € WL%(Q71) be a weak solution of equation (1.1) (in sense of
Definition 2.1) such that 113 trace on the parabolic boundary I't 1s Hioldercontinuous.
Then function u belongs to CMM™(Qr) for some A € (0,1). Moreover estimate
(4.2) holds with some constants A € (0,1) and K > 0 depending on the same data
as in the case of Theorem 4.1 (in particular A and K are independent of |V||L_ (or)
and constant A from condition (L).

Remark 4.1. Theorems 4.1 and 4.2 remain valid if the inequalities in condition (H)
are fulfilled only for values « from the range of weak solution under consideration.

Remark 4.2. The proofs of Theorems 4.1 and 4.2 (as well as Holder estimates for
general equations (4.1) in [6] - [8]) are concerned with some development of the
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methods of papers by De Giorgi, Ladyzhenskaya-Ural’tseva (see [12]), DiBenedetto
{13], Chen-DiBenedetto [14], and {5].

Remark 4.8. Other results on Holder estimates for some classes of DNPE are ob-
tained in [15], [16].

5. The auxiliary Cauchy-Dirichlet problem

This section has an auxiliary character. At first we prove some generalization of
well-known Friedrieks inequality (cf. [12]], p. 529 -530) which will be used not only
in this section.

Lemma 5.1. Let {¥.(z)} is an orthonormal basis in L,(Q). Let § > 0 13 fized.
Then for any € > 0 there ezists number N, such that for function u(z) satisfying
condition

0
(5.1) lu|Pue WL (Q),m>1,1/m<1/n+ 1-.5)-5,
we have
N, 1/2
(5.2) llullLacey < (Z(U,%)Q) +e||V(|u|ﬂu)||zi”(m
k=1

where (u,¥y) = fﬂ u¥edr and N, does not depend on wu.

Proof. It is sufficient to prove that for any é > 0 and ¢ > 0

a\/’. N3

1/2
(53)  Nullam < (1+9) (Z(“’w")z) + eVl I,

k=1

Really for function v = |u|’u we have well-known Sobolev inequality

2

4 < ||V T =
(5.4) lollz, ) < cllVelle.@)r T35

>0,

because from condition 1/m < 1/n+ 1—4232 it follows that 1/7 > 1/m —1/n. Rewrite
(5.4) as

1
(55) el oot < eIVl T
Then from (5.3) and (5.5) it follows that

'N(‘ 1/2 .
(5.6) lullacay < (Z(ua%)Q) + (b + )V ([ulPu)lITTT,

k=1
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i.e., result of Lemma 5.1 is true. So prove that (5.3) holds. If (5.3) is violated then
there exist €9 > 0 and sequence of functions {u,(«)} satisfying condition (5.1) such
that for some fixed § > 0 and any v =1,2,...

v

1/2
(5.7) ||Uu”L,(Q) > (1+9) (Z(uw !pk)z) + 50|’V(|uv|'3“vnmn)-

k=1

Then for functions i,, where 4, = u,/||u,||1,(q), we have

M 1/2
(5.8) 1= |ldullLe) > (146) (Z(ﬁu,%)z) +€o|IV(|ﬁu|ﬂﬁu)|lz?<m-
k=1

Denote v, = |i,|?t,. In view of (5.8) the norms ||Vv,]|,, (q) are uniformly bounded
and hence (taking into account that 1/r > 1/m—1/n for r = 2/(1+ 3)) there exists
some subsequence {v,, } converging strongly in L.(Q). It is easy to see that then
subsequence {u,, } converges strongly in L(2) to some function 2 € L,({2). Really
in view of a strict monotonicity of function z — |z|%z, 8 > 0, we have

C_llﬁu - ":”.u|2+ﬂ < “&u|ﬂﬁu - |ﬂ#|5ﬁﬂ](ﬁv - ﬁ#) <flv, — ”u”ﬂv - uu|

with some constant ¢ > 0 and hence
2

Fi

Moreover it is obvious that |i||,(qy = 1. Functions P,,d,, = (i, , %% )% also
converge strongly in L, () to & because

i — Py, i, ||, 0) = 1P, (4 — Gy,) + (E = P, )it||p,0) <
< =y, lly00) + [(E = Py, )illg,0) — 0 as s = oo.

|ﬁu - ﬁulz <clvy, - 'U.ulrar

Then

v, 1/2
(5.9) (Z(ﬂu.,%)z) = 1Py, v, o) = il a0y =1 as s — oo
k=1

In view of (5.8), (5.9) we obtain then impossible inequality 1 > 1 + §. Lemma 5.1
is proved.
Now we consider the Cauchy-Dirichlet problem

Flul=fin Qpr,u =¥ on I'r,

assuming .
0’)  functions a’(u,p) are continuous on R x R™;
') foranyueR,pe R"

a(u,p) - p = volp|™ — po, o > 0i]a(u, p)| < m(lp|™! + 1);
2’} for any u € R and any p,q € R"
la(w,p) = a(u, @)} - (p— @) 2 vilp— g™, 1 > 0;
3’) for any u,v € R and any p,¢ € R"
la(2,p) — a(o, p)| < Alu = ol([p|™ +1),A > 0;
4’y m > maz(l,2n/(n + 2)).



0

Proposition 5.1. Let f is measurable and bounded in Qp and let ¥ € Wi(Qr).
Assume that conditions 0°) -4’°) hold. Then Cauchy-Dirichlet problem (5.10) has
ezactly one generalized (in sense of Definition 8.1) generalized solution u such that

u € C([0,T}; Lo(Q)).

Proof. Uniqueness of generalized solution of (5.10) follows from Proposition 2.2.
So we have to prove only existence of solution cited. The forthcoming proof is a
suitable adaptation of the proof of theorem 6.7 of Chapter 5 in [12].

0
Let {@x(z)} is a basis in W1,(Q) such that [, #i¥dz = &}, where 6 is the

Kronecker delta, and
sup(|Zxl, ) + sup(|VP%|,Q) < ck = const ,k=1,2,....
Set
N
(5.11) uV =3 Y (1)()
k=1
where {cf (t)}k=1,...,~ 1s solution of the system of ordinary differential equations

0wy,

(5.12) (us,I’k)+( ( N TuM), 5r

) = (f,@k),k = 1, ,N
with initial conditions
(5.13) e¥(0) = (¥(z,0), %),k =1,... ,N.

From conditions of Proposition 5.1 it follows that the second and third terms in
(5.12) are bounded and measurable functions of variables #,cf on any set [0, 7] x
{le¥] < const ,k =1,...,N}; moreover these functions are continuous in cf, k =
1,...,N. Therefore existence at least of one solution of (5.12), (5.13) will be
established if we could show that all possible solutions of this problem are uniformly
bounded on [0,T]. Exactly in the same way as in [12], p. 533 - 535, we can prove
that a priori estimate

(5.14) sup [u[[7, ) + IVe T, (qr) S ¢
t€{0,7]

holds with some constant ¢ independent of N. Then from (5.14) it follows that

(5.15) sup |'3iv('5)|2 SUP ™[], ) S e
te[o'I‘]LX:l (@)

and hence existence at least of one solution (5.12), (5.13) is established. From
(5.14) it follows (see [12],p.534) that

(5.16) I]uNlle(n+z)/n(Qr) <c
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where constant ¢ is independent of N. Moreover for any fixed & functions
(5.17) Ini(t) = (N (z,1),T(z)), N,k =1,2,... .

are equicontinuous (with respect to N) in ¢t on [0,T]. Together with (5.14) it gives
possibility (see [12], p. 535) to choose some subsequence {u”} that converges
weakly in L2(£2) uniformly with respect to ¢ on [0,T] to some function u such that

(5.18) sup([|ul (). [0, T]) < e
Moreover using again (5.14) we can count that

N
Ou — éti weakly in L,(Q1)as N — o0

(5.19) 57, 321

0
and hence v € W1%(Qr) and
(5.20) IVullL@r S¢

with some constant ¢ depending only on the data (see [12], p. 535).
Obviously from (5.12) it follows that the integral identity

(5.21) / uN pdz|] + /f [—ulNo, + a(u®, Vul) . Voldzdt = j:/ fodzdt
Q r Q-

holds for any 7 € (0,T] and ¢ = Zi_\':l di(t)¥(z) where d(t) are arbitrary contin-
uous in ¢ on. [0, T| functions having bounded on [0, T] generalized derivatives d}.(¢).
Denote the class of such functions ¢ as Pyn. Obviously u” belong to Pn. Denote
Al = al(u,VuV),i =1,...,N. In view of the second inequality in condition 1)
and estimate (5.14) we have uniform (with respect to V) estimate

(5.22) 1A N, (@ry Sei=1,...,N,N=1,2,....
Therefore we can count that there exist functions 4; € L, (Q7) such that
(5.23) AN o 4; weakly in Ly (Qr).

Using estimate (5.14) and taking into account that u — u weakly in Lp()
(uniformly with respect to t on (0,T}) we derive from inequality (5.2) in the case
B = 0 for difference u™ — u™ that
(5.24) u™ — u strongly in Ly m(QT)
and hence we can count that
(5.25) u™ — u strongly in Ly(Q) for a.e.t € [0,T]
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and

(5.26) uN = uae. in Qr;
moreover in view of (5.16) and condition 4')

(5.27) u™ — w weakly in Lo(Qr).

Then from (5.21) and (5.23)-(5.27) we can conclude that for a.e. 7 € (0,7] and
w € U, Ps

(5.28) / updzly + // (—up¢ + Ajp, )dzdt = f fodzdt.
o Q. Q-

In the same way as in [12], p. 538 we can derive from (5.28), (5.18) that
(5.29) u € C([0,T]; L2AQ))

and to prove that identity (5.28) holds for any 7 € (0, T]; moreover we establish
that for every € (0,T]

(5.30) %/ uzdxlg-l-/:/ Agu,;..da:dtz'/ fudzdt.
“JQ Qr Q-

To prove that u is a generalized solution of (5.10) it is sufficient to establish that

(5.31) // Ao dzdt = // a'(u, Vu)o,, dedt

0
for any ¢ € se, Px because (e, P is dense in W1, (Qr). To prove (5.31) it is
sufficient to establish that

(5.32) ou’ /8z; — Ouf/dz;ae. inQr,i=1,... ,N

because in view of (5.32), (5.26), the continuity functions a‘(w,p), condition 1’),
estimate (5.14) and the Vitali theorem we obtain that for any ¢ € |Jie, Pk

Jim / f N TuMN oy, dzdt = f f (u, Vu o, dzdt.

On the other hand in view of (5.23)

lim // N ul Yoz dxdt = / Aipg dzdt.
N—co Q-

Hence (5.32) implies (5.31). The remainder of this section is devoted to proving of

(5.32).
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Choosing ¢ =« in (5.21) we obtain
(5.33) E/(u"“y)r"’daﬂa +[/ a(u™, Vu™) . VuNdzdt =/ fuNdzdt.
2 Q Q- Q-
Using (5.25), (5.27) we derive from (5.33) and (5.30) that for any = € (0,7
(5.34) lim /f a(u™, VuN) . VuNdedt = f Aju,,dzdt.
N—'OO Qr Qr

Using now condition 2’) we have

(5.35)
i // |Vul — Vu|"dzdt < / [a(u®, Vul) — a(u®™,Vu)] - (Vu® - Vu)dzdt.
T QI’

Using (5.19), (5.23), (5.34) and taking into account (in view of 1’), (5.14) and
(5.26)) that

(5.36) a'(u, Vu) = a'(u, Vu) strongly in L (Qr) as N — oo

we derive from (5.35)

(5.37) lim // |Vu — Vu|™drdt = 0.
Q.

N—w

But from (5.37) it follows that (5.32) holds for some subsequence {u”}. Proposition
5.1 is proved.

6. A priori estimates for solutions of
regularized Cauchy-Dirichlet problems

In view of Theorem 3.1 to prove theorem 1.1 it is sufficient to establish the
following

Theorem 6.1. Let conditions (Q),(BI),(RHS) and 0) - 4{) hold. Then Cauchy-
Dirichlet problem

Flul=finQr,u=% onTr (CD)

has at least one regular (in sense of Definition 2.5) solution.

The result of Theorem 6.1 correspondent to the case
(6.1) m=>212>0

can be derived from the proof of the main theorem of paper [10] if to use Theorem
4.1 of given paper. Therefore we shall prove Theorem 6.1 only in the case when

(6.2) m € (1,2),1 > 0.
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It is easy to see that
wC(l<m<2)x(120).

The proof of theorem 6.1 correspondent to the case (6.2) can be easily transformed
in one applicable in the case (6.1).

In the remainder of this paper we assume that all conditions (2),(BI),(RHS),
0) -4) of Theorem 6.1 and also condition (6.2) are fulfilled. Consider the following
regularized Cauchy-Dirichlet problems

Fsenlu] = %tli - 6Vu — diva(x(u),Vu)= fin Qr,u =¥ +eonI'r,(RCD)s N
where
(6.3) § > 0, x(u) = min{max(u,€),N},e > 0, N > e.

Without loss of generality we can and shall count that § < 1,e < 1. It is easy to
see that in view of conditions 0) - 4) and (6.2) and structure of the left-hand side
of equation in (RCD)s .~ assumptions 0') - 3’) of Proposition 5.1 are fulfilled in
the case m = 2 because € < x(u) < N and [p|™™! + 1 < |p| + 1 for any m € (1,2).
Denote v = u — € and consider Cauchy-Dirichlet problem

(6.4) Ov/dt — 6Vv — div a(x(v +¢€),Vv) = f in Qr,v =¥ on I'r,

0

where ¥ € W1(Qr). In view of previous conclusions it follows obviously that for
the problem (6.4) all conditions of Proposition 5.1 are fulfilled in the case m = 2.
Hence there exists exactly one generalized solution v of this problem (such that

0
v € C([0,T); L2(Q)) N Wi(Qr):. But then Cauchy-Dirichlet problem (RCD)s . n
has exactly one generalized solution u such that u € C([0, T]; L2(Q)) N W, °(Qr),
1.e., we prove the following

Lemma 6.1. For any é6 > 0,¢ > 0, N > € Cauchy-Dirichlet problem (RCD)s . n
has ezactly one generalized solution w € C([0,T); L2(Q)) N W, %(Qr).

In the remainder of this section we consider problem (RCD)s, n for § > 0,¢ >
0,N > e. Now the term "generalized solution u” means in particular that u €
C([0,T}; L2(Q)) N W, *(Qr) in the case § > 0 and u € C([0, T}; L2(Q))NWL(Qr)
in the case 6 = 0.

Lemma 6.2. Let u be a generalized solution of (RCD)s . n for any fized § > 0,¢ >
0,N >¢. Then

(6.5) inf(u,Qr) > e

Proof. Obviously that conditions of Theorem 6.1 imply validity of assumptions
(G),(M), and (L) of Proposition 3.1 for the operator Fj, ny[u] (with m = 2 if
§ > 0). Then taking into account that Fs . n[u] = f,F5. n[e] = 0, and u = € on
ST, we can apply Proposition 3.1 for u; = ¢,u2 = u and f; =0, f; = f. Using that
uy = e < ¥ +e=uyondx {t =0} (because ¥ > 0 ) we derive from (3.2) that
(e —u)t <0ae inQr,ie,u>¢cae in Qr. Lemma 6.1 is proved.
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Lemma 6.3. There ezist constants ¢; and cy depending on n,m,l, the parameters
from conditions 1) - 8), and sup(¥, Q1) such that for any generalized solution u of
(RCD)s e n with any fized § > 0,¢ > 0, N > c; we have

(6.6) sup(u, Qr) < ¢

and

(6.7) ¢! // |Vu[md:cdt < // |Vua+l|md:1:dt < e, = -l—
T Qr m

Proof. The proof of validity of estimates (6.6) and (6.7) in the case m +1 > 2 is
given in [10]. The case m + [ < 2 required to find new (a more difficult) version of
the Moser method of establishing L..- estimates. It was made in paper [9]. Lemma
6.3 in the case m + ! < 2 follows from theorems 1.1 and 1.2 of [9].

Remark 6.1. In the remainder of this paper we consider (RCD)s . v with N = ¢;
where constant ¢; is defined by Lemma 6.2. Then in view of estimates (6.5) and
(6.6) we can rewrite (RCD)s . N as

Fye[u] = 0u/0t - 6Vu —div a(u,Vu)= fin Qr,u =¥ + eon I'r,(RCD)s,

where 6 > 0,e > 0.

Lemma 6.4. Letu be a generalized solution of Cauchy-Dirichlet problem (RCD)s .
for § = 0,e > 0. There ezist constant A € (0,1) and K > 0 independent of € such
that (see (4.21)

(6.8) (“)A,‘QT < K.

Proof. In view of conditions 1)-3), Remark 6.1, estimates (6.5)-(6.7) and Remark
4.1 we can apply either Theorem 4.1 of Theorem 4.2 and hence establish (6.8) with
some A € {0,1) and K > 0 independent of ¢. Lemma 6.3 is proved.

7. The passing to the limit as § — 0

In this section we show that generalized solutions us of Cauchy-Dirichlet prob-
lems (RC D)s, (for any fixed € > 0 ) tend to generalized solution of Cauchy-Dirichlet
problem

F.lu] = 0u/dt — div a(v,Vu) = f in Qr,u =¥ + € on I'r(RC D),

as § — 0. For proving this we use estimates (6.5) - (6.7) and Lemma 5.1 with
appropriate 8 > 0.

0
Obviously functions us satisfy for any 7 € (0,7T] and every ¢ € Wi(Qr) the
integral 1dentity
(7.1) / uspdz| + / [—usp + 6Vus - Vé + a(us, Vug) - Vo — foldzdt = 0.
Q Qr
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Set in (7.1) ¢ = ¥(z) € C}(N). Then from (7.1), condition 1) and estimates (6.6),
(6.7) it follows that for any t,,t; € [0,T] we have

t2
|/ usWdz|?| gc/ /[|Vu5|+|Vug+l|m_l +1)dedt <
Q ty Q
(7.2) < e[(ftz = 61D + (Ita = 2 [|QDY™ + [tz — t111Q]].

From (7.2) it follows that integrals [, us®dz,é € (0,1), are equicontinuous (with
respect to ) in t on [0, T) for any fixed ¥(z) € C}(R). Using density of C}() in
L,($2) and uniform boundedness of {us} in Qr (see (6.6)) we can derive from here
that there exists a sequence {us} which converges weakly in Ly(Q) uniformly with
respect to t on [0, T to some function u satisfying inequality (5.18) with a constant
¢ independent of §. Moreover in view of (6.5) - (6.7) we can count that

(7.3) Vudt! — Vuot! weakly in L, (Qr) as § — 0;
(7.4) Vus ~ Vu weakly in L,,(Qr) as § — 0;
(7.5) VEVus — 0 weakly in Ly(Qr) as § — 0;
(7.6) sup(us, Q1) + sup(u, Q1) < e
e // \Vus|™dedt + € /f |Vu|mdzdt + // (Vust ™ dzdt+

Qr Qr Qr

(7.7) + j/ Vuot | dadt < e
T

where & = I/m. Denote A% = a'(us, Vug),i = 1,...,n. In view of condition 1)

and (7.6), (7.7) we have the uniform with respect to § estimate

(7.8) ”AEHL,,,:(QT) <et=1,...,n,6 >0.
Then we can count that there exist functions A* € L (Q7),2 = 1,... ,n, such that
(7.9) At — A weakly in Ly (Qr)as 6§ —» 0,i=1,... ,n.

On the other hand from (7.6), (7.7) it follows that for any 6,6’ > 0

o
o+2’

(7.10) // IV(|us — wg |P (s — ug )| dadt < ¢, B =
Qr

with some constant ¢ independent of . Really in view of definition § we have

= s L
(B+1)/2= g—i—% and hence conditions m > 1,1/m < — + —2—9 of Lemma 5.3 are
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fulfilled for # = %5 in view of condition 4). It is easy to see that from (7.7) it
follows that constant ¢ in (7.10) is independent of 6. Using (7.10) and taking into
account that us — u weakly in L,(2) uniformly with respect to ¢ on [0, 7] we derive
from inequality (5.2) in the case 8 = ;35 for difference us — us that

(7.11) us — u strongly in Ly »(Q7),

(7.12) ug — u a.e. in Qr,

(7.13) us — u weakly in L2(Q7),

(7.14) us — u strongly in L,(Q) for a.e. t € (0,7].

Then from (7. ‘7) (7.5), and (7.12) - (7.14) we can derive that for a.e. T € (0,7
and any ¢ € Wé(QT)

(7.15) /ngbd;dg +//Qr(—u¢,+,4‘¢,;,. ~ fé)dzdt = 0.

The following proposition is well-known (see, for example, [10]).

Proposition 7.1. Let function g(u) satisfies a Lipschitz condition uniformly on
R and its derivative ¢'(u) be continuous everywhere on R with possible ezception
of finitely many points at which ¢'(u) has a discontinuity of the first order. Let
u € C([OaT];L2(Q))nW#D(QT)aW € I'V;;(QT)afi € Lm'(QT),i =0,1,...,n, 1/m+

0
1/m' =1,m > 1. Assume that for any t;,t; € [0,T) and any ¢ € W (Qr)

/ﬂucﬁdvclff+/t:2/9(—u¢:+fs¢z.-+fo¢)d$di=0

and let u =@ on St. Then for any t;,t; € [0,T] we have

/ (G(u) = ug(p))dz| / 2 / [ug'(@)pe + fi(g' (w)uz, — ¢'(0)pes )+
(7.16) + fo(g(u) — g(p))|dzdt = 0

where G(u) = fou g(&)dE.

Using Proposition 7.1 we can conclude (in the same way as in [12], p. 538) that
in view of (7.15) and (5.18) or (7.6) condition (5.29) holds for function u. Moreover
using Proposition 7.1 we can derive from (7.15) that for any 7 € (0,T] we have

(7.17) /n (é—uz - ue) dz|j + / o [A'u,, — f(u — €)]dzdt = 0.
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In view of (5.29) integral identity (7.15) holds for any = € (0, T).
To prove that u is a generalized solution of (RC D), it is sufficient to establish
that

(7.18) // A"qs:,,dmdt:// a'(u, V), dzdt

, 0
for any ¢ € Cy(f) (because C3(Q) is dense in W (Qr)). To prove (7.18) it is
sufficient to establish that

(7.19) Ous/0z; — Ouf0z; a.e. in Qr,i=1,...,N,

because in view of (7.19), (7.12), the continuity functions a*(u, p), condition 1’), es-

0
timates (7.6) and (7.7) and the Vitali theorem we obtain that for any ¢ € W (Qr)
and every 7 € (0,7

(7.20) lim f f (s, Visg )by, dudt = f / ¢ (u, V)b, dzdt.
Q- r

5—0
On the other hand in view of (7.9) the left-hand side in (7.20) is equal to the

left-hand side in (7.18). Hence (7.19) implies (7.18).
Choosing ¢ = us — € in (7.1) we obtain with the aid of Proposition 7.1 that

(7.21) -/‘; (éug - 1156) dz|g + // [ai(u,s,Vu,s)% — flus — e)] dzdt = 0.

Using (7.13), (7.14) we derive from (7.21) and (7.17) that for any 7 € (0,7

) : Ous . Ju
99 1 v - 1
(7.22) }L{I‘IJ //Q, a'(us, Vis) Ba:;dxdt f/, A 3:1:,'d$dt'

Using now condition 2) we have

. _ 2
s = v /:/ Vs ~ Vul ——dzdt <
- [Vugi™ + {Vu|m]= !

(7.23) < / [a(us, Vug) — a(u, Vu)] - (Vus — Vu)dzdt = 5s.
Qf

Using (7.3) - (7.5),(7.9),(7.22) and taking into account that in view of (7.12), (7.6),
(7.7), condition 1) and the Vitali theorem |

(7.24) a'(us, Vu) — a'(u, Vu) strongly in Ly (Qr) as § — 0,
we derive from (7.23) that

9 : =
(7.25) lim$s = 0.
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Using (7.25) and inequalities 0 < J5 < v ' $5 we obtain

(7.26) lim Js = 0.

Show that from (7.26) it follows that (7.19) is true. Denote

|Vus — Vul?
(IVus|™ + [Vufm)= =1

(7.27) = hg(z,t).

From (7.26) it follows that there exist some subsequence {é} and subset Q c
Q-, |Q] =|Q~|, such that
(7.28) lim hg(z,t) =0  on Q.

Without loss of generality we can count that 56:—‘ are finite on Q, ie., [Vul is
bounded (nonuniformly) at any point (z,t) € Q. In view of (7.27) we have for any

(z,t) € Q

(IVus| ~ )
Vug| + ¢)2—m

(7.29) hs(z,t) 2 0

with constant ¢ depending on (z,t) € Q. Suppose now that |Vus| is unbounded in

some point (z,t) € ). Then |Vus] — oo for some subsequence {6} and hence in

view of (7.29) we obtain that for this subsequence 5lim hs(z,t) = oo 1.e., we obtain
—00

contradiction with (7.28). Hence
(7.30) |Vus| are bounded (nonuniformly) at any point of Q.

Then from (7.27), (7.28) and (7.30) it follows that numerators of hs tend to zero on
Q as § — 0, i.e. (7.19) is true. Therefore function u € C({0, T]; L2(9)) N WLo(Qr)
is a generalized solution of (RCD),. From lemmas 6.2 and 6.3 it follows that
this function satisfies estimates (6.5) - (6.8). In view of (6.5) and Proposition 3.3
function u is an unique strong solution of (RCD),. So we proved the following

Lemma 7.1. For any fited ¢ > 0 there ezist ezactly one strong solution (in
sense of Definition 2.8) of (RCD); satisfying estimates (6.5) - (6.8) with constants
cy,c2,A € (0,1) and I independent of e.

8. The passing to the limit as ¢ — 0.

Now we are ready to prove Theorem 6.1 and hence Theorem 1.1. In the remainder
of this section we denote solution of (RC D), as u,. We are going to realize the
passing to the limit as € — 0 using a priori estimates (6.5) - (6.8). This passing can
be done in the same way as one in [11] where existence of regular solution of (C D)

was proved in the case [ > 0, max(l,f—_;_‘z) <m<2,m+12>2
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In view of estimates (6.5) - (6.8) we can conclude that there exists function u
such that

(8.1) u, — u uniformly in Qr;

(8.2) —a—-(u"“) — u%u,, weakly in L,(Qr),t=1,... ,n,a= L
33:,- € i 3 y s Tey ma

(8.3) 0 <inf(w, Qr) < sup(u, Q1) < e

(8.4) // u[|uz|md$dt < eg;
Qr

and (see (4.2))

(85) (U)A'ﬁT < K.
In (8.2) and (8.4) we used the following notation similar to one from Definition 2.3:

(a+ 1) 'w"™ on[Qr:u>0]
0 on [Qr:u=0]’

l
(8.6) wuz={(ug,... uz,), Ug; = { a=—.
Obviously u®u;, € Ln(Qr),: =1,...,n (in view of (8.4)). In view of boundedness
of u and inequality 0 = —— > o expressions for u;; in (8.6) and (2.2) coincide;
moreover from condition ©u%u,; € Ln,,(Qr) it follows that u%u,, € L,{(Qr),i =
1,... ,n. We use below the following auxiliary propositions (see {10] or [11]).

Proposition 8.1. Let function u be bounded and nonnegative in Q7 and such that
Vu®t! € L,(Qr) for some a > 0. Let function u is defined by

(8.7) u = sup(u — €,0), ¢, = const > 0.
Then T has generalized derivatives 0u/0z;- € Ln(Qr),t = 1,... ,n, such that

(8.8) ou { Ug, . n [Qr i u > €]

0_.7:,'= in [Qr:0<u<e]
where u,, are defined by (8.6); moreover

: du '
(89) clllino”ua_a—:;—- a uﬁuri ”Lm(QT) =0.
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Proposition 8.2. Let A' € L(Qr),i=1,...,n, B€ Ln(Qr), I/m+1/m' =
1, m > 1, and let function u is bounded and nonnegative in Qr and such that
Vuetl € L(Qr) for some o > 0. Assume that for any t,,t2 € [0,T] and any

6 € Wh,(Qr)
t2
(8.10) / uddz|;? +] /(—uqb, +u®A'¢;, + Bo)dzdt = 0.
Q 4 Q

Let p € Wh(QT) and u = ¢ on St. Then for any ty,t, € [0,7)

1 t2 .
(8.11) /Q (;uz - unp) dz|? +/ L[utpt +u®A'(uz; — @z )+ B(u—)jdzdt =0

where u,, are defined by (8.8).

Returning to (8.1)-(8.5) we see that function u is nonnegative and bounded in
Qr,u € C*™(Qp), Vuot! € Ln(Qr), 0 = # (so that Vu’*! € L, (Qr),0 =
—L-) and u = % on I'r. Hence to prove Theorem 6.1 it is sufficient to show that

0
for any ¢,,%, € [0,T) and ¢ € W} (Q7r)

t2
(8.12) ]ﬂuqﬁ d:cl:: + /; /Q[—ugﬁ, + a(u,u,) Vo — foldrdt =0,

where u; is defined by (8.8) in the case a = ?:T Really in this case from the kind
of (RCD), it will follow that u is a quasistrong and hence regular solution of (CD).
To prove that (8.12) holds denote

(8.13) Al = tt:aai(uf,Vuf), a=—, t=1,...,n.

€

In view of the second inequality in condition 1) and estimate (8.4) we have uniform
estimate

(8.14) ”AiIILm'(QT) <c, 1= 1,...,71.
Then we can count that there exist functions a' € Ly (Q7) such that
(8.15) Ai — A" weakly in Ln{(Qr)ase—0,1=1,...,n.

Letting € — 0 in the integral identity

(8.16) /Queéd:r“:-l—/lh /‘;[—uf%—}-a(u(,Vuc)quS—fqb] dzdi =0, ¢ € W' (Qr),
we obtain in view of (8.1), (8.15) that for any #,,t, € [0,T) and ¢ € IE’:,,(QT)
(8.17) /f;uqbda:“f + /;h /Q[—ud)g +u®A'¢,, — fé]drdt =0.
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To prove Theorem 6.1 it 1s sufficient to show that
(8.18)

t2 . iz . o —_—
/ / uA'g, . dzdt = / / a'(u,Vu)g,,dzdt =0 for any ¢ € C'(Q7),
t Q [ 3% 0

because 4', a'(u,Vu) € Ln(Qr) and C'(Qr) is dense in W (Qr). To prove
(8.18) it is sufficient to establish that for some subsequence {¢}

. Ou

(8.19) ul oz,

— u%u,, aeinQr, 1=1,...,n,

because in view of (8.19), (8.1), the continuity functions u”a'(u,u"p), a = +,

on R4 x R™, condition 1), uniform estimate (6.7) for u = u, and the Vitali theorem

o _
we obtain that for any ¢ € C'(Q7r) the integral

tz [ 2 .
/ / a(ue, Vue) - Vodrdt = / ] ulAide, drdt =
t Q ty 1

iz
(8.20) =/ /uf‘(u:"’a"(uf,u(_"(u("Vuf)))qu..dzdt
t Q

tends to the integral ft‘: Jq @' (v, uz)éz;dz dt. On the other hand in view of (8.1),

(8.15) integral (8.20) tends to the integral ft? fq u*A'd; dz dt. Hence (8.19) implies
(8.18). The remainder of this section is devoted to the proof of (8.19). Applying
Proposition 7.1 with ¢(¢) = £ — € we derive from (7.16)

Ou

ty
(8.21) /(luf - eu()a'..":r2 -|-/ /[a‘(uc,Vu()— — fu —€)]dzdt =0.
Q 2 3! 4 Q GI.'

Applying Proposition 8.2 with ¢g(£) = £ and using that u = 0 of St (in view of (8.1)
because u, = € on St) we derive from (8.11)

t2 )
(8.22) / %uzdm ;f +/ /[u"’A’u:; — fuldzdt = 0.
Q <« t Q

Using (8.1) we derive from (8.21), (8.22) that

f2 - Ou. f2 -
(8.23) lim] /a‘(uc,v'uf)—dmdt=/ [uaA'u,idzdt.
e—0Jgy Ja Oz; t, JQ

Let @ is defined by (8.7). Obviously that the following proposition holds (see also
[10]).

Proposition 8.3. We have

(8.24)  u."“d'(u,, Vi) » u" %' (u, Vi) strongly in Ln(Qr) as € — 0,
(8.25) u"%al(u, Vi) — u %a*(u,u;) strongly in Ly (QT) as e — 0.
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Using now condition 2) we have

ty
viHe e, %Vl / / u€‘|VuE - V‘L‘tlz[W’uE = b(ue)|™ + |Vu - b(uf)|m]l_2/md:c dt <

/ /[a e, Vo) —a(uf,Vu)](%—a—xl)d:cdt

i o Ou
/t, /[a (uc,Vu — Alu” e

(9u6 ot
.2 - g} € - €,€
(8.26) a'(ue, Vi) (u® o 6x,)]d$dt Je e
Using (8.1), (8.2), (8.15), (8.23), (8.24) and letting ¢ — 0 we obtain
lim J, ., =
e—0

(8.27)
/ /[A (uuz, —u —')—u'0 a'(u, Va)(uu,, uaaa—;)]da:dt%jﬂ.

Using (8.25), (8.9) we derive from (8.27)
(8.28) lim J,, =0.

61-*0

From (8.27), (8.28) it follows that there exist subsequences {¢x} and {e;4} tending
to zero such that limg oo Je, e, = 0. Because 0 < H,, ¢,, < Je,,eq, We derive from
here that

(8.29) lim H, e, =0.

k—oo

Rewrite H¢, (,, as

t2 [ug Vue, —ul Vil :
ka,flk :/ / o | — dr dt=
6o Je [[ug Vue, —ul blug,)|™ + [ue V o ™ '

€x
lz
(8.30) / ] hi(x,t)dz dt.

Is should be recalled that @ = sup(u — €;4,0) in (8.30). From (8.28), (8.29) it
follows that there exist subsequence {k} and subset Q C Qi, ¢y, @1, .1, =8 X [t1, 2],

|Q| = |Q1, .1, |, such that
(8.31) lim hi(z,t) =0 on Q.

k—oo

guct!
ar;

Without loss of generality we can count that are finite on Q, 1 =1,...,n

Then using (8.1), (8.3), the definition of u (see (8.7)), (8.8), (8.6) and contlnulty of
vector-function d(u) we can conclude that

(8.32) lul Vi|, |ug b(ue,)| are bounded (nonuniformly) on Q.
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On the other hand in view of definition of functions hi(z,t) we can estimate

([ug, Ve, | = o2
luz, Vi, | +

(8.33) hi(z,t) 2 at (z,t) € Q

with some constant ¢ depending on (z,t). Assume that |uf, Vi, | are unbounded at

some point (z,t) € Q. Then for some subsequence {k} |u“ Vue, | = 00 as k — oo
and hence (using that m € (1,2)) we derive from (8.33) that

(8.34) Jim h(z,t) =co on Q.
But (8.34) gives a contradiction with (8.31). Hence

(8.35) |u Vu,,| are bounded (nonuniformly) on Q.

Then from (8.31), (8.30) and (8.35) it follows that the numerators of hx tend to
zero on ( as k — oo, i.e.,

Oue,

(8.36) Llin;o[u“ oz, “a | =0on@Q,i=1,.
Remark now that

. ot
(8.37) lerroxo|u“a——u —|—Oon Q,i=1,.

Really if (z,) € @ and u(z,t) > 0 than 2528 = y_ (1) for all sufficiently large k
and hence (8.37) follows from (8.1). On the other hand if (z,t) € Q and u(z,t) =0
then 8—'_:3(-;:?'-‘-)— = 0 for any k and hence (8.37) follows from (8.1) and the definition of
iy,

Finally from (8.36) and (8.37) it follows obviously that (8.19) holds. Theorem
6.1 (and hence Theorem 1.1) is proved.
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