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0. Introduction

Let (M, g) be a compact riemannian manifold and P a principal fiber bundle over M
with compact structure group K. A functional Fym which maps a connection V to the
square integral [, |RY|?v, of the norm of the curvature tensor of V is called the Yang-
Mills functional. A Yang-Mills connection is by definition a critical point of the functional
FyMm. Therefore there is some possibility that so called the direct method and the heat
equatiéh method can be applied to construct a Yang—-Mills connection of P.

When the manifold M is an algebraic manifold and the group K is a unitary group,
there is a strong relationship between the notion of stable vector bundles and Yang-Mills
connections ([K]), and Donaldson shows the existence of a Yang-Mills connection by the
heat equation method ([D}).

In this paper we consider homogeneous bundles as simple examples in order to see
in what situations the direct method and the heat equation method can be applied to
the existence problem. Let the riemannian manifold M be expressed as a homogeneous
space G/H and the principal fiber bundle P as G x, K using a Lie group homomorphism
p: H — K. The space Cg of all G-invariant connections forms a finite dimensional vector
space. Corresponding to the direct method, we will get the following

Theorem 1. Assume that the Lie group H is connected. The function Fyy|Cq is
proper if and only if one of the following conditions holds. (1) The fundamental group
w1 (M) of M 1s finite. (2) The Lie algebra k of the structure group K has no trivial factor
as H-module.

This means that if (1) or (2) holds, then any minimizing sequence for the function
Fym|Cc has a convergent subsequence to a Yang-Mills connection. But if neither (1)
nor (2) holds, a minimizing sequence may diverge to “c0”.

However, even if neither (1) nor (2) holds, we can find a Yang—Mills connection by the
heat equation — an ordinary differential equation in our case -~ method.
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Theorem 2. The heat equation with a G-invariant connection Vg as the initial data
has a solution V, which is a bounded curve in the space Cg. In particular, the bundle P
admits a Yang-Mills connection.

As a particular case of Theorem 2, we will see what happens in the case of homo-
geneous complex situations. Finally, we will prove Mountain-Pass Lemma for the function
Fym|Cq. Remark that, when we consider Einstein’s equation the corresponding statement
to Theorem 2 does not hold, i.e., the solution diverges in general ([WZ, Introduction}).

This work was done while the author was staying in Max-Planck-Institut fiir Mathe-
matik, to which he is grateful for the hospitality.

1. Properness

We will prove Theorem 1 in this section. Let M be a compact homogeneous riemannian
manifold G/H, where G is a compact Lie group and H is a closed subgroup. Denote by g,
h the Lie algebra of the Lie group G, H respectively. Fix a bi-invariant inner product ( , )
on g and denote by m the orthogonal complement of h in g. The riemannian metric of the
space M is represented by an H-invariant inner product g on m. Define a principal fiber
bundle P = G x, K using a compact Lie group K and a homomorphism p: H — K. The
Lie algebra of K is denoted by k and is endowed with a bi-invariant inner product ( , ).
The differential : A — k of the Lie group homomorphism p is denoted by the same symbol
p. The space k becomes an H-module and an H%-module via p, where H® is the identity
component of H. For basic facts about Lie groups, refer to [H].

As usual, we denote by g’ the semi-simple part of the Lie algebra g and by z(g) its

center. Let m' be the projection image from g' to m. The vector space m decomposes as
H-module :

(1.1) m=m'dmn z(g),

which corresponds to the decomposition of the universal covering of M into a compact
manifold and a vector space. Therefore the fundamental group m1(M) is finite if and only
if m N z(g) vanishes. When the Lie algebra k decomposes into the semi-simple part and
the center, the function Fy)s correspondingly decomposes. These facts reduce the proof of
Theorem 1 to the following propositions.

Proposition 1.1. Assume that the Lie group H is connected. If the space k has
a trivial factor as H-module and the space m N z(g) does not vanish, then the function
FymlCq is not proper.
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Proposition 1.2. If one of the following conditions holds, then the function Fym|Cq
13 proper.
(1) The space k has no trivial factor as H®-module.
(2) The Lie algebra k is commutative and the space m N z(g) vanishes.
(3) The Lie algebra k is semi-simple and the space m N 2(g) vanishes.

We will give proofs of these propositions in this section. The following lemma is
fundamental.

Lemma 1.3 ({KN, Chapter II Theorem 11.7]). The space Cg is canonically identified
with the space of all H-homomorphisms Hompy(m, k), and the curvature tensor R4 €
Hompg(A*m, k) of an element A € Hompy(m, k) is given by

(1.2) RA(v,w) = [4(v), A@)] = A([v, wlm) = p([v, wlh),
where ( )p and ( )m denote the components with respect to the decomposition g = h® m.

From now on an element of the space Hompy(m, k) is identified with a connection of
P, and so the function Fym|Cq is regarded as

(1.3) Fym(A) = Vol(M) x |[RA)2.
Since the properness of the function Fym|Cg is independent of the choice of inner products
of m, we may assume that the inner product g is the restriction of { , ) in this section.

Proof (of Proposition 1.1). The assumption implies that there are non-zero elements
X in a trivial factor of the H-module k and vg in mN 2(g). Then we can define an element
A in Hompg(m, k) by A(v) = (v,ve)X, which satisfies R** = R for any real number A by
formula (1.2). Q.E.D.

We decompose m as H°-module into the trivial factor mgy and the sum m,; of the
irreducible factors. Then we have inclusions :

(1.4) my Cm' and mnNz(g) Cm,.

Lemma 1.4. There ezist positive constants c;, c; and c3 such that for any A €
Hompy(m, k) it holds that

(1.5) |RA| 2 e|dlmu|® = ea| A/ | = 3.
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Proof. We set [A A A](v,w) = [A(v), A(w)] and observe that if [A A A] = 0, then
A(m;) = 0. In fact
0 = ([4(m), A(m)], p(h)) = (A(m), [p(h), A(m)])
(A(m), A([h,m])) = (A(m), A(m1)).
Therefore if we set ¢; = inf{|[A A A]|; A € Hompy(m, k), |A| = 1}, then ¢; > 0. For the
second term A([v, w]m) of formula (1.2), it depends only on A|m’'. Q.E.D.

(1.6)

Proof (of Proposition 1.2 (1)). Since the space k has no trivial factor as H %—module,
the space Hompy(m, k) coincides with Hompy(my, k). Thus A, Ajm' and A|m; coincide
in Lemma 1.4. Q.E.D.

Proof (of Proposition 1.2 (2)). Let A be any element of Homy(m, k). Since the Lie
algebra k is commutative, the first term [A A A] of formula (1.2) vanishes. And since k is
trivial as H%-module, A(m;) = 0. On the other hand, since m N z(g) = 0, it holds that
m = m' = [m,m]y + m;. Therefore if A # 0, then the second term A([m, m]ny) # 0.
Thus we can define a positive number ¢; by inf{]A|[m,m]m];A € Hompy(m, k), |A| =1}
and setting c; the norm of the third term, we get |R4] > ¢;]|4| — c2. Q.E.D.

To prove the case of semi-simple Lie algebra &, we introduce the following usual no-
tations. For a reductive Lie algebra j, ¢(7) denotes a Cartan subalgebra. When j is
semi-simple and endowed with a bi-invariant inner product ( , ), we denote by A(3) its
root system as a subset of ¢(j) and characterize root vectors X, € j for a € A(J) by
(1) [u,Xa] = (u,a)X_, for all u € t(j) and (2) [Xq,X-o] = a. The following lemma
will be proved later.

Lemma 1.5. Let k be a compact semi-simple Lie algebra. For an element (wo, w1, ws)
of k% we define an element (ug,uy,us) of k* by

(L.7) uo = [w1,wa] —wo, w1 =[wz,wo] —w1, uz=[wo,wi]—wy,
then this map : k3 — k3 is proper.

Note that mq becomes a subalgebra of g, i.e., [y, my] C myp, and [mg, m,] is
contained in m;. Since Cartan subalgebras t(k) and ¢(m,) commute, there is a Cartan
subalgebra t(g) which contains t(h) and £(m,). The space t(g) decomposes into the center
z(g) and a Cartan subalgebra ¢(g'). It admits also an orthogonal decomposition :

(1.8) t(g) = t(h) ® t(mo) B t(g) N .

We denote by t(g')e the image of the orthogonal projection from t(g’) to t(my).



Lemma 1.6. Denoting by (myg)' the semi-simple part of mg, we get
(1.9) t(g")o + (mo) = m' N my.

Proof. 1t is clear that the left hand side is contained in the right hand side. Let v be
an element of the right hand side which is orthogonal to the left hand side. Then v is an
element of the center z(my), and is orthogonal to t(g'). Therefore we see that v € z(g)
and so by (1.1) we conclude that v = 0. Q.E.D.

We rewrite Proposition 1.2 (3) as follows in order to use it in section 2.

Proposition 1.7. If the Lie algebra k is semi-simple, then IA[m” 18 estimated from
above by using |R4|.

Proof. First remark that, by Lemma 1.5, if we take vg,v1,v2 € m with [v,v1]m
=vs, [v1,%2)m = vo, [V2,V0}m = vi, then |A(v;)|’s are estimated by using |R#|. Therefore
we can get an estimation of A|(mg)’ because the space (my)’ is spanned by its roots and
root vectors. Next we decompose a root a € A(g’') by (1.8) and denote by ay, a; the
t(my), t(g) N my—component, respectively, and set &’ = a9 + a;. The vector o' is the
m~component of a, and belongs to m’.

Now assume that ag # 0. Then

tlaof® - Xga = [@0, Xia] = (@0, (Xxa)n] + (@0, (X £a)m]

1.10
(1.10) = (20, (Xa)m] € m,

and so X+o € m. Setting vg = |&/|72a/, vy = |a'|7' X, v2 = |&/|71 X _4, We can get an
estimation of A(a') by the previous remark. Moreover, since A(Adpa') = Ad,»)4(a’) for
h € H°, we get an estimation of |4(ap)| by

(1.11) |A(a0)| = IA ( /H O(Adha’)dh>l < /H JA(Adwa')|dh = |A(a"),

where dh is the Haar measure of H°. Since the space ¢(g’')o is spanned by such ap’s,
we get an estimation of A|t(g')e. Combining with the estimation of A|(ng)’, we get an
estimation of Aj(m' N myg) by Lemma 1.6. Finally, using Lemma 1.4 and the inequality :
|A|m'] < |A[(m' N mo)| + lAlm1| from (1.3), we get an estimation of A|m,, therefore of
Alm/'. Q.E.D.
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Proof (of Lemma 1.5). We set ¢ = max{|uol, |u1, |u2|} and € = |wg|, and show that
¢ is bounded from above by using c. In the following, ¢;’s mean positive constants which
depend only on ¢ and do not depend on ¢. At first we see that
(1.12) lwi]* — clw1] < (wi, w1 +u1) = (w1, [wa, wo))

T = ([w1,w2], wo) = (wo + uo,wo) _<.1—’2+C£,
and so |wy| < € 4+ c. By the same way we see also that |wz] < ¢ +c.

We choose a Cartan subalgebra t(k) containing wo and a linear order > of t(k) so that
if (wq,a) > 0, then a > 0. Denote by I = {«;} the fundamental root system. Since II is
basis of t(k), whose pattern is independent of the choice of orders, it holds that

E TiQ

a;ell

(1.13)

>c Z |z;| for any (z;).
a;€lT

We set wy = z 4+ ) aaX,, where z is an element of ¢(k) and the summation is taken
for roots a € A(k). Then we see that

(1.14) [wo, w1] = ) aa{a, wo) X—q,

(1.15) wy = [wo,w1] —uz = Y _ aala, wo) X — uz,
(1.16) [wo, wa] = =D aa(@,wo)* Xo — [wo, ua].
And so,

(1.17) uy = [wa, wo] ~ wy = Zaa(a,wg)zxa +[wo, uz] =2 = Y @aXa,
(1.18) > aa({a,wo)? = 1)Xa = z +uy = [wo, ua].
Since {Xa;a € A(k)} are orthogonal, it follows that
(1.19) laa|l{a, wo)? — 1] < |Xa| 1 ((£ +¢) + ¢ + c2¢8) < ca(€+1).
Therefore, if (@, w)? > 2, then
(1.20) laa|(a, wg)? < 2e3(¢ + 1).
And since
w1, walery = (w1, Y aafa, wo)X—a — uzls)
(1.21) =24+ aaXe, Y dalo, wo) X_aleq) — (w1, ualer)
= Z(aa)z (o, wo) - — [wl’l“?]t(k)a



we get

wo = (w1, welgky — (Yo (k)

(1.22) = ¥ (aa)* (@, wo) - — w1, ualuey — (uo)e.

Now for a positive number ¢, we define a subset II, of the fundamental root system
II by

(1.23) II, = {a; € IO; {a;,we) < elwol|ail}.

The number £ will be fixed later independently of £. In the following, the constants c; are
independent also of €. Put

(1.24) S=4Ak)N Y Za
Qient

An element 3 of A(k) — S can be represented as }_ m;a; (a; € IT), where all m; are
non-negative or all are non-positive. And so

(8, wo)l =) Imi(wo, )|
(1.25) > (wo,a;) forsome a; € II —1II.

> C4E L.
Therefore if £ > 1 and v2(cse)™?, then, by (1.20), we see that

(ag)*|(B, wo)| < (2e3(€ + 1)) *|(, wo)| ™

(1.26) < (2e3(2 + 1)) (cac )™

< ecsed.

We represent Y cs(aa)? (@, wo)-a as Y sja; (a; € II.). Since

(1.27) Y (@) wo)a= > ((aa)®+(a-a)")(a wo)-a,

ax€S @x€S,ax0

all s; are nonnegative, and so

{wa, Z 8ia;)

ZSi(wo,a.—) < ZSilwc||ai|€
< 065823;.

(1.28)
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On the other hand, from (1.13), (1.22) and (1.26), if £ is greater than 1 and v2(c4e)™!,
then

a Y si <]y siail
(1.29) = |wo — Z(%V(@wu}ﬁ + (w1, ualery + (vo)yay |
BgSs
< ¢+ C7€—3 + Cge + co.
Combining it with (1.28),
(1.30) <w°’Z sia;) < c10e @ + (polynomial of £ of order 1).

Therefore, again using (1.22) and (1.26), we see that if £ > 1 and v/2(cse)™!, then

32 = (wo, wo)

= (wo, ) (ag)*(B,wa)-B + Y siexi = [w1, ualer) — (u0)ewy)

B8gs

(1.31) < c106 €% + c|[wo, w1]| + (polynomial of £ of order 1)
= cipe 02 + clwz + u2| + (polynomial of £ of order 1)
< c106€? + (polynomial of £ of order 1).
Thus choosing € so that ¢)pe < 1/2, we get the desired estimation of £. Q.E.D.

2. Gradient Flow

We consider the heat equation for the functional Fyy with respect to the L, inner
product, which becomes '

d

(2.1) &

Vi = —(grad Fym)v, = (V)" (RY* ).

If we choose Vy € Cg as the initial data of this equation, then the solution ¥V, is a curve
in Cg and coincides with the solution of the ordinary differential equation defined by the
vector field —grad(Fym|Cg). As is easily computed from formula (1.2), the equation is
given by (up to constant multiplication of time variable t),

S = S 45, A= TG4, Al - 30 G4

(2.2) | | |
+(1/2) ) Ci'eld), 4] = (1/2) Y Ci%CihAr = (1/2) Y C%C%ps,
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where we take orthonormal basis {v;} of m with respect to g and basis {v,} of h, and set

Ai = A(vi), ps = p(vs),
[vi,v;] = Z C:* vk + ZC’, Vs

All the summations are taken for j, &, 1, s, which appear twice in the terms.

(2.3)

We will prove Theorem 2 for equation (2.2). Denote by A(t) the solution. At first, by
Proposition 1.7, the norm of 4(¢)|m' is estimated from above by using |R4(%)|. Therefore,
denoting by (m')* the orthogonal compliment of m' in m with respect to g, it is sufficient
to prove that A(t)|(m')* is bounded. To show it, we choose an arbitrary unit vector vy in
(m' )+, choose orthonormal basis {v;;0 < i < dimm} of m containing vo, and prove that
Ao(t) is bounded. For 44(t), equation (2.2) is simplified as

d
(2.4) A0 =D (4[4, Aol = > Ciol4;, Al.

In fact the structure constants C;% vanish in equation (2.2) because [m,m|, C m'.
Moreover, since the inner product ¢ is H-invariant and v, is orthogonal to m/', the vector
vo is an element of mg, and as the remark following Lemma 1.5, [my, m] C m, which
implies that also the structure constants C;% vanish.

Next, as we see from equation (2.1) or (2.2), when the Lie algebra k decomposes as
k' @ z(k), the solution also decomposes, and the z(k)-component of Aq(t) is constant from
equation (2.4). Therefore we may assume that the Lie algebra k is semi-simple. Moreover,
since the equations do not depend on the choice of inner products on k, we may assume
also that the root vectors X, of k& are unit.

Now we define a function L on the vector space k as follows. Let 26 be the sum of
all positive roots of k. We represent 26 as 26 = } n;a;. Let {w;;1 < ¢ < r} be the -

fundamental weight system of k, and set & = (n;)"'w;. For w € k, we define
(2.5) L(w) = max{(Adw,§;);1 <: <r, vy € K}.

Lemma 2.1. For w € k, the value L(w) 13 realized by v € K such that Ad,w belongs
to the positive Weyl chamber W. In particular L is a norm of k.

Proof. From the assumption, for any X € k&,
(2.6) 0 = ([X, Ad,w], &) = (X, [Ad,w,&]).

Therefore Adyw and ¢; belong to the same abelian subalgebra of k. Since all Cartan
subalgebras are conjugate, we may assume that Ad,w € t(k). If (Ad,w, a;) < O for some
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a; € II, then, taking n € K which gives the reflection with respect to «;, for any & we see
that

(Adyyw,68) = (Ady(Adyw), &)
= (Adw — 2|oj| 7> (e, Adyw)-aj, &)
= (Adyw, &) — 2las| e, Adyw)(ny) 6
> (Adyw,&x).

(2.7)

That is, when Ad,w is mapped into W by the Weyl group, the value L(w) is still realized.
Q.E.D.

We reduced to the case that the Lie algebra k is semi-simple in order to use the
following

Lemma 2.2. Let k be semi-simple. There ezists a positive number ¢ with the following
property. Let w be a unit vector in the positive Weyl chamber W. If (w, ;) < €, then there
i3 & such that (w,&;) > (w, ;).

Proof. Set w = Y zxag. Then all z; are positive and (w, &) = (ng) N w,wi) =
(ng) 'zg. Assume that (w,§;) < (w,§;) for all §;. Then, since {@;, a;) < 0 for j # 1,

(w, i) = ) (a5, i)z

3

> (a;,a,-)a:,- + Z(aj,a.')nj(n,-)‘la:,-
(2.8) j#i

= (ni)—l Z(n,'aj,a,-)x,-
J
= (ni)'l (25, a,-)a:,- >0,

because 26 belongs to the open positive Weyl chamber W. Thus the conclusion follows
from the continuity. Q.E.D.

Proof (of Theorem 2). It is sufficient to prove that L(Aq(t)) is bounded. Since Ay(t)
is real analytic, L(Aq(t)) is continuous and, by Lemma 2.1, piecewisely represented as

(2.9) L(4o(t)) = (AdynAo(t),61),  AdyoAo(t) €W,

where 4(t) is a real analytic curve of K and ¢; is taken by renumbering of suffix. We may
assume that y(¢) = 1 at a time t = ¢y by changing the Cartan subalgebra t(k) if necessary.
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We set Aj = uj + 3,27 Xq, where uj € t(k) and a € A(k). At the time t = 19, we see
that

(2.10) D L(40) = (S 40.60) + ([, 4], 61) = (5 40, &)

Thus assigning (2.4), the last expression

= =S ([A0, A4} 1, 4,1) = 3 Collén, 4], Ak)

J#0 1,k#0

==Y (Y (@A) Xoa, DY z5{a, &)X )
J#0 acA(k) aca(k)

- ZC] 0( Z aEl X—a’uk+ Z

7,k#0 acAak) acAak)

=-{ ¥ (waled)=+ Y C,-"o<a,el>x;'x;°}
J#0, a€A(k) 1,k#0, x€ A(k)

=- > {Z<a,sl><a,Ao><z;'>2 + Y (@ &) (e, Ao) (25 ™)
aca(k), ax0 ~j#0 k#0

+ Z (Ci* — ijo)(a,ﬁl)m;?a:;"}.

3,k#0

This summation is taken only for positive roots a € A(k) such that {a,&;) # 0. If
we represent such a as ) m;a;, then m; > 1 and all m; > 0, and so {a,&) 2 jwi|™%.
Therefore by Lemma 2.2, it holds that {a, Ag) > €|Ag|. In fact, if |{a, Ao)| < €|Ao|, then
[{ay,Ao)| < €lAp| and so (Ag, &) > (Ao, &) for some ¢, which contradicts the maximality
of (Ag,£1). We regard the last expression as a quadratic form of (z§) and (z;*), and see
that, if L(Ao) is sufficiently large, and so is |Ao|, then the coefficients of (z$)? and (z;*)?
are sufficiently greater than that of 2z, which implies the non-positivity of the last
expression. Q.E.D.

REMARK 2.3. From the boundedness of A(t), we see that any subsequence of A(t) hasa
subsequence which converges to a Yang-Mills connection. It seems to the author that A()
itself converges. At least it is clear that if the closure of the set {A(t);t € R"} contains
an isolated Yang-Mills connection, then A(t) converges. Here we mean by isolated to be
isolated modulo the action of the normalizer group Nx(p(H)) of p(H) in K.
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3. Appendix

At first, we consider the relation between equation (2.2) and holomorphic vector bun-
dles. Let M be an algebraic manifold and P a principal U(r)-bundle. Take the complexi-
fication GL(r, C) of the compact Lie group U(r), and complexify P to a principal GL(r, C)-
bundle PC. There is a one-to-one correspondence between holomorphic structures d of PC
and connections V of P whose curvature tensor RV are of type (1,1). Kobayashi shows that
if the corresponding connection V to a holomorphic structure J is a Yang-Mills connec-
tion, then J is semi-stable ([K]). Conversely, the following hold. Let 9o be a holomorphic
structure and V, the corresponding connection. Heat equation (2.1) with initial data V,
has a unique solution V,, whose curvature tensors are of type (1,1). Let J; be the corre-
sponding holomorphic structure. Then all J; are conjugate to Jy under automorphisms of
PC. Moreover, if J, is stable, then both V. and J; converge, and lim J; is conjugate to 9,
([D]). In our homogeneous situation, we get

Corollary 3.1. Let M and P be as above with homogeneous assumption. Let Oy be
an invariant holomorphic structure. Then the solution 8, has a convergent subsequence.

But if 8y is not semi-stable, then the limit of 8, is not conjugate to G,.
Next we consider so called

Mountain-Pass Lemma. Let S be a manifold and f e function of S. If there are
relative minima 1,22 € S of f which are not contained in a connected component of the
critical point set, then there ezists an unstable critical point 3 € S.

Theorem 3.2. Mountain—Pass Lemma holds for the space S = Cq and the function
f=FmiCa-

ExaMPLE 3.3 Assume that G is semi-simple and set H = {id}, K = G and p = id.
Then the space C¢ is identified with Endg(g), and Fym(A) = 0 if and only if 4 is a
Lie algebra homomorphism. Therefore A = 0 and A = id are critical points of Fym|Cg,
and belong to different connected components. Thus we can conclude, by Mountain—
Pass Lemma, that there exists another unstable Yang-Mills connection in Cg. When
the riemannian metric ¢ on G is bi-invariant, it is easy to get such an unstable Yang-
Mills connection, say A = (1/2)id. However it is not clear to see the existence of such a
connection for a general left invariant metric on G without our Theorem.

As the above example, if the space S is a vector space and if the function f is (by
Theorem 1) proper, then Mountain-Pass Lemma holds by [C, (VI 6.1)]. For general case,
i.e., when the fundamental group 71 (M) may be infinite, we use the next lemma. Let V be
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a finite dimensional vector space, S a closed convex domain of V and f a smooth function
on V. A point z in S is said to be critical in S if and only if one of the following conditions
is satisfied. (1) z is an interior point of S and is critical for f. (2) z is a boundary point
of S and it holds that (df)z(y — z) = 0 for all y € S. The following is a finite dimensional
version of Struwe’s Mountain-Pass Lemma, where Palais-Smale condition is equivalent to
the properness.

Lemma 3.4 ([S, Chapter II Theorem 1.13]). If the function f|S is proper, then
Mountain-Pass Lemma holds replacing critical by critical in §.

Proof (of Theorem 3.2). Let {v;;1 < ¢ < k} be orthonormal basis of (m’')* and
{vi;k < i < n} that of m'. We regard the vector space V = Homp(m, k) as a subspace
of k™ = {(44,..., Ak, Ak+1,...,4a)}, where A; = A(v;). Using the decomposition : k =
k' ® z(k) and the function L on k' defined by (2.5), we set

(3.1) S={(Ai)eV; L((Aiw) S c and |[(Ai) )| Sc for 1 <i <k},

where ¢ is a sufficiently large constant. Then S is a closed convex domain of V' and by
Proposition 1.7 the function Fyym|Cg is proper on S. If A € 35 is critical in S, then, by
definition, (d Fym|Cg)a(B — A) > 0 for all B € S. But Proof of Theorem 2 implies the
opposite inequality, provided that c is sufficiently large. Thus A € S is critical in S if and
only if A is critical in the usual sense, and so the proof reduces to Lemma 3.4. Q.E.D.

References

[C] R. Courant : Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces, Interscience publishers
Inc., New York 1950.
[D] S.K. Donaldson : Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987), 231~
247.
(H] S. Helgason : Differential Geometry and Symmetric Spaces, Academic Press, New—York and London,
1978.
[K] S. Kobayashi : Curvature and stability of vector bundles, Proc. Japan Acad. Ser. A. Math. Sci. 58
(1982), 158-162.
[KN] S. Kobayashi and K. Nomizu : Foundations of Differential Geometry, Vol. I, Wiley (Interscience), New
York, 1963.
[S] M. Struwe : Plateau’s problem and the calculus of variations, Vorlesungsreiche SFB 72 No. 32, Bonn
University, 1986.
(WZ] M.Y. Wang and W. Ziller : Ezistence and non-ezistence of homogeneous Einstein metrics, Invent. math.
84 (1986), 177-194.



14

College of General Education
Osaka University

Toyonaka, Osaka 560

Japan



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 
	Seite 12 
	Seite 13 
	Seite 14 
	Seite 15 

