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Abstract. To study geometric structures on surfaces and their moduli spaces, one
usually supplies the surface with an additional one-dimensional marking (such as a
basis of he fundamental group, triangulation, etc). We introduce a new class of such
markings: admissible double pants decompositions, which seems to be very convenient
for study of moduli spaces. We define a groupoid generated by simple transforma-
tions of double pants decompositions (each generating transformation changes only
one curve of a decomposition) and prove that this groupoid acts transitively on the set
of all admissible double pants decompositions. We also show that the same groupoid
contains a group isomorphic to a mapping class group. Our approach fits for all com-
pact orientable surfaces with finite (possibly, zero) number of marked points except
for a sphere with less than 3 marked points and a torus without marked points.
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Introduction

In this paper we suggest a new marking on topological surfaces, which can be useful
for study of moduli spaces arising from Riemann surfaces. These moduli spaces (moduli
of Riemann surfaces, Hurwitz spaces, moduli spaces of bundles, moduli spaces of con-
nections, etc) are classical objects of study in a meeting point of geometry (algebraic,
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symplectic, and differential), topology and combinatorics. During the last decades, the
question has become especially important due to its tight connection to mathematical
physics.

Moduli spaces are rather complicated, and it is convenient to study them through
covering spaces, where the leafs of the covering are specified by some additional geo-
metric marking on the surface. In case of compact surfaces, for this additional marking
one usually chooses a conjugation class of bases in the fundamental group of the surface
(with generators satisfying standard algebraic relations). Then one considers a restric-
tion of the structure under consideration to the basis, so that a huge part of problems
is reduced to the structure transformations under exchange of basis (or, in other words,
to investigation of the action of the mapping class group on the restriction of the struc-
ture). For the moduli space of Riemann surfaces this is a classical approach initiated
by Fricke and Klein [8] and Teichmüller [20]. One of the difficulties of this approach
arises from the fact that a change of one generator hugely affects the other generators.
In addition, this way is not convenient for investigation of compactifications of moduli
spaces.

A recent cluster approach allows to eliminate these obstacles by consideration of
triangulations of surface instead of bases (see works of Fock and Goncharov [4, 5],
Gekhtman, Shapiro, Vainshtein [9, 10], Penner [17, 18], Fomin, Shapiro, Thurston [6],
Fomin, Thurston [7] and many others). However, this method works for punctured
surfaces only. Furthermore, the standard cluster construction based on triangulation
has no direct connections to homotopy and homology classes of curves (which are
important ingredients of problems concerning moduli spaces).

Another stream in the study of moduli spaces is based on the idea of pants decompo-
sitions, i.e. decompositions of the surfaces into several “pairs of pants”, where a “pair of
pants” means a sphere with 3 holes (see papers of Hatcher, Thurston [13], Hatcher [12],
Penner [19], Bakalov, Kirillov [2], and many other works of various authors). In this
approach the state of the surface is encoded by the state of some pants decomposi-
tion considered as a union of curves on the surface and changed under transformations
concerning only one of the curves. Pants decompositions are extremely convenient
for discussing questions concerning homology and homotopy classes of curves, but an
individual pants decomposition is not sufficient to carry complete information about
geometric structure on a surface. Also, an individual pants decomposition is not suf-
ficient for a work with mapping class group: namely, any given pants decomposition
is preserved by a large subgroup of the mapping class group. To work with the whole
mapping class group either one considers a curve complex including information from
the totality of all pants decompositions (as in works of Ivanov [15], Margalitt [16],
Irmak, Korkmaz [14], Andersen, Bene, Penner [1] and others) or one introduces some
additional markings or “seems”, or angular twist parameters (and then, again, a half
of the structure does not fit for homology and homotopy considerations).

In this paper, we enrich the structure of pants decomposition in a most symmet-
ric way, namely, by another pants decomposition. So, the main object of our study
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is a pair of pants decompositions considered as a union of curves. Their exchanges
are generated by very simple elementary transformations called “flips” and “handle
twists”, each elementary transformation affecting only one curve. A general pair of
pants decompositions is convenient to encode complete information on the geometric
structures carried by the surface.

We consider a special class of pairs of pants decomposition which we call “admissible
double pants decompositions”. We say that a pair of pants decompositions DP of a
surface S is a double pants decomposition if homology classes of the curves contained
in DP generate the whole homology lattice H1(S,Z). Admissible decompositions are
distinguished by the property that flips and handle twists are sufficient to transform
DP into a pair of pants decomposition containing only 4g+ n− 3 curves, where g is a
genus and n is a number of marked points on S. This is the minimal possible number
of different curves in a pair of pants decompositions whose homology classes generate
H1(S,Z) (a general double pants decomposition consists of 6g + 2n − 6 curves). It is
not always easy to recognize whether a given double pants decomposition is admissible
or not. On the other hand, all double pants decomposition we have ever met turn out
to be admissible.

An efficiency of our approach is based on the following nontrivial theorem:

Main Theorem. Let S be a topological surface of genus g with n marked points, where
2g+n > 2. Then the groupoid generated by flips and handle twists acts transitively on
the set of admissible double pants decompositions of S.

It is possible to show that the mapping class group acts effectively on admissible
double pants decompositions of some special combinatorial class. Together with the
Main Theorem this implies the following result:

Corollary. The category of double pants decompositions of a topological surface with
morphisms generated by flips and handle twists contains a subcategory isomorphic to a
category of topological surfaces with mapping class groups as the set of morphisms.

The paper is organized as follows. Section 1 is mostly devoted to definitions and basic
properties of double pants decompositions. We prefer to work with surfaces containing
no marked points and postpone all details concerning marked points till Section 4. In
Section 2, we prove transitivity theorem for the case of surfaces of genus g = 2 without
marked points (Theorem 2). In Section 3, we prove the Main Theorem for the case of
surfaces of any genus (Theorem 3.19). In Section 4, we extend basic definitions to the
case of surfaces with marked points and complete the proof of Main Theorem. Finally,
in Section 5, we prove the Corollary (Theorem 5.3).

Our approach may be naturally extended to the stable Riemann surfaces and allow
to study compactifications of Deligne-Mumford type [3]. We will return to this problem
in a sequel to this paper.

Acknowledgments. We are grateful to Allen Hatcher for valuable comments, espe-
cially for the contents of Remark 1.20. We also thank Anton Zorich for the interest to
the work and Karen Vogtman and Ursula Hemenshtadt for helpful conversations. The
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work was initiated during the authors’ stay at Max Planck Institute for Mathematics
and completed during the stay of the first author at the same Institute. We are grateful
to the Institute for hospitality, support and a nice working atmosphere.

1. Double pants decompositions

1.1. Zipped pants decompositions. Let S = Sg,n be an oriented surface of genus
g with n marked points, where 2g + n > 2. Throughout Sections 1–3 we assume in
addition n = 0 (this assumption will be removed in Section 4).

A curve c on S is an embedded closed non-contractible curve considered up to a
homotopy of S.

Given a set of curves we always assume that there are no “unnecessary intersections”,
so that if two curves of this set intersect each other in k points then there are no
homotopy equivalent pair of curves intersecting in less than k points.

For a pair of curves c1 and c2 we denote by |c1 ∩ c2| the number of (geometric)
intersections of c1 with c2.

Definition 1.1 (Pants decomposition). A pants decomposition of S is a system of (non-
oriented) mutually disjoined curves P = PS = 〈c1, . . . , cn〉 decomposing S into pairs of
pants (i.e. into spheres with 3 holes).

It is easy to see that any pants decomposition of a surface of genus g consists of 3g−3
curves. Note, that we do allow self-folded pants, two of whose boundary components
are identified in S as shown in Fig. 1.1.

A surface which consists of one self-folded pair of pants will be called handle.
We say that a curve c ∈ P is non-regular if c is contained in a handle h and c1 ∈ P

where c1 is a boundary or h (see Fig. 1.1). Otherwise, we say that c is regular.

Remark 1.2. A set of curves forming a pants decomposition is maximal in sense that
any larger set of mutually disjoined non-oriented curves contains a pair of homotopy
equivalent curves.

c

c1

(a) (b)

Figure 1.1. (a) A pair of pants; (b) a pair of self-folded pants compos-
ing a handle (the handle contains a non-regular curve c).
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Definition 1.3 (Zipper system ). A union Z = 〈z1, . . . zg+1〉 of mutually disjoined
curves is a zipper system if Z decomposes S into two spheres with g + 1 holes.

Definition 1.4 (Z compatible with P ). A zipper system Z is compatible with a pants
decomposition P = 〈c1, . . . , c3g−3〉 if |ci

⋂
(∪g+1

j=1zj)| = 2 for each i = 1, . . . , 3g − 3.

Fig. 1.2 contains an example of a zipper system Z compatible with a pants decom-
position P .

PZ

Figure 1.2. A zipper system Z compatible with a pants decomposition P .

Lemma 1.5. If Z is a zipper system compatible with a pants decomposition P then
∪g+1

j=1zj decomposes each pair of pants in P into two hexagons.

Proof. Suppose that a curve zj intersects a curve ci contained in the boundary of a pair
of pants p1. The curves of the pants decomposition cut zj into segments. Let l be a
segment of zj (or one of such segments) contained in p1. Since curves do not have un-
necessary intersections, l looks as shown in Fig. 1.3(a) or (b). If l looks as in Fig. 1.3(a)
then for some of the three boundary curves of p1 the condition |ci

⋂
(∪g+1

j=1zj)| = 2 is
broken. This implies that it is as one shown in Fig. 1.3(b). Therefore, p1 looks like in
Fig. 1.3(c), i.e. p1 is decomposed into two hexagons.

�

Remark 1.6. If Z is a zipper system compatible with a pants decomposition P then
there exists an involution σ such that σ preserves Z pointwise and such that σ(ci) = ci
for each ci ∈ P . To build this involution one needs only to switch the pairs of hexagons
described in Lemma 1.5.

(a) (b) (c)

Figure 1.3. Zipper system Z decomposes each pair of pants into two hexagons.
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Definition 1.7 (Zipped flip). Given a pants decomposition P = 〈c1, . . . , c3g−3〉 and a
zipper system Z compatible with P we define a zipped flip of pants decomposition as
it is shown in Fig. 1.4. Formally speaking, a zipped flip fi of a pants decomposition
P = 〈c1, . . . , c3g−3〉 in the curve ci is a replacing of a regular curve ci ⊂ P by a unique
curve c′i satisfying the following properties:

• c′i does not coincide with any of c1, . . . , c3g−3;
• c′i intersects Z exactly in two points;
• c′i ∩ cj = ∅ for all j 6= i.

Clearly, fi(P ) is a new pants decomposition of S, and Z is a zipper system compatible
with fi(P ). The uniqueness of the curve c′i satisfying the properties in Definition 1.7
verifies trivially. In particular, it is easy to see that fi ◦ fi(ci) = ci.

fici

c′i

Figure 1.4. A zipped flip of a pants decomposition.

Definition 1.8 (Lagrangian plane of pants decomposition). Let P = 〈c1, . . . , c3g−3〉 be
a pants decomposition. A Lagrangian plane L(P ) ⊂ H1(S,Z) is a sublattice spanned
by the homology classes h(ci), i = 1, . . . , 3g− 3 (here ci is taken with any orientation).

An obvious computation shows that any flip preserves the Lagrangian plane defined
by the pants decomposition.

Definition 1.9 (Category of zipped pants decompositions). The category Pg(Z,L) of
zipped pants decompositions of a genus g surface S depending on a given zipper system
Z and a given Lagrangian plane L ⊂ H1(S,Z) is the following:
Objects: all pants decompositions P of S compatible with Z and such that L(P ) = L;
Elementary morphisms: zipped flips of regular curves (defined with respect to Z).
All other morphisms are compositions of elementary ones.

A similar construction gives a category of ideal triangulations. Namely, let (S,M)
be a closed surface S with a finite set of marked points M . An ideal triangulation of
(S,M) is a decomposition of S into triangles with vertices in M . We allow triangles
whose two or even three vertices coincide; we also allow self-folded triangles (i.e. ones
two of whose sides coincide), see Fig. 1.5 for the list of possible triangles and [6] for
the detailed exposition.
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A flip of a triangulation is an exchange of the diagonal in a quadrilateral (see
Fig. 1.5). Note that some edges are not flippable: namely, an edge is flippable un-
less it is an inner edge of a self-folded triangle. An edge e of a triangulation will be
called non-regular if it is an inner edge of a self-folded triangle, otherwise e will be called
regular. It is well-known that flips act transitively on the set of all ideal triangulations
of a given surface.

Definition 1.10 (Category of ideal triangulations). The category Tg,n of ideal trian-
gulations is the following:

Objects: ideal triangulation of a genus g surface S with n marked points;
Elementary morphisms: flips of triangulations.
All other morphisms are compositions of elementary ones.

(a) (b)

Figure 1.5. Ideal triangulations: (a) types of triangles admissible for
an ideal triangulation; (b) flip inside a quadrilateral.

Lemma 1.11. The category Pg(Z,L) is isomorphic to the category T0,g+1.

Proof. Let P be a pants decomposition of S compatible with a zipper system Z. Con-
sider the zipper system Z. By Definition 1.3 Z decomposes S into two spheres S+ and
S− with g + 1 holes. Let

S ′ = S+/∼,

where x ∼ y if both x and y are points of the same boundary component of S+. Then
S ′ is a sphere with g+1 punctures (one puncture for each equivalence class of boundary
points).

Now, let P be any pants decomposition compatible with Z. Then the curves of
P decompose S+ into hexagons, one hexagon in S+ for each pair of pants of P (see
Lemma 1.5). The factorization by the equivalence relation takes each hexagon into
an ideal triangle at S ′ (each curve ci turns into an edge ei of a triangle), and we obtain
an ideal triangulation of S ′.

So, for each pants decomposition P compatible with Z we build an ideal triangulation
T = θ(P ) of S ′. It is easy to see that θ takes regular curves of pants decompositions
to regular edges of triangulations (and non-regular ones to non-regular). Moreover, if
fi is a flip of P in the curve ci (defined with respect to Z), then

(1.1) θ(fi(P )) = f ′

i(θ(P )),

where f ′

i is the flip of T in the edge ei. Restricting θ to pants decompositions P
satisfying L(P ) = L we obtain a functor from Pg(Z,L) to T0,g+1.



8 ANNA FELIKSON AND SERGEY NATANZON

Furthermore, if θ(P ) = T then for each elementary morphism f ′

i of the triangulation
T there exists an elementary morphism fi of the pants decomposition P satisfying
condition 1.1. Since flips act transitively on triangulation of the same surface, θ is
surjective. It is clear the θ is also injective. Therefore, θ is an equivalence of the
categories.

�

Corollary 1.12. Morphisms of Pg(Z,L) act transitively on the objects.

Proof. It is well known that flips act transitively on the ideal triangulations of surface.
In view of Lemma 1.11 this implies that morphisms of Pg(Z,L) act transitively on the
objects of the same category.

�

Remark 1.13. In [6], Fomin, Shapiro, Thurston described a wider category of tagged
ideal triangulations which allows flips in each side of any triangle, not only in regular
ones. One can easily reproduce the same construction in the context of pants decom-
positions, so that the zipped flips of the “tagged” pants decompositions would be in
correspondence with mutations of quivers arising from triangulations of a sphere.

1.2. Unzipped pants decompositions.

Definition 1.14 (Unzipped flip). Let P = 〈c1, . . . , cn〉 be a pants decomposition. De-
fine an unzipped flip of P in the curve ci (or just a flip) as a replacing of a regular curve
ci ⊂ P by any curve c′i satisfying the following properties:

• c′i does not coincide with any of c1, . . . , cn;
• |c′i ∩ ci| = 2;
• c′i ∩ cj = ∅ for all j 6= i.

Proposition 1.15. L(P ) = L(f(P )) for any unzipped flip f of P .

Proof. Let p1 ∪ p2 be two pairs of pants glued along a curve e affected by the flip f .
Let a, b, c, d be four curves cutting p1 ∪ p2 out of S. Suppose that f(e) separates a and
b from c and d in p1 ∪ p2. Denote by h(c) the homology class of c. Then

h(f(e)) = h(a) + h(b) = h(c) + h(d) ∈ L(P ).

The similar relation holds when f(e) separates a and c from b and d or a and d from
b and c.

�

Lemma 1.16. Let P be a pants decomposition and c ∈ P be a curve. A flip f of P in
the curve c is defined uniquely by a homology class of f(c) up to a Dehn twist along c.

Proof. Consider two pairs of pants p1 and p2 adjacent to c, let M = p1 ∪ p2. Since
|(f(c) ∩ c)| = 2 and f(c) ∩ ∂M = ∅, the segment f(c) ∩ pi, i = 1, 2 looks as shown
in Fig. 1.3(a). The homology class of f(c) defines which of the ends of f(c) ∩ p1 are
glued to which of the ends of f(c) ∩ p2. So, the only freedom in gluing of p1 to p2 is
generated by a Dehn twist along c.

�
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The result of Lemma 1.16 may be restated as follows.

Lemma 1.17. Let P be a pants decomposition compatible with a zipper system Z. Let
fc be a flip of P in a curve c ∈ P . Then fc is a zipped flip for some Z ′ = Tm

c (Z),
where m ∈ Z and Tc is a Dehn twist along c.

Remark 1.18. In particular, Lemma 1.17 implies that if P0 is a pants decomposition
compatible with a zipper system Z then after any sequence of flips f1, . . . , fk we obtain
a decomposition Pk compatible with some zipper system Zk. Moreover, one can choose
zipper systems Z1, . . . , Zk, Z0 = Z so that fi is a zipped flip with respect to Zi and
Zi+1 = Tmi

ci
(Zi) for the curve ci ∈ Pi affected by fi.

A Dehn twist along a curve c ∈ P is a composition of two flips (see Fig. 1.6).

c

Figure 1.6. Dehn twist as a composition of two flips.

Definition 1.19 (Category of unzipped pants decompositions). A category Pg(L) for
the given Lagrangian plane L is the following:

Objects: pants decompositions P of a genus g surface S satisfying L(P ) ∈ L;
Elementary morphisms: unzipped flips.
Other morphisms are compositions of elementary ones.

Remark 1.20 (A. Hatcher, [11]). Morphisms of Pg(L) do not act transitively an the
objects of the same category. To see this suppose that the surface S is embedded in
R

3 and a pants decomposition P is such that each curve of P is contractible inside the
inner handlebody defined by S ⊂ R

3. Then each flip preserves this property of P . On
the other hand there exists a pants decomposition P ′ ∈ L(P ) with non-contractible
(inside the handlebody) curves (see Fig. 1.7 for a non-contractible curve c such that
h(c) ∈ L(P )).

Remark 1.21. It is not clear if flips act transitively on the pants decompositions whose
curves are contractible in a given handlebody of a S ⊂ R

3.

Example 1.22. (An orbit of a pants decomposition of S2.) In this example we describe
an orbit of an arbitrary pants decomposition of a surface of genus 2. The description
is in terms of a graph Γ where a vertex vP ∈ Γ correspond to a pants decompositions
P and an edge e ∈ Γ connecting vP to vP ′ correspond to a flip f such that P ′ = f(P ).

A pants decomposition P of S2 may be of one of two types:
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c1
c2 c3 c

Figure 1.7. Pants decomposition P = 〈c1, c2, c3〉 and a curve c such
that h(c) = h(c2) and c is not contractible inside the inner handlebody
(the curve c is linked non-trivially with c3).

• (a) “non-self-folded”: P consists of two non-self-folded pairs of pants (the pants
decompositions of this type are denoted by squares in Fig. 1.8);

• (b) “self-folded”: P consists of two handles glued along the holes (the pants
decompositions of this type are denoted by circles in Fig. 1.8).

For each of the two types of vertices of Γ we need to understand how many edges are
incident to the vertex. In fact, the number of such edges is always infinite: if c ∈ P is a
regular curve, Tc is a Dehn twist along c and f(c) is a flip of the curve c then Tc(f(c))
is also a flip of c (see Fig. 1.6). On the other hand, Lemma 1.16 states that modulo
Dehn twist Tc there are exactly two possibilities for the flip f(c). Therefore, instead
of Γ we will draw the simplified graph Γ obtained from Γ after factorizing by Dehn
twists Tc for each flipped curve c. Then for each regular curve c ∈ P there are exactly
2 edges emanating from vertex vP ∈ Γ. If P is of non-self-folded type, there are 3
regular curves in P , so there are 6 edges incident to vP ∈ Γ. If P is of self-folded type,
there is a unique regular curve in P , so there are only two edges incident to vP ∈ Γ.
The graph Γ is shown in Fig. 1.8.

We will say that a path γ ∈ Γ is alternating if any edge of γ connects two vertices of
different types. It is easy to see that for each path γ ∈ Γ there exists an alternating path
γ′ ∈ Γ with the same endpoints. Indeed, each edge of Γ connecting two vertices of the
same type (those are always “square” vertices) may be substituted by an alternating
path of two edges. Since a Dehn twist along a curve of pants decompositions is a
composition of two flips (each changing the type of a pants decomposition in case of
S2), we obtain the same property for an arbitrary path in Γ:

For each path γ ∈ Γ there exists an alternating path γ′ ∈ Γ with the same endpoints.

Example 1.22 shows that the pants decompositions containing the curves separating
handles play special role among other pants decompositions.

Definition 1.23 (Standard pants decomposition). A pants decomposition P is stan-
dard is P contains g curves c1, . . . , cg such that ci cuts out of S a handle hi.

1.3. Admissible double pants decompositions.
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1

1

1

1
1

2

2

2
2

2

3

3

3

3

3

Figure 1.8. An orbit of a pants decomposition of S2 (modulo Dehn
twists). Vertices marked by squares and circle correspond to non-self-
folded and self-folded pants decompositions respectively. Edges corre-
spond to flips. The labels 1, 2, 3 on the edges show which of the three
curves of the decomposition is flipped along this edge.

Definition 1.24 (Lagrangian planes in general position). Two Lagrangian planes L1

and L2 are in general position if H1(S,Z) = 〈L1,L2〉.

See Fig. 1.9 for an example of two pants decompositions spanning a pair of La-
grangian planes in general position.

Pa Pb

Figure 1.9. Pair of pants decompositions (Pa, Pb).

Definition 1.25 (Double pants decomposition). A double pants decomposition DP =
(Pa, Pb) is a pair of pants decompositions Pa and Pb of the same surface such that the
Lagrangian planes La = L(Pa) and Lb = L(Pb) spanned by these pants decompositions
are in general position.

Definition 1.26 (Handle twists). Given a double pants decomposition DP = (Pa, Pb)
we define an additional transformation which may be performed if Pa and Pb contain
the same curve ai = bi separating the same handle h, see Fig. 1.10. Let a ∈ h and b ∈ h

be the only curves of Pa and Pb contained in h. Then a handle twist in h is a Dehn
twist along a or along b in any of two directions (see Fig. 1.10(b)).
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a b

a′′

b′′

(a) (b)

ai = bi

Figure 1.10. Handle twists: (a) handle (double self-folded pair of
pants); (b) the same handle after one of the four possible handle twists.

Definition 1.27 (Category of double pants decompositions). A category DPg,0 of dou-
ble pants decompositions of a genus g surface S = Sg,0 is the following:

Objects: double pants decompositions DP = (Pa, Pb) of S.
Elementary morphisms:

• unzipped flips of Pi (i ∈ {a, b});
• handle twists.

Other morphisms are compositions of elementary ones.

Remark 1.28. The index “g, 0” in the notation DPg,0 is to underline that this category
concerns surfaces of genus g without marked points.

Definition 1.29 (DP-equivalence). Two double pants decompositions are DP-equivalent
if there exists a morphism of DPg,0 taking one of them to another.

Definition 1.30 (Standard double pants decomposition, principle curves). A double
pants decomposition (Pa, Pb) is standard if there exist g curves c1, . . . , cg such that the
following two conditions hold:

• ci ∈ Pa ∩ Pb;
• ci cut out of S a handle hi.

The set of curves {c1, . . . , cg} in this case is a set of principle curves of (Pa, Pb).

See Fig. 1.11 for an example of a standard double pants decomposition.

Pa Pb

Figure 1.11. Standard double pants decomposition (Pa, Pb). The prin-
ciple curves are shown by bold lines.
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Definition 1.31 (Admissible decomposition). A double pants decomposition (Pa, Pb)
is admissible if it is DP-equivalent to some standard double pant decomposition.

Example 1.32. It is easy to check that a double pants decomposition (Pa, Pb) shown
in Fig. 1.9 is admissible.

Remark 1.33. It is not clear if the set of all admissible double pants decompositions is
smaller than the set of all double pants decompositions.

The set of admissible double pants decompositions is closed under the action of flips
and handle twists, so we may define a subcategory of DPg,0:

Definition 1.34 (Category of admissible double pants decompositions). A category
ADPg,0 of admissible double pants decompositions of a genus g surface is the following:

Objects: admissible double pants decompositions DP = (Pa, Pb) of a genus g sur-
face.

Elementary morphisms:

• unzipped flips of Pi (i ∈ {a, b});
• handle twists.

Other morphisms are compositions of elementary ones.

Our next aim is to prove that morphisms of ADPg,0 act transitively on the objects
of ADPg,0. This is done in Section 2 for the case of g = 2 and in Section 3 for a general
case.

2. Transitivity of morphisms in case g = 2

In this section we prove the Main Theorem for the case of surface of genus g = 2
containing no marked points. The proof is based on the following result 2.2 of Hatcher
and Thurston [13].

Definition 2.1 (S-moves). Let P be a pants decomposition of S and a, c ∈ P be
two curves such that c cuts out of S a handle h and a ∈ h. An S-move of a pants
decomposition P in a curve a is a substitution of a by a curve a′, where a′ ∈ h is an
arbitrary curve such that |a ∩ a′| = 1.

Theorem 2.2 (A. Hatcher, W. Thurston [13], [12]). Let Sg,n be a surface of genus g
with n holes. Any pants decomposition of Sg,n can be transformed to any other pants
decomposition of Sg,n via flips and S-moves.

Remark 2.3. In the initial paper of Hatcher and Thurston [13] the surface Sg,n is
supposed to be closed surface containing no marked points. This assumption is removed
in [12].

Remark 2.4. Theorem 2.2 does not imply immediately transitivity of morphisms in
ADPg,0 (Theorem 3.19) since the set of handle twists in ADPg,0 is much smaller than
the set of S-moves in Theorem 2.2 (the former depends on the relative position of two
decompositions).
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Now we will prove several lemmas: Lemmas 2.6 and 2.7 will be used for the proof of
transitivity both in case of g = 2 and in general case. Lemma 2.8 is specific for genus
2, its generalization requires more work for general genus.

Definition 2.5 (Double S-move). Under the conditions of definition of a handle twist
(Definition 1.26), a double S-move in h is the move switching the curves a and b.

Lemma 2.6. Double S-move is a morphism of DPg,0.

Proof. Any double S-move is a composition of 3 handle twists, see Fig. 2.1.
�

i

a b

a′
b′

a′′

b′′
a′′′

b′′′

Figure 2.1. Double S-move as a composition of three handle twists.

Lemma 2.7. Let (Pa, Pb) and (P ′

a, P
′

b) be two standard double pants decomposition
containing the same handle h. Then (Pa, Pb)|h may be transformed to (P ′

a, P
′

b)|h by
a sequence of handle twists in h (where (P1, P2)|h is a restriction of the double pants
decomposition to the handle h).

Proof. Let a, b, a′, b′ be the curves of Pa, Pb, P
′

a, P
′

b contained in h. We need to find a
composition ψ of handle twists in h such that ψ(a) = a′, ψ(b) = b′.

First, suppose that a = a′. Then ψ is a composition of Dehn twists along a (this
follows from the fact that 〈h(a), h(b)〉 = 〈h(a), h(b)〉, where 〈x, y〉 ⊂ H1(S,Z) is a
sublattice spanned by x and y).

Next, suppose that a′ = b. Then a double S-move interchanging a with b reduces
the question to the previous case.

Now, suppose that a′ 6= a, b. Then we have

h(a′) = lah(a) + lbh(b),

where la, lb ∈ Z are coprime. Clearly, a non-zero homology class of a curve in h defines
a homotopy class. So, we only need to find a sequence ψ of morphisms of DPg,0 taking
a to any curve x ∈ S ′ such that h(x) = lah(a)+lbh(b). Since la and lb are coprime and a
handle twist transforms (h(a), h(b)) into either (h(a)±h(b), h(b)) or (h(a), h(b)±h(a)),
this sequence of handle twists do exists.

�

Lemma 2.8. Let (Pa, Pb) be a standard double pants decomposition of S2,0. Let ϕ =
ϕk ◦ · · · ◦ ϕ1 be a sequence of flips of Pa such that ϕ(Pa) is a standard decomposition.
Then there exists a morphism η of ADP2,0 such that η((Pa, Pb)) is a standard double
pants decomposition and η((Pa, Pb)) = (ϕ(Pa), P

′

b) (where P ′

b is arbitrary).
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Proof. Recall from Example 1.22 that for each two pants decompositions P1 and P2

connected by a sequence of flips there exists a sequence of flips connecting these pants
decompositions and such that each flip in this sequence changes the type of pants
decomposition from “self-folded” into “non-self-folded” or back (in the other word
takes a standard pants decomposition to a non-standard one and back). This implies
that it is sufficient to show the lemma for compositions ϕ = ϕ2 ◦ ϕ1 of two flips.

If ϕ2 changes the same curve as ϕ1 does, then ϕ is a twist and the required compo-
sition η is shown in Fig. 2.2.

η1 η3 ◦ η2

η5 ◦ η4

η6

fa, fb

fa, fb

S-move

S-move

ϕ1 ϕ2

(a)

(b)

Figure 2.2. (a) Twist ϕ(Pa): ϕ = ϕ2 ◦ ϕ1; (b) Composition η(Pa, Pb)
for the twist ϕ.

If ϕ1 and ϕ2 change different curves then (modulo twists) ϕ looks like in Fig. 2.3(a)
and the required composition η is shown in Fig. 2.3(b).
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η1 η2

ϕ1 ϕ2

(a)

(b)

Figure 2.3. (a) Composition ϕ(Pa) of two flips ϕ = ϕ2 ◦ ϕ1; (b) Com-
position η = η((Pa, Pb)) for ϕ: η(Pa) = ϕ(Pa), η(Pb) is shown.

This completes the proof of Lemma 2.8.
�

Theorem 2.9. Morphisms of ADP2,0 act transitively on the objects of ADP2,0.

Proof. By Definition 1.27, the objects of ADP2,0 are admissible double pants decom-
positions, so, it is sufficient to prove the transitivity on the set of standard pants
decompositions.

Let (Pa, Pb) and (P ′

a, P
′

b) be two standard double pants decompositions. If the princi-
ple curve of (Pa, Pb) coincides with one of (P ′

a, P
′

b) then Lemma 2.7 implies that (Pa, Pb)
is DP-equivalent to (P ′

a, P
′

b).
Suppose that the principle curves of (Pa, Pb) and (P ′

a, P
′

b) are different. It is left to
show that there exists a sequence η = ηn ◦ · · · ◦ η1 of morphisms of ADP2,0 such that
η((Pa, Pb) = (P ′

a, P
′′

b ) and P ′′

b is arbitrary pants decomposition turning the pair (P ′

a, P
′′

b )
into a standard pants decomposition.

By Theorem 2.2, there exists a sequence ψ = ψk ◦ · · ·◦ψ1 of flips and S-moves taking
Pa to P ′

a. By definition, in case of g = 2 an S-move is applicable only to standard
double pants decompositions. This implies that the sequence ψ is a composition of
several subsequences of two types:

• subsequences of flips, each subsequence takes a standard pants decomposition
to another standard one;

• S-moves.

By Lemma 2.8, a subsequence of the first type may be extended to a morphism
of ADP2,0 taking a standard pant decomposition to another a standard one. By
Lemma 2.7 any S-move of the component Pa may be realized as a sequence of mor-
phisms of ADP2,0 taking a standard double pants decomposition to a standard one.
This implies that ψ may be extended to a morphism of ADP2,0 and the theorem is
proved.
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�

3. Transitivity of morphisms in case of surfaces without marked points

In this section we adjust the proof of Theorem 2.9 to the case of higher genus.

3.1. Preparatory lemmas.

Lemma 3.1. Let P be a pants decomposition and h be a handle cut out by some c ∈ P .
Let ϕ be an S-move in h. Then ϕ = (ϕ1)

−1 ◦ ϕ2 ◦ ϕ1 where ϕ1 is a sequence of flips
preserving h and ϕ2 is an S-move of a standard pants decomposition.

Proof. Consider the surface S \ h. By Theorem 2.2 it is possible to transform any
pants decomposition of S \h to a standard one (clearly it may be done using flips only:
one may use zipped flips with respect to any zipper system compatible with P ). This
defines the sequence ϕ1. Then we apply S-move in the handle h and apply ϕ−1

1 to bring
the pants decomposition of S \ h into initial position.

�

In the proof of Theorem 2.9 we used the fact that in case of g = 2 S-moves are
defined for standard decompositions only. This does not hold for g > 2. However, in
view of Lemma 3.1 the following holds.

Lemma 3.2. Let Pa and P ′

a be standard pants decompositions and there exists a se-
quence ϕ = ϕk ◦ · · · ◦ϕ1 of flips and S-moves such that ϕ(Pa) = P ′

a. Then it is possible
to choose ϕ in such a way that all S-moves in ϕ are applied to standard decompositions.

Lemma 3.3. Let S0,g be a sphere with g holes. Then any pants decomposition of S0,g

may be transformed to any other pants decomposition of S0,g by a sequence of flips.

Proof. The statement follows immediately from Theorem 2.2 since S-moves could not
be applied to S0,g.

�

3.2. Transitivity in case of the same zipper system.

Definition 3.4 ((Pa, Pb) compatible with Z). A double pants decomposition (Pa, Pb)
is compatible with a zipper system Z if Pa is compatible with Z and Pb is compatible
with Z.

In this section we will prove that if (Pa, Pb) an (P ′

a, P
′

b) are two admissible double
pants decompositions compatible with the same zipper system then (Pa, Pb) is DP-
equivalent to (P ′

a, P
′

b).

Definition 3.5 (Strictly standard decomposition). A double pants decomposition (Pa, Pb)
is strictly standard if it is standard and c ∈ {Pa ∪ Pb} \ {Pa ∩ Pb} if and only if c is
contained inside some handle.

Example 3.6. The double pants decomposition in Fig. 1.11 is standard but not strictly
standard.
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Remark 3.7 (Strictly standard decompositions are minimal). Strictly standard decom-
positions could be also characterized by any of the following equivalent minimal prop-
erties:

• double pants decompositions with minimal possible number of distinct curves
(i.e. with 4g − 3 curves);

• double pants decompositions with minimal possible number of intersections of
curves (i.e. with g intersections).

We will not use these characterizations below.

To prove transitivity of morphisms of ADPg,0 on the objects of ADPg,0 it is suffi-
cient to prove DP-equivalence of all standard double pants decompositions (since the
objects of ADPg,0 are admissible ones). Furthermore, any standard double pants de-
composition is DP-equivalent to some strictly standard one in view of Lemma 3.3. So,
it is sufficient to prove the transitivity of morphisms of ADPg,0 on strictly standard
double pants decompositions.

To prove the transitivity of morphisms of ADPg,0 on strictly standard double pants
decompositions we do the following:

• we show that each strictly standard double pants decomposition is compatible
with some zipper system (see Proposition 3.8);

• we prove that morphisms of ADPg,0 act transitively on strictly standard double
pants decompositions compatible with a given zipper system (see Lemma 3.16);

• Finally, we show that for two different zipper systems Z and Z ′ we may find
a sequence of zipper systems Z = Z1, Z2 . . . , Zk = Z ′, in which Zi differs from
Zi+1 by a twist along some curve c, |c ∩ Zi| = 2. We show (Lemma 3.17) that
in this case morphisms of ADPg,0 are sufficient to change Zi to Zi+1.

Proposition 3.8. For any strictly standard double pants decomposition (Pa, Pb) there
exists a zipper system Z compatible with (Pa, Pb).

Proof. An intersection of the required zipper system Z = 〈z0, z1, . . . , zg〉 with a handle
looks as shown in Fig. 3.1.(a): if ai and bi are curves of Pa and Pb contained in a
given handle hi, i = 1, . . . , g, than hi contains a zipper zi such that |zi ∩ a1| = 1 and
|zi ∩ b1| = 1. The curve z0 visits each of the handles and goes in hi along zi.

The condition that (Pa, Pb) is strictly standard leads to the existence of appropriate
z0 outside of handles: to show this we build a dual graph of (Pa, Pb) substituting each
pair of pants by an Y -shaped figure and each handle by a point (see Fig. 3.1.(b)). Since
(Pa, Pb) is strictly standard we obtain a tree. Then z0 is built as any curve on S which
projects to a curve z̄0 going around the tree (more precisely, z̄0 determines the order
in which z0 visits the handles of (Pa, Pb)).

�

Proposition 3.9. Let (Pa, Pb) be a standard double pants decomposition and Z be a
zipper system compatible with (Pa, Pb). Then

• each of the handles of (Pa, Pb) contains exactly one curve of Z,
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ai

bi

(a) (b)

zi

z0

h

Figure 3.1. A zipper system for a given standard double pants decom-
position: (a) behavior in a handle; (b) outside of the handles: a dual
graph of a strictly standard pants decomposition.

• if z0 ∈ Z does not belong entirely to any handle then z0 visits each of g handles
exactly once.

Proof. Let c be a curve separating a handle h in (Pa, Pb). Then each curve on S
intersects c even number of times. By definition of a zipper system compatible with
a pants decomposition, c is intersected by exactly one of the curves zi. Notice that a
pairs of pants dissected along a connected curve does not turn into a union of simply-
connected components, which implies that there is a curve zj ∈ Z, zj 6= zi which
intersects the handle h. Since zj ∩ c = ∅, zj is contained in h. This proves the first
statement of the proposition. The second statement follows from the fact that each
curve ci separating a handle in (Pa, Pb) should be intersected by some of zi.

�

Definition 3.10 (Principle zipper, cyclic order). Let (Pa, Pb) be a standard double
pants decomposition and Z = 〈z0, z1, . . . , zg〉 be a zipper system compatible with
(Pa, Pb). Suppose that z0 is the curve visiting all handles of (Pa, Pb). Then z0 is a
principle zipper of Z.

A cyclic order of Z is (z1, z2, . . . , zg) if an orientation of z0 goes from hi to hi+1,
where hi is the handle containing zi and i is considered modulo g + 1 (more precisely,
Z decomposes S into two (g + 1)-holed spheres S+ and S−, so that we may choose
a positive orientation of z0 as one which goes in positive direction around S+; for a
definition of a cyclic order we choose the positive orientation of z0).

Remark 3.11. The definition of cyclic order depends on the choice of S+ among two
subsurfaces. However, the definition of the same cyclic order in two standard double
pants decompositions is independent of this choice (provided that the choice of S+ is
the same for both decompositions).

Proposition 3.12. Let (Pa, Pb) and (P ′

a, P
′

b) be two standard pants decompositions
compatible with the same zipper system Z = 〈z0, z1, . . . , zg〉. Suppose that z0 is the prin-
ciple zipper of Z both for (Pa, Pb) and (P ′

a, P
′

b) and the cyclic order of Z is (z1, z2, . . . , zn)
both for (Pa, Pb) and (P ′

a, P
′

b).
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Then the set of principle curves of (Pa, Pb) coincides with the set of principle curves
of (P ′

a, P
′

b).

Proof. Let c1, . . . , cg be the principle curves of (Pa, Pb) and c′1, . . . , c
′

g be the principle
curves of (P ′

a, P
′

b). Since the cyclic order of Z is the same for both double pants
decompositions, we may assume that z0∩ci = z0∩c

′

i. Let S+ and S− be the connected
components of S \ Z. Then ci ∩ S

+ separates from S+ an annulus containing zi as a
boundary component. Clearly, the same holds for ci ∩ S− as well as for c′i ∩ S+ and
c′i ∩ S

−. This implies that ci is homotopy equivalent to c′i (more precisely, there exists
an isotopy of ci to c′i with the fixed points ci ∩ z0 = c′i ∩ z0).

�

Corollary 3.13. In assumptions of Proposition 3.12, (Pa, Pb) may be transformed to
(P ′

a, P
′

b) by morphisms of ADPg,0 preserving the principle curves of the standard pants
decomposition.

Proof. This follows from Proposition 3.12, Lemma 2.7 and Lemma 3.3. �

Corollary 3.13 implies that a standard pants decomposition is determined (mod-
ulo action of morphisms of ADPg,0) by the set of principle curves. Thus, it makes
sense to consider a set of principle curves itself, independently of the complete pants
decomposition.

Definition 3.14. A zipper system Z is compatible with a set of principle curves if
Z = 〈z0, z1, . . . , zg〉 where z0 visits each handle exactly once and each of the handles
contain exactly one of zi, i = 1, . . . , g.

In other words, Z is compatible with a set of principle curves if and only if it is
compatible with some standard pants decomposition containing this set of principle
curves.

Proposition 3.15. Let (Pa, Pb) and (P ′

a, P
′

b) be two standard pants decompositions
compatible with the same zipper system Z = 〈z0, z1, . . . , zg〉. Suppose that z0 is the
principle zipper of Z both for (Pa, Pb) and (P ′

a, P
′

b). Then (Pa, Pb) is DP-equivalent to
(P ′

a, P
′

b).

Proof. By Proposition 3.12 together with Corollary 3.13 the proposition is trivial unless
the cyclic order of Z is different for the cases of (Pa, Pb) and (P ′

a, P
′

b). It is shown in
Fig. 3.2 that the transposition of two neighboring zippers zi and zi+1 in the cyclic order
of Z may be realized by morphisms of ADPg,0.

In more detail, in Fig. 3.2, left we show (a part of) a zipper system Z compatible
with a set of principle curves. In view of Lemma 2.7, all double pants decompositions
of a handle are DP-equivalent, so we may choose any of them, say one denoted by

(P
(1)
a , P

(1)
b ) in Fig. 3.2 (we draw only the front, “ visible” part of the decomposition,

the non-visible part completely repeats it). Applying two flips (one for Pa and one for

Pb) we obtain a double pants decomposition (P
(2)
a , P

(2)
b ), and then after two more flips

we obtain a standard double pants decomposition (P
(3)
a , P

(3)
b ). Choosing appropriate
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curves in the handles of (P
(3)
a , P

(3)
b ) (we use handle twists for that) we turn it into a

standard double pants decomposition compatible with Z. Notice that the cyclic order
in Z is changed: in the initial decomposition (an orientation of) the principle zipper
z0 visits first the handle containing z1 and then the handle containing z2, while in
the final decomposition the same orientation of z0 visits the handles in reverse order.
So, the transposition of two adjacent (in the cyclic order) handles is realizable by the
morphisms of ADPg,0.

Since the permutation group is generated by transpositions of adjacent elements, the
proposition is proved.

�

z0

z0

z1z1

z2

z2

Z Z

(P
(1)
a , P

(1)
b ) (P

(2)
a , P

(2)
b ) (P

(3)
a , P

(3)
b )

Figure 3.2. Transposition in a cyclic order is realizable by morphisms
of ADPg,0.

Lemma 3.16. Let (Pa, Pb) and (P ′

a, P
′

b) be two standard pants decompositions compat-
ible with the same zipper system Z. Then (Pa, Pb) is DP-equivalent to (P ′

a, P
′

b).

Proof. By Proposition 3.15, the lemma is trivial if the principle zipper of Z is the same
for (Pa, Pb) and (P ′

a, P
′

b). So, we only need to show that the morphisms of DPg,0 allow
to change the principle zipper in Z. We will show that it may be done by flips only.

Let Z be a zipper system (see Fig. 3.3) compatible with a set c̄ of principle curves.
Let (Pa, Pb) be a standard double pants decomposition containing this set of principle
curves. Let c̄′ be another set of principle curves compatible with Z and such that
z0 is not a principle zipper (see Fig. 3.3, down). We choose a standard double pants
decomposition (P ′

a, P
′

b) with a set of principle curves c̄′, see Fig. 3.3 (to keep the figure
readable we do not draw the curves of (P ′

a, P
′

b) decomposing S \ ∩g
i=1hg). To prove the

lemma it is sufficient to show that Pa is flip-equivalent to P ′

a and Pb is flip-equivalent
to P ′

b.
The fact that Pa is flip-equivalent to P ′

a follows from Corollary 1.12. Indeed, both
Pa and P ′

a are compatible with Z and clearly belong to the same Lagrangian plane, so
Pa is flip-equivalent to P ′

a as objects of Pg(Z,L).
It is left to show that Pb is flip-equivalent to P ′

b. We will do that by induction based
on the following statement:
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Z, c̄

Z, c̄′

(Pa, Pb)

(P ′

a, P ′

b)

Figure 3.3. Principle zipper may be changed by morphisms of ADPg,0.

Claim. Let P and P ′ be two pants decompositions in the same Lagrangian plane, let
{c1, . . . , cg} ⊂ P ′ be homologically non-trivial curves. Let P ′′ be a pants decompositions
flip-equivalent to P and containing c1, . . . , cg. Then P ′ is flip-equivalent to P .

To prove the claim consider S ′ = S \ {∪g
i=1ci}. Since h(ci) 6= 0 the surface S ′ is a

sphere with 2g holes. Thus, by Lemma 3.3 flips act transitively on pants decomposition
of S ′. This implies that P ′ is flip equivalent to P ′′ which is by assumption flip equivalent
to P , and the claim is proved.

Denote by di a curve shown in Fig. 3.4(a), so that d0 = cg. To show that Pb is
flip-equivalent to P ′

b we demonstrate that some pants decomposition Pi containing the
curves c1, c2, . . . , cg−1, di is flip-equivalent to some pants decomposition Pi+1 contain-
ing c1, c2, . . . , cg−1, di+1, where i = 0, 1, . . . , g − 1. Then applying the Claim several
times we will see that Pb is flip-equivalent to P ′

b. A pants decomposition shown in
Fig. 3.4(b) contains c1, c2, . . . , cg−1 and both di and di+1, so any pants decomposition
containing c1, c2, . . . , cg−1, di is flip-equivalent to any pants decomposition containing
c1, c2, . . . , cg−1, di+1, and the lemma is proved.

�

3.3. Proof of transitivity in general case.

Lemma 3.17. Let Z be a zipper system, let σ be an involution preserving Z pointwise
and let c be a curve satisfying |Z ∩ c| = 2, σ(c) = c. Denote by Tc a Dehn twist along
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c1

c1

c2c2

ci+1ci+1

cg

cg

cg−1

cg−2

cici di

di

di+1

(a) (b)

Figure 3.4. Proving that Pb is flip-equivalent to P ′

b.

c. Then there exist standard pants decompositions (Pa, Pb) and (P ′

a, P
′

b) compatible with
Z and Z ′ = Tc(Z) respectively and DP-equivalent to each other.

The same statement holds for Z and Z ′′ = Tm
c (Z) for any positive integer degree m.

Proof. Since |Z ∩ c| = 2, the curve c either intersects twice the same curve z0 ∈ Z or
have single intersections with two distinct curves z1, z2 ∈ Z. Consider this two cases.

Suppose that |c∩ z0| = 2 and z0 ∈ Z. Since σ(c) = c, the curve c decomposes S into
two parts, as in Fig. 3.5(a). Choose a strictly standard double pants decomposition
(Pa, Pb) containing c, compatible with Z and such that z0 is a principle zipper (see
Fig. 3.5(b)). Then (Pa, Pb) is also compatible with Z ′ = Tc(Z).

cc
σ

(a) (b)

Figure 3.5. Case |c∩z0| = 2: (a) c decomposes S; (b) strictly standard
double pants decomposition (only principle curves and c are drown).

Suppose that |c ∩ z1| = |c ∩ z2| = 1, z1, z2 ∈ Z. Choose (Pa, Pb) so that z1 and z2
are not principle zippers and z1 and z2 are two neighboring curves in the cyclic order.
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Fig. 3.6 contains a sequence of morphisms of DPg,0 taking (Pa, Pb) to a standard double
pants decomposition compatible with Z ′ = Tc(Z).

The statement concerning Z ′′ = Tm
c (Z) follows immediately after multiple applica-

tion of the initial statement.
�

c

S

S

Figure 3.6. Twist Tc along c as a composition of elementary morphisms
of DPg,0: the steps labeled by “S” are double S-moves, other steps are
compositions of two flips, one in Pa another in Pb. The final figure
coincides with the initial one twisted around c.

Definition 3.18 (DP-equivalent standard pants decompositions). A standard pants
decomposition Pa is DP-equivalent to a standard pants decomposition P ′

a if there exist
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standard pants decompositions Pb and P ′

b such that (Pa, Pb) and (P ′

a, P
′

b) are standard
and DP-equivalent to each other.

Theorem 3.19. Let S = Sg,0 a surface without marked points. Then morphisms of
ADPg,0 act transitively on the objects of ADPg,0.

Proof. It is clear from the definition of admissible pants decomposition that it is suf-
ficient to prove transitivity for standard pants decompositions only. By Lemmas 2.7
and 3.3 morphisms of DPg,0 act transitively on standard pants decompositions includ-
ing the same principle curves. This implies that it is sufficient to show that any two
standard pants decompositions Pa and P ′

a are DP-equivalent.
By Theorem 2.2 there exists a sequence {ϕi} of flips and S-moves taking Pa to P ′

a .
In view of Lemma 3.1 we may assume that in this sequence S-moves are applied only to
the standard double pants decompositions. Lemma 2.7 treats the S-moves in standard
pants decompositions, thus, we may assume that {ϕi} consists entirely of flips of Pa.

If Z is a zipper system compatible with (Pa, Pb) and all flips in {ϕi} are zipped
flips (with respect to Z) then there is nothing to prove. Our idea is to decompose the
sequence {ϕi} into several subsequences

{ϕi} = {{ϕi}1, . . . , {ϕi}k}

such that in j-th subsequence all flips are zipped flips with respect to the same zipper
system Zj . Denote by P j

a the pants decomposition obtained from Pa after application
of the first j subsequences of flips, P 0

a = Pa, P
k
a = P ′

a. Clearly, P j
a is compatible both

with Zj and Zj+1. So, we may use zipped flips (with respect to Zj) to transform P j
a

to some standard pants decomposition P j
a (Zj) compatible with Zj . Similarly, we may

transform P j
a to some standard pants decomposition P j

a (Zj+1) compatible with Zj+1

(see Fig. 3.7).

Pa = P 0
a P 1

a P 2
a P j−1

a P j
a P k

a = P ′

a

Z1

Z1

Z2Z2

Z2

Z3 ZjZj

Zj

Zj−1 Zj+1

P 1
a (Z1)

P 1
a (Z2)

P 2
a (Z2)

P 2
a (Z3)

P j−1
a (Zj−1)

P j−1
a (Zj)

P j
a (Zj)

P j
a (Zj+1)

Figure 3.7. Proof of transitivity for g > 2.

Now, for proving DP-equivalence of Pa and P ′

a we only need to show two facts:

(1) P j−1
a (Zj) is DP-equivalent to P j

a (Zj) for 0 < j ≤ k;
(2) P j

a (Z) is DP-equivalent to P j
a (Zj+1) for 0 < j < k.
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The first of this facts follows immediately from Lemma 3.16 since both P j−1
a (Zj) and

P j
a (Zj) are compatible with the same zipper system Zj.
So, we are left to prove the second fact. By Lemma 1.18, we may assume Zj+1 =

Tm
c (Zj), where Tc is a Dehn twist along a curve c ∈ P j

a . By Remark 1.6, there exists an
involution σ preserving Z pointwise and such that σ(ci) = ci for each curve ci ∈ Pa, so
we may apply Lemma 3.17. By Lemma 3.17 there exist a pair of DP-equivalent double
pants decompositions, one compatible with Zj and another compatible with Zj+1. In
view of Lemma 3.16, this implies that P j

a (Z) is DP-equivalent to P j
a (Zj+1).

�

4. Surfaces with marked points

In this section we generalize Theorem 3.19 and Theorem 5.3 to the case of surfaces
with boundary or for surfaces with marked points.

Remark 4.1. We prefer to work with surfaces with holes instead of surfaces with marked
points (the latter may be obtained from the former by contracting the boundary compo-
nents). Since we never consider the boundary and the neighbourhood or the boundary,
this makes no difference for our reasoning. In case of marked surfaces one need to
extend the definition of a “pair of pants”: for marked surfaces a pair of pants is a
sphere with 3 “features”, each of the features may be either a hole or a marked point.

Let Sg,n be a surface of genus g with n holes. Definitions of pants decomposition
and double pants decomposition remain the same as in case of n = 0.

Definition 4.2 (Standard double pants decomposition of an open surface). A double
pants decomposition (Pa, Pb) of Sg,n is standard if Pa and Pb contain the same set of g
handles (where a handle is a surface of genus 1 with 1 hole).

A standard double pants decomposition is strictly standard if any curve of (Pa, Pb)
either belongs to both of Pa and Pb or is contained in some of g handles.

In the same way as in case of n = 0 we define: flips and handle twists, admissible
double pants decompositions and the category ADPg,n of admissible pants decompo-
sitions. We will consider objects of ADPg,n as surfaces with holes, but contracting the
boundaries of the surface we obtain the equivalent category whose objects are surfaces
with marked points.

Before proving the transitivity of morphisms on the objects of ADPg,n, we reprove
Theorem 2.2 for the case of open surfaces (although the result is contained in [12], it
is convenient to have also the prove here, since the same idea will work for the case of
double pants decompositions). More precisely, we derive the result for open surfaces
from the result for closed ones.

Given a pants decomposition of an open surface, S-moves are defined in the same
way as for closed surfaces.

Lemma 4.3 (A. Hatcher, [12]). Flips and S-moves act transitively on pants decompo-
sitions of Sg,n.
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Proof. The proof is by induction on the number of holes n. The base (n = 0) is
Theorem 2.2 for the case of closed surfaces. Suppose that the lemma holds for n = k
and consider a surface Sg,k+1.

We consider simultaneously two surfaces, Sg,k+1 and Sg,k, where the latter is thought
as a copy of Sg,k+1 with a disk attached to the boundary of (k+1)-th hole. Each curve
on Sg,k+1 turns into a curve on Sg,k (but two distinct curves may became the same).
Any pants decomposition of Sg,k+1 turns into a pants decomposition of Sg,k containing
one pair of pants less than the initial ones. More precisely, each pants decomposition
Sg,k+1 contains a unique pair of pants one of whose boundary components is (k + 1)-
th hole. This pair of pants disappears in Sg,k (when the hole is removed, two other
boundary components turn in the same curve). To go back from a pants decomposition
of Pg,k of Sg,k to a pants decomposition of Sg,k+1 we need only to choose one of the
curves c ∈ Pg,k and attach in the place of c a thin strip containing a hole.

A flip as in Fig. 4.1 allow to change the curve c ∈ P (Sg,k) where the holed strip as
attached (this flip in the decomposition of Sg,k+1 does not change the decomposition
of Sg,k). Applying a sequence of flips we may move the strip to any given curve of the
pants decomposition of Sg,k. Furthermore, for any flip or S-move in the decomposition
of Sg,k we may apply similar transformation in Sg,k+1 (we only need to check in advance
that the holed strip is not attached to the curve affected by the transformation, in the
latter case, first we need to change the “stripped” curve). So the transitivity of flips
and S-moves on pants decompositions of Sg,k+1 follows now from transitivity for Sg,k

and a fact that flips allow as to choose the stripped curve arbitrary.
�

Figure 4.1. Flip changing the curve where the holed strip is attached.

Definition 4.4 (Simple double pants decomposition ). A double pants decomposition
(Pa, Pb) is simple if |ai ∩ bj | ≤ 1 for all curves ai ∈ Pa, bj ∈ Pb.

Theorem 4.5. Morphisms of ADPg,n act transitively on the elements of ADPg,n.

Proof. The proof is by induction on the number of holes n. The base (n = 0) is proved
in Theorem 3.19. Suppose that the theorem holds for n = k and consider a surface
Sg,k+1.

Following the proof of Lemma 4.3, we consider simultaneously double pants decom-

positions (Pa, Pb) of Sg,k+1 and (P̃a, P̃b) of Sg,k. Each of two pants decompositions of
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Sg,k+1 differs from corresponding pants decomposition of Sg,k by a holed strip attached
in some of curves (so that (k + 1)-th hole in Sg,k+1 is lying in the intersection of two
strips). The transitivity for the case of Sg,k shows that flips and handle twists are suf-
ficient to transform the double pants decomposition of Sg,k+1 to one which projects to
any given double pants decomposition of Sg,k. As it is shown in the proof of Lemma 4.3,

flips also allow to choose the curves of (P̃a, P̃b) where the holed strips are attached. This
implies transitivity of morphisms of ADPg,n on all admissible double pants decompo-
sition of Sg,k+1 which project to simple double pants decomposition of Sg,k.

The reasoning above does not work for double pants decomposition of Sg,k+1 which
do not project to simple double pants decompositions of Sg,k: indeed, in this case we

may choose the double pants decomposition (P̃a, P̃b) of Sg,k and the curves ai and bj
where the strips are attached, but in the case |ai ∩ bj | > 1 we are not able to choose
which of the intersections of the strips contains the hole.

To adjust the proof to this case, notice that a strictly standard double pants decom-
position of Sg,k+1 projects to a strictly standard double pants decomposition of Sg,k+1,
which is simple. This implies transitivity on strictly standard pants decompositions,
and hence, on standard ones. In view of definition of admissible double pants decom-
position (as one which may be obtained from a standard one), we have transitivity for
all admissible double pants decompositions of Sg,k+1.

Thus, given the statement for n = k we have proved it for n = k + 1, hence, the
theorem holds for any integer n ≥ 0.

�

Theorem 4.5 completes the proof of the Main Theorem.

5. Flip-twist groupoid and mapping class group

All morphisms of DPg,0 are reversible, so the morphisms form a groupoid acting on
the objects of DPg,0. We will call it a flip-twist groupoid and denote FT .

In general, elements of FT change the topology of the double pants decomposition,
so FT is not a group. However, there are some elements which preserve the topology.
Clearly, these elements belong to mapping class group MCG(S) of the surface (recall
that a mapping class group MCG(S) of a surface S is a group of homotopy classes
of self-homeomorphisms of S with a composition as a group operation). In fact, all
elements of mapping class group occur to belong to FT .

We consider the curves of a double pants decomposition as labeled curves, so that a
symmetry of S interchanging the curves would not be trivial.

Lemma 5.1. Let S = Sg,n be a genus g surface with n ≥ 0 marked points, where
2g + n > 2. Then there exists an admissible double pants decomposition (Pa, Pb) of P
such that if g ∈MCG(S) fixes (Pa, Pb) then g = id.

Proof. Let (Pa, Pb) be any admissible double pants decomposition such that no curve
belongs to both Pa and Pb. For example, such a decomposition may be constructed as
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in Fig.1.9 for a closed surface without marked points and as in Fig. 5.1 in general case.
We will show that if g ∈MCG(S) fixes (Pa, Pb) then g = id.

Suppose there exists an element g ∈ MCG(S) such that g((Pa, Pb)) = (Pa, Pb),
g 6= id. Since g(Pa) = Pa, g is a composition of Dehn twists along the curves contained
in Pa. Since the curves do not intersect each other, the Dehn twists do commute. Let
a1 ∈ Pa be any curve whose twist contributes to g. By assumption, a1 /∈ Pb. Hence,
there exists a curve b1 ∈ Pb such that b1 ∩ a1 6= ∅ (otherwise Pb is not a maximal set of
non-intersecting curves in S). Then g(b1) 6= b1, so g(Pb) 6= Pb which contradicts to the
assumption. The contradiction implies the lemma.

�

Figure 5.1. Double pants decomposition (Pa, Pb) of surface with
marked points such that no curve belongs both to Pa and Pb.

Definition 5.2 (Category of topological surfaces). A category Topg,n of topological
surfaces is one whose objects are topological surfaces of genus g with n marked points
and whose morphisms are elements of mapping class group MCG(S).

Theorem 5.3. For any pair (g, n) such that 2g+n > 2 the category ADPg,n contains
a subcategory TopDPg,n which is isomorphic to Topg,n.

Proof. Consider an admissible double pants decompositionDP described in Lemma 5.1.
Consider the orbit MCG(DP ) of DP under the action of the mapping class group. It
follows from Lemma 5.1 that for g1, g2 ∈ MCG, g1 6= g2 one has g1(DP ) 6= g2(DP ).
Let TopDPg,n be a subcategory of ADPg,n such that the objects of TopDPg,n are ele-
ments of the orbit MCG(DP ). The assumptions of Lemma 5.1 imply that the objects
of TopDPg,n are in one-to-one correspondence with the objects of Topg,n. Further-
more, Theorem 3.19 implies that for each two objects x, y ∈ TopDPg,n there exists
a morphism x → y. So, the morphisms of Topg,n and TopDPg,n are in one-to-one
correspondence and we have an equivalence of two categories.

�

Remark 5.4. The special choice of the admissible pants decomposition in the proof
of Theorem 5.3 is indispensable: for example, if we took a standard double pants
decomposition DP then all Dehn twists along principle curves of DP act on DP
trivially and the orbit MCG(DP ) gives a subcategory of ADPg,n isomorphic to some
subcategory of Topg,n.
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